Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/itasc/kdl/frames.hpp')
-rw-r--r--intern/itasc/kdl/frames.hpp1097
1 files changed, 1097 insertions, 0 deletions
diff --git a/intern/itasc/kdl/frames.hpp b/intern/itasc/kdl/frames.hpp
new file mode 100644
index 00000000000..20590c5303e
--- /dev/null
+++ b/intern/itasc/kdl/frames.hpp
@@ -0,0 +1,1097 @@
+/***************************************************************************
+ frames.hpp `- description
+ -------------------------
+ begin : June 2006
+ copyright : (C) 2006 Erwin Aertbelien
+ email : firstname.lastname@mech.kuleuven.be
+
+ History (only major changes)( AUTHOR-Description ) :
+
+ ***************************************************************************
+ * This library is free software; you can redistribute it and/or *
+ * modify it under the terms of the GNU Lesser General Public *
+ * License as published by the Free Software Foundation; either *
+ * version 2.1 of the License, or (at your option) any later version. *
+ * *
+ * This library is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
+ * Lesser General Public License for more details. *
+ * *
+ * You should have received a copy of the GNU Lesser General Public *
+ * License along with this library; if not, write to the Free Software *
+ * Foundation, Inc., 59 Temple Place, *
+ * Suite 330, Boston, MA 02111-1307 USA *
+ * *
+ ***************************************************************************/
+
+/**
+ * \file
+ * \warning
+ * Efficienty can be improved by writing p2 = A*(B*(C*p1))) instead of
+ * p2=A*B*C*p1
+ *
+ * \par PROPOSED NAMING CONVENTION FOR FRAME-like OBJECTS
+ *
+ * \verbatim
+ * A naming convention of objects of the type defined in this file :
+ * (1) Frame : F...
+ * Rotation : R ...
+ * (2) Twist : T ...
+ * Wrench : W ...
+ * Vector : V ...
+ * This prefix is followed by :
+ * for category (1) :
+ * F_A_B : w.r.t. frame A, frame B expressed
+ * ( each column of F_A_B corresponds to an axis of B,
+ * expressed w.r.t. frame A )
+ * in mathematical convention :
+ * A
+ * F_A_B == F
+ * B
+ *
+ * for category (2) :
+ * V_B : a vector expressed w.r.t. frame B
+ *
+ * This can also be prepended by a name :
+ * e.g. : temporaryV_B
+ *
+ * With this convention one can write :
+ *
+ * F_A_B = F_B_A.Inverse();
+ * F_A_C = F_A_B * F_B_C;
+ * V_B = F_B_C * V_C; // both translation and rotation
+ * V_B = R_B_C * V_C; // only rotation
+ * \endverbatim
+ *
+ * \par CONVENTIONS FOR WHEN USED WITH ROBOTS :
+ *
+ * \verbatim
+ * world : represents the frame ([1 0 0,0 1 0,0 0 1],[0 0 0]')
+ * mp : represents mounting plate of a robot
+ * (i.e. everything before MP is constructed by robot manufacturer
+ * everything after MP is tool )
+ * tf : represents task frame of a robot
+ * (i.e. frame in which motion and force control is expressed)
+ * sf : represents sensor frame of a robot
+ * (i.e. frame at which the forces measured by the force sensor
+ * are expressed )
+ *
+ * Frame F_world_mp=...;
+ * Frame F_mp_sf(..)
+ * Frame F_mp_tf(,.)
+ *
+ * Wrench are measured in sensor frame SF, so one could write :
+ * Wrench_tf = F_mp_tf.Inverse()* ( F_mp_sf * Wrench_sf );
+ * \endverbatim
+ *
+ * \par CONVENTIONS REGARDING UNITS :
+ * Any consistent series of units can be used, e.g. N,mm,Nmm,..mm/sec
+ *
+ * \par Twist and Wrench transformations
+ * 3 different types of transformations do exist for the twists
+ * and wrenches.
+ *
+ * \verbatim
+ * 1) Frame * Twist or Frame * Wrench :
+ * this transforms both the velocity/force reference point
+ * and the basis to which the twist/wrench are expressed.
+ * 2) Rotation * Twist or Rotation * Wrench :
+ * this transforms the basis to which the twist/wrench are
+ * expressed, but leaves the reference point intact.
+ * 3) Twist.RefPoint(v_base_AB) or Wrench.RefPoint(v_base_AB)
+ * this transforms only the reference point. v is expressed
+ * in the same base as the twist/wrench and points from the
+ * old reference point to the new reference point.
+ * \endverbatim
+ *
+ * \par Complexity
+ * Sometimes the amount of work is given in the documentation
+ * e.g. 6M+3A means 6 multiplications and 3 additions.
