Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/elbeem/intern/solver_relax.h')
-rw-r--r--intern/elbeem/intern/solver_relax.h1072
1 files changed, 1072 insertions, 0 deletions
diff --git a/intern/elbeem/intern/solver_relax.h b/intern/elbeem/intern/solver_relax.h
new file mode 100644
index 00000000000..667e4bcab8a
--- /dev/null
+++ b/intern/elbeem/intern/solver_relax.h
@@ -0,0 +1,1072 @@
+/******************************************************************************
+ *
+ * El'Beem - the visual lattice boltzmann freesurface simulator
+ * All code distributed as part of El'Beem is covered by the version 2 of the
+ * GNU General Public License. See the file COPYING for details.
+ * Copyright 2003-2005 Nils Thuerey
+ *
+ * Combined 2D/3D Lattice Boltzmann relaxation macros
+ *
+ *****************************************************************************/
+
+
+/******************************************************************************
+ * normal relaxation
+ *****************************************************************************/
+
+// standard arrays
+#define CSRC_C RAC(ccel , dC )
+#define CSRC_E RAC(ccel + (-1) *(dTotalNum), dE )
+#define CSRC_W RAC(ccel + (+1) *(dTotalNum), dW )
+#define CSRC_N RAC(ccel + (-mLevel[lev].lOffsx) *(dTotalNum), dN )
+#define CSRC_S RAC(ccel + (+mLevel[lev].lOffsx) *(dTotalNum), dS )
+#define CSRC_NE RAC(ccel + (-mLevel[lev].lOffsx-1) *(dTotalNum), dNE)
+#define CSRC_NW RAC(ccel + (-mLevel[lev].lOffsx+1) *(dTotalNum), dNW)
+#define CSRC_SE RAC(ccel + (+mLevel[lev].lOffsx-1) *(dTotalNum), dSE)
+#define CSRC_SW RAC(ccel + (+mLevel[lev].lOffsx+1) *(dTotalNum), dSW)
+#define CSRC_T RAC(ccel + (-mLevel[lev].lOffsy) *(dTotalNum), dT )
+#define CSRC_B RAC(ccel + (+mLevel[lev].lOffsy) *(dTotalNum), dB )
+#define CSRC_ET RAC(ccel + (-mLevel[lev].lOffsy-1) *(dTotalNum), dET)
+#define CSRC_EB RAC(ccel + (+mLevel[lev].lOffsy-1) *(dTotalNum), dEB)
+#define CSRC_WT RAC(ccel + (-mLevel[lev].lOffsy+1) *(dTotalNum), dWT)
+#define CSRC_WB RAC(ccel + (+mLevel[lev].lOffsy+1) *(dTotalNum), dWB)
+#define CSRC_NT RAC(ccel + (-mLevel[lev].lOffsy-mLevel[lev].lOffsx) *(dTotalNum), dNT)
+#define CSRC_NB RAC(ccel + (+mLevel[lev].lOffsy-mLevel[lev].lOffsx) *(dTotalNum), dNB)
+#define CSRC_ST RAC(ccel + (-mLevel[lev].lOffsy+mLevel[lev].lOffsx) *(dTotalNum), dST)
+#define CSRC_SB RAC(ccel + (+mLevel[lev].lOffsy+mLevel[lev].lOffsx) *(dTotalNum), dSB)
+
+#define XSRC_C(x) RAC(ccel + (x) *dTotalNum, dC )
+#define XSRC_E(x) RAC(ccel + ((x)-1) *dTotalNum, dE )
+#define XSRC_W(x) RAC(ccel + ((x)+1) *dTotalNum, dW )
+#define XSRC_N(x) RAC(ccel + ((x)-mLevel[lev].lOffsx) *dTotalNum, dN )
+#define XSRC_S(x) RAC(ccel + ((x)+mLevel[lev].lOffsx) *dTotalNum, dS )
+#define XSRC_NE(x) RAC(ccel + ((x)-mLevel[lev].lOffsx-1) *dTotalNum, dNE)
+#define XSRC_NW(x) RAC(ccel + ((x)-mLevel[lev].lOffsx+1) *dTotalNum, dNW)
+#define XSRC_SE(x) RAC(ccel + ((x)+mLevel[lev].lOffsx-1) *dTotalNum, dSE)
+#define XSRC_SW(x) RAC(ccel + ((x)+mLevel[lev].lOffsx+1) *dTotalNum, dSW)
+#define XSRC_T(x) RAC(ccel + ((x)-mLevel[lev].lOffsy) *dTotalNum, dT )
+#define XSRC_B(x) RAC(ccel + ((x)+mLevel[lev].lOffsy) *dTotalNum, dB )
+#define XSRC_ET(x) RAC(ccel + ((x)-mLevel[lev].lOffsy-1) *dTotalNum, dET)
+#define XSRC_EB(x) RAC(ccel + ((x)+mLevel[lev].lOffsy-1) *dTotalNum, dEB)
+#define XSRC_WT(x) RAC(ccel + ((x)-mLevel[lev].lOffsy+1) *dTotalNum, dWT)
+#define XSRC_WB(x) RAC(ccel + ((x)+mLevel[lev].lOffsy+1) *dTotalNum, dWB)
+#define XSRC_NT(x) RAC(ccel + ((x)-mLevel[lev].lOffsy-mLevel[lev].lOffsx) *dTotalNum, dNT)
+#define XSRC_NB(x) RAC(ccel + ((x)+mLevel[lev].lOffsy-mLevel[lev].lOffsx) *dTotalNum, dNB)
+#define XSRC_ST(x) RAC(ccel + ((x)-mLevel[lev].lOffsy+mLevel[lev].lOffsx) *dTotalNum, dST)
+#define XSRC_SB(x) RAC(ccel + ((x)+mLevel[lev].lOffsy+mLevel[lev].lOffsx) *dTotalNum, dSB)
+
+
+
+#define OMEGA(l) mLevel[(l)].omega
+
+#define EQC ( DFL1*(rho - usqr))
+#define EQN ( DFL2*(rho + uy*(4.5*uy + 3.0) - usqr))
+#define EQS ( DFL2*(rho + uy*(4.5*uy - 3.0) - usqr))
+#define EQE ( DFL2*(rho + ux*(4.5*ux + 3.0) - usqr))
+#define EQW ( DFL2*(rho + ux*(4.5*ux - 3.0) - usqr))
+#define EQT ( DFL2*(rho + uz*(4.5*uz + 3.0) - usqr))
+#define EQB ( DFL2*(rho + uz*(4.5*uz - 3.0) - usqr))
+
+#define EQNE ( DFL3*(rho + (+ux+uy)*(4.5*(+ux+uy) + 3.0) - usqr))
+#define EQNW ( DFL3*(rho + (-ux+uy)*(4.5*(-ux+uy) + 3.0) - usqr))
+#define EQSE ( DFL3*(rho + (+ux-uy)*(4.5*(+ux-uy) + 3.0) - usqr))
+#define EQSW ( DFL3*(rho + (-ux-uy)*(4.5*(-ux-uy) + 3.0) - usqr))
+#define EQNT ( DFL3*(rho + (+uy+uz)*(4.5*(+uy+uz) + 3.0) - usqr))
+#define EQNB ( DFL3*(rho + (+uy-uz)*(4.5*(+uy-uz) + 3.0) - usqr))
+#define EQST ( DFL3*(rho + (-uy+uz)*(4.5*(-uy+uz) + 3.0) - usqr))
+#define EQSB ( DFL3*(rho + (-uy-uz)*(4.5*(-uy-uz) + 3.0) - usqr))
+#define EQET ( DFL3*(rho + (+ux+uz)*(4.5*(+ux+uz) + 3.0) - usqr))
+#define EQEB ( DFL3*(rho + (+ux-uz)*(4.5*(+ux-uz) + 3.0) - usqr))
+#define EQWT ( DFL3*(rho + (-ux+uz)*(4.5*(-ux+uz) + 3.0) - usqr))
+#define EQWB ( DFL3*(rho + (-ux-uz)*(4.5*(-ux-uz) + 3.0) - usqr))
+
+
+// this is a bit ugly, but necessary for the CSRC_ access...
+#define MSRC_C m[dC ]
+#define MSRC_N m[dN ]
+#define MSRC_S m[dS ]
+#define MSRC_E m[dE ]
+#define MSRC_W m[dW ]
+#define MSRC_T m[dT ]
+#define MSRC_B m[dB ]
+#define MSRC_NE m[dNE]
+#define MSRC_NW m[dNW]
+#define MSRC_SE m[dSE]
+#define MSRC_SW m[dSW]
+#define MSRC_NT m[dNT]
+#define MSRC_NB m[dNB]
+#define MSRC_ST m[dST]
+#define MSRC_SB m[dSB]
+#define MSRC_ET m[dET]
+#define MSRC_EB m[dEB]
+#define MSRC_WT m[dWT]
+#define MSRC_WB m[dWB]
+
+// this is a bit ugly, but necessary for the ccel local access...
