Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/libmv/libmv/multiview/homography.cc')
-rw-r--r--intern/libmv/libmv/multiview/homography.cc465
1 files changed, 465 insertions, 0 deletions
diff --git a/intern/libmv/libmv/multiview/homography.cc b/intern/libmv/libmv/multiview/homography.cc
new file mode 100644
index 00000000000..ce533a3ead2
--- /dev/null
+++ b/intern/libmv/libmv/multiview/homography.cc
@@ -0,0 +1,465 @@
+// Copyright (c) 2008, 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/homography.h"
+
+#include "ceres/ceres.h"
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/conditioning.h"
+#include "libmv/multiview/homography_parameterization.h"
+
+namespace libmv {
+/** 2D Homography transformation estimation in the case that points are in
+ * euclidean coordinates.
+ *
+ * x = H y
+ * x and y vector must have the same direction, we could write
+ * crossproduct(|x|, * H * |y| ) = |0|
+ *
+ * | 0 -1 x2| |a b c| |y1| |0|
+ * | 1 0 -x1| * |d e f| * |y2| = |0|
+ * |-x2 x1 0| |g h 1| |1 | |0|
+ *
+ * That gives :
+ *
+ * (-d+x2*g)*y1 + (-e+x2*h)*y2 + -f+x2 |0|
+ * (a-x1*g)*y1 + (b-x1*h)*y2 + c-x1 = |0|
+ * (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f |0|
+ */
+static bool Homography2DFromCorrespondencesLinearEuc(
+ const Mat &x1,
+ const Mat &x2,
+ Mat3 *H,
+ double expected_precision) {
+ assert(2 == x1.rows());
+ assert(4 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ int n = x1.cols();
+ MatX8 L = Mat::Zero(n * 3, 8);
+ Mat b = Mat::Zero(n * 3, 1);
+ for (int i = 0; i < n; ++i) {
+ int j = 3 * i;
+ L(j, 0) = x1(0, i); // a
+ L(j, 1) = x1(1, i); // b
+ L(j, 2) = 1.0; // c
+ L(j, 6) = -x2(0, i) * x1(0, i); // g
+ L(j, 7) = -x2(0, i) * x1(1, i); // h
+ b(j, 0) = x2(0, i); // i
+
+ ++j;
+ L(j, 3) = x1(0, i); // d
+ L(j, 4) = x1(1, i); // e
+ L(j, 5) = 1.0; // f
+ L(j, 6) = -x2(1, i) * x1(0, i); // g
+ L(j, 7) = -x2(1, i) * x1(1, i); // h
+ b(j, 0) = x2(1, i); // i
+
+ // This ensures better stability
+ // TODO(julien) make a lite version without this 3rd set
+ ++j;
+ L(j, 0) = x2(1, i) * x1(0, i); // a
+ L(j, 1) = x2(1, i) * x1(1, i); // b
+ L(j, 2) = x2(1, i); // c
+ L(j, 3) = -x2(0, i) * x1(0, i); // d
+ L(j, 4) = -x2(0, i) * x1(1, i); // e
+ L(j, 5) = -x2(0, i); // f
+ }
+ // Solve Lx=B
+ Vec h = L.fullPivLu().solve(b);
+ Homography2DNormalizedParameterization<double>::To(h, H);
+ if ((L * h).isApprox(b, expected_precision)) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
+/** 2D Homography transformation estimation in the case that points are in
+ * homogeneous coordinates.
