Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/util/util_math_matrix.h')
-rw-r--r--intern/cycles/util/util_math_matrix.h379
1 files changed, 379 insertions, 0 deletions
diff --git a/intern/cycles/util/util_math_matrix.h b/intern/cycles/util/util_math_matrix.h
new file mode 100644
index 00000000000..31ea10f18a8
--- /dev/null
+++ b/intern/cycles/util/util_math_matrix.h
@@ -0,0 +1,379 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __UTIL_MATH_MATRIX_H__
+#define __UTIL_MATH_MATRIX_H__
+
+CCL_NAMESPACE_BEGIN
+
+#define MAT(A, size, row, col) A[(row)*(size)+(col)]
+
+/* Variants that use a constant stride on GPUS. */
+#ifdef __KERNEL_GPU__
+#define MATS(A, n, r, c, s) A[((r)*(n)+(c))*(s)]
+/* Element access when only the lower-triangular elements are stored. */
+#define MATHS(A, r, c, s) A[((r)*((r)+1)/2+(c))*(s)]
+#define VECS(V, i, s) V[(i)*(s)]
+#else
+#define MATS(A, n, r, c, s) MAT(A, n, r, c)
+#define MATHS(A, r, c, s) A[(r)*((r)+1)/2+(c)]
+#define VECS(V, i, s) V[i]
+#endif
+
+/* Zeroing helpers. */
+
+ccl_device_inline void math_vector_zero(float *v, int n)
+{
+ for(int i = 0; i < n; i++)
+ v[i] = 0.0f;
+}
+
+ccl_device_inline void math_matrix_zero(float *A, int n)
+{
+ for(int row = 0; row < n; row++)
+ for(int col = 0; col <= row; col++)
+ MAT(A, n, row, col) = 0.0f;
+}
+
+/* Elementary vector operations. */
+
+ccl_device_inline void math_vector_add(float *a, float ccl_restrict_ptr b, int n)
+{
+ for(int i = 0; i < n; i++)
+ a[i] += b[i];
+}
+
+ccl_device_inline void math_vector_mul(float *a, float ccl_restrict_ptr b, int n)
+{
+ for(int i = 0; i < n; i++)
+ a[i] *= b[i];
+}
+
+ccl_device_inline void math_vector_mul_strided(ccl_global float *a, float ccl_restrict_ptr b, int astride, int n)
+{
+ for(int i = 0; i < n; i++)
+ a[i*astride] *= b[i];
+}
+
+ccl_device_inline void math_vector_scale(float *a, float b, int n)
+{
+ for(int i = 0; i < n; i++)
+ a[i] *= b;
+}
+
+ccl_device_inline void math_vector_max(float *a, float ccl_restrict_ptr b, int n)
+{
+ for(int i = 0; i < n; i++)
+ a[i] = max(a[i], b[i]);
+}
+
+ccl_device_inline void math_vec3_add(float3 *v, int n, float *x, float3 w)
+{
+ for(int i = 0; i < n; i++)
+ v[i] += w*x[i];
+}
+
+ccl_device_inline void math_vec3_add_strided(ccl_global float3 *v, int n, float *x, float3 w, int stride)
+{
+ for(int i = 0; i < n; i++)
+ v[i*stride] += w*x[i];
+}
+
+/* Elementary matrix operations.
+ * Note: TriMatrix refers to a square matrix that is symmetric, and therefore its upper-triangular part isn't stored. */
+
+ccl_device_inline void math_trimatrix_add_diagonal(ccl_global float *A, int n, float val, int stride)
+{
+ for(int row = 0; row < n; row++)
+ MATHS(A, row, row, stride) += val;
+}
+
+/* Add Gramian matrix of v to A.
+ * The Gramian matrix of v is vt*v, so element (i,j) is v[i]*v[j]. */
+ccl_device_inline void math_matrix_add_gramian(float *A,
+ int n,
+ float ccl_restrict_ptr v,
+ float weight)
+{
+ for(int row = 0; row < n; row++)
+ for(int col = 0; col <= row; col++)
+ MAT(A, n, row, col) += v[row]*v[col]*weight;
+}
+
+/* Add Gramian matrix of v to A.