+#define CCEL_C RAC(ccel, dC )
+#define CCEL_N RAC(ccel, dN )
+#define CCEL_S RAC(ccel, dS )
+#define CCEL_E RAC(ccel, dE )
+#define CCEL_W RAC(ccel, dW )
+#define CCEL_T RAC(ccel, dT )
+#define CCEL_B RAC(ccel, dB )
+#define CCEL_NE RAC(ccel, dNE)
+#define CCEL_NW RAC(ccel, dNW)
+#define CCEL_SE RAC(ccel, dSE)
+#define CCEL_SW RAC(ccel, dSW)
+#define CCEL_NT RAC(ccel, dNT)
+#define CCEL_NB RAC(ccel, dNB)
+#define CCEL_ST RAC(ccel, dST)
+#define CCEL_SB RAC(ccel, dSB)
+#define CCEL_ET RAC(ccel, dET)
+#define CCEL_EB RAC(ccel, dEB)
+#define CCEL_WT RAC(ccel, dWT)
+#define CCEL_WB RAC(ccel, dWB)
+// for coarse to fine interpol access
+#define CCELG_C(f) (RAC(ccel, dC )*mGaussw[(f)])
+#define CCELG_N(f) (RAC(ccel, dN )*mGaussw[(f)])
+#define CCELG_S(f) (RAC(ccel, dS )*mGaussw[(f)])
+#define CCELG_E(f) (RAC(ccel, dE )*mGaussw[(f)])
+#define CCELG_W(f) (RAC(ccel, dW )*mGaussw[(f)])
+#define CCELG_T(f) (RAC(ccel, dT )*mGaussw[(f)])
+#define CCELG_B(f) (RAC(ccel, dB )*mGaussw[(f)])
+#define CCELG_NE(f) (RAC(ccel, dNE)*mGaussw[(f)])
+#define CCELG_NW(f) (RAC(ccel, dNW)*mGaussw[(f)])
+#define CCELG_SE(f) (RAC(ccel, dSE)*mGaussw[(f)])
+#define CCELG_SW(f) (RAC(ccel, dSW)*mGaussw[(f)])
+#define CCELG_NT(f) (RAC(ccel, dNT)*mGaussw[(f)])
+#define CCELG_NB(f) (RAC(ccel, dNB)*mGaussw[(f)])
+#define CCELG_ST(f) (RAC(ccel, dST)*mGaussw[(f)])
+#define CCELG_SB(f) (RAC(ccel, dSB)*mGaussw[(f)])
+#define CCELG_ET(f) (RAC(ccel, dET)*mGaussw[(f)])
+#define CCELG_EB(f) (RAC(ccel, dEB)*mGaussw[(f)])
+#define CCELG_WT(f) (RAC(ccel, dWT)*mGaussw[(f)])
+#define CCELG_WB(f) (RAC(ccel, dWB)*mGaussw[(f)])
+
+
+#if PARALLEL==1
+#define CSMOMEGA_STATS(dlev, domega)
+#else // PARALLEL==1
+#if FSGR_OMEGA_DEBUG==1
+#define CSMOMEGA_STATS(dlev, domega) \
+ mLevel[dlev].avgOmega += domega; mLevel[dlev].avgOmegaCnt+=1.0;
+#else // FSGR_OMEGA_DEBUG==1
+#define CSMOMEGA_STATS(dlev, domega)
+#endif // FSGR_OMEGA_DEBUG==1
+#endif // PARALLEL==1
+
+
+// used for main loops and grav init
+// source set
+#define SRCS(l) mLevel[(l)].setCurr
+// target set
+#define TSET(l) mLevel[(l)].setOther
+
+// treatment of freeslip reflection
+// used both for OPT and nonOPT
+#define DEFAULT_STREAM_FREESLIP(l,invl,mnbf) \
+ /*const int inv_l = D::dfInv[l];*/ \
+ int nb1 = 0, nb2 = 0; /* is neighbor in this direction an obstacle? */\
+ LbmFloat newval = 0.0; /* new value for m[l], differs for free/part slip */\
+ const int dx = D::dfVecX[invl], dy = D::dfVecY[invl], dz = D::dfVecZ[invl]; \
+ if(dz==0) { \
+ nb1 = !(RFLAG(lev, i, j+dy,k, SRCS(lev))&(CFFluid|CFInter)); \
+ nb2 = !(RFLAG(lev, i+dx,j, k, SRCS(lev))&(CFFluid|CFInter)); \
+ if((nb1)&&(!nb2)) { \
+ /* x reflection */\
+ newval = QCELL(lev, i+dx,j,k,SRCS(lev), D::dfRefX[l]); \
+ } else \
+ if((!nb1)&&(nb2)) { \
+ /* y reflection */\
+ newval = QCELL(lev, i,j+dy,k,SRCS(lev), D::dfRefY[l]); \
+ } else { \
+ /* normal no slip in all other cases */\
+ newval = QCELL(lev, i,j,k,SRCS(lev), invl); \
+ } \
+ } else /* z=0 */\
+ if(dy==0) { \
+ nb1 = !(RFLAG(lev, i,j,k+dz, SRCS(lev))&(CFFluid|CFInter)); \
+ nb2 = !(RFLAG(lev, i+dx,j,k, SRCS(lev))&(CFFluid|CFInter)); \
+ if((nb1)&&(!nb2)) { \
+ /* x reflection */\
+ newval = QCELL(lev, i+dx,j,k,SRCS(lev), D::dfRefX[l]); \
+ } else \
+ if((!nb1)&&(nb2)) { \
+ /* z reflection */\
+ newval = QCELL(lev, i,j,k+dz,SRCS(lev), D::dfRefZ[l]); \
+ } else { \
+ /* normal no slip in all other cases */\
+ newval = ( QCELL(lev, i,j,k,SRCS(lev), invl) ); \
+ } \
+ /* end y=0 */ \
+ } else { \
+ /* x=0 */\
+ nb1 = !(RFLAG(lev, i,j,k+dz, SRCS(lev))&(CFFluid|CFInter)); \
+ nb2 = !(RFLAG(lev, i,j+dy,k, SRCS(lev))&(CFFluid|CFInter)); \
+ if((nb1)&&(!nb2)) { \
+ /* y reflection */\
+ newval = QCELL(lev, i,j+dy,k,SRCS(lev), D::dfRefY[l]); \
+ } else \
+ if((!nb1)&&(nb2)) { \
+ /* z reflection */\
+ newval = QCELL(lev, i,j,k+dz,SRCS(lev), D::dfRefZ[l]); \
+ } else { \
+ /* normal no slip in all other cases */\
+ newval = ( QCELL(lev, i,j,k,SRCS(lev), invl) ); \
+ } \
+ } \
+ if(mnbf & CFBndPartslip) { /* part slip interpolation */ \
+ const LbmFloat partv = mObjectPartslips[(int)(mnbf>>24)]; \
+ m[l] = RAC(ccel, D::dfInv[l] ) * partv + newval * (1.0-partv); /* part slip */ \
+ } else {\
+ m[l] = newval; /* normal free slip*/\
+ }\
+
+// complete default stream&collide, 2d/3d
+/* read distribution funtions of adjacent cells = sweep step */
+#if OPT3D==0
+
+#if FSGR_STRICT_DEBUG==1
+#define MARKCELLCHECK \
+ debugMarkCell(lev,i,j,k); D::mPanic=1;
+#define STREAMCHECK(ni,nj,nk,nl) \
+ if((m[l] < -1.0) || (m[l]>1.0)) {\
+ errMsg("STREAMCHECK","Invalid streamed DF l"<<l<<" value:"<<m[l]<<" at "<<PRINT_IJK<<" from "<<PRINT_VEC(ni,nj,nk)<<" nl"<<(nl)<<\
+ " nfc"<< RFLAG(lev, ni,nj,nk, mLevel[lev].setCurr)<<" nfo"<< RFLAG(lev, ni,nj,nk, mLevel[lev].setOther) ); \
+ MARKCELLCHECK; \
+ }
+#define COLLCHECK \
+ if( (rho>2.0) || (rho<-1.0) || (ABS(ux)>1.0) || (ABS(uy)>1.0) |(ABS(uz)>1.0) ) {\
+ errMsg("COLLCHECK","Invalid collision values r:"<<rho<<" u:"PRINT_VEC(ux,uy,uz)<<" at? "<<PRINT_IJK ); \
+ MARKCELLCHECK; \
+ }
+#else
+#define STREAMCHECK(ni,nj,nk,nl)
+#define COLLCHECK
+#endif
+
+// careful ux,uy,uz need to be inited before!
+
+#define DEFAULT_STREAM \
+ m[dC] = RAC(ccel,dC); \
+ FORDF1 { \
+ CellFlagType nbf = NBFLAG( D::dfInv[l] );\
+ if(nbf & CFBnd) { \
+ if(nbf & CFBndNoslip) { \
+ /* no slip, default */ \
+ m[l] = RAC(ccel, D::dfInv[l] ); STREAMCHECK(i,j,k, D::dfInv[l]); /* noslip */ \
+ } else if(nbf & (CFBndFreeslip|CFBndPartslip)) { \
+ /* free slip */ \
+ if(l<=LBMDIM*2) { \
+ m[l] = RAC(ccel, D::dfInv[l] ); STREAMCHECK(i,j,k, D::dfInv[l]); /* noslip for <dim*2 */ \
+ } else { \
+ const int inv_l = D::dfInv[l]; \
+ DEFAULT_STREAM_FREESLIP(l,inv_l,nbf); \
+ } /* l>2*dim free slip */ \
+ \
+ } /* type reflect */\
+ else {\
+ errMsg("LbmFsgrSolver","Invalid Bnd type at "<<PRINT_IJK<<" f"<<convertCellFlagType2String(nbf)<<",nbdir"<<D::dfInv[l] ); \
+ } \
+ } else { \
+ m[l] = QCELL_NBINV(lev, i, j, k, SRCS(lev), l,l); \
+ STREAMCHECK(i+D::dfVecX[D::dfInv[l]], j+D::dfVecY[D::dfInv[l]],k+D::dfVecZ[D::dfInv[l]], l); \
+ } \
+ }
+
+#define _________________DEFAULT_STREAM \
+ m[dC] = RAC(ccel,dC); \
+ FORDF1 { \
+ CellFlagType nbf = NBFLAG( D::dfInv[l] );\
+ if(nbf & CFBnd) { \
+ if(nbf & CFBndNoslip) { \
+ /* no slip, default */ \
+ m[l] = RAC(ccel, D::dfInv[l] ); STREAMCHECK(i,j,k, D::dfInv[l]); /* noslip */ \
+ } else if(nbf & (CFBndFreeslip|CFBndPartslip)) { \
+ /* free slip */ \
+ if(l<=LBMDIM*2) { \
