Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/libmv/libmv/multiview')
-rw-r--r--intern/libmv/libmv/multiview/conditioning.cc99
-rw-r--r--intern/libmv/libmv/multiview/conditioning.h59
-rw-r--r--intern/libmv/libmv/multiview/euclidean_resection.cc774
-rw-r--r--intern/libmv/libmv/multiview/euclidean_resection.h148
-rw-r--r--intern/libmv/libmv/multiview/euclidean_resection_test.cc237
-rw-r--r--intern/libmv/libmv/multiview/fundamental.cc544
-rw-r--r--intern/libmv/libmv/multiview/fundamental.h180
-rw-r--r--intern/libmv/libmv/multiview/fundamental_test.cc162
-rw-r--r--intern/libmv/libmv/multiview/homography.cc465
-rw-r--r--intern/libmv/libmv/multiview/homography.h145
-rw-r--r--intern/libmv/libmv/multiview/homography_error.h248
-rw-r--r--intern/libmv/libmv/multiview/homography_parameterization.h91
-rw-r--r--intern/libmv/libmv/multiview/homography_test.cc261
-rw-r--r--intern/libmv/libmv/multiview/nviewtriangulation.h80
-rw-r--r--intern/libmv/libmv/multiview/nviewtriangulation_test.cc94
-rw-r--r--intern/libmv/libmv/multiview/panography.cc125
-rw-r--r--intern/libmv/libmv/multiview/panography.h99
-rw-r--r--intern/libmv/libmv/multiview/panography_kernel.cc51
-rw-r--r--intern/libmv/libmv/multiview/panography_kernel.h54
-rw-r--r--intern/libmv/libmv/multiview/panography_test.cc144
-rw-r--r--intern/libmv/libmv/multiview/projection.cc224
-rw-r--r--intern/libmv/libmv/multiview/projection.h231
-rw-r--r--intern/libmv/libmv/multiview/projection_test.cc115
-rw-r--r--intern/libmv/libmv/multiview/resection.h62
-rw-r--r--intern/libmv/libmv/multiview/resection_test.cc61
-rw-r--r--intern/libmv/libmv/multiview/test_data_sets.cc196
-rw-r--r--intern/libmv/libmv/multiview/test_data_sets.h105
-rw-r--r--intern/libmv/libmv/multiview/triangulation.cc50
-rw-r--r--intern/libmv/libmv/multiview/triangulation.h38
-rw-r--r--intern/libmv/libmv/multiview/triangulation_test.cc47
-rw-r--r--intern/libmv/libmv/multiview/two_view_kernel.h137
31 files changed, 5326 insertions, 0 deletions
diff --git a/intern/libmv/libmv/multiview/conditioning.cc b/intern/libmv/libmv/multiview/conditioning.cc
new file mode 100644
index 00000000000..0afbf119ea3
--- /dev/null
+++ b/intern/libmv/libmv/multiview/conditioning.cc
@@ -0,0 +1,99 @@
+// Copyright (c) 2010 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/conditioning.h"
+#include "libmv/multiview/projection.h"
+
+namespace libmv {
+
+// HZ 4.4.4 pag.109: Point conditioning (non isotropic)
+void PreconditionerFromPoints(const Mat &points, Mat3 *T) {
+ Vec mean, variance;
+ MeanAndVarianceAlongRows(points, &mean, &variance);
+
+ double xfactor = sqrt(2.0 / variance(0));
+ double yfactor = sqrt(2.0 / variance(1));
+
+ // If variance is equal to 0.0 set scaling factor to identity.
+ // -> Else it will provide nan value (because division by 0).
+ if (variance(0) < 1e-8)
+ xfactor = mean(0) = 1.0;
+ if (variance(1) < 1e-8)
+ yfactor = mean(1) = 1.0;
+
+ *T << xfactor, 0, -xfactor * mean(0),
+ 0, yfactor, -yfactor * mean(1),
+ 0, 0, 1;
+}
+// HZ 4.4.4 pag.107: Point conditioning (isotropic)
+void IsotropicPreconditionerFromPoints(const Mat &points, Mat3 *T) {
+ Vec mean, variance;
+ MeanAndVarianceAlongRows(points, &mean, &variance);
+
+ double var_norm = variance.norm();
+ double factor = sqrt(2.0 / var_norm);
+
+ // If variance is equal to 0.0 set scaling factor to identity.
