Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/util')
-rw-r--r--intern/cycles/util/CMakeLists.txt2
-rw-r--r--intern/cycles/util/util_ies.cpp392
-rw-r--r--intern/cycles/util/util_ies.h61
-rw-r--r--intern/cycles/util/util_math.h11
4 files changed, 466 insertions, 0 deletions
diff --git a/intern/cycles/util/CMakeLists.txt b/intern/cycles/util/CMakeLists.txt
index 24043e2231b..3b690860d53 100644
--- a/intern/cycles/util/CMakeLists.txt
+++ b/intern/cycles/util/CMakeLists.txt
@@ -11,6 +11,7 @@ set(INC_SYS
set(SRC
util_aligned_malloc.cpp
util_debug.cpp
+ util_ies.cpp
util_logging.cpp
util_math_cdf.cpp
util_md5.cpp
@@ -45,6 +46,7 @@ set(SRC_HEADERS
util_guarded_allocator.h
util_half.h
util_hash.h
+ util_ies.h
util_image.h
util_image_impl.h
util_list.h
diff --git a/intern/cycles/util/util_ies.cpp b/intern/cycles/util/util_ies.cpp
new file mode 100644
index 00000000000..4824c886609
--- /dev/null
+++ b/intern/cycles/util/util_ies.cpp
@@ -0,0 +1,392 @@
+/*
+ * Copyright 2011-2018 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "util/util_foreach.h"
+#include "util/util_ies.h"
+#include "util/util_math.h"
+#include "util/util_string.h"
+
+CCL_NAMESPACE_BEGIN
+
+bool IESFile::load(ustring ies)
+{
+ clear();
+ if(!parse(ies) || !process()) {
+ clear();
+ return false;
+ }
+ return true;
+}
+
+void IESFile::clear()
+{
+ intensity.clear();
+ v_angles.clear();
+ h_angles.clear();
+}
+
+int IESFile::packed_size()
+{
+ if(v_angles.size() && h_angles.size() > 0) {
+ return 2 + h_angles.size() + v_angles.size() + h_angles.size()*v_angles.size();
+ }
+ return 0;
+}
+
+void IESFile::pack(float *data)
+{
+ if(v_angles.size() && h_angles.size()) {
+ *(data++) = __int_as_float(h_angles.size());
+ *(data++) = __int_as_float(v_angles.size());
+
+ memcpy(data, &h_angles[0], h_angles.size()*sizeof(float));
+ data += h_angles.size();
+ memcpy(data, &v_angles[0], v_angles.size()*sizeof(float));
+ data += v_angles.size();
+
+ for(int h = 0; h < intensity.size(); h++) {
+ memcpy(data, &intensity[h][0], v_angles.size()*sizeof(float));
+ data += v_angles.size();
+ }
+ }
+}
+
+class IESTextParser {
+public:
+ vector<char> text;
+ char *data;
+
+ IESTextParser(ustring str)
+ : text(str.begin(), str.end())
+ {
+ std::replace(text.begin(), text.end(), ',', ' ');
+ data = strstr(&text[0], "\nTILT=");
+ }
+
+ bool eof() {
+ return (data == NULL) || (data[0] == '\0');
+ }
+
+ double get_double() {
+ if(eof()) {
+ return 0.0;
+ }
+ char *old_data = data;
+ double val = strtod(data, &data);
+ if(data == old_data) {
+ data = NULL;
+ return 0.0;
+ }
+ return val;
+ }
+
+ long get_long() {
+ if(eof()) {
+ return 0;
+ }
+ char *old_data = data;
+ long val = strtol(data, &data, 10);
+ if(data == old_data) {
+ data = NULL;
+ return 0;
+ }
+ return val;
+ }
+};
+
+bool IESFile::parse(ustring ies)
+{
+ IESTextParser parser(ies);
+ if(parser.eof()) {
+ return false;
+ }
+
+ /* Handle the tilt data block. */
+ if(strncmp(parser.data, "\nTILT=INCLUDE", 13) == 0) {
+ parser.data += 13;
+ parser.get_double(); /* Lamp to Luminaire geometry */
+ int num_tilt = parser.get_long(); /* Amount of tilt angles and factors */
+ /* Skip over angles and factors. */
+ for(int i = 0; i < 2*num_tilt; i++) {
+ parser.get_double();
+ }
+ }
+ else {
+ /* Skip to next line. */
+ parser.data = strstr(parser.data+1, "\n");
+ }
+
+ if(parser.eof()) {
+ return false;
+ }
+ parser.data++;
+
+ parser.get_long(); /* Number of lamps */
+ parser.get_double(); /* Lumens per lamp */
+ double factor = parser.get_double(); /* Candela multiplier */
+ int v_angles_num = parser.get_long(); /* Number of vertical angles */
+ int h_angles_num = parser.get_long(); /* Number of horizontal angles */
+ type = (IESType) parser.get_long(); /* Photometric type */
+
+ /* TODO(lukas): Test whether the current type B processing can also deal with type A files.