+ m[l] = RAC(ccel, D::dfInv[l] ); STREAMCHECK(i,j,k, D::dfInv[l]); /* noslip for <dim*2 */ \
+ } else { \
+ const int inv_l = D::dfInv[l]; \
+ int debug_srcl = -1; \
+ int nb1 = 0, nb2 = 0; /* is neighbor in this direction an obstacle? */\
+ LbmFloat newval = 0.0; /* new value for m[l], differs for free/part slip */\
+ const int dx = D::dfVecX[inv_l], dy = D::dfVecY[inv_l], dz = D::dfVecZ[inv_l]; \
+ \
+ if(dz==0) { \
+ nb1 = !(RFLAG(lev, i, j+dy,k, SRCS(lev))&(CFFluid|CFInter)); /* FIXME add noslip|free|part here */ \
+ nb2 = !(RFLAG(lev, i+dx,j, k, SRCS(lev))&(CFFluid|CFInter)); \
+ if((nb1)&&(!nb2)) { \
+ /* x reflection */\
+ newval = QCELL(lev, i+dx,j,k,SRCS(lev), D::dfRefX[l]); \
+ debug_srcl = D::dfRefX[l]; \
+ } else \
+ if((!nb1)&&(nb2)) { \
+ /* y reflection */\
+ newval = QCELL(lev, i,j+dy,k,SRCS(lev), D::dfRefY[l]); \
+ debug_srcl = D::dfRefY[l]; \
+ } else { \
+ /* normal no slip in all other cases */\
+ newval = QCELL(lev, i,j,k,SRCS(lev), inv_l); \
+ debug_srcl = inv_l; \
+ } \
+ } else /* z=0 */\
+ if(dy==0) { \
+ nb1 = !(RFLAG(lev, i,j,k+dz, SRCS(lev))&(CFFluid|CFInter)); \
+ nb2 = !(RFLAG(lev, i+dx,j,k, SRCS(lev))&(CFFluid|CFInter)); \
+ if((nb1)&&(!nb2)) { \
+ /* x reflection */\
+ newval = QCELL(lev, i+dx,j,k,SRCS(lev), D::dfRefX[l]); \
+ } else \
+ if((!nb1)&&(nb2)) { \
+ /* z reflection */\
+ newval = QCELL(lev, i,j,k+dz,SRCS(lev), D::dfRefZ[l]); \
+ } else { \
+ /* normal no slip in all other cases */\
+ newval = ( QCELL(lev, i,j,k,SRCS(lev), inv_l) ); \
+ } \
+ /* end y=0 */ \
+ } else { \
+ /* x=0 */\
+ nb1 = !(RFLAG(lev, i,j,k+dz, SRCS(lev))&(CFFluid|CFInter)); \
+ nb2 = !(RFLAG(lev, i,j+dy,k, SRCS(lev))&(CFFluid|CFInter)); \
+ if((nb1)&&(!nb2)) { \
+ /* y reflection */\
+ newval = QCELL(lev, i,j+dy,k,SRCS(lev), D::dfRefY[l]); \
+ } else \
+ if((!nb1)&&(nb2)) { \
+ /* z reflection */\
+ newval = QCELL(lev, i,j,k+dz,SRCS(lev), D::dfRefZ[l]); \
+ } else { \
+ /* normal no slip in all other cases */\
+ newval = ( QCELL(lev, i,j,k,SRCS(lev), inv_l) ); \
+ } \
+ } \
+ if(nbf & CFBndPartslip) { /* part slip interpolation */ \
+ const LbmFloat partv = mObjectPartslips[(int)(nbf>>24)]; \
+ m[l] = RAC(ccel, D::dfInv[l] ) * partv + newval * (1.0-partv); /* part slip */ \
+ } else {\
+ m[l] = newval; /* normal free slip*/\
+ }\
+ /*if(RFLAG(lev, i,j,k, SRCS(lev))&CFInter) errMsg("FS","at "<<PRINT_IJK<<",l"<<l<<" nb1"<<nb1<<" nb2"<<nb2<<" dx"<<PRINT_VEC(dx,dy,dz)<<",srcl"<<debug_srcl<<" -> "<<newval );/**/ \
+ } /* l>2*dim free slip */ \
+ \
+ } /* type reflect */\
+ else {\
+ errMsg("LbmFsgrSolver","Invalid Bnd type at "<<PRINT_IJK<<" f"<<convertCellFlagType2String(nbf)<<",nbdir"<<D::dfInv[l] ); \
+ } \
+ } else { \
+ m[l] = QCELL_NBINV(lev, i, j, k, SRCS(lev), l,l); \
+ STREAMCHECK(i+D::dfVecX[D::dfInv[l]], j+D::dfVecY[D::dfInv[l]],k+D::dfVecZ[D::dfInv[l]], l); \
+ } \
+ }
+
+// careful ux,uy,uz need to be inited before!
+#define DEFAULT_COLLIDE \
+ D::collideArrays( m, rho,ux,uy,uz, OMEGA(lev), mLevel[lev].lcsmago, &mDebugOmegaRet ); \
+ CSMOMEGA_STATS(lev,mDebugOmegaRet); \
+ FORDF0 { RAC(tcel,l) = m[l]; } \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ COLLCHECK;
+#define OPTIMIZED_STREAMCOLLIDE \
+ m[0] = RAC(ccel,0); \
+ FORDF1 { /* df0 is set later on... */ \
+ /* FIXME CHECK INV ? */\
+ if(RFLAG_NBINV(lev, i,j,k,SRCS(lev),l)&CFBnd) { errMsg("???", "bnd-err-nobndfl"); D::mPanic=1; \
+ } else { m[l] = QCELL_NBINV(lev, i, j, k, SRCS(lev), l, l); } \
+ STREAMCHECK(i+D::dfVecX[D::dfInv[l]], j+D::dfVecY[D::dfInv[l]],k+D::dfVecZ[D::dfInv[l]], l); \
+ } \
+ rho=m[0]; ux = mLevel[lev].gravity[0]; uy = mLevel[lev].gravity[1]; uz = mLevel[lev].gravity[2]; \
+ ux = mLevel[lev].gravity[0]; uy = mLevel[lev].gravity[1]; uz = mLevel[lev].gravity[2]; \
+ D::collideArrays( m, rho,ux,uy,uz, OMEGA(lev), mLevel[lev].lcsmago , &mDebugOmegaRet ); \
+ CSMOMEGA_STATS(lev,mDebugOmegaRet); \
+ FORDF0 { RAC(tcel,l) = m[l]; } \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ COLLCHECK;
+
+#else // 3D, opt OPT3D==true
+
+
+#define DEFAULT_STREAM \
+ m[dC] = RAC(ccel,dC); \
+ /* explicit streaming */ \
+ if((!nbored & CFBnd)) { \
+ /* no boundary near?, no real speed diff.? */ \
+ m[dN ] = CSRC_N ; m[dS ] = CSRC_S ; \
+ m[dE ] = CSRC_E ; m[dW ] = CSRC_W ; \
+ m[dT ] = CSRC_T ; m[dB ] = CSRC_B ; \
+ m[dNE] = CSRC_NE; m[dNW] = CSRC_NW; m[dSE] = CSRC_SE; m[dSW] = CSRC_SW; \
+ m[dNT] = CSRC_NT; m[dNB] = CSRC_NB; m[dST] = CSRC_ST; m[dSB] = CSRC_SB; \
+ m[dET] = CSRC_ET; m[dEB] = CSRC_EB; m[dWT] = CSRC_WT; m[dWB] = CSRC_WB; \
+ } else { \
+ /* explicit streaming, normal velocity always zero for obstacles */ \
+ if(NBFLAG(dS )&CFBnd) { m[dN ] = RAC(ccel,dS ); } else { m[dN ] = CSRC_N ; } \
+ if(NBFLAG(dN )&CFBnd) { m[dS ] = RAC(ccel,dN ); } else { m[dS ] = CSRC_S ; } \
+ if(NBFLAG(dW )&CFBnd) { m[dE ] = RAC(ccel,dW ); } else { m[dE ] = CSRC_E ; } \
+ if(NBFLAG(dE )&CFBnd) { m[dW ] = RAC(ccel,dE ); } else { m[dW ] = CSRC_W ; } \
+ if(NBFLAG(dB )&CFBnd) { m[dT ] = RAC(ccel,dB ); } else { m[dT ] = CSRC_T ; } \
+ if(NBFLAG(dT )&CFBnd) { m[dB ] = RAC(ccel,dT ); } else { m[dB ] = CSRC_B ; } \
+ \
+ /* also treat free slip here */ \
+ if(NBFLAG(dSW)&CFBnd) { if(NBFLAG(dSW)&CFBndNoslip){ m[dNE] = RAC(ccel,dSW); }else{ DEFAULT_STREAM_FREESLIP(dNE,dSW,NBFLAG(dSW));} } else { m[dNE] = CSRC_NE; } \
+ if(NBFLAG(dSE)&CFBnd) { if(NBFLAG(dSE)&CFBndNoslip){ m[dNW] = RAC(ccel,dSE); }else{ DEFAULT_STREAM_FREESLIP(dNW,dSE,NBFLAG(dSE));} } else { m[dNW] = CSRC_NW; } \
+ if(NBFLAG(dNW)&CFBnd) { if(NBFLAG(dNW)&CFBndNoslip){ m[dSE] = RAC(ccel,dNW); }else{ DEFAULT_STREAM_FREESLIP(dSE,dNW,NBFLAG(dNW));} } else { m[dSE] = CSRC_SE; } \
+ if(NBFLAG(dNE)&CFBnd) { if(NBFLAG(dNE)&CFBndNoslip){ m[dSW] = RAC(ccel,dNE); }else{ DEFAULT_STREAM_FREESLIP(dSW,dNE,NBFLAG(dNE));} } else { m[dSW] = CSRC_SW; } \
+ if(NBFLAG(dSB)&CFBnd) { if(NBFLAG(dSB)&CFBndNoslip){ m[dNT] = RAC(ccel,dSB); }else{ DEFAULT_STREAM_FREESLIP(dNT,dSB,NBFLAG(dSB));} } else { m[dNT] = CSRC_NT; } \
+ if(NBFLAG(dST)&CFBnd) { if(NBFLAG(dST)&CFBndNoslip){ m[dNB] = RAC(ccel,dST); }else{ DEFAULT_STREAM_FREESLIP(dNB,dST,NBFLAG(dST));} } else { m[dNB] = CSRC_NB; } \
+ if(NBFLAG(dNB)&CFBnd) { if(NBFLAG(dNB)&CFBndNoslip){ m[dST] = RAC(ccel,dNB); }else{ DEFAULT_STREAM_FREESLIP(dST,dNB,NBFLAG(dNB));} } else { m[dST] = CSRC_ST; } \
+ if(NBFLAG(dNT)&CFBnd) { if(NBFLAG(dNT)&CFBndNoslip){ m[dSB] = RAC(ccel,dNT); }else{ DEFAULT_STREAM_FREESLIP(dSB,dNT,NBFLAG(dNT));} } else { m[dSB] = CSRC_SB; } \