+ *
+ * | 0 -x3 x2| |a b c| |y1| -x3*d+x2*g -x3*e+x2*h -x3*f+x2*1 |y1| (-x3*d+x2*g)*y1 (-x3*e+x2*h)*y2 (-x3*f+x2*1)*y3 |0|
+ * | x3 0 -x1| * |d e f| * |y2| = x3*a-x1*g x3*b-x1*h x3*c-x1*1 * |y2| = (x3*a-x1*g)*y1 (x3*b-x1*h)*y2 (x3*c-x1*1)*y3 = |0|
+ * |-x2 x1 0| |g h 1| |y3| -x2*a+x1*d -x2*b+x1*e -x2*c+x1*f |y3| (-x2*a+x1*d)*y1 (-x2*b+x1*e)*y2 (-x2*c+x1*f)*y3 |0|
+ * X = |a b c d e f g h|^t
+ */
+bool Homography2DFromCorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ Mat3 *H,
+ double expected_precision) {
+ if (x1.rows() == 2) {
+ return Homography2DFromCorrespondencesLinearEuc(x1, x2, H,
+ expected_precision);
+ }
+ assert(3 == x1.rows());
+ assert(4 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ const int x = 0;
+ const int y = 1;
+ const int w = 2;
+ int n = x1.cols();
+ MatX8 L = Mat::Zero(n * 3, 8);
+ Mat b = Mat::Zero(n * 3, 1);
+ for (int i = 0; i < n; ++i) {
+ int j = 3 * i;
+ L(j, 0) = x2(w, i) * x1(x, i); // a
+ L(j, 1) = x2(w, i) * x1(y, i); // b
+ L(j, 2) = x2(w, i) * x1(w, i); // c
+ L(j, 6) = -x2(x, i) * x1(x, i); // g
+ L(j, 7) = -x2(x, i) * x1(y, i); // h
+ b(j, 0) = x2(x, i) * x1(w, i);
+
+ ++j;
+ L(j, 3) = x2(w, i) * x1(x, i); // d
+ L(j, 4) = x2(w, i) * x1(y, i); // e
+ L(j, 5) = x2(w, i) * x1(w, i); // f
+ L(j, 6) = -x2(y, i) * x1(x, i); // g
+ L(j, 7) = -x2(y, i) * x1(y, i); // h
+ b(j, 0) = x2(y, i) * x1(w, i);
+
+ // This ensures better stability
+ ++j;
+ L(j, 0) = x2(y, i) * x1(x, i); // a
+ L(j, 1) = x2(y, i) * x1(y, i); // b
+ L(j, 2) = x2(y, i) * x1(w, i); // c
+ L(j, 3) = -x2(x, i) * x1(x, i); // d
+ L(j, 4) = -x2(x, i) * x1(y, i); // e
+ L(j, 5) = -x2(x, i) * x1(w, i); // f
+ }
+ // Solve Lx=B
+ Vec h = L.fullPivLu().solve(b);
+ if ((L * h).isApprox(b, expected_precision)) {
+ Homography2DNormalizedParameterization<double>::To(h, H);
+ return true;
+ } else {
+ return false;
+ }
+}
+
+// Default settings for homography estimation which should be suitable
+// for a wide range of use cases.
+EstimateHomographyOptions::EstimateHomographyOptions(void) :
+ use_normalization(true),
+ max_num_iterations(50),
+ expected_average_symmetric_distance(1e-16) {
+}
+
+namespace {
+void GetNormalizedPoints(const Mat &original_points,
+ Mat *normalized_points,
+ Mat3 *normalization_matrix) {
+ IsotropicPreconditionerFromPoints(original_points, normalization_matrix);
+ ApplyTransformationToPoints(original_points,
+ *normalization_matrix,
+ normalized_points);
+}
+
+// Cost functor which computes symmetric geometric distance
+// used for homography matrix refinement.
+class HomographySymmetricGeometricCostFunctor {
+ public:
+ HomographySymmetricGeometricCostFunctor(const Vec2 &x,
+ const Vec2 &y)
+ : x_(x), y_(y) { }
+
+ template<typename T>
+ bool operator()(const T *homography_parameters, T *residuals) const {
+ typedef Eigen::Matrix<T, 3, 3> Mat3;
+ typedef Eigen::Matrix<T, 3, 1> Vec3;
+
+ Mat3 H(homography_parameters);
+
+ Vec3 x(T(x_(0)), T(x_(1)), T(1.0));
+ Vec3 y(T(y_(0)), T(y_(1)), T(1.0));
+
+ Vec3 H_x = H * x;
+ Vec3 Hinv_y = H.inverse() * y;
+
+ H_x /= H_x(2);
+ Hinv_y /= Hinv_y(2);
+
+ // This is a forward error.