+ * In theory the only difference should be orientation which we ignore anyways, but with IES you never know...
+ */
+ if(type != TYPE_B && type != TYPE_C) {
+ return false;
+ }
+
+ parser.get_long(); /* Unit of the geometry data */
+ parser.get_double(); /* Width */
+ parser.get_double(); /* Length */
+ parser.get_double(); /* Height */
+ factor *= parser.get_double(); /* Ballast factor */
+ factor *= parser.get_double(); /* Ballast-Lamp Photometric factor */
+ parser.get_double(); /* Input Watts */
+
+ /* Intensity values in IES files are specified in candela (lumen/sr), a photometric quantity.
+ * Cycles expects radiometric quantities, though, which requires a conversion.
+ * However, the Luminous efficacy (ratio of lumens per Watt) depends on the spectral distribution
+ * of the light source since lumens take human perception into account.
+ * Since this spectral distribution is not known from the IES file, a typical one must be assumed.
+ * The D65 standard illuminant has a Luminous efficacy of 177.83, which is used here to convert to Watt/sr.
+ * A more advanced approach would be to add a Blackbody Temperature input to the node and numerically
+ * integrate the Luminous efficacy from the resulting spectral distribution.
+ * Also, the Watt/sr value must be multiplied by 4*pi to get the Watt value that Cycles expects
+ * for lamp strength. Therefore, the conversion here uses 4*pi/177.83 as a Candela to Watt factor.
+ */
+ factor *= 0.0706650768394;
+
+ v_angles.reserve(v_angles_num);
+ for(int i = 0; i < v_angles_num; i++) {
+ v_angles.push_back((float) parser.get_double());
+ }
+
+ h_angles.reserve(h_angles_num);
+ for(int i = 0; i < h_angles_num; i++) {
+ h_angles.push_back((float) parser.get_double());
+ }
+
+ intensity.resize(h_angles_num);
+ for(int i = 0; i < h_angles_num; i++) {
+ intensity[i].reserve(v_angles_num);
+ for(int j = 0; j < v_angles_num; j++) {
+ intensity[i].push_back((float) (factor * parser.get_double()));
+ }
+ }
+
+ return !parser.eof();
+}
+
+bool IESFile::process_type_b()
+{
+ vector<vector<float> > newintensity;
+ newintensity.resize(v_angles.size());
+ for(int i = 0; i < v_angles.size(); i++) {
+ newintensity[i].reserve(h_angles.size());
+ for(int j = 0; j < h_angles.size(); j++) {
+ newintensity[i].push_back(intensity[j][i]);
+ }
+ }
+ intensity.swap(newintensity);
+ h_angles.swap(v_angles);
+
+ float h_first = h_angles[0], h_last = h_angles[h_angles.size()-1];
+ if(h_last != 90.0f) {
+ return false;
+ }
+
+ if(h_first == 0.0f) {
+ /* The range in the file corresponds to 90°-180°, we need to mirror that to get the
+ * full 180° range. */
+ vector<float> new_h_angles;
+ vector<vector<float> > new_intensity;
+ int hnum = h_angles.size();
+ new_h_angles.reserve(2*hnum-1);
+ new_intensity.reserve(2*hnum-1);
+ for(int i = hnum-1; i > 0; i--) {
+ new_h_angles.push_back(90.0f - h_angles[i]);
+ new_intensity.push_back(intensity[i]);
+ }
+ for(int i = 0; i < hnum; i++) {