+ if(NBFLAG(dWB)&CFBnd) { if(NBFLAG(dWB)&CFBndNoslip){ m[dET] = RAC(ccel,dWB); }else{ DEFAULT_STREAM_FREESLIP(dET,dWB,NBFLAG(dWB));} } else { m[dET] = CSRC_ET; } \
+ if(NBFLAG(dWT)&CFBnd) { if(NBFLAG(dWT)&CFBndNoslip){ m[dEB] = RAC(ccel,dWT); }else{ DEFAULT_STREAM_FREESLIP(dEB,dWT,NBFLAG(dWT));} } else { m[dEB] = CSRC_EB; } \
+ if(NBFLAG(dEB)&CFBnd) { if(NBFLAG(dEB)&CFBndNoslip){ m[dWT] = RAC(ccel,dEB); }else{ DEFAULT_STREAM_FREESLIP(dWT,dEB,NBFLAG(dEB));} } else { m[dWT] = CSRC_WT; } \
+ if(NBFLAG(dET)&CFBnd) { if(NBFLAG(dET)&CFBndNoslip){ m[dWB] = RAC(ccel,dET); }else{ DEFAULT_STREAM_FREESLIP(dWB,dET,NBFLAG(dET));} } else { m[dWB] = CSRC_WB; } \
+ }
+
+
+
+#define COLL_CALCULATE_DFEQ(dstarray) \
+ dstarray[dN ] = EQN ; dstarray[dS ] = EQS ; \
+ dstarray[dE ] = EQE ; dstarray[dW ] = EQW ; \
+ dstarray[dT ] = EQT ; dstarray[dB ] = EQB ; \
+ dstarray[dNE] = EQNE; dstarray[dNW] = EQNW; dstarray[dSE] = EQSE; dstarray[dSW] = EQSW; \
+ dstarray[dNT] = EQNT; dstarray[dNB] = EQNB; dstarray[dST] = EQST; dstarray[dSB] = EQSB; \
+ dstarray[dET] = EQET; dstarray[dEB] = EQEB; dstarray[dWT] = EQWT; dstarray[dWB] = EQWB;
+#define COLL_CALCULATE_NONEQTENSOR(csolev, srcArray ) \
+ lcsmqadd = (srcArray##NE - lcsmeq[ dNE ]); \
+ lcsmqadd -= (srcArray##NW - lcsmeq[ dNW ]); \
+ lcsmqadd -= (srcArray##SE - lcsmeq[ dSE ]); \
+ lcsmqadd += (srcArray##SW - lcsmeq[ dSW ]); \
+ lcsmqo = (lcsmqadd* lcsmqadd); \
+ lcsmqadd = (srcArray##ET - lcsmeq[ dET ]); \
+ lcsmqadd -= (srcArray##EB - lcsmeq[ dEB ]); \
+ lcsmqadd -= (srcArray##WT - lcsmeq[ dWT ]); \
+ lcsmqadd += (srcArray##WB - lcsmeq[ dWB ]); \
+ lcsmqo += (lcsmqadd* lcsmqadd); \
+ lcsmqadd = (srcArray##NT - lcsmeq[ dNT ]); \
+ lcsmqadd -= (srcArray##NB - lcsmeq[ dNB ]); \
+ lcsmqadd -= (srcArray##ST - lcsmeq[ dST ]); \
+ lcsmqadd += (srcArray##SB - lcsmeq[ dSB ]); \
+ lcsmqo += (lcsmqadd* lcsmqadd); \
+ lcsmqo *= 2.0; \
+ lcsmqadd = (srcArray##E - lcsmeq[ dE ]); \
+ lcsmqadd += (srcArray##W - lcsmeq[ dW ]); \
+ lcsmqadd += (srcArray##NE - lcsmeq[ dNE ]); \
+ lcsmqadd += (srcArray##NW - lcsmeq[ dNW ]); \
+ lcsmqadd += (srcArray##SE - lcsmeq[ dSE ]); \
+ lcsmqadd += (srcArray##SW - lcsmeq[ dSW ]); \
+ lcsmqadd += (srcArray##ET - lcsmeq[ dET ]); \
+ lcsmqadd += (srcArray##EB - lcsmeq[ dEB ]); \
+ lcsmqadd += (srcArray##WT - lcsmeq[ dWT ]); \
+ lcsmqadd += (srcArray##WB - lcsmeq[ dWB ]); \
+ lcsmqo += (lcsmqadd* lcsmqadd); \
+ lcsmqadd = (srcArray##N - lcsmeq[ dN ]); \
+ lcsmqadd += (srcArray##S - lcsmeq[ dS ]); \
+ lcsmqadd += (srcArray##NE - lcsmeq[ dNE ]); \
+ lcsmqadd += (srcArray##NW - lcsmeq[ dNW ]); \
+ lcsmqadd += (srcArray##SE - lcsmeq[ dSE ]); \
+ lcsmqadd += (srcArray##SW - lcsmeq[ dSW ]); \
+ lcsmqadd += (srcArray##NT - lcsmeq[ dNT ]); \
+ lcsmqadd += (srcArray##NB - lcsmeq[ dNB ]); \
+ lcsmqadd += (srcArray##ST - lcsmeq[ dST ]); \
+ lcsmqadd += (srcArray##SB - lcsmeq[ dSB ]); \
+ lcsmqo += (lcsmqadd* lcsmqadd); \
+ lcsmqadd = (srcArray##T - lcsmeq[ dT ]); \
+ lcsmqadd += (srcArray##B - lcsmeq[ dB ]); \
+ lcsmqadd += (srcArray##NT - lcsmeq[ dNT ]); \
+ lcsmqadd += (srcArray##NB - lcsmeq[ dNB ]); \
+ lcsmqadd += (srcArray##ST - lcsmeq[ dST ]); \
+ lcsmqadd += (srcArray##SB - lcsmeq[ dSB ]); \
+ lcsmqadd += (srcArray##ET - lcsmeq[ dET ]); \
+ lcsmqadd += (srcArray##EB - lcsmeq[ dEB ]); \
+ lcsmqadd += (srcArray##WT - lcsmeq[ dWT ]); \
+ lcsmqadd += (srcArray##WB - lcsmeq[ dWB ]); \
+ lcsmqo += (lcsmqadd* lcsmqadd); \
+ lcsmqo = sqrt(lcsmqo); /* FIXME check effect of sqrt*/ \
+
+// COLL_CALCULATE_CSMOMEGAVAL(csolev, lcsmomega);
+
+// careful - need lcsmqo
+#define COLL_CALCULATE_CSMOMEGAVAL(csolev, dstomega ) \
+ dstomega = 1.0/\
+ ( 3.0*( mLevel[(csolev)].lcnu+mLevel[(csolev)].lcsmago_sqr*(\
+ -mLevel[(csolev)].lcnu + sqrt( mLevel[(csolev)].lcnu*mLevel[(csolev)].lcnu + 18.0*mLevel[(csolev)].lcsmago_sqr* lcsmqo ) \
+ / (6.0*mLevel[(csolev)].lcsmago_sqr)) \
+ ) +0.5 );
+
+#define DEFAULT_COLLIDE_LES \
+ rho = + MSRC_C + MSRC_N \
+ + MSRC_S + MSRC_E \
+ + MSRC_W + MSRC_T \
+ + MSRC_B + MSRC_NE \
+ + MSRC_NW + MSRC_SE \
+ + MSRC_SW + MSRC_NT \
+ + MSRC_NB + MSRC_ST \
+ + MSRC_SB + MSRC_ET \
+ + MSRC_EB + MSRC_WT \
+ + MSRC_WB; \
+ \
+ ux += MSRC_E - MSRC_W \
+ + MSRC_NE - MSRC_NW \
+ + MSRC_SE - MSRC_SW \
+ + MSRC_ET + MSRC_EB \
+ - MSRC_WT - MSRC_WB ; \
+ \
+ uy += MSRC_N - MSRC_S \
+ + MSRC_NE + MSRC_NW \
+ - MSRC_SE - MSRC_SW \
+ + MSRC_NT + MSRC_NB \
+ - MSRC_ST - MSRC_SB ; \
+ \
+ uz += MSRC_T - MSRC_B \
+ + MSRC_NT - MSRC_NB \
+ + MSRC_ST - MSRC_SB \
+ + MSRC_ET - MSRC_EB \
+ + MSRC_WT - MSRC_WB ; \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ COLL_CALCULATE_DFEQ(lcsmeq); \
+ COLL_CALCULATE_NONEQTENSOR(lev, MSRC_)\
+ COLL_CALCULATE_CSMOMEGAVAL(lev, lcsmomega); \
+ CSMOMEGA_STATS(lev,lcsmomega); \
+ \
+ RAC(tcel,dC ) = (1.0-lcsmomega)*MSRC_C + lcsmomega*EQC ; \
+ \
+ RAC(tcel,dN ) = (1.0-lcsmomega)*MSRC_N + lcsmomega*lcsmeq[ dN ]; \
+ RAC(tcel,dS ) = (1.0-lcsmomega)*MSRC_S + lcsmomega*lcsmeq[ dS ]; \
+ RAC(tcel,dE ) = (1.0-lcsmomega)*MSRC_E + lcsmomega*lcsmeq[ dE ]; \
+ RAC(tcel,dW ) = (1.0-lcsmomega)*MSRC_W + lcsmomega*lcsmeq[ dW ]; \
+ RAC(tcel,dT ) = (1.0-lcsmomega)*MSRC_T + lcsmomega*lcsmeq[ dT ]; \
+ RAC(tcel,dB ) = (1.0-lcsmomega)*MSRC_B + lcsmomega*lcsmeq[ dB ]; \
+ \
+ RAC(tcel,dNE) = (1.0-lcsmomega)*MSRC_NE + lcsmomega*lcsmeq[ dNE]; \
+ RAC(tcel,dNW) = (1.0-lcsmomega)*MSRC_NW + lcsmomega*lcsmeq[ dNW]; \
+ RAC(tcel,dSE) = (1.0-lcsmomega)*MSRC_SE + lcsmomega*lcsmeq[ dSE]; \
+ RAC(tcel,dSW) = (1.0-lcsmomega)*MSRC_SW + lcsmomega*lcsmeq[ dSW]; \
+ RAC(tcel,dNT) = (1.0-lcsmomega)*MSRC_NT + lcsmomega*lcsmeq[ dNT]; \
+ RAC(tcel,dNB) = (1.0-lcsmomega)*MSRC_NB + lcsmomega*lcsmeq[ dNB]; \
+ RAC(tcel,dST) = (1.0-lcsmomega)*MSRC_ST + lcsmomega*lcsmeq[ dST]; \
+ RAC(tcel,dSB) = (1.0-lcsmomega)*MSRC_SB + lcsmomega*lcsmeq[ dSB]; \
+ RAC(tcel,dET) = (1.0-lcsmomega)*MSRC_ET + lcsmomega*lcsmeq[ dET]; \
+ RAC(tcel,dEB) = (1.0-lcsmomega)*MSRC_EB + lcsmomega*lcsmeq[ dEB]; \
+ RAC(tcel,dWT) = (1.0-lcsmomega)*MSRC_WT + lcsmomega*lcsmeq[ dWT]; \
+ RAC(tcel,dWB) = (1.0-lcsmomega)*MSRC_WB + lcsmomega*lcsmeq[ dWB];
+
+#define DEFAULT_COLLIDE_NOLES \
+ rho = + MSRC_C + MSRC_N \
+ + MSRC_S + MSRC_E \
+ + MSRC_W + MSRC_T \
+ + MSRC_B + MSRC_NE \
+ + MSRC_NW + MSRC_SE \
+ + MSRC_SW + MSRC_NT \
+ + MSRC_NB + MSRC_ST \
+ + MSRC_SB + MSRC_ET \
+ + MSRC_EB + MSRC_WT \
+ + MSRC_WB; \
+ \
+ ux += MSRC_E - MSRC_W \
+ + MSRC_NE - MSRC_NW \
+ + MSRC_SE - MSRC_SW \
+ + MSRC_ET + MSRC_EB \
+ - MSRC_WT - MSRC_WB ; \
+ \
+ uy += MSRC_N - MSRC_S \
+ + MSRC_NE + MSRC_NW \
+ - MSRC_SE - MSRC_SW \