+ *
+ * \author
+ * Erwin Aertbelien, Div. PMA, Dep. of Mech. Eng., K.U.Leuven
+ *
+ ****************************************************************************/
+#ifndef KDL_FRAMES_H
+#define KDL_FRAMES_H
+
+
+#include "utilities/kdl-config.h"
+#include "utilities/utility.h"
+
+/////////////////////////////////////////////////////////////
+
+namespace KDL {
+
+
+
+class Vector;
+class Rotation;
+class Frame;
+class Wrench;
+class Twist;
+class Vector2;
+class Rotation2;
+class Frame2;
+
+
+
+/**
+ * \brief A concrete implementation of a 3 dimensional vector class
+ */
+class Vector
+{
+public:
+ double data[3];
+ //! Does not initialise the Vector to zero. use Vector::Zero() or SetToZero for that
+ inline Vector() {data[0]=data[1]=data[2] = 0.0;}
+
+ //! Constructs a vector out of the three values x, y and z
+ inline Vector(double x,double y, double z);
+
+ //! Constructs a vector out of an array of three values x, y and z
+ inline Vector(double* xyz);
+
+ //! Constructs a vector out of an array of three values x, y and z
+ inline Vector(float* xyz);
+
+ //! Assignment operator. The normal copy by value semantics.
+ inline Vector(const Vector& arg);
+
+ //! store vector components in array
+ inline void GetValue(double* xyz) const;
+
+ //! Assignment operator. The normal copy by value semantics.
+ inline Vector& operator = ( const Vector& arg);
+
+ //! Access to elements, range checked when NDEBUG is not set, from 0..2
+ inline double operator()(int index) const;
+
+ //! Access to elements, range checked when NDEBUG is not set, from 0..2
+ inline double& operator() (int index);
+
+ //! Equivalent to double operator()(int index) const
+ double operator[] ( int index ) const
+ {
+ return this->operator() ( index );
+ }
+
+ //! Equivalent to double& operator()(int index)
+ double& operator[] ( int index )
+ {
+ return this->operator() ( index );
+ }
+
+ inline double x() const;
+ inline double y() const;
+ inline double z() const;
+ inline void x(double);
+ inline void y(double);
+ inline void z(double);
+
+ //! Reverses the sign of the Vector object itself
+ inline void ReverseSign();
+
+
+ //! subtracts a vector from the Vector object itself
+ inline Vector& operator-=(const Vector& arg);
+
+
+ //! Adds a vector from the Vector object itself
+ inline Vector& operator +=(const Vector& arg);
+
+ //! Scalar multiplication is defined
+ inline friend Vector operator*(const Vector& lhs,double rhs);
+ //! Scalar multiplication is defined
+ inline friend Vector operator*(double lhs,const Vector& rhs);
+ //! Scalar division is defined
+
+ inline friend Vector operator/(const Vector& lhs,double rhs);
+ inline friend Vector operator+(const Vector& lhs,const Vector& rhs);
+ inline friend Vector operator-(const Vector& lhs,const Vector& rhs);
+ inline friend Vector operator*(const Vector& lhs,const Vector& rhs);
+ inline friend Vector operator-(const Vector& arg);
+ inline friend double dot(const Vector& lhs,const Vector& rhs);
+
+ //! To have a uniform operator to put an element to zero, for scalar values
+ //! and for objects.
+ inline friend void SetToZero(Vector& v);
+
+ //! @return a zero vector
+ inline static Vector Zero();
+
+ /** Normalizes this vector and returns it norm
+ * makes v a unitvector and returns the norm of v.
+ * if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
+ * if this is not good, check the return value of this method.
+ */
+ double Normalize(double eps=epsilon);
+
+ //! @return the norm of the vector
+ double Norm() const;
+
+
+
+ //! a 3D vector where the 2D vector v is put in the XY plane
+ inline void Set2DXY(const Vector2& v);
+ //! a 3D vector where the 2D vector v is put in the YZ plane
+ inline void Set2DYZ(const Vector2& v);
+ //! a 3D vector where the 2D vector v is put in the ZX plane
+ inline void Set2DZX(const Vector2& v);
+ //! a 3D vector where the 2D vector v_XY is put in the XY plane of the frame F_someframe_XY.
+ inline void Set2DPlane(const Frame& F_someframe_XY,const Vector2& v_XY);
+
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ inline friend bool Equal(const Vector& a,const Vector& b,double eps=epsilon);
+
+ //! return a normalized vector
+ inline friend Vector Normalize(const Vector& a, double eps=epsilon);
+
+ //! The literal equality operator==(), also identical.
+ inline friend bool operator==(const Vector& a,const Vector& b);
+ //! The literal inequality operator!=().
+ inline friend bool operator!=(const Vector& a,const Vector& b);
+
+ friend class Rotation;
+ friend class Frame;
+};
+
+
+/**
+ \brief represents rotations in 3 dimensional space.
+
+ This class represents a rotation matrix with the following
+ conventions :
+ \verbatim
+ Suppose V2 = R*V, (1)
+ V is expressed in frame B
+ V2 is expressed in frame A
+ This matrix R consists of 3 collumns [ X,Y,Z ],
+ X,Y, and Z contain the axes of frame B, expressed in frame A
+ Because of linearity expr(1) is valid.
+ \endverbatim
+ This class only represents rotational_interpolation, not translation
+ Two interpretations are possible for rotation angles.
+ * if you rotate with angle around X frame A to have frame B,
+ then the result of SetRotX is equal to frame B expressed wrt A.