+ new_h_angles.push_back(90.0f + h_angles[i]);
+ new_intensity.push_back(intensity[i]);
+ }
+ h_angles.swap(new_h_angles);
+ intensity.swap(new_intensity);
+ }
+ else if(h_first == -90.0f) {
+ /* We have full 180° coverage, so just shift to match the angle range convention. */
+ for(int i = 0; i < h_angles.size(); i++) {
+ h_angles[i] += 90.0f;
+ }
+ }
+ /* To get correct results with the cubic interpolation in the kernel, the horizontal range
+ * has to cover all 360°. Therefore, we copy the 0° entry to 360° to ensure full coverage
+ * and seamless interpolation. */
+ h_angles.push_back(360.0f);
+ intensity.push_back(intensity[0]);
+
+ float v_first = v_angles[0], v_last = v_angles[v_angles.size()-1];
+ if(v_last != 90.0f) {
+ return false;
+ }
+
+ if(v_first == 0.0f) {
+ /* The range in the file corresponds to 90°-180°, we need to mirror that to get the
+ * full 180° range. */
+ vector<float> new_v_angles;
+ int hnum = h_angles.size();
+ int vnum = v_angles.size();
+ new_v_angles.reserve(2*vnum-1);
+ for(int i = vnum-1; i > 0; i--) {
+ new_v_angles.push_back(90.0f - v_angles[i]);
+ }
+ for(int i = 0; i < vnum; i++) {
+ new_v_angles.push_back(90.0f + v_angles[i]);
+ }
+ for(int i = 0; i < hnum; i++) {
+ vector<float> new_intensity;
+ new_intensity.reserve(2*vnum-1);
+ for(int j = vnum-2; j >= 0; j--) {
+ new_intensity.push_back(intensity[i][j]);
+ }
+ new_intensity.insert(new_intensity.end(), intensity[i].begin(), intensity[i].end());
+ intensity[i].swap(new_intensity);
+ }
+ v_angles.swap(new_v_angles);
+ }
+ else if(v_first == -90.0f) {
+ /* We have full 180° coverage, so just shift to match the angle range convention. */
+ for(int i = 0; i < v_angles.size(); i++) {
+ v_angles[i] += 90.0f;
+ }
+ }
+
+ return true;
+}
+
+bool IESFile::process_type_c()
+{
+ if(h_angles[0] == 90.0f) {
+ /* Some files are stored from 90° to 270°, so we just rotate them to the regular 0°-180° range here. */
+ for(int i = 0; i < v_angles.size(); i++) {
+ h_angles[i] -= 90.0f;
+ }
+ }
+
+ if(h_angles[0] != 0.0f) {
+ return false;
+ }
+
+ if(h_angles.size() == 1) {
+ h_angles.push_back(360.0f);
+ intensity.push_back(intensity[0]);
+ }
+
+ if(h_angles[h_angles.size()-1] == 90.0f) {
+ /* Only one quadrant is defined, so we need to mirror twice (from one to two, then to four).
+ * Since the two->four mirroring step might also be required if we get an input of two quadrants,
+ * we only do the first mirror here and later do the second mirror in either case. */
+ int hnum = h_angles.size();
+ for(int i = hnum-2; i >= 0; i--) {
+ h_angles.push_back(180.0f - h_angles[i]);
+ intensity.push_back(intensity[i]);
+ }
+ }
+
+ if(h_angles[h_angles.size()-1] == 180.0f) {
+ /* Mirror half to the full range. */
+ int hnum = h_angles.size();
+ for(int i = hnum-2; i >= 0; i--) {
+ h_angles.push_back(360.0f - h_angles[i]);
+ intensity.push_back(intensity[i]);
+ }
+ }
+
+ /* Some files skip the 360° entry (contrary to standard) because it's supposed to be identical to the 0° entry.