+ + MSRC_NT + MSRC_NB \
+ - MSRC_ST - MSRC_SB ; \
+ \
+ uz += MSRC_T - MSRC_B \
+ + MSRC_NT - MSRC_NB \
+ + MSRC_ST - MSRC_SB \
+ + MSRC_ET - MSRC_EB \
+ + MSRC_WT - MSRC_WB ; \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ \
+ RAC(tcel,dC ) = (1.0-OMEGA(lev))*MSRC_C + OMEGA(lev)*EQC ; \
+ \
+ RAC(tcel,dN ) = (1.0-OMEGA(lev))*MSRC_N + OMEGA(lev)*EQN ; \
+ RAC(tcel,dS ) = (1.0-OMEGA(lev))*MSRC_S + OMEGA(lev)*EQS ; \
+ RAC(tcel,dE ) = (1.0-OMEGA(lev))*MSRC_E + OMEGA(lev)*EQE ; \
+ RAC(tcel,dW ) = (1.0-OMEGA(lev))*MSRC_W + OMEGA(lev)*EQW ; \
+ RAC(tcel,dT ) = (1.0-OMEGA(lev))*MSRC_T + OMEGA(lev)*EQT ; \
+ RAC(tcel,dB ) = (1.0-OMEGA(lev))*MSRC_B + OMEGA(lev)*EQB ; \
+ \
+ RAC(tcel,dNE) = (1.0-OMEGA(lev))*MSRC_NE + OMEGA(lev)*EQNE; \
+ RAC(tcel,dNW) = (1.0-OMEGA(lev))*MSRC_NW + OMEGA(lev)*EQNW; \
+ RAC(tcel,dSE) = (1.0-OMEGA(lev))*MSRC_SE + OMEGA(lev)*EQSE; \
+ RAC(tcel,dSW) = (1.0-OMEGA(lev))*MSRC_SW + OMEGA(lev)*EQSW; \
+ RAC(tcel,dNT) = (1.0-OMEGA(lev))*MSRC_NT + OMEGA(lev)*EQNT; \
+ RAC(tcel,dNB) = (1.0-OMEGA(lev))*MSRC_NB + OMEGA(lev)*EQNB; \
+ RAC(tcel,dST) = (1.0-OMEGA(lev))*MSRC_ST + OMEGA(lev)*EQST; \
+ RAC(tcel,dSB) = (1.0-OMEGA(lev))*MSRC_SB + OMEGA(lev)*EQSB; \
+ RAC(tcel,dET) = (1.0-OMEGA(lev))*MSRC_ET + OMEGA(lev)*EQET; \
+ RAC(tcel,dEB) = (1.0-OMEGA(lev))*MSRC_EB + OMEGA(lev)*EQEB; \
+ RAC(tcel,dWT) = (1.0-OMEGA(lev))*MSRC_WT + OMEGA(lev)*EQWT; \
+ RAC(tcel,dWB) = (1.0-OMEGA(lev))*MSRC_WB + OMEGA(lev)*EQWB;
+
+
+
+#define OPTIMIZED_STREAMCOLLIDE_LES \
+ /* only surrounded by fluid cells...!, so safe streaming here... */ \
+ m[dC ] = CSRC_C ; \
+ m[dN ] = CSRC_N ; m[dS ] = CSRC_S ; \
+ m[dE ] = CSRC_E ; m[dW ] = CSRC_W ; \
+ m[dT ] = CSRC_T ; m[dB ] = CSRC_B ; \
+ m[dNE] = CSRC_NE; m[dNW] = CSRC_NW; m[dSE] = CSRC_SE; m[dSW] = CSRC_SW; \
+ m[dNT] = CSRC_NT; m[dNB] = CSRC_NB; m[dST] = CSRC_ST; m[dSB] = CSRC_SB; \
+ m[dET] = CSRC_ET; m[dEB] = CSRC_EB; m[dWT] = CSRC_WT; m[dWB] = CSRC_WB; \
+ \
+ rho = MSRC_C + MSRC_N + MSRC_S + MSRC_E + MSRC_W + MSRC_T \
+ + MSRC_B + MSRC_NE + MSRC_NW + MSRC_SE + MSRC_SW + MSRC_NT \
+ + MSRC_NB + MSRC_ST + MSRC_SB + MSRC_ET + MSRC_EB + MSRC_WT + MSRC_WB; \
+ ux = MSRC_E - MSRC_W + MSRC_NE - MSRC_NW + MSRC_SE - MSRC_SW \
+ + MSRC_ET + MSRC_EB - MSRC_WT - MSRC_WB + mLevel[lev].gravity[0]; \
+ uy = MSRC_N - MSRC_S + MSRC_NE + MSRC_NW - MSRC_SE - MSRC_SW \
+ + MSRC_NT + MSRC_NB - MSRC_ST - MSRC_SB + mLevel[lev].gravity[1]; \
+ uz = MSRC_T - MSRC_B + MSRC_NT - MSRC_NB + MSRC_ST - MSRC_SB \
+ + MSRC_ET - MSRC_EB + MSRC_WT - MSRC_WB + mLevel[lev].gravity[2]; \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ COLL_CALCULATE_DFEQ(lcsmeq); \
+ COLL_CALCULATE_NONEQTENSOR(lev, MSRC_) \
+ COLL_CALCULATE_CSMOMEGAVAL(lev, lcsmomega); \
+ CSMOMEGA_STATS(lev,lcsmomega); \
+ \
+ RAC(tcel,dC ) = (1.0-lcsmomega)*MSRC_C + lcsmomega*EQC ; \
+ RAC(tcel,dN ) = (1.0-lcsmomega)*MSRC_N + lcsmomega*lcsmeq[ dN ]; \
+ RAC(tcel,dS ) = (1.0-lcsmomega)*MSRC_S + lcsmomega*lcsmeq[ dS ]; \
+ RAC(tcel,dE ) = (1.0-lcsmomega)*MSRC_E + lcsmomega*lcsmeq[ dE ]; \
+ RAC(tcel,dW ) = (1.0-lcsmomega)*MSRC_W + lcsmomega*lcsmeq[ dW ]; \
+ RAC(tcel,dT ) = (1.0-lcsmomega)*MSRC_T + lcsmomega*lcsmeq[ dT ]; \
+ RAC(tcel,dB ) = (1.0-lcsmomega)*MSRC_B + lcsmomega*lcsmeq[ dB ]; \
+ \
+ RAC(tcel,dNE) = (1.0-lcsmomega)*MSRC_NE + lcsmomega*lcsmeq[ dNE]; \
+ RAC(tcel,dNW) = (1.0-lcsmomega)*MSRC_NW + lcsmomega*lcsmeq[ dNW]; \
+ RAC(tcel,dSE) = (1.0-lcsmomega)*MSRC_SE + lcsmomega*lcsmeq[ dSE]; \
+ RAC(tcel,dSW) = (1.0-lcsmomega)*MSRC_SW + lcsmomega*lcsmeq[ dSW]; \
+ \
+ RAC(tcel,dNT) = (1.0-lcsmomega)*MSRC_NT + lcsmomega*lcsmeq[ dNT]; \
+ RAC(tcel,dNB) = (1.0-lcsmomega)*MSRC_NB + lcsmomega*lcsmeq[ dNB]; \
+ RAC(tcel,dST) = (1.0-lcsmomega)*MSRC_ST + lcsmomega*lcsmeq[ dST]; \
+ RAC(tcel,dSB) = (1.0-lcsmomega)*MSRC_SB + lcsmomega*lcsmeq[ dSB]; \
+ \
+ RAC(tcel,dET) = (1.0-lcsmomega)*MSRC_ET + lcsmomega*lcsmeq[ dET]; \
+ RAC(tcel,dEB) = (1.0-lcsmomega)*MSRC_EB + lcsmomega*lcsmeq[ dEB]; \
+ RAC(tcel,dWT) = (1.0-lcsmomega)*MSRC_WT + lcsmomega*lcsmeq[ dWT]; \
+ RAC(tcel,dWB) = (1.0-lcsmomega)*MSRC_WB + lcsmomega*lcsmeq[ dWB]; \
+
+#define OPTIMIZED_STREAMCOLLIDE_UNUSED \
+ /* only surrounded by fluid cells...!, so safe streaming here... */ \
+ rho = CSRC_C + CSRC_N + CSRC_S + CSRC_E + CSRC_W + CSRC_T \
+ + CSRC_B + CSRC_NE + CSRC_NW + CSRC_SE + CSRC_SW + CSRC_NT \
+ + CSRC_NB + CSRC_ST + CSRC_SB + CSRC_ET + CSRC_EB + CSRC_WT + CSRC_WB; \
+ ux = CSRC_E - CSRC_W + CSRC_NE - CSRC_NW + CSRC_SE - CSRC_SW \
+ + CSRC_ET + CSRC_EB - CSRC_WT - CSRC_WB + mLevel[lev].gravity[0]; \
+ uy = CSRC_N - CSRC_S + CSRC_NE + CSRC_NW - CSRC_SE - CSRC_SW \
+ + CSRC_NT + CSRC_NB - CSRC_ST - CSRC_SB + mLevel[lev].gravity[1]; \
+ uz = CSRC_T - CSRC_B + CSRC_NT - CSRC_NB + CSRC_ST - CSRC_SB \
+ + CSRC_ET - CSRC_EB + CSRC_WT - CSRC_WB + mLevel[lev].gravity[2]; \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ COLL_CALCULATE_DFEQ(lcsmeq); \
+ COLL_CALCULATE_NONEQTENSOR(lev, CSRC_) \
+ COLL_CALCULATE_CSMOMEGAVAL(lev, lcsmomega); \
+ \
+ RAC(tcel,dC ) = (1.0-lcsmomega)*CSRC_C + lcsmomega*EQC ; \
+ RAC(tcel,dN ) = (1.0-lcsmomega)*CSRC_N + lcsmomega*lcsmeq[ dN ]; \
+ RAC(tcel,dS ) = (1.0-lcsmomega)*CSRC_S + lcsmomega*lcsmeq[ dS ]; \
+ RAC(tcel,dE ) = (1.0-lcsmomega)*CSRC_E + lcsmomega*lcsmeq[ dE ]; \
+ RAC(tcel,dW ) = (1.0-lcsmomega)*CSRC_W + lcsmomega*lcsmeq[ dW ]; \
+ RAC(tcel,dT ) = (1.0-lcsmomega)*CSRC_T + lcsmomega*lcsmeq[ dT ]; \
+ RAC(tcel,dB ) = (1.0-lcsmomega)*CSRC_B + lcsmomega*lcsmeq[ dB ]; \
+ \
+ RAC(tcel,dNE) = (1.0-lcsmomega)*CSRC_NE + lcsmomega*lcsmeq[ dNE]; \
+ RAC(tcel,dNW) = (1.0-lcsmomega)*CSRC_NW + lcsmomega*lcsmeq[ dNW]; \
+ RAC(tcel,dSE) = (1.0-lcsmomega)*CSRC_SE + lcsmomega*lcsmeq[ dSE]; \
+ RAC(tcel,dSW) = (1.0-lcsmomega)*CSRC_SW + lcsmomega*lcsmeq[ dSW]; \
+ \
+ RAC(tcel,dNT) = (1.0-lcsmomega)*CSRC_NT + lcsmomega*lcsmeq[ dNT]; \
+ RAC(tcel,dNB) = (1.0-lcsmomega)*CSRC_NB + lcsmomega*lcsmeq[ dNB]; \
+ RAC(tcel,dST) = (1.0-lcsmomega)*CSRC_ST + lcsmomega*lcsmeq[ dST]; \
+ RAC(tcel,dSB) = (1.0-lcsmomega)*CSRC_SB + lcsmomega*lcsmeq[ dSB]; \
+ \
+ RAC(tcel,dET) = (1.0-lcsmomega)*CSRC_ET + lcsmomega*lcsmeq[ dET]; \
+ RAC(tcel,dEB) = (1.0-lcsmomega)*CSRC_EB + lcsmomega*lcsmeq[ dEB]; \
+ RAC(tcel,dWT) = (1.0-lcsmomega)*CSRC_WT + lcsmomega*lcsmeq[ dWT]; \
+ RAC(tcel,dWB) = (1.0-lcsmomega)*CSRC_WB + lcsmomega*lcsmeq[ dWB]; \
+
+#define OPTIMIZED_STREAMCOLLIDE_NOLES \
+ /* only surrounded by fluid cells...!, so safe streaming here... */ \