+ In code:
+ \verbatim
+ Rotation R;
+ F_A_B = R.SetRotX(angle);
+ \endverbatim
+ * Secondly, if you take the following code :
+ \verbatim
+ Vector p,p2; Rotation R;
+ R.SetRotX(angle);
+ p2 = R*p;
+ \endverbatim
+ then the frame p2 is rotated around X axis with (-angle).
+ Analogue reasonings can be applyd to SetRotY,SetRotZ,SetRot
+ \par type
+ Concrete implementation
+*/
+class Rotation
+{
+public:
+ double data[9];
+
+ inline Rotation() {
+ *this = Rotation::Identity();
+ }
+ inline Rotation(double Xx,double Yx,double Zx,
+ double Xy,double Yy,double Zy,
+ double Xz,double Yz,double Zz);
+ inline Rotation(const Vector& x,const Vector& y,const Vector& z);
+ // default copy constructor is sufficient
+
+ inline void setValue(float* oglmat);
+ inline void getValue(float* oglmat) const;
+
+ inline Rotation& operator=(const Rotation& arg);
+
+ //! Defines a multiplication R*V between a Rotation R and a Vector V.
+ //! Complexity : 9M+6A
+ inline Vector operator*(const Vector& v) const;
+
+ //! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
+ inline double& operator()(int i,int j);
+
+ //! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
+ inline double operator() (int i,int j) const;
+
+ friend Rotation operator *(const Rotation& lhs,const Rotation& rhs);
+
+ //! Sets the value of *this to its inverse.
+ inline void SetInverse();
+
+ //! Gives back the inverse rotation matrix of *this.
+ inline Rotation Inverse() const;
+
+ //! The same as R.Inverse()*v but more efficient.
+ inline Vector Inverse(const Vector& v) const;
+
+ //! The same as R.Inverse()*arg but more efficient.
+ inline Wrench Inverse(const Wrench& arg) const;
+
+ //! The same as R.Inverse()*arg but more efficient.
+ inline Twist Inverse(const Twist& arg) const;
+
+ //! Gives back an identity rotaton matrix
+ inline static Rotation Identity();
+
+
+// = Rotations
+ //! The Rot... static functions give the value of the appropriate rotation matrix back.
+ inline static Rotation RotX(double angle);
+ //! The Rot... static functions give the value of the appropriate rotation matrix back.
+ inline static Rotation RotY(double angle);
+ //! The Rot... static functions give the value of the appropriate rotation matrix back.
+ inline static Rotation RotZ(double angle);
+ //! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
+ //! DoRot... functions are only defined when they can be executed more efficiently
+ inline void DoRotX(double angle);
+ //! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
+ //! DoRot... functions are only defined when they can be executed more efficiently
+ inline void DoRotY(double angle);
+ //! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
+ //! DoRot... functions are only defined when they can be executed more efficiently
+ inline void DoRotZ(double angle);
+
+ //! Along an arbitrary axes. It is not necessary to normalize rotaxis.
+ //! returns identity rotation matrix in the case that the norm of rotaxis
+ //! is to small to be used.
+ // @see Rot2 if you want to handle this error in another way.
+ static Rotation Rot(const Vector& rotaxis,double angle);
+
+ //! Along an arbitrary axes. rotvec should be normalized.
+ static Rotation Rot2(const Vector& rotvec,double angle);
+
+ // make sure the matrix is a pure rotation (no scaling)
+ void Ortho();
+
+ //! Returns a vector with the direction of the equiv. axis
+ //! and its norm is angle
+ Vector GetRot() const;
+
+ //! Returns a 2D vector representing the equivalent rotation in the XZ plane that brings the
+ //! Y axis onto the Matrix Y axis and its norm is angle
+ Vector2 GetXZRot() const;
+
+ /** Returns the rotation angle around the equiv. axis
+ * @param axis the rotation axis is returned in this variable
+ * @param eps : in the case of angle == 0 : rot axis is undefined and choosen
+ * to be +/- Z-axis
+ * in the case of angle == PI : 2 solutions, positive Z-component
+ * of the axis is choosen.
+ * @result returns the rotation angle (between [0..PI] )
+ */
+ double GetRotAngle(Vector& axis,double eps=epsilon) const;
+
+
+ //! Gives back a rotation matrix specified with EulerZYZ convention :
+ //! First rotate around Z with alfa,
+ //! then around the new Y with beta, then around
+ //! new Z with gamma.
+ static Rotation EulerZYZ(double Alfa,double Beta,double Gamma);
+
+ //! Gives back the EulerZYZ convention description of the rotation matrix :
+ //! First rotate around Z with alfa,
+ //! then around the new Y with beta, then around
+ //! new Z with gamma.
+ //!
+ //! Variables are bound by
+ //! (-PI <= alfa <= PI),
+ //! (0 <= beta <= PI),
+ //! (-PI <= alfa <= PI)
+ void GetEulerZYZ(double& alfa,double& beta,double& gamma) const;
+
+
+ //! Sets the value of this object to a rotation specified with RPY convention:
+ //! first rotate around X with roll, then around the
+ //! old Y with pitch, then around old Z with alfa
+ static Rotation RPY(double roll,double pitch,double yaw);
+
+ //! Gives back a vector in RPY coordinates, variables are bound by
+ //! -PI <= roll <= PI
+ //! -PI <= Yaw <= PI
+ //! -PI/2 <= PITCH <= PI/2
+ //!