+ * The Gramian matrix of v is vt*v, so element (i,j) is v[i]*v[j]. */
+ccl_device_inline void math_trimatrix_add_gramian_strided(ccl_global float *A,
+ int n,
+ float ccl_restrict_ptr v,
+ float weight,
+ int stride)
+{
+ for(int row = 0; row < n; row++)
+ for(int col = 0; col <= row; col++)
+ MATHS(A, row, col, stride) += v[row]*v[col]*weight;
+}
+
+/* Transpose matrix A inplace. */
+ccl_device_inline void math_matrix_transpose(ccl_global float *A, int n, int stride)
+{
+ for(int i = 0; i < n; i++) {
+ for(int j = 0; j < i; j++) {
+ float temp = MATS(A, n, i, j, stride);
+ MATS(A, n, i, j, stride) = MATS(A, n, j, i, stride);
+ MATS(A, n, j, i, stride) = temp;
+ }
+ }
+}
+
+
+
+
+/* Solvers for matrix problems */
+
+/* In-place Cholesky-Banachiewicz decomposition of the square, positive-definite matrix A
+ * into a lower triangular matrix L so that A = L*L^T. A is being overwritten by L.
+ * Also, only the lower triangular part of A is ever accessed. */
+ccl_device void math_trimatrix_cholesky(ccl_global float *A, int n, int stride)
+{
+ for(int row = 0; row < n; row++) {
+ for(int col = 0; col <= row; col++) {
+ float sum_col = MATHS(A, row, col, stride);
+ for(int k = 0; k < col; k++) {
+ sum_col -= MATHS(A, row, k, stride) * MATHS(A, col, k, stride);
+ }
+ if(row == col) {
+ sum_col = sqrtf(max(sum_col, 0.0f));
+ }
+ else {
+ sum_col /= MATHS(A, col, col, stride);
+ }
+ MATHS(A, row, col, stride) = sum_col;
+ }
+ }
+}
+
+/* Solve A*S=y for S given A and y, where A is symmetrical positive-semidefinite and both inputs are destroyed in the process.
+ *
+ * We can apply Cholesky decomposition to find a lower triangular L so that L*Lt = A.
+ * With that we get (L*Lt)*S = L*(Lt*S) = L*b = y, defining b as Lt*S.
+ * Since L is lower triangular, finding b is relatively easy since y is known.
+ * Then, the remaining problem is Lt*S = b, which again can be solved easily.
+ *
+ * This is useful for solving the normal equation S=inv(Xt*W*X)*Xt*W*y, since Xt*W*X is
+ * symmetrical positive-semidefinite by construction, so we can just use this function with A=Xt*W*X and y=Xt*W*y. */
+ccl_device_inline void math_trimatrix_vec3_solve(ccl_global float *A, ccl_global float3 *y, int n, int stride)
+{
+ math_trimatrix_add_diagonal(A, n, 1e-4f, stride); /* Improve the numerical stability. */
+ math_trimatrix_cholesky(A, n, stride); /* Replace A with L so that L*Lt = A. */
+
+ /* Use forward substitution to solve L*b = y, replacing y by b. */
+ for(int row = 0; row < n; row++) {
+ float3 sum = VECS(y, row, stride);
+ for(int col = 0; col < row; col++)
+ sum -= MATHS(A, row, col, stride) * VECS(y, col, stride);
+ VECS(y, row, stride) = sum / MATHS(A, row, row, stride);
+ }
+
+ /* Use backward substitution to solve Lt*S = b, replacing b by S. */
+ for(int row = n-1; row >= 0; row--) {
+ float3 sum = VECS(y, row, stride);
+ for(int col = row+1; col < n; col++)
+ sum -= MATHS(A, col, row, stride) * VECS(y, col, stride);
+ VECS(y, row, stride) = sum / MATHS(A, row, row, stride);
+ }
+}
+
+
+
+
+
+/* Perform the Jacobi Eigenvalue Methon on matrix A.