+ rho = CSRC_C + CSRC_N + CSRC_S + CSRC_E + CSRC_W + CSRC_T \
+ + CSRC_B + CSRC_NE + CSRC_NW + CSRC_SE + CSRC_SW + CSRC_NT \
+ + CSRC_NB + CSRC_ST + CSRC_SB + CSRC_ET + CSRC_EB + CSRC_WT + CSRC_WB; \
+ ux = CSRC_E - CSRC_W + CSRC_NE - CSRC_NW + CSRC_SE - CSRC_SW \
+ + CSRC_ET + CSRC_EB - CSRC_WT - CSRC_WB + mLevel[lev].gravity[0]; \
+ uy = CSRC_N - CSRC_S + CSRC_NE + CSRC_NW - CSRC_SE - CSRC_SW \
+ + CSRC_NT + CSRC_NB - CSRC_ST - CSRC_SB + mLevel[lev].gravity[1]; \
+ uz = CSRC_T - CSRC_B + CSRC_NT - CSRC_NB + CSRC_ST - CSRC_SB \
+ + CSRC_ET - CSRC_EB + CSRC_WT - CSRC_WB + mLevel[lev].gravity[2]; \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ RAC(tcel,dC ) = (1.0-OMEGA(lev))*CSRC_C + OMEGA(lev)*EQC ; \
+ RAC(tcel,dN ) = (1.0-OMEGA(lev))*CSRC_N + OMEGA(lev)*EQN ; \
+ RAC(tcel,dS ) = (1.0-OMEGA(lev))*CSRC_S + OMEGA(lev)*EQS ; \
+ RAC(tcel,dE ) = (1.0-OMEGA(lev))*CSRC_E + OMEGA(lev)*EQE ; \
+ RAC(tcel,dW ) = (1.0-OMEGA(lev))*CSRC_W + OMEGA(lev)*EQW ; \
+ RAC(tcel,dT ) = (1.0-OMEGA(lev))*CSRC_T + OMEGA(lev)*EQT ; \
+ RAC(tcel,dB ) = (1.0-OMEGA(lev))*CSRC_B + OMEGA(lev)*EQB ; \
+ \
+ RAC(tcel,dNE) = (1.0-OMEGA(lev))*CSRC_NE + OMEGA(lev)*EQNE; \
+ RAC(tcel,dNW) = (1.0-OMEGA(lev))*CSRC_NW + OMEGA(lev)*EQNW; \
+ RAC(tcel,dSE) = (1.0-OMEGA(lev))*CSRC_SE + OMEGA(lev)*EQSE; \
+ RAC(tcel,dSW) = (1.0-OMEGA(lev))*CSRC_SW + OMEGA(lev)*EQSW; \
+ \
+ RAC(tcel,dNT) = (1.0-OMEGA(lev))*CSRC_NT + OMEGA(lev)*EQNT; \
+ RAC(tcel,dNB) = (1.0-OMEGA(lev))*CSRC_NB + OMEGA(lev)*EQNB; \
+ RAC(tcel,dST) = (1.0-OMEGA(lev))*CSRC_ST + OMEGA(lev)*EQST; \
+ RAC(tcel,dSB) = (1.0-OMEGA(lev))*CSRC_SB + OMEGA(lev)*EQSB; \
+ \
+ RAC(tcel,dET) = (1.0-OMEGA(lev))*CSRC_ET + OMEGA(lev)*EQET; \
+ RAC(tcel,dEB) = (1.0-OMEGA(lev))*CSRC_EB + OMEGA(lev)*EQEB; \
+ RAC(tcel,dWT) = (1.0-OMEGA(lev))*CSRC_WT + OMEGA(lev)*EQWT; \
+ RAC(tcel,dWB) = (1.0-OMEGA(lev))*CSRC_WB + OMEGA(lev)*EQWB; \
+
+
+// debug version1
+#define STREAMCHECK(ni,nj,nk,nl)
+#define COLLCHECK
+#define OPTIMIZED_STREAMCOLLIDE_DEBUG \
+ m[0] = RAC(ccel,0); \
+ FORDF1 { /* df0 is set later on... */ \
+ if(RFLAG_NB(lev, i,j,k,SRCS(lev),l)&CFBnd) { errMsg("???", "bnd-err-nobndfl"); D::mPanic=1; \
+ } else { m[l] = QCELL_NBINV(lev, i, j, k, SRCS(lev), l, l); } \
+ STREAMCHECK(i+D::dfVecX[D::dfInv[l]], j+D::dfVecY[D::dfInv[l]],k+D::dfVecZ[D::dfInv[l]], l); \
+ } \
+ rho=m[0]; ux = mLevel[lev].gravity[0]; uy = mLevel[lev].gravity[1]; uz = mLevel[lev].gravity[2]; \
+ ux = mLevel[lev].gravity[0]; uy = mLevel[lev].gravity[1]; uz = mLevel[lev].gravity[2]; \
+ D::collideArrays( m, rho,ux,uy,uz, OMEGA(lev), mLevel[lev].lcsmago , &mDebugOmegaRet ); \
+ CSMOMEGA_STATS(lev,mDebugOmegaRet); \
+ FORDF0 { RAC(tcel,l) = m[l]; } \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ COLLCHECK;
+
+
+
+// more debugging
+/*DEBUG \
+ m[0] = RAC(ccel,0); \
+ FORDF1 { \
+ if(RFLAG_NB(lev, i,j,k,SRCS(lev),l)&CFBnd) { errMsg("???", "bnd-err-nobndfl"); D::mPanic=1; \
+ } else { m[l] = QCELL_NBINV(lev, i, j, k, SRCS(lev), l, l); } \
+ } \
+errMsg("T","QSDM at %d,%d,%d lcsmqo=%25.15f, lcsmomega=%f \n", i,j,k, lcsmqo,lcsmomega ); \
+ rho=m[0]; ux = mLevel[lev].gravity[0]; uy = mLevel[lev].gravity[1]; uz = mLevel[lev].gravity[2]; \
+ ux = mLevel[lev].gravity[0]; uy = mLevel[lev].gravity[1]; uz = mLevel[lev].gravity[2]; \
+ D::collideArrays( m, rho,ux,uy,uz, OMEGA(lev), mLevel[lev].lcsmago , &mDebugOmegaRet ); \
+ CSMOMEGA_STATS(lev,mDebugOmegaRet); \
+ */
+#if USE_LES==1
+#define DEFAULT_COLLIDE DEFAULT_COLLIDE_LES
+#define OPTIMIZED_STREAMCOLLIDE OPTIMIZED_STREAMCOLLIDE_LES
+#else
+#define DEFAULT_COLLIDE DEFAULT_COLLIDE_NOLES
+#define OPTIMIZED_STREAMCOLLIDE OPTIMIZED_STREAMCOLLIDE_NOLES
+#endif
+
+#endif
+
+#define USQRMAXCHECK(Cusqr,Cux,Cuy,Cuz, CmMaxVlen,CmMxvx,CmMxvy,CmMxvz) \
+ if(Cusqr>CmMaxVlen) { \
+ CmMxvx = Cux; CmMxvy = Cuy; CmMxvz = Cuz; CmMaxVlen = Cusqr; \
+ } /* stats */
+
+
+
+/******************************************************************************
+ * interpolateCellFromCoarse macros
+ *****************************************************************************/
+
+
+// WOXDY_N = Weight Order X Dimension Y _ number N
+#define WO1D1 ( 1.0/ 2.0)
+#define WO1D2 ( 1.0/ 4.0)
+#define WO1D3 ( 1.0/ 8.0)
+
+#define WO2D1_1 (-1.0/16.0)
+#define WO2D1_9 ( 9.0/16.0)
+
+#define WO2D2_11 (WO2D1_1 * WO2D1_1)
+#define WO2D2_19 (WO2D1_9 * WO2D1_1)
+#define WO2D2_91 (WO2D1_9 * WO2D1_1)
+#define WO2D2_99 (WO2D1_9 * WO2D1_9)
+
+#define WO2D3_111 (WO2D1_1 * WO2D1_1 * WO2D1_1)
+#define WO2D3_191 (WO2D1_9 * WO2D1_1 * WO2D1_1)
+#define WO2D3_911 (WO2D1_9 * WO2D1_1 * WO2D1_1)
+#define WO2D3_991 (WO2D1_9 * WO2D1_9 * WO2D1_1)
+#define WO2D3_119 (WO2D1_1 * WO2D1_1 * WO2D1_9)
+#define WO2D3_199 (WO2D1_9 * WO2D1_1 * WO2D1_9)
+#define WO2D3_919 (WO2D1_9 * WO2D1_1 * WO2D1_9)
+#define WO2D3_999 (WO2D1_9 * WO2D1_9 * WO2D1_9)
+
+#if FSGR_STRICT_DEBUG==1
+#define ADD_INT_DFSCHECK(alev, ai,aj,ak, at, afac, l) \
+ if( (((1.0-(at))>0.0) && (!(QCELL((alev), (ai),(aj),(ak),mLevel[(alev)].setCurr , l) > -1.0 ))) || \
+ ((( (at))>0.0) && (!(QCELL((alev), (ai),(aj),(ak),mLevel[(alev)].setOther, l) > -1.0 ))) ){ \
+ errMsg("INVDFSCHECK", " l"<<(alev)<<" "<<PRINT_VEC((ai),(aj),(ak))<<" fc:"<<RFLAG((alev), (ai),(aj),(ak),mLevel[(alev)].setCurr )<<" fo:"<<RFLAG((alev), (ai),(aj),(ak),mLevel[(alev)].setOther )<<" dfl"<<l ); \
+ debugMarkCell((alev), (ai),(aj),(ak));\
+ D::mPanic = 1; \
+ }
+ // end ADD_INT_DFSCHECK
+#define ADD_INT_FLAGCHECK(alev, ai,aj,ak, at, afac) \
+ if( (((1.0-(at))>0.0) && (!(RFLAG((alev), (ai),(aj),(ak),mLevel[(alev)].setCurr )&(CFInter|CFFluid|CFGrCoarseInited) ))) || \
+ ((( (at))>0.0) && (!(RFLAG((alev), (ai),(aj),(ak),mLevel[(alev)].setOther)&(CFInter|CFFluid|CFGrCoarseInited) ))) ){ \
+ errMsg("INVFLAGCINTCHECK", " l"<<(alev)<<" at:"<<(at)<<" "<<PRINT_VEC((ai),(aj),(ak))<<\
+ " fc:"<< convertCellFlagType2String(RFLAG((alev), (ai),(aj),(ak),mLevel[(alev)].setCurr )) <<\
+ " fold:"<< convertCellFlagType2String(RFLAG((alev), (ai),(aj),(ak),mLevel[(alev)].setOther )) ); \
+ debugMarkCell((alev), (ai),(aj),(ak));\
+ D::mPanic = 1; \
+ }
+ // end ADD_INT_DFSCHECK
+
+ //if( !(RFLAG(lev+1, (ix),(iy),(iz), mLevel[lev+1].setCurr) & CFUnused) ){
+ //errMsg("INTFLAGUNU", PRINT_VEC(i,j,k)<<" child at "<<PRINT_VEC((ix),(iy),(iz)) );
+ //if(iy==15) errMsg("IFFC", PRINT_VEC(i,j,k)<<" child interpolated at "<<PRINT_VEC((ix),(iy),(iz)) );
+ //if(((ix)>10)&&(iy>5)&&(iz>5)) { debugMarkCell(lev+1, (ix),(iy),(iz) ); }
+#define INTUNUTCHECK(ix,iy,iz) \