+ //! convention : first rotate around X with roll, then around the
+ //! old Y with pitch, then around old Z with alfa
+ void GetRPY(double& roll,double& pitch,double& yaw) const;
+
+
+ //! Gives back a rotation matrix specified with EulerZYX convention :
+ //! First rotate around Z with alfa,
+ //! then around the new Y with beta, then around
+ //! new X with gamma.
+ //!
+ //! closely related to RPY-convention
+ inline static Rotation EulerZYX(double Alfa,double Beta,double Gamma) {
+ return RPY(Gamma,Beta,Alfa);
+ }
+
+ //! GetEulerZYX gets the euler ZYX parameters of a rotation :
+ //! First rotate around Z with alfa,
+ //! then around the new Y with beta, then around
+ //! new X with gamma.
+ //!
+ //! Range of the results of GetEulerZYX :
+ //! -PI <= alfa <= PI
+ //! -PI <= gamma <= PI
+ //! -PI/2 <= beta <= PI/2
+ //!
+ //! Closely related to RPY-convention.
+ inline void GetEulerZYX(double& Alfa,double& Beta,double& Gamma) const {
+ GetRPY(Gamma,Beta,Alfa);
+ }
+
+ //! Transformation of the base to which the twist is expressed.
+ //! Complexity : 18M+12A
+ //! @see Frame*Twist for a transformation that also transforms
+ //! the velocity reference point.
+ inline Twist operator * (const Twist& arg) const;
+
+ //! Transformation of the base to which the wrench is expressed.
+ //! Complexity : 18M+12A
+ //! @see Frame*Wrench for a transformation that also transforms
+ //! the force reference point.
+ inline Wrench operator * (const Wrench& arg) const;
+
+ //! Access to the underlying unitvectors of the rotation matrix
+ inline Vector UnitX() const {
+ return Vector(data[0],data[3],data[6]);
+ }
+
+ //! Access to the underlying unitvectors of the rotation matrix
+ inline void UnitX(const Vector& X) {
+ data[0] = X(0);
+ data[3] = X(1);
+ data[6] = X(2);
+ }
+
+ //! Access to the underlying unitvectors of the rotation matrix
+ inline Vector UnitY() const {
+ return Vector(data[1],data[4],data[7]);
+ }
+
+ //! Access to the underlying unitvectors of the rotation matrix
+ inline void UnitY(const Vector& X) {
+ data[1] = X(0);
+ data[4] = X(1);
+ data[7] = X(2);
+ }
+
+ //! Access to the underlying unitvectors of the rotation matrix
+ inline Vector UnitZ() const {
+ return Vector(data[2],data[5],data[8]);
+ }
+
+ //! Access to the underlying unitvectors of the rotation matrix
+ inline void UnitZ(const Vector& X) {
+ data[2] = X(0);
+ data[5] = X(1);
+ data[8] = X(2);
+ }
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ friend bool Equal(const Rotation& a,const Rotation& b,double eps=epsilon);
+
+ //! The literal equality operator==(), also identical.
+ friend bool operator==(const Rotation& a,const Rotation& b);
+ //! The literal inequality operator!=()
+ friend bool operator!=(const Rotation& a,const Rotation& b);
+
+ friend class Frame;
+};
+ bool operator==(const Rotation& a,const Rotation& b);
+
+
+
+/**
+ \brief represents a frame transformation in 3D space (rotation + translation)
+
+ if V2 = Frame*V1 (V2 expressed in frame A, V1 expressed in frame B)
+ then V2 = Frame.M*V1+Frame.p
+
+ Frame.M contains columns that represent the axes of frame B wrt frame A
+ Frame.p contains the origin of frame B expressed in frame A.
+*/
+class Frame {
+public:
+ Vector p; //!< origine of the Frame
+ Rotation M; //!< Orientation of the Frame
+
+public:
+
+ inline Frame(const Rotation& R,const Vector& V);
+
+ //! The rotation matrix defaults to identity
+ explicit inline Frame(const Vector& V);
+ //! The position matrix defaults to zero
+ explicit inline Frame(const Rotation& R);
+
+ inline void setValue(float* oglmat);
+ inline void getValue(float* oglmat) const;
+
+ inline Frame() {}
+ //! The copy constructor. Normal copy by value semantics.
+ inline Frame(const Frame& arg);
+
+ //! Reads data from an double array
+ //\TODO should be formulated as a constructor
+ void Make4x4(double* d);
+
+ //! Treats a frame as a 4x4 matrix and returns element i,j
+ //! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
+ inline double operator()(int i,int j);
+
+ //! Treats a frame as a 4x4 matrix and returns element i,j
+ //! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
+ inline double operator() (int i,int j) const;
+
+ // = Inverse
+ //! Gives back inverse transformation of a Frame
+ inline Frame Inverse() const;
+
+ //! The same as p2=R.Inverse()*p but more efficient.
+ inline Vector Inverse(const Vector& arg) const;
+
+ //! The same as p2=R.Inverse()*p but more efficient.