+ residuals[0] = H_x(0) - T(y_(0));
+ residuals[1] = H_x(1) - T(y_(1));
+
+ // This is a backward error.
+ residuals[2] = Hinv_y(0) - T(x_(0));
+ residuals[3] = Hinv_y(1) - T(x_(1));
+
+ return true;
+ }
+
+ const Vec2 x_;
+ const Vec2 y_;
+};
+
+// Termination checking callback used for homography estimation.
+// It finished the minimization as soon as actual average of
+// symmetric geometric distance is less or equal to the expected
+// average value.
+class TerminationCheckingCallback : public ceres::IterationCallback {
+ public:
+ TerminationCheckingCallback(const Mat &x1, const Mat &x2,
+ const EstimateHomographyOptions &options,
+ Mat3 *H)
+ : options_(options), x1_(x1), x2_(x2), H_(H) {}
+
+ virtual ceres::CallbackReturnType operator()(
+ const ceres::IterationSummary& summary) {
+ // If the step wasn't successful, there's nothing to do.
+ if (!summary.step_is_successful) {
+ return ceres::SOLVER_CONTINUE;
+ }
+
+ // Calculate average of symmetric geometric distance.
+ double average_distance = 0.0;
+ for (int i = 0; i < x1_.cols(); i++) {
+ average_distance = SymmetricGeometricDistance(*H_,
+ x1_.col(i),
+ x2_.col(i));
+ }
+ average_distance /= x1_.cols();
+
+ if (average_distance <= options_.expected_average_symmetric_distance) {
+ return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
+ }
+
+ return ceres::SOLVER_CONTINUE;
+ }
+
+ private:
+ const EstimateHomographyOptions &options_;
+ const Mat &x1_;
+ const Mat &x2_;
+ Mat3 *H_;
+};
+} // namespace
+
+/** 2D Homography transformation estimation in the case that points are in
+ * euclidean coordinates.
+ */
+bool EstimateHomography2DFromCorrespondences(
+ const Mat &x1,
+ const Mat &x2,
+ const EstimateHomographyOptions &options,
+ Mat3 *H) {
+ // TODO(sergey): Support homogenous coordinates, not just euclidean.
+
+ assert(2 == x1.rows());
+ assert(4 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ Mat3 T1 = Mat3::Identity(),
+ T2 = Mat3::Identity();
+
+ // Step 1: Algebraic homography estimation.
+ Mat x1_normalized, x2_normalized;
+
+ if (options.use_normalization) {
+ LG << "Estimating homography using normalization.";
+ GetNormalizedPoints(x1, &x1_normalized, &T1);
+ GetNormalizedPoints(x2, &x2_normalized, &T2);
+ } else {
+ x1_normalized = x1;
+ x2_normalized = x2;
+ }
+
+ // Assume algebraic estiation always suceeds,
+ Homography2DFromCorrespondencesLinear(x1_normalized, x2_normalized, H);
+
+ // Denormalize the homography matrix.
+ if (options.use_normalization) {
+ *H = T2.inverse() * (*H) * T1;
+ }
+
+ LG << "Estimated matrix after algebraic estimation:\n" << *H;
+
+ // Step 2: Refine matrix using Ceres minimizer.
+ ceres::Problem problem;
+ for (int i = 0; i < x1.cols(); i++) {
+ HomographySymmetricGeometricCostFunctor
+ *homography_symmetric_geometric_cost_function =
+ new HomographySymmetricGeometricCostFunctor(x1.col(i),
+ x2.col(i));
+
+ problem.AddResidualBlock(
+ new ceres::AutoDiffCostFunction<
+ HomographySymmetricGeometricCostFunctor,
+ 4, // num_residuals
+ 9>(homography_symmetric_geometric_cost_function),
+ NULL,
+ H->data());
+ }
+
+ // Configure the solve.
+ ceres::Solver::Options solver_options;
+ solver_options.linear_solver_type = ceres::DENSE_QR;
+ solver_options.max_num_iterations = options.max_num_iterations;
+ solver_options.update_state_every_iteration = true;
+
+ // Terminate if the average symmetric distance is good enough.