+ if( (RFLAG(lev+1, (ix),(iy),(iz), mLevel[lev+1].setCurr) != (CFFluid|CFGrFromCoarse)) ){\
+ errMsg("INTFLAGUNU_CHECK", PRINT_VEC(i,j,k)<<" child not unused at l"<<(lev+1)<<" "<<PRINT_VEC((ix),(iy),(iz))<<" flag: "<< RFLAG(lev+1, (ix),(iy),(iz), mLevel[lev+1].setCurr) ); \
+ debugMarkCell((lev+1), (ix),(iy),(iz));\
+ D::mPanic = 1; \
+ }\
+ RFLAG(lev+1, (ix),(iy),(iz), mLevel[lev+1].setCurr) |= CFGrCoarseInited; \
+ // INTUNUTCHECK
+#define INTSTRICTCHECK(ix,iy,iz,caseId) \
+ if( QCELL(lev+1, (ix),(iy),(iz), mLevel[lev+1].setCurr, l) <= 0.0 ){\
+ errMsg("INVDFCCELLCHECK", "caseId:"<<caseId<<" "<<PRINT_VEC(i,j,k)<<" child inter at "<<PRINT_VEC((ix),(iy),(iz))<<" invalid df "<<l<<" = "<< QCELL(lev+1, (ix),(iy),(iz), mLevel[lev+1].setCurr, l) ); \
+ debugMarkCell((lev+1), (ix),(iy),(iz));\
+ D::mPanic = 1; \
+ }\
+ // INTSTRICTCHECK
+
+#else// FSGR_STRICT_DEBUG==1
+#define ADD_INT_FLAGCHECK(alev, ai,aj,ak, at, afac)
+#define ADD_INT_DFSCHECK(alev, ai,aj,ak, at, afac, l)
+#define INTSTRICTCHECK(x,y,z,caseId)
+#define INTUNUTCHECK(ix,iy,iz)
+#endif// FSGR_STRICT_DEBUG==1
+
+
+#if FSGR_STRICT_DEBUG==1
+#define INTDEBOUT \
+ { /*LbmFloat rho,ux,uy,uz;*/ \
+ rho = ux=uy=uz=0.0; \
+ FORDF0{ LbmFloat m = QCELL(lev,i,j,k, dstSet, l); \
+ rho += m; ux += (D::dfDvecX[l]*m); uy += (D::dfDvecY[l]*m); uz += (D::dfDvecZ[l]*m); \
+ if(ABS(m)>1.0) { errMsg("interpolateCellFromCoarse", "ICFC_DFCHECK cell "<<PRINT_IJK<<" m"<<l<<":"<< m ); D::mPanic=1; }\
+ /*errMsg("interpolateCellFromCoarse", " cell "<<PRINT_IJK<<" df"<<l<<":"<<m );*/ \
+ } \
+ /*if(D::mPanic) { errMsg("interpolateCellFromCoarse", "ICFC_DFOUT cell "<<PRINT_IJK<<" rho:"<<rho<<" u:"<<PRINT_VEC(ux,uy,uz)<<" b"<<PRINT_VEC(betx,bety,betz) ); }*/ \
+ if(markNbs) errMsg("interpolateCellFromCoarse", " cell "<<PRINT_IJK<<" rho:"<<rho<<" u:"<<PRINT_VEC(ux,uy,uz)<<" b"<<PRINT_VEC(betx,bety,betz) ); \
+ /*errMsg("interpolateCellFromCoarse", "ICFC_DFDEBUG cell "<<PRINT_IJK<<" rho:"<<rho<<" u:"<<PRINT_VEC(ux,uy,uz)<<" b"<<PRINT_VEC(betx,bety,betz) ); */\
+ } \
+ /* both cases are ok to interpolate */ \
+ if( (!(RFLAG(lev,i,j,k, dstSet) & CFGrFromCoarse)) && \
+ (!(RFLAG(lev,i,j,k, dstSet) & CFUnused)) ) { \
+ /* might also have CFGrCoarseInited (shouldnt be a problem here)*/ \
+ errMsg("interpolateCellFromCoarse", "CHECK cell not CFGrFromCoarse? "<<PRINT_IJK<<" flag:"<< RFLAG(lev,i,j,k, dstSet)<<" fstr:"<<convertCellFlagType2String( RFLAG(lev,i,j,k, dstSet) )); \
+ /* FIXME check this warning...? return; this can happen !? */ \
+ /*D::mPanic = 1;*/ \
+ } \
+ // end INTDEBOUT
+#else // FSGR_STRICT_DEBUG==1
+#define INTDEBOUT
+#endif // FSGR_STRICT_DEBUG==1
+
+
+// t=0.0 -> only current
+// t=0.5 -> mix
+// t=1.0 -> only other
+#if OPT3D==0
+#define ADD_INT_DFS(alev, ai,aj,ak, at, afac) \
+ ADD_INT_FLAGCHECK(alev, ai,aj,ak, at, afac); \
+ FORDF0{ \
+ LbmFloat df = ( \
+ QCELL((alev), (ai),(aj),(ak),mLevel[(alev)].setCurr , l)*(1.0-(at)) + \
+ QCELL((alev), (ai),(aj),(ak),mLevel[(alev)].setOther, l)*( (at)) \
+ ) ; \
+ ADD_INT_DFSCHECK(alev, ai,aj,ak, at, afac, l); \
+ df *= (afac); \
+ rho += df; \
+ ux += (D::dfDvecX[l]*df); \
+ uy += (D::dfDvecY[l]*df); \
+ uz += (D::dfDvecZ[l]*df); \
+ intDf[l] += df; \
+ }
+// write interpolated dfs back to cell (correct non-eq. parts)
+#define IDF_WRITEBACK_ \
+ FORDF0{ \
+ LbmFloat eq = D::getCollideEq(l, rho,ux,uy,uz);\
+ QCELL(lev,i,j,k, dstSet, l) = (eq+ (intDf[l]-eq)*mDfScaleDown);\
+ } \
+ /* check that all values are ok */ \
+ INTDEBOUT
+#define IDF_WRITEBACK \
+ LbmFloat omegaDst, omegaSrc;\
+ /* smago new */ \
+ LbmFloat feq[LBM_DFNUM]; \
+ LbmFloat dfScale = mDfScaleDown; \
+ FORDF0{ \
+ feq[l] = D::getCollideEq(l, rho,ux,uy,uz); \
+ } \
+ if(mLevel[lev ].lcsmago>0.0) {\
+ LbmFloat Qo = D::getLesNoneqTensorCoeff(intDf,feq); \
+ omegaDst = D::getLesOmega(mLevel[lev+0].omega,mLevel[lev+0].lcsmago,Qo); \
+ omegaSrc = D::getLesOmega(mLevel[lev-1].omega,mLevel[lev-1].lcsmago,Qo); \
+ } else {\
+ omegaDst = mLevel[lev+0].omega; \
+ omegaSrc = mLevel[lev-1].omega;\
+ } \
+ \
+ dfScale = (mLevel[lev+0].stepsize/mLevel[lev-1].stepsize)* (1.0/omegaDst-1.0)/ (1.0/omegaSrc-1.0); \
+ FORDF0{ \
+ /*errMsg("SMAGO"," org"<<mDfScaleDown<<" n"<<dfScale<<" qc"<< QCELL(lev,i,j,k, dstSet, l)<<" idf"<<intDf[l]<<" eq"<<feq[l] ); */ \
+ QCELL(lev,i,j,k, dstSet, l) = (feq[l]+ (intDf[l]-feq[l])*dfScale);\
+ } \
+ /* check that all values are ok */ \
+ INTDEBOUT
+
+#else //OPT3D==0
+
+#define ADDALLVALS \
+ addVal = addDfFacT * RAC(addfcel , dC ); \
+ intDf[dC ] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dN ); \
+ uy+=addVal; intDf[dN ] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dS ); \
+ uy-=addVal; intDf[dS ] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dE ); \
+ ux+=addVal; intDf[dE ] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dW ); \
+ ux-=addVal; intDf[dW ] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dT ); \
+ uz+=addVal; intDf[dT ] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dB ); \
+ uz-=addVal; intDf[dB ] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dNE); \
+ ux+=addVal; uy+=addVal; intDf[dNE] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dNW); \
+ ux-=addVal; uy+=addVal; intDf[dNW] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dSE); \
+ ux+=addVal; uy-=addVal; intDf[dSE] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dSW); \
+ ux-=addVal; uy-=addVal; intDf[dSW] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dNT); \
+ uy+=addVal; uz+=addVal; intDf[dNT] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dNB); \
+ uy+=addVal; uz-=addVal; intDf[dNB] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dST); \
+ uy-=addVal; uz+=addVal; intDf[dST] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dSB); \
+ uy-=addVal; uz-=addVal; intDf[dSB] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dET); \
+ ux+=addVal; uz+=addVal; intDf[dET] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dEB); \
+ ux+=addVal; uz-=addVal; intDf[dEB] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dWT); \
+ ux-=addVal; uz+=addVal; intDf[dWT] += addVal; rho += addVal; \
+ addVal = addDfFacT * RAC(addfcel , dWB); \
+ ux-=addVal; uz-=addVal; intDf[dWB] += addVal; rho += addVal;
+
+#define ADD_INT_DFS(alev, ai,aj,ak, at, afac) \
+ addDfFacT = at*afac; \
+ addfcel = RACPNT((alev), (ai),(aj),(ak),mLevel[(alev)].setOther); \
+ ADDALLVALS\
+ addDfFacT = (1.0-at)*afac; \
+ addfcel = RACPNT((alev), (ai),(aj),(ak),mLevel[(alev)].setCurr); \
+ ADDALLVALS
+
+// also ugly...