+ inline Wrench Inverse(const Wrench& arg) const;
+
+ //! The same as p2=R.Inverse()*p but more efficient.
+ inline Twist Inverse(const Twist& arg) const;
+
+ //! Normal copy-by-value semantics.
+ inline Frame& operator = (const Frame& arg);
+
+ //! Transformation of the base to which the vector
+ //! is expressed.
+ inline Vector operator * (const Vector& arg) const;
+
+ //! Transformation of both the force reference point
+ //! and of the base to which the wrench is expressed.
+ //! look at Rotation*Wrench operator for a transformation
+ //! of only the base to which the twist is expressed.
+ //!
+ //! Complexity : 24M+18A
+ inline Wrench operator * (const Wrench& arg) const;
+
+ //! Transformation of both the velocity reference point
+ //! and of the base to which the twist is expressed.
+ //! look at Rotation*Twist for a transformation of only the
+ //! base to which the twist is expressed.
+ //!
+ //! Complexity : 24M+18A
+ inline Twist operator * (const Twist& arg) const;
+
+ //! Composition of two frames.
+ inline friend Frame operator *(const Frame& lhs,const Frame& rhs);
+
+ //! @return the identity transformation Frame(Rotation::Identity(),Vector::Zero()).
+ inline static Frame Identity();
+
+ //! The twist <t_this> is expressed wrt the current
+ //! frame. This frame is integrated into an updated frame with
+ //! <samplefrequency>. Very simple first order integration rule.
+ inline void Integrate(const Twist& t_this,double frequency);
+
+ /*
+ // DH_Craig1989 : constructs a transformationmatrix
+ // T_link(i-1)_link(i) with the Denavit-Hartenberg convention as
+ // described in the Craigs book: Craig, J. J.,Introduction to
+ // Robotics: Mechanics and Control, Addison-Wesley,
+ // isbn:0-201-10326-5, 1986.
+ //
+ // Note that the frame is a redundant way to express the information
+ // in the DH-convention.
+ // \verbatim
+ // Parameters in full : a(i-1),alpha(i-1),d(i),theta(i)
+ //
+ // axis i-1 is connected by link i-1 to axis i numbering axis 1
+ // to axis n link 0 (immobile base) to link n
+ //
+ // link length a(i-1) length of the mutual perpendicular line
+ // (normal) between the 2 axes. This normal runs from (i-1) to
+ // (i) axis.
+ //
+ // link twist alpha(i-1): construct plane perpendicular to the
+ // normal project axis(i-1) and axis(i) into plane angle from
+ // (i-1) to (i) measured in the direction of the normal
+ //
+ // link offset d(i) signed distance between normal (i-1) to (i)
+ // and normal (i) to (i+1) along axis i joint angle theta(i)
+ // signed angle between normal (i-1) to (i) and normal (i) to
+ // (i+1) along axis i
+ //
+ // First and last joints : a(0)= a(n) = 0
+ // alpha(0) = alpha(n) = 0
+ //
+ // PRISMATIC : theta(1) = 0 d(1) arbitrarily
+ //
+ // REVOLUTE : theta(1) arbitrarily d(1) = 0
+ //
+ // Not unique : if intersecting joint axis 2 choices for normal
+ // Frame assignment of the DH convention : Z(i-1) follows axis
+ // (i-1) X(i-1) is the normal between axis(i-1) and axis(i)
+ // Y(i-1) follows out of Z(i-1) and X(i-1)
+ //
+ // a(i-1) = distance from Z(i-1) to Z(i) along X(i-1)
+ // alpha(i-1) = angle between Z(i-1) to Z(i) along X(i-1)
+ // d(i) = distance from X(i-1) to X(i) along Z(i)
+ // theta(i) = angle between X(i-1) to X(i) along X(i)
+ // \endverbatim
+ */
+ static Frame DH_Craig1989(double a,double alpha,double d,double theta);
+
+ // DH : constructs a transformationmatrix T_link(i-1)_link(i) with
+ // the Denavit-Hartenberg convention as described in the original
+ // publictation: Denavit, J. and Hartenberg, R. S., A kinematic
+ // notation for lower-pair mechanisms based on matrices, ASME
+ // Journal of Applied Mechanics, 23:215-221, 1955.
+
+ static Frame DH(double a,double alpha,double d,double theta);
+
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ inline friend bool Equal(const Frame& a,const Frame& b,double eps=epsilon);
+
+ //! The literal equality operator==(), also identical.
+ inline friend bool operator==(const Frame& a,const Frame& b);
+ //! The literal inequality operator!=().
+ inline friend bool operator!=(const Frame& a,const Frame& b);
+};
+
+/**
+ * \brief represents both translational and rotational velocities.
+ *
+ * This class represents a twist. A twist is the combination of translational
+ * velocity and rotational velocity applied at one point.
+*/
+class Twist {
+public:
+ Vector vel; //!< The velocity of that point
+ Vector rot; //!< The rotational velocity of that point.
+public:
+
+ //! The default constructor initialises to Zero via the constructor of Vector.