+ // -> Else it will provide nan value (because division by 0).
+ if (var_norm < 1e-8) {
+ factor = 1.0;
+ mean.setOnes();
+ }
+
+ *T << factor, 0, -factor * mean(0),
+ 0, factor, -factor * mean(1),
+ 0, 0, 1;
+}
+
+void ApplyTransformationToPoints(const Mat &points,
+ const Mat3 &T,
+ Mat *transformed_points) {
+ int n = points.cols();
+ transformed_points->resize(2, n);
+ Mat3X p(3, n);
+ EuclideanToHomogeneous(points, &p);
+ p = T * p;
+ HomogeneousToEuclidean(p, transformed_points);
+}
+
+void NormalizePoints(const Mat &points,
+ Mat *normalized_points,
+ Mat3 *T) {
+ PreconditionerFromPoints(points, T);
+ ApplyTransformationToPoints(points, *T, normalized_points);
+}
+
+void NormalizeIsotropicPoints(const Mat &points,
+ Mat *normalized_points,
+ Mat3 *T) {
+ IsotropicPreconditionerFromPoints(points, T);
+ ApplyTransformationToPoints(points, *T, normalized_points);
+}
+
+// Denormalize the results. See HZ page 109.
+void UnnormalizerT::Unnormalize(const Mat3 &T1, const Mat3 &T2, Mat3 *H) {
+ *H = T2.transpose() * (*H) * T1;
+}
+
+void UnnormalizerI::Unnormalize(const Mat3 &T1, const Mat3 &T2, Mat3 *H) {
+ *H = T2.inverse() * (*H) * T1;
+}
+
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/conditioning.h b/intern/libmv/libmv/multiview/conditioning.h
new file mode 100644
index 00000000000..8f3e3a76070
--- /dev/null
+++ b/intern/libmv/libmv/multiview/conditioning.h
@@ -0,0 +1,59 @@
+// Copyright (c) 2010 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_CONDITIONNING_H_
+#define LIBMV_MULTIVIEW_CONDITIONNING_H_
+
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+// Point conditioning (non isotropic)
+void PreconditionerFromPoints(const Mat &points, Mat3 *T);
+// Point conditioning (isotropic)
+void IsotropicPreconditionerFromPoints(const Mat &points, Mat3 *T);
+
+void ApplyTransformationToPoints(const Mat &points,
+ const Mat3 &T,
+ Mat *transformed_points);
+
+void NormalizePoints(const Mat &points,
+ Mat *normalized_points,
+ Mat3 *T);
+
+void NormalizeIsotropicPoints(const Mat &points,
+ Mat *normalized_points,
+ Mat3 *T);
+
+/// Use inverse for unnormalize
+struct UnnormalizerI {
+ // Denormalize the results. See HZ page 109.
+ static void Unnormalize(const Mat3 &T1, const Mat3 &T2, Mat3 *H);
+};
+
+/// Use transpose for unnormalize
+struct UnnormalizerT {
+ // Denormalize the results. See HZ page 109.