+#define INTDF_C intDf[dC ]
+#define INTDF_N intDf[dN ]
+#define INTDF_S intDf[dS ]
+#define INTDF_E intDf[dE ]
+#define INTDF_W intDf[dW ]
+#define INTDF_T intDf[dT ]
+#define INTDF_B intDf[dB ]
+#define INTDF_NE intDf[dNE]
+#define INTDF_NW intDf[dNW]
+#define INTDF_SE intDf[dSE]
+#define INTDF_SW intDf[dSW]
+#define INTDF_NT intDf[dNT]
+#define INTDF_NB intDf[dNB]
+#define INTDF_ST intDf[dST]
+#define INTDF_SB intDf[dSB]
+#define INTDF_ET intDf[dET]
+#define INTDF_EB intDf[dEB]
+#define INTDF_WT intDf[dWT]
+#define INTDF_WB intDf[dWB]
+
+
+// write interpolated dfs back to cell (correct non-eq. parts)
+#define IDF_WRITEBACK_LES \
+ dstcell = RACPNT(lev, i,j,k,dstSet); \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ \
+ lcsmeq[dC] = EQC ; \
+ COLL_CALCULATE_DFEQ(lcsmeq); \
+ COLL_CALCULATE_NONEQTENSOR(lev, INTDF_ )\
+ COLL_CALCULATE_CSMOMEGAVAL(lev+0, lcsmDstOmega); \
+ COLL_CALCULATE_CSMOMEGAVAL(lev-1, lcsmSrcOmega); \
+ \
+ lcsmdfscale = (mLevel[lev+0].stepsize/mLevel[lev-1].stepsize)* (1.0/lcsmDstOmega-1.0)/ (1.0/lcsmSrcOmega-1.0); \
+ RAC(dstcell, dC ) = (lcsmeq[dC ] + (intDf[dC ]-lcsmeq[dC ] )*lcsmdfscale);\
+ RAC(dstcell, dN ) = (lcsmeq[dN ] + (intDf[dN ]-lcsmeq[dN ] )*lcsmdfscale);\
+ RAC(dstcell, dS ) = (lcsmeq[dS ] + (intDf[dS ]-lcsmeq[dS ] )*lcsmdfscale);\
+ RAC(dstcell, dE ) = (lcsmeq[dE ] + (intDf[dE ]-lcsmeq[dE ] )*lcsmdfscale);\
+ RAC(dstcell, dW ) = (lcsmeq[dW ] + (intDf[dW ]-lcsmeq[dW ] )*lcsmdfscale);\
+ RAC(dstcell, dT ) = (lcsmeq[dT ] + (intDf[dT ]-lcsmeq[dT ] )*lcsmdfscale);\
+ RAC(dstcell, dB ) = (lcsmeq[dB ] + (intDf[dB ]-lcsmeq[dB ] )*lcsmdfscale);\
+ RAC(dstcell, dNE) = (lcsmeq[dNE] + (intDf[dNE]-lcsmeq[dNE] )*lcsmdfscale);\
+ RAC(dstcell, dNW) = (lcsmeq[dNW] + (intDf[dNW]-lcsmeq[dNW] )*lcsmdfscale);\
+ RAC(dstcell, dSE) = (lcsmeq[dSE] + (intDf[dSE]-lcsmeq[dSE] )*lcsmdfscale);\
+ RAC(dstcell, dSW) = (lcsmeq[dSW] + (intDf[dSW]-lcsmeq[dSW] )*lcsmdfscale);\
+ RAC(dstcell, dNT) = (lcsmeq[dNT] + (intDf[dNT]-lcsmeq[dNT] )*lcsmdfscale);\
+ RAC(dstcell, dNB) = (lcsmeq[dNB] + (intDf[dNB]-lcsmeq[dNB] )*lcsmdfscale);\
+ RAC(dstcell, dST) = (lcsmeq[dST] + (intDf[dST]-lcsmeq[dST] )*lcsmdfscale);\
+ RAC(dstcell, dSB) = (lcsmeq[dSB] + (intDf[dSB]-lcsmeq[dSB] )*lcsmdfscale);\
+ RAC(dstcell, dET) = (lcsmeq[dET] + (intDf[dET]-lcsmeq[dET] )*lcsmdfscale);\
+ RAC(dstcell, dEB) = (lcsmeq[dEB] + (intDf[dEB]-lcsmeq[dEB] )*lcsmdfscale);\
+ RAC(dstcell, dWT) = (lcsmeq[dWT] + (intDf[dWT]-lcsmeq[dWT] )*lcsmdfscale);\
+ RAC(dstcell, dWB) = (lcsmeq[dWB] + (intDf[dWB]-lcsmeq[dWB] )*lcsmdfscale);\
+ /* IDF_WRITEBACK optimized */
+
+#define IDF_WRITEBACK_NOLES \
+ dstcell = RACPNT(lev, i,j,k,dstSet); \
+ usqr = 1.5 * (ux*ux + uy*uy + uz*uz); \
+ \
+ RAC(dstcell, dC ) = (EQC + (intDf[dC ]-EQC )*mDfScaleDown);\
+ RAC(dstcell, dN ) = (EQN + (intDf[dN ]-EQN )*mDfScaleDown);\
+ RAC(dstcell, dS ) = (EQS + (intDf[dS ]-EQS )*mDfScaleDown);\
+ /*old*/ RAC(dstcell, dE ) = (EQE + (intDf[dE ]-EQE )*mDfScaleDown);\
+ RAC(dstcell, dW ) = (EQW + (intDf[dW ]-EQW )*mDfScaleDown);\
+ RAC(dstcell, dT ) = (EQT + (intDf[dT ]-EQT )*mDfScaleDown);\
+ RAC(dstcell, dB ) = (EQB + (intDf[dB ]-EQB )*mDfScaleDown);\
+ /*old*/ RAC(dstcell, dNE) = (EQNE + (intDf[dNE]-EQNE )*mDfScaleDown);\
+ RAC(dstcell, dNW) = (EQNW + (intDf[dNW]-EQNW )*mDfScaleDown);\
+ RAC(dstcell, dSE) = (EQSE + (intDf[dSE]-EQSE )*mDfScaleDown);\
+ RAC(dstcell, dSW) = (EQSW + (intDf[dSW]-EQSW )*mDfScaleDown);\
+ RAC(dstcell, dNT) = (EQNT + (intDf[dNT]-EQNT )*mDfScaleDown);\
+ RAC(dstcell, dNB) = (EQNB + (intDf[dNB]-EQNB )*mDfScaleDown);\
+ RAC(dstcell, dST) = (EQST + (intDf[dST]-EQST )*mDfScaleDown);\
+ RAC(dstcell, dSB) = (EQSB + (intDf[dSB]-EQSB )*mDfScaleDown);\
+ RAC(dstcell, dET) = (EQET + (intDf[dET]-EQET )*mDfScaleDown);\
+ /*old*/ RAC(dstcell, dEB) = (EQEB + (intDf[dEB]-EQEB )*mDfScaleDown);\
+ RAC(dstcell, dWT) = (EQWT + (intDf[dWT]-EQWT )*mDfScaleDown);\
+ RAC(dstcell, dWB) = (EQWB + (intDf[dWB]-EQWB )*mDfScaleDown);\
+ /* IDF_WRITEBACK optimized */
+
+#if USE_LES==1
+#define IDF_WRITEBACK IDF_WRITEBACK_LES
+#else
+#define IDF_WRITEBACK IDF_WRITEBACK_NOLES
+#endif
+
+#endif// OPT3D==0
+