+ * A is assumed to be a symmetrical matrix, therefore only the lower-triangular part is ever accessed.
+ * The algorithm overwrites the contents of A.
+ *
+ * After returning, A will be overwritten with D, which is (almost) diagonal,
+ * and V will contain the eigenvectors of the original A in its rows (!),
+ * so that A = V^T*D*V. Therefore, the diagonal elements of D are the (sorted) eigenvalues of A.
+ */
+ccl_device void math_matrix_jacobi_eigendecomposition(float *A, ccl_global float *V, int n, int v_stride)
+{
+ const float singular_epsilon = 1e-9f;
+
+ for (int row = 0; row < n; row++)
+ for (int col = 0; col < n; col++)
+ MATS(V, n, row, col, v_stride) = (col == row) ? 1.0f : 0.0f;
+
+ for (int sweep = 0; sweep < 8; sweep++) {
+ float off_diagonal = 0.0f;
+ for (int row = 1; row < n; row++)
+ for (int col = 0; col < row; col++)
+ off_diagonal += fabsf(MAT(A, n, row, col));
+ if (off_diagonal < 1e-7f) {
+ /* The matrix has nearly reached diagonal form.
+ * Since the eigenvalues are only used to determine truncation, their exact values aren't required - a relative error of a few ULPs won't matter at all. */
+ break;
+ }
+
+ /* Set the threshold for the small element rotation skip in the first sweep:
+ * Skip all elements that are less than a tenth of the average off-diagonal element. */
+ float threshold = 0.2f*off_diagonal / (n*n);
+
+ for(int row = 1; row < n; row++) {
+ for(int col = 0; col < row; col++) {
+ /* Perform a Jacobi rotation on this element that reduces it to zero. */
+ float element = MAT(A, n, row, col);
+ float abs_element = fabsf(element);
+
+ /* If we're in a later sweep and the element already is very small, just set it to zero and skip the rotation. */
+ if (sweep > 3 && abs_element <= singular_epsilon*fabsf(MAT(A, n, row, row)) && abs_element <= singular_epsilon*fabsf(MAT(A, n, col, col))) {
+ MAT(A, n, row, col) = 0.0f;
+ continue;
+ }
+
+ if(element == 0.0f) {
+ continue;
+ }
+
+ /* If we're in one of the first sweeps and the element is smaller than the threshold, skip it. */
+ if(sweep < 3 && (abs_element < threshold)) {
+ continue;
+ }
+
+ /* Determine rotation: The rotation is characterized by its angle phi - or, in the actual implementation, sin(phi) and cos(phi).
+ * To find those, we first compute their ratio - that might be unstable if the angle approaches 90°, so there's a fallback for that case.
+ * Then, we compute sin(phi) and cos(phi) themselves. */
+ float singular_diff = MAT(A, n, row, row) - MAT(A, n, col, col);
+ float ratio;
+ if (abs_element > singular_epsilon*fabsf(singular_diff)) {
+ float cot_2phi = 0.5f*singular_diff / element;
+ ratio = 1.0f / (fabsf(cot_2phi) + sqrtf(1.0f + cot_2phi*cot_2phi));
+ if (cot_2phi < 0.0f) ratio = -ratio; /* Copy sign. */
+ }
+ else {
+ ratio = element / singular_diff;
+ }
+
+ float c = 1.0f / sqrtf(1.0f + ratio*ratio);
+ float s = ratio*c;
+ /* To improve numerical stability by avoiding cancellation, the update equations are reformulized to use sin(phi) and tan(phi/2) instead. */