+ Twist():vel(),rot() {};
+
+ Twist(const Vector& _vel,const Vector& _rot):vel(_vel),rot(_rot) {};
+
+ inline Twist& operator-=(const Twist& arg);
+ inline Twist& operator+=(const Twist& arg);
+ //! index-based access to components, first vel(0..2), then rot(3..5)
+ inline double& operator()(int i);
+
+ //! index-based access to components, first vel(0..2), then rot(3..5)
+ //! For use with a const Twist
+ inline double operator()(int i) const;
+
+ double operator[] ( int index ) const
+ {
+ return this->operator() ( index );
+ }
+
+ double& operator[] ( int index )
+ {
+ return this->operator() ( index );
+ }
+
+ inline friend Twist operator*(const Twist& lhs,double rhs);
+ inline friend Twist operator*(double lhs,const Twist& rhs);
+ inline friend Twist operator/(const Twist& lhs,double rhs);
+ inline friend Twist operator+(const Twist& lhs,const Twist& rhs);
+ inline friend Twist operator-(const Twist& lhs,const Twist& rhs);
+ inline friend Twist operator-(const Twist& arg);
+ inline friend double dot(const Twist& lhs,const Wrench& rhs);
+ inline friend double dot(const Wrench& rhs,const Twist& lhs);
+ inline friend void SetToZero(Twist& v);
+
+
+ //! @return a zero Twist : Twist(Vector::Zero(),Vector::Zero())
+ static inline Twist Zero();
+
+ //! Reverses the sign of the twist
+ inline void ReverseSign();
+
+ //! Changes the reference point of the twist.
+ //! The vector v_base_AB is expressed in the same base as the twist
+ //! The vector v_base_AB is a vector from the old point to
+ //! the new point.
+ //!
+ //! Complexity : 6M+6A
+ inline Twist RefPoint(const Vector& v_base_AB) const;
+
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ inline friend bool Equal(const Twist& a,const Twist& b,double eps=epsilon);
+
+ //! The literal equality operator==(), also identical.
+ inline friend bool operator==(const Twist& a,const Twist& b);
+ //! The literal inequality operator!=().
+ inline friend bool operator!=(const Twist& a,const Twist& b);
+
+// = Friends
+ friend class Rotation;
+ friend class Frame;
+
+};
+
+/**
+ * \brief represents both translational and rotational acceleration.
+ *
+ * This class represents an acceleration twist. A acceleration twist is
+ * the combination of translational
+ * acceleration and rotational acceleration applied at one point.
+*/
+/*
+class AccelerationTwist {
+public:
+ Vector trans; //!< The translational acceleration of that point
+ Vector rot; //!< The rotational acceleration of that point.
+public:
+
+ //! The default constructor initialises to Zero via the constructor of Vector.
+ AccelerationTwist():trans(),rot() {};
+
+ AccelerationTwist(const Vector& _trans,const Vector& _rot):trans(_trans),rot(_rot) {};
+
+ inline AccelerationTwist& operator-=(const AccelerationTwist& arg);
+ inline AccelerationTwist& operator+=(const AccelerationTwist& arg);
+ //! index-based access to components, first vel(0..2), then rot(3..5)
+ inline double& operator()(int i);
+
+ //! index-based access to components, first vel(0..2), then rot(3..5)
+ //! For use with a const AccelerationTwist
+ inline double operator()(int i) const;
+
+ double operator[] ( int index ) const
+ {
+ return this->operator() ( index );
+ }
+
+ double& operator[] ( int index )
+ {
+ return this->operator() ( index );
+ }
+
+ inline friend AccelerationTwist operator*(const AccelerationTwist& lhs,double rhs);
+ inline friend AccelerationTwist operator*(double lhs,const AccelerationTwist& rhs);
+ inline friend AccelerationTwist operator/(const AccelerationTwist& lhs,double rhs);
+ inline friend AccelerationTwist operator+(const AccelerationTwist& lhs,const AccelerationTwist& rhs);
+ inline friend AccelerationTwist operator-(const AccelerationTwist& lhs,const AccelerationTwist& rhs);
+ inline friend AccelerationTwist operator-(const AccelerationTwist& arg);
+ //inline friend double dot(const AccelerationTwist& lhs,const Wrench& rhs);
+ //inline friend double dot(const Wrench& rhs,const AccelerationTwist& lhs);
+ inline friend void SetToZero(AccelerationTwist& v);
+
+
+ //! @return a zero AccelerationTwist : AccelerationTwist(Vector::Zero(),Vector::Zero())
+ static inline AccelerationTwist Zero();
+
+ //! Reverses the sign of the AccelerationTwist
+ inline void ReverseSign();
+
+ //! Changes the reference point of the AccelerationTwist.
+ //! The vector v_base_AB is expressed in the same base as the AccelerationTwist
+ //! The vector v_base_AB is a vector from the old point to
+ //! the new point.
+ //!
+ //! Complexity : 6M+6A
+ inline AccelerationTwist RefPoint(const Vector& v_base_AB) const;
+
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ inline friend bool Equal(const AccelerationTwist& a,const AccelerationTwist& b,double eps=epsilon);
+
+ //! The literal equality operator==(), also identical.
+ inline friend bool operator==(const AccelerationTwist& a,const AccelerationTwist& b);
+ //! The literal inequality operator!=().