+ * If the file has a discernible order in its spacing, just fix this. */
+ if(h_angles[h_angles.size()-1] != 360.0f) {
+ int hnum = h_angles.size();
+ float last_step = h_angles[hnum-1]-h_angles[hnum-2];
+ float first_step = h_angles[1]-h_angles[0];
+ float difference = 360.0f - h_angles[hnum-1];
+ if(last_step == difference || first_step == difference) {
+ h_angles.push_back(360.0f);
+ intensity.push_back(intensity[0]);
+ }
+ else {
+ return false;
+ }
+ }
+
+ float v_first = v_angles[0], v_last = v_angles[v_angles.size()-1];
+ if(v_first == 90.0f) {
+ if(v_last == 180.0f) {
+ /* Flip to ensure that vertical angles always start at 0°. */
+ for(int i = 0; i < v_angles.size(); i++) {
+ v_angles[i] = 180.0f - v_angles[i];
+ }
+ }
+ else {
+ return false;
+ }
+ }
+ else if(v_first != 0.0f) {
+ return false;
+ }
+
+ return true;
+}
+
+bool IESFile::process()
+{
+ if(h_angles.size() == 0 || v_angles.size() == 0) {
+ return false;
+ }
+
+ if(type == TYPE_B) {
+ if(!process_type_b()) {
+ return false;
+ }
+ }
+ else {
+ assert(type == TYPE_C);
+ if(!process_type_c()) {
+ return false;
+ }
+ }
+
+ assert(v_angles[0] == 0.0f);
+ assert(h_angles[0] == 0.0f);
+ assert(h_angles[h_angles.size()-1] == 360.0f);
+
+ /* Convert from deg to rad. */
+ for(int i = 0; i < v_angles.size(); i++) {
+ v_angles[i] *= M_PI_F / 180.f;
+ }
+ for(int i = 0; i < h_angles.size(); i++) {
+ h_angles[i] *= M_PI_F / 180.f;
+ }
+
+ return true;
+}
+
+IESFile::~IESFile()
+{
+ clear();
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/util/util_ies.h b/intern/cycles/util/util_ies.h
new file mode 100644
index 00000000000..5933cb3962a
--- /dev/null
+++ b/intern/cycles/util/util_ies.h
@@ -0,0 +1,61 @@
+/*
+ * Copyright 2011-2018 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __UTIL_IES_H__
+#define __UTIL_IES_H__
+
+#include "util/util_param.h"
+#include "util/util_vector.h"
+
+CCL_NAMESPACE_BEGIN
+
+class IESFile {
+public:
+ IESFile() {}
+ ~IESFile();
+
+ int packed_size();
+ void pack(float *data);
+
+ bool load(ustring ies);
+ void clear();
+
+protected:
+ bool parse(ustring ies);
+ bool process();
+ bool process_type_b();
+ bool process_type_c();
+
+ /* The brightness distribution is stored in spherical coordinates.
+ * The horizontal angles correspond to to theta in the regular notation
+ * and always span the full range from 0° to 360°.
+ * The vertical angles correspond to phi and always start at 0°. */
+ vector<float> v_angles, h_angles;
+ /* The actual values are stored here, with every entry storing the values
+ * of one horizontal segment. */
+ vector<vector<float> > intensity;
+
+ /* Types of angle representation in IES files. Currently, only B and C are supported. */
+ enum IESType {
+ TYPE_A = 3,
+ TYPE_B = 2,
+ TYPE_C = 1
+ } type;
+};
+
+CCL_NAMESPACE_END
+
+#endif /* __UTIL_IES_H__ */
diff --git a/intern/cycles/util/util_math.h b/intern/cycles/util/util_math.h
index d0e91a2a1c9..fd3199f209f 100644
--- a/intern/cycles/util/util_math.h
+++ b/intern/cycles/util/util_math.h
@@ -310,6 +310,17 @@ ccl_device_inline float4 float3_to_float4(const float3 a)
return make_float4(a.x, a.y, a.z, 1.0f);
}
+ccl_device_inline float inverse_lerp(float a, float b, float x)
+{
+ return (x - a) / (b - a);
+}
+
+/* Cubic interpolation between b and c, a and d are the previous and next point. */
+ccl_device_inline float cubic_interp(float a, float b, float c, float d, float x)
+{
+ return 0.5f*(((d + 3.0f*(b-c) - a)*x + (2.0f*a - 5.0f*b + 4.0f*c - d))*x + (c - a))*x + b;
+}
+
CCL_NAMESPACE_END
#include "util/util_math_int2.h"