+ TerminationCheckingCallback callback(x1, x2, options, H);
+ solver_options.callbacks.push_back(&callback);
+
+ // Run the solve.
+ ceres::Solver::Summary summary;
+ ceres::Solve(solver_options, &problem, &summary);
+
+ VLOG(1) << "Summary:\n" << summary.FullReport();
+
+ LG << "Final refined matrix:\n" << *H;
+
+ return summary.IsSolutionUsable();
+}
+
+/**
+ * x2 ~ A * x1
+ * x2^t * Hi * A *x1 = 0
+ * H1 = H2 = H3 =
+ * | 0 0 0 1| |-x2w| |0 0 0 0| | 0 | | 0 0 1 0| |-x2z|
+ * | 0 0 0 0| -> | 0 | |0 0 1 0| -> |-x2z| | 0 0 0 0| -> | 0 |
+ * | 0 0 0 0| | 0 | |0-1 0 0| | x2y| |-1 0 0 0| | x2x|
+ * |-1 0 0 0| | x2x| |0 0 0 0| | 0 | | 0 0 0 0| | 0 |
+ * H4 = H5 = H6 =
+ * |0 0 0 0| | 0 | | 0 1 0 0| |-x2y| |0 0 0 0| | 0 |
+ * |0 0 0 1| -> |-x2w| |-1 0 0 0| -> | x2x| |0 0 0 0| -> | 0 |
+ * |0 0 0 0| | 0 | | 0 0 0 0| | 0 | |0 0 0 1| |-x2w|
+ * |0-1 0 0| | x2y| | 0 0 0 0| | 0 | |0 0-1 0| | x2z|
+ * |a b c d|
+ * A = |e f g h|
+ * |i j k l|
+ * |m n o 1|
+ *
+ * x2^t * H1 * A *x1 = (-x2w*a +x2x*m )*x1x + (-x2w*b +x2x*n )*x1y + (-x2w*c +x2x*o )*x1z + (-x2w*d +x2x*1 )*x1w = 0
+ * x2^t * H2 * A *x1 = (-x2z*e +x2y*i )*x1x + (-x2z*f +x2y*j )*x1y + (-x2z*g +x2y*k )*x1z + (-x2z*h +x2y*l )*x1w = 0
+ * x2^t * H3 * A *x1 = (-x2z*a +x2x*i )*x1x + (-x2z*b +x2x*j )*x1y + (-x2z*c +x2x*k )*x1z + (-x2z*d +x2x*l )*x1w = 0
+ * x2^t * H4 * A *x1 = (-x2w*e +x2y*m )*x1x + (-x2w*f +x2y*n )*x1y + (-x2w*g +x2y*o )*x1z + (-x2w*h +x2y*1 )*x1w = 0
+ * x2^t * H5 * A *x1 = (-x2y*a +x2x*e )*x1x + (-x2y*b +x2x*f )*x1y + (-x2y*c +x2x*g )*x1z + (-x2y*d +x2x*h )*x1w = 0
+ * x2^t * H6 * A *x1 = (-x2w*i +x2z*m )*x1x + (-x2w*j +x2z*n )*x1y + (-x2w*k +x2z*o )*x1z + (-x2w*l +x2z*1 )*x1w = 0
+ *
+ * X = |a b c d e f g h i j k l m n o|^t
+*/
+bool Homography3DFromCorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ Mat4 *H,
+ double expected_precision) {
+ assert(4 == x1.rows());
+ assert(5 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+ const int x = 0;
+ const int y = 1;
+ const int z = 2;
+ const int w = 3;
+ int n = x1.cols();
+ MatX15 L = Mat::Zero(n * 6, 15);
+ Mat b = Mat::Zero(n * 6, 1);
+ for (int i = 0; i < n; ++i) {
+ int j = 6 * i;
+ L(j, 0) = -x2(w, i) * x1(x, i); // a
+ L(j, 1) = -x2(w, i) * x1(y, i); // b
+ L(j, 2) = -x2(w, i) * x1(z, i); // c
+ L(j, 3) = -x2(w, i) * x1(w, i); // d