+ inline friend bool operator!=(const AccelerationTwist& a,const AccelerationTwist& b);
+
+// = Friends
+ friend class Rotation;
+ friend class Frame;
+
+};
+*/
+/**
+ * \brief represents the combination of a force and a torque.
+ *
+ * This class represents a Wrench. A Wrench is the force and torque applied at a point
+ */
+class Wrench
+{
+public:
+ Vector force; //!< Force that is applied at the origin of the current ref frame
+ Vector torque; //!< Torque that is applied at the origin of the current ref frame
+public:
+
+ //! Does initialise force and torque to zero via the underlying constructor of Vector
+ Wrench():force(),torque() {};
+ Wrench(const Vector& _force,const Vector& _torque):force(_force),torque(_torque) {};
+
+// = Operators
+ inline Wrench& operator-=(const Wrench& arg);
+ inline Wrench& operator+=(const Wrench& arg);
+
+ //! index-based access to components, first force(0..2), then torque(3..5)
+ inline double& operator()(int i);
+
+ //! index-based access to components, first force(0..2), then torque(3..5)
+ //! for use with a const Wrench
+ inline double operator()(int i) const;
+
+ double operator[] ( int index ) const
+ {
+ return this->operator() ( index );
+ }
+
+ double& operator[] ( int index )
+ {
+ return this->operator() ( index );
+ }
+
+ //! Scalar multiplication
+ inline friend Wrench operator*(const Wrench& lhs,double rhs);
+ //! Scalar multiplication
+ inline friend Wrench operator*(double lhs,const Wrench& rhs);
+ //! Scalar division
+ inline friend Wrench operator/(const Wrench& lhs,double rhs);
+
+ inline friend Wrench operator+(const Wrench& lhs,const Wrench& rhs);
+ inline friend Wrench operator-(const Wrench& lhs,const Wrench& rhs);
+
+ //! An unary - operator
+ inline friend Wrench operator-(const Wrench& arg);
+
+ //! Sets the Wrench to Zero, to have a uniform function that sets an object or
+ //! double to zero.
+ inline friend void SetToZero(Wrench& v);
+
+ //! @return a zero Wrench
+ static inline Wrench Zero();
+
+ //! Reverses the sign of the current Wrench
+ inline void ReverseSign();
+
+ //! Changes the reference point of the wrench.
+ //! The vector v_base_AB is expressed in the same base as the twist
+ //! The vector v_base_AB is a vector from the old point to
+ //! the new point.
+ //!
+ //! Complexity : 6M+6A
+ inline Wrench RefPoint(const Vector& v_base_AB) const;
+
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ inline friend bool Equal(const Wrench& a,const Wrench& b,double eps=epsilon);
+
+ //! The literal equality operator==(), also identical.
+ inline friend bool operator==(const Wrench& a,const Wrench& b);
+ //! The literal inequality operator!=().
+ inline friend bool operator!=(const Wrench& a,const Wrench& b);
+
+ friend class Rotation;
+ friend class Frame;
+
+
+};
+
+
+//! 2D version of Vector
+class Vector2
+{
+ double data[2];
+public:
+ //! Does not initialise to Zero().
+ Vector2() {data[0]=data[1] = 0.0;}
+ inline Vector2(double x,double y);
+ inline Vector2(const Vector2& arg);
+ inline Vector2(double* xyz);
+ inline Vector2(float* xyz);
+
+ inline Vector2& operator = ( const Vector2& arg);
+
+ //! Access to elements, range checked when NDEBUG is not set, from 0..1
+ inline double operator()(int index) const;
+
+ //! Access to elements, range checked when NDEBUG is not set, from 0..1
+ inline double& operator() (int index);
+
+ //! store vector components in array
+ inline void GetValue(double* xy) const;
+
+ inline void ReverseSign();
+ inline Vector2& operator-=(const Vector2& arg);
+ inline Vector2& operator +=(const Vector2& arg);
+
+
+ inline friend Vector2 operator*(const Vector2& lhs,double rhs);
+ inline friend Vector2 operator*(double lhs,const Vector2& rhs);
+ inline friend Vector2 operator/(const Vector2& lhs,double rhs);
+ inline friend Vector2 operator+(const Vector2& lhs,const Vector2& rhs);
+ inline friend Vector2 operator-(const Vector2& lhs,const Vector2& rhs);
+ inline friend Vector2 operator*(const Vector2& lhs,const Vector2& rhs);
+ inline friend Vector2 operator-(const Vector2& arg);
+ inline friend void SetToZero(Vector2& v);
+
+ //! @return a zero 2D vector.
+ inline static Vector2 Zero();
+
+ /** Normalizes this vector and returns it norm
+ * makes v a unitvector and returns the norm of v.
+ * if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
+ * if this is not good, check the return value of this method.
+ */
+ double Normalize(double eps=epsilon);
+
+ //! @return the norm of the vector
+ inline double Norm() const;
+
+ //! projects v in its XY plane, and sets *this to these values
+ inline void Set3DXY(const Vector& v);
+
+ //! projects v in its YZ plane, and sets *this to these values
+ inline void Set3DYZ(const Vector& v);
+
+ //! projects v in its ZX plane, and sets *this to these values
+ inline void Set3DZX(const Vector& v);
+
+ //! projects v_someframe in the XY plane of F_someframe_XY,
+ //! and sets *this to these values
+ //! expressed wrt someframe.