+ float tan_phi_2 = s / (1.0f + c);
+
+ /* Update the singular values in the diagonal. */
+ float singular_delta = ratio*element;
+ MAT(A, n, row, row) += singular_delta;
+ MAT(A, n, col, col) -= singular_delta;
+
+ /* Set the element itself to zero. */
+ MAT(A, n, row, col) = 0.0f;
+
+ /* Perform the actual rotations on the matrices. */
+#define ROT(M, r1, c1, r2, c2, stride) \
+ { \
+ float M1 = MATS(M, n, r1, c1, stride); \
+ float M2 = MATS(M, n, r2, c2, stride); \
+ MATS(M, n, r1, c1, stride) -= s*(M2 + tan_phi_2*M1); \
+ MATS(M, n, r2, c2, stride) += s*(M1 - tan_phi_2*M2); \
+ }
+
+ /* Split into three parts to ensure correct accesses since we only store the lower-triangular part of A. */
+ for(int i = 0 ; i < col; i++) ROT(A, col, i, row, i, 1);
+ for(int i = col+1; i < row; i++) ROT(A, i, col, row, i, 1);
+ for(int i = row+1; i < n ; i++) ROT(A, i, col, i, row, 1);
+
+ for(int i = 0 ; i < n ; i++) ROT(V, col, i, row, i, v_stride);
+#undef ROT
+ }
+ }
+ }
+
+ /* Sort eigenvalues and the associated eigenvectors. */
+ for (int i = 0; i < n - 1; i++) {
+ float v = MAT(A, n, i, i);
+ int k = i;
+ for (int j = i; j < n; j++) {
+ if (MAT(A, n, j, j) >= v) {
+ v = MAT(A, n, j, j);
+ k = j;
+ }
+ }
+ if (k != i) {
+ /* Swap eigenvalues. */
+ MAT(A, n, k, k) = MAT(A, n, i, i);
+ MAT(A, n, i, i) = v;
+ /* Swap eigenvectors. */
+ for (int j = 0; j < n; j++) {
+ float v = MATS(V, n, i, j, v_stride);
+ MATS(V, n, i, j, v_stride) = MATS(V, n, k, j, v_stride);
+ MATS(V, n, k, j, v_stride) = v;
+ }
+ }
+ }
+}
+
+#ifdef __KERNEL_SSE3__
+
+ccl_device_inline void math_vector_zero_sse(__m128 *A, int n)
+{
+ for(int i = 0; i < n; i++)
+ A[i] = _mm_setzero_ps();
+}
+ccl_device_inline void math_matrix_zero_sse(__m128 *A, int n)
+{
+ for(int row = 0; row < n; row++)
+ for(int col = 0; col <= row; col++)
+ MAT(A, n, row, col) = _mm_setzero_ps();
+}
+
+/* Add Gramian matrix of v to A.
+ * The Gramian matrix of v is v^T*v, so element (i,j) is v[i]*v[j]. */
+ccl_device_inline void math_matrix_add_gramian_sse(__m128 *A, int n, __m128 ccl_restrict_ptr v, __m128 weight)
+{
+ for(int row = 0; row < n; row++)
+ for(int col = 0; col <= row; col++)
+ MAT(A, n, row, col) = _mm_add_ps(MAT(A, n, row, col), _mm_mul_ps(_mm_mul_ps(v[row], v[col]), weight));
+}
+
+ccl_device_inline void math_vector_add_sse(__m128 *V, int n, __m128 ccl_restrict_ptr a)
+{
+ for(int i = 0; i < n; i++)
+ V[i] = _mm_add_ps(V[i], a[i]);
+}
+
+ccl_device_inline void math_vector_mul_sse(__m128 *V, int n, __m128 ccl_restrict_ptr a)
+{
+ for(int i = 0; i < n; i++)
+ V[i] = _mm_mul_ps(V[i], a[i]);
+}
+
+ccl_device_inline void math_vector_max_sse(__m128 *a, __m128 ccl_restrict_ptr b, int n)
+{
+ for(int i = 0; i < n; i++)
+ a[i] = _mm_max_ps(a[i], b[i]);
+}
+
+ccl_device_inline void math_matrix_hsum(float *A, int n, __m128 ccl_restrict_ptr B)
+{
+ for(int row = 0; row < n; row++)
+ for(int col = 0; col <= row; col++)
+ MAT(A, n, row, col) = _mm_hsum_ss(MAT(B, n, row, col));
+}
+#endif
+
+#undef MAT
+
+CCL_NAMESPACE_END
+
+#endif /* __UTIL_MATH_MATRIX_H__ */