+ static void Unnormalize(const Mat3 &T1, const Mat3 &T2, Mat3 *H);
+};
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_CONDITIONNING_H_
diff --git a/intern/libmv/libmv/multiview/euclidean_resection.cc b/intern/libmv/libmv/multiview/euclidean_resection.cc
new file mode 100644
index 00000000000..245b027fb7c
--- /dev/null
+++ b/intern/libmv/libmv/multiview/euclidean_resection.cc
@@ -0,0 +1,774 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/euclidean_resection.h"
+
+#include <cmath>
+#include <limits>
+
+#include <Eigen/SVD>
+#include <Eigen/Geometry>
+
+#include "libmv/base/vector.h"
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/projection.h"
+
+namespace libmv {
+namespace euclidean_resection {
+
+typedef unsigned int uint;
+
+bool EuclideanResection(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R, Vec3 *t,
+ ResectionMethod method) {
+ switch (method) {
+ case RESECTION_ANSAR_DANIILIDIS:
+ EuclideanResectionAnsarDaniilidis(x_camera, X_world, R, t);
+ break;
+ case RESECTION_EPNP:
+ return EuclideanResectionEPnP(x_camera, X_world, R, t);
+ break;
+ case RESECTION_PPNP:
+ return EuclideanResectionPPnP(x_camera, X_world, R, t);
+ break;
+ default:
+ LOG(FATAL) << "Unknown resection method.";
+ }
+ return false;
+}
+
+bool EuclideanResection(const Mat &x_image,
+ const Mat3X &X_world,
+ const Mat3 &K,
+ Mat3 *R, Vec3 *t,
+ ResectionMethod method) {
+ CHECK(x_image.rows() == 2 || x_image.rows() == 3)
+ << "Invalid size for x_image: "
+ << x_image.rows() << "x" << x_image.cols();
+
+ Mat2X x_camera;
+ if (x_image.rows() == 2) {
+ EuclideanToNormalizedCamera(x_image, K, &x_camera);
+ } else if (x_image.rows() == 3) {
+ HomogeneousToNormalizedCamera(x_image, K, &x_camera);
+ }
+ return EuclideanResection(x_camera, X_world, R, t, method);
+}
+
+void AbsoluteOrientation(const Mat3X &X,
+ const Mat3X &Xp,
+ Mat3 *R,
+ Vec3 *t) {
+ int num_points = X.cols();
+ Vec3 C = X.rowwise().sum() / num_points; // Centroid of X.
+ Vec3 Cp = Xp.rowwise().sum() / num_points; // Centroid of Xp.
+
+ // Normalize the two point sets.
+ Mat3X Xn(3, num_points), Xpn(3, num_points);
+ for (int i = 0; i < num_points; ++i) {
+ Xn.col(i) = X.col(i) - C;
+ Xpn.col(i) = Xp.col(i) - Cp;
+ }
+
+ // Construct the N matrix (pg. 635).
+ double Sxx = Xn.row(0).dot(Xpn.row(0));
+ double Syy = Xn.row(1).dot(Xpn.row(1));
+ double Szz = Xn.row(2).dot(Xpn.row(2));
+ double Sxy = Xn.row(0).dot(Xpn.row(1));
+ double Syx = Xn.row(1).dot(Xpn.row(0));
+ double Sxz = Xn.row(0).dot(Xpn.row(2));
+ double Szx = Xn.row(2).dot(Xpn.row(0));
+ double Syz = Xn.row(1).dot(Xpn.row(2));
+ double Szy = Xn.row(2).dot(Xpn.row(1));
+
+ Mat4 N;
+ N << Sxx + Syy + Szz, Syz - Szy, Szx - Sxz, Sxy - Syx,
+ Syz - Szy, Sxx - Syy - Szz, Sxy + Syx, Szx + Sxz,
+ Szx - Sxz, Sxy + Syx, -Sxx + Syy - Szz, Syz + Szy,
+ Sxy - Syx, Szx + Sxz, Syz + Szy, -Sxx - Syy + Szz;
+
+ // Find the unit quaternion q that maximizes qNq. It is the eigenvector
+ // corresponding to the lagest eigenvalue.
+ Vec4 q = N.jacobiSvd(Eigen::ComputeFullU).matrixU().col(0);
+
+ // Retrieve the 3x3 rotation matrix.
+ Vec4 qq = q.array() * q.array();
+ double q0q1 = q(0) * q(1);
+ double q0q2 = q(0) * q(2);
+ double q0q3 = q(0) * q(3);
+ double q1q2 = q(1) * q(2);
+ double q1q3 = q(1) * q(3);
+ double q2q3 = q(2) * q(3);
+
+ (*R) << qq(0) + qq(1) - qq(2) - qq(3),
+ 2 * (q1q2 - q0q3),
+ 2 * (q1q3 + q0q2),
+ 2 * (q1q2+ q0q3),
+ qq(0) - qq(1) + qq(2) - qq(3),
+ 2 * (q2q3 - q0q1),
+ 2 * (q1q3 - q0q2),
+ 2 * (q2q3 + q0q1),
+ qq(0) - qq(1) - qq(2) + qq(3);
+
+ // Fix the handedness of the R matrix.