+ inline void Set3DPlane(const Frame& F_someframe_XY,const Vector& v_someframe);
+
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ inline friend bool Equal(const Vector2& a,const Vector2& b,double eps=epsilon);
+
+ friend class Rotation2;
+};
+
+
+//! A 2D Rotation class, for conventions see Rotation. For further documentation
+//! of the methods see Rotation class.
+class Rotation2
+{
+ double s,c;
+ //! c,s represent cos(angle), sin(angle), this also represents first col. of rot matrix
+ //! from outside, this class behaves as if it would store the complete 2x2 matrix.
+public:
+ //! Default constructor does NOT initialise to Zero().
+ Rotation2() {c=1.0;s=0.0;}
+
+ explicit Rotation2(double angle_rad):s(sin(angle_rad)),c(cos(angle_rad)) {}
+
+ Rotation2(double ca,double sa):s(sa),c(ca){}
+
+ inline Rotation2& operator=(const Rotation2& arg);
+ inline Vector2 operator*(const Vector2& v) const;
+ //! Access to elements 0..1,0..1, bounds are checked when NDEBUG is not set
+ inline double operator() (int i,int j) const;
+
+ inline friend Rotation2 operator *(const Rotation2& lhs,const Rotation2& rhs);
+
+ inline void SetInverse();
+ inline Rotation2 Inverse() const;
+ inline Vector2 Inverse(const Vector2& v) const;
+
+ inline void SetIdentity();
+ inline static Rotation2 Identity();
+
+
+ //! The SetRot.. functions set the value of *this to the appropriate rotation matrix.
+ inline void SetRot(double angle);
+
+ //! The Rot... static functions give the value of the appropriate rotation matrix bac
+ inline static Rotation2 Rot(double angle);
+
+ //! Gets the angle (in radians)
+ inline double GetRot() const;
+
+ //! do not use operator == because the definition of Equal(.,.) is slightly
+ //! different. It compares whether the 2 arguments are equal in an eps-interval
+ inline friend bool Equal(const Rotation2& a,const Rotation2& b,double eps=epsilon);
+};
+
+//! A 2D frame class, for further documentation see the Frames class
+//! for methods with unchanged semantics.
+class Frame2
+ {
+public:
+ Vector2 p; //!< origine of the Frame
+ Rotation2 M; //!< Orientation of the Frame
+
+public:
+
+ inline Frame2(const Rotation2& R,const Vector2& V);
+ explicit inline Frame2(const Vector2& V);
+ explicit inline Frame2(const Rotation2& R);
+ inline Frame2(void);
+ inline Frame2(const Frame2& arg);
+ inline void Make4x4(double* d);
+
+ //! Treats a frame as a 3x3 matrix and returns element i,j
+ //! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
+ inline double operator()(int i,int j);
+
+ //! Treats a frame as a 4x4 matrix and returns element i,j
+ //! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
+ inline double operator() (int i,int j) const;
+
+ inline void SetInverse();
+ inline Frame2 Inverse() const;
+ inline Vector2 Inverse(const Vector2& arg) const;
+ inline Frame2& operator = (const Frame2& arg);
+ inline Vector2 operator * (const Vector2& arg);
+ inline friend Frame2 operator *(const Frame2& lhs,const Frame2& rhs);
+ inline void SetIdentity();
+ inline void Integrate(const Twist& t_this,double frequency);
+ inline static Frame2 Identity() {
+ Frame2 tmp;
+ tmp.SetIdentity();
+ return tmp;
+ }
+ inline friend bool Equal(const Frame2& a,const Frame2& b,double eps=epsilon);
+};
+
+IMETHOD Vector diff(const Vector& a,const Vector& b,double dt=1);
+IMETHOD Vector diff(const Rotation& R_a_b1,const Rotation& R_a_b2,double dt=1);
+IMETHOD Twist diff(const Frame& F_a_b1,const Frame& F_a_b2,double dt=1);
+IMETHOD Twist diff(const Twist& a,const Twist& b,double dt=1);
+IMETHOD Wrench diff(const Wrench& W_a_p1,const Wrench& W_a_p2,double dt=1);
+IMETHOD Vector addDelta(const Vector& a,const Vector&da,double dt=1);
+IMETHOD Rotation addDelta(const Rotation& a,const Vector&da,double dt=1);
+IMETHOD Frame addDelta(const Frame& a,const Twist& da,double dt=1);
+IMETHOD Twist addDelta(const Twist& a,const Twist&da,double dt=1);
+IMETHOD Wrench addDelta(const Wrench& a,const Wrench&da,double dt=1);
+#ifdef KDL_INLINE
+// #include "vector.inl"
+// #include "wrench.inl"
+ //#include "rotation.inl"
+ //#include "frame.inl"
+ //#include "twist.inl"
+ //#include "vector2.inl"
+ //#include "rotation2.inl"
+ //#include "frame2.inl"
+#include "frames.inl"
+#endif
+
+
+
+}
+
+
+#endif