+ L(j, 12) = x2(x, i) * x1(x, i); // m
+ L(j, 13) = x2(x, i) * x1(y, i); // n
+ L(j, 14) = x2(x, i) * x1(z, i); // o
+ b(j, 0) = -x2(x, i) * x1(w, i);
+
+ ++j;
+ L(j, 4) = -x2(z, i) * x1(x, i); // e
+ L(j, 5) = -x2(z, i) * x1(y, i); // f
+ L(j, 6) = -x2(z, i) * x1(z, i); // g
+ L(j, 7) = -x2(z, i) * x1(w, i); // h
+ L(j, 8) = x2(y, i) * x1(x, i); // i
+ L(j, 9) = x2(y, i) * x1(y, i); // j
+ L(j, 10) = x2(y, i) * x1(z, i); // k
+ L(j, 11) = x2(y, i) * x1(w, i); // l
+
+ ++j;
+ L(j, 0) = -x2(z, i) * x1(x, i); // a
+ L(j, 1) = -x2(z, i) * x1(y, i); // b
+ L(j, 2) = -x2(z, i) * x1(z, i); // c
+ L(j, 3) = -x2(z, i) * x1(w, i); // d
+ L(j, 8) = x2(x, i) * x1(x, i); // i
+ L(j, 9) = x2(x, i) * x1(y, i); // j
+ L(j, 10) = x2(x, i) * x1(z, i); // k
+ L(j, 11) = x2(x, i) * x1(w, i); // l
+
+ ++j;
+ L(j, 4) = -x2(w, i) * x1(x, i); // e
+ L(j, 5) = -x2(w, i) * x1(y, i); // f
+ L(j, 6) = -x2(w, i) * x1(z, i); // g
+ L(j, 7) = -x2(w, i) * x1(w, i); // h
+ L(j, 12) = x2(y, i) * x1(x, i); // m
+ L(j, 13) = x2(y, i) * x1(y, i); // n
+ L(j, 14) = x2(y, i) * x1(z, i); // o
+ b(j, 0) = -x2(y, i) * x1(w, i);
+
+ ++j;
+ L(j, 0) = -x2(y, i) * x1(x, i); // a
+ L(j, 1) = -x2(y, i) * x1(y, i); // b
+ L(j, 2) = -x2(y, i) * x1(z, i); // c
+ L(j, 3) = -x2(y, i) * x1(w, i); // d
+ L(j, 4) = x2(x, i) * x1(x, i); // e
+ L(j, 5) = x2(x, i) * x1(y, i); // f
+ L(j, 6) = x2(x, i) * x1(z, i); // g
+ L(j, 7) = x2(x, i) * x1(w, i); // h
+
+ ++j;
+ L(j, 8) = -x2(w, i) * x1(x, i); // i
+ L(j, 9) = -x2(w, i) * x1(y, i); // j
+ L(j, 10) = -x2(w, i) * x1(z, i); // k
+ L(j, 11) = -x2(w, i) * x1(w, i); // l
+ L(j, 12) = x2(z, i) * x1(x, i); // m
+ L(j, 13) = x2(z, i) * x1(y, i); // n
+ L(j, 14) = x2(z, i) * x1(z, i); // o
+ b(j, 0) = -x2(z, i) * x1(w, i);
+ }
+ // Solve Lx=B
+ Vec h = L.fullPivLu().solve(b);
+ if ((L * h).isApprox(b, expected_precision)) {
+ Homography3DNormalizedParameterization<double>::To(h, H);
+ return true;
+ } else {
+ return false;
+ }
+}
+
+double SymmetricGeometricDistance(const Mat3 &H,
+ const Vec2 &x1,
+ const Vec2 &x2) {
+ Vec3 x(x1(0), x1(1), 1.0);
+ Vec3 y(x2(0), x2(1), 1.0);
+
+ Vec3 H_x = H * x;
+ Vec3 Hinv_y = H.inverse() * y;
+
+ H_x /= H_x(2);
+ Hinv_y /= Hinv_y(2);
+
+ return (H_x.head<2>() - y.head<2>()).squaredNorm() +
+ (Hinv_y.head<2>() - x.head<2>()).squaredNorm();
+}
+
+} // namespace libmv