+ if (R->determinant() < 0) {
+ R->row(2) = -R->row(2);
+ }
+ // Compute the final translation.
+ *t = Cp - *R * C;
+}
+
+// Convert i and j indices of the original variables into their quadratic
+// permutation single index. It follows that t_ij = t_ji.
+static int IJToPointIndex(int i, int j, int num_points) {
+ // Always make sure that j is bigger than i. This handles t_ij = t_ji.
+ if (j < i) {
+ std::swap(i, j);
+ }
+ int idx;
+ int num_permutation_rows = num_points * (num_points - 1) / 2;
+
+ // All t_ii's are located at the end of the t vector after all t_ij's.
+ if (j == i) {
+ idx = num_permutation_rows + i;
+ } else {
+ int offset = (num_points - i - 1) * (num_points - i) / 2;
+ idx = (num_permutation_rows - offset + j - i - 1);
+ }
+ return idx;
+};
+
+// Convert i and j indexes of the solution for lambda to their linear indexes.
+static int IJToIndex(int i, int j, int num_lambda) {
+ if (j < i) {
+ std::swap(i, j);
+ }
+ int A = num_lambda * (num_lambda + 1) / 2;
+ int B = num_lambda - i;
+ int C = B * (B + 1) / 2;
+ int idx = A - C + j - i;
+ return idx;
+};
+
+static int Sign(double value) {
+ return (value < 0) ? -1 : 1;
+};
+
+// Organizes a square matrix into a single row constraint on the elements of
+// Lambda to create the constraints in equation (5) in "Linear Pose Estimation
+// from Points or Lines", by Ansar, A. and Daniilidis, PAMI 2003. vol. 25, no.
+// 5.
+static Vec MatrixToConstraint(const Mat &A,
+ int num_k_columns,
+ int num_lambda) {
+ Vec C(num_k_columns);
+ C.setZero();
+ int idx = 0;
+ for (int i = 0; i < num_lambda; ++i) {
+ for (int j = i; j < num_lambda; ++j) {
+ C(idx) = A(i, j);
+ if (i != j) {
+ C(idx) += A(j, i);
+ }
+ ++idx;
+ }
+ }
+ return C;
+}
+
+// Normalizes the columns of vectors.
+static void NormalizeColumnVectors(Mat3X *vectors) {
+ int num_columns = vectors->cols();
+ for (int i = 0; i < num_columns; ++i) {
+ vectors->col(i).normalize();
+ }
+}
+
+void EuclideanResectionAnsarDaniilidis(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R,
+ Vec3 *t) {
+ CHECK(x_camera.cols() == X_world.cols());
+ CHECK(x_camera.cols() > 3);
+
+ int num_points = x_camera.cols();
+
+ // Copy the normalized camera coords into 3 vectors and normalize them so
+ // that they are unit vectors from the camera center.
+ Mat3X x_camera_unit(3, num_points);
+ x_camera_unit.block(0, 0, 2, num_points) = x_camera;
+ x_camera_unit.row(2).setOnes();
+ NormalizeColumnVectors(&x_camera_unit);
+
+ int num_m_rows = num_points * (num_points - 1) / 2;
+ int num_tt_variables = num_points * (num_points + 1) / 2;
+ int num_m_columns = num_tt_variables + 1;
+ Mat M(num_m_columns, num_m_columns);
+ M.setZero();
+ Matu ij_index(num_tt_variables, 2);
+
+ // Create the constraint equations for the t_ij variables (7) and arrange
+ // them into the M matrix (8). Also store the initial (i, j) indices.
+ int row = 0;
+ for (int i = 0; i < num_points; ++i) {
+ for (int j = i+1; j < num_points; ++j) {
+ M(row, row) = -2 * x_camera_unit.col(i).dot(x_camera_unit.col(j));
+ M(row, num_m_rows + i) = x_camera_unit.col(i).dot(x_camera_unit.col(i));
+ M(row, num_m_rows + j) = x_camera_unit.col(j).dot(x_camera_unit.col(j));
+ Vec3 Xdiff = X_world.col(i) - X_world.col(j);
+ double center_to_point_distance = Xdiff.norm();
+ M(row, num_m_columns - 1) =
+ - center_to_point_distance * center_to_point_distance;
+ ij_index(row, 0) = i;
+ ij_index(row, 1) = j;
+ ++row;
+ }
+ ij_index(i + num_m_rows, 0) = i;
+ ij_index(i + num_m_rows, 1) = i;
+ }
+
+ int num_lambda = num_points + 1; // Dimension of the null space of M.
+ Mat V = M.jacobiSvd(Eigen::ComputeFullV).matrixV().block(0,
+ num_m_rows,
+ num_m_columns,
+ num_lambda);
+
+ // TODO(vess): The number of constraint equations in K (num_k_rows) must be
+ // (num_points + 1) * (num_points + 2)/2. This creates a performance issue
+ // for more than 4 points. It is fine for 4 points at the moment with 18
+ // instead of 15 equations.
+ int num_k_rows = num_m_rows + num_points *
+ (num_points*(num_points-1)/2 - num_points+1);
+ int num_k_columns = num_lambda * (num_lambda + 1) / 2;
+ Mat K(num_k_rows, num_k_columns);
+ K.setZero();
+
+ // Construct the first part of the K matrix corresponding to (t_ii, t_jk) for
+ // i != j.
+ int counter_k_row = 0;
+ for (int idx1 = num_m_rows; idx1 < num_tt_variables; ++idx1) {
+ for (int idx2 = 0; idx2 < num_m_rows; ++idx2) {
+ unsigned int i = ij_index(idx1, 0);
+ unsigned int j = ij_index(idx2, 0);
+ unsigned int k = ij_index(idx2, 1);
+
+ if (i != j && i != k) {
+ int idx3 = IJToPointIndex(i, j, num_points);
+ int idx4 = IJToPointIndex(i, k, num_points);
+
+ K.row(counter_k_row) =
+ MatrixToConstraint(V.row(idx1).transpose() * V.row(idx2)-
+ V.row(idx3).transpose() * V.row(idx4),
+ num_k_columns,
+ num_lambda);
+ ++counter_k_row;
+ }
+ }
+ }
+
+ // Construct the second part of the K matrix corresponding to (t_ii,t_jk) for
+ // j==k.
+ for (int idx1 = num_m_rows; idx1 < num_tt_variables; ++idx1) {
+ for (int idx2 = idx1 + 1; idx2 < num_tt_variables; ++idx2) {
+ unsigned int i = ij_index(idx1, 0);
+ unsigned int j = ij_index(idx2, 0);
+ unsigned int k = ij_index(idx2, 1);
+
+ int idx3 = IJToPointIndex(i, j, num_points);
+ int idx4 = IJToPointIndex(i, k, num_points);
+
+ K.row(counter_k_row) =
+ MatrixToConstraint(V.row(idx1).transpose() * V.row(idx2)-
+ V.row(idx3).transpose() * V.row(idx4),
+ num_k_columns,
+ num_lambda);
+ ++counter_k_row;
+ }
+ }
+ Vec L_sq = K.jacobiSvd(Eigen::ComputeFullV).matrixV().col(num_k_columns - 1);
+
+ // Pivot on the largest element for numerical stability. Afterwards recover
+ // the sign of the lambda solution.
+ double max_L_sq_value = fabs(L_sq(IJToIndex(0, 0, num_lambda)));
+ int max_L_sq_index = 1;
+ for (int i = 1; i < num_lambda; ++i) {
+ double abs_sq_value = fabs(L_sq(IJToIndex(i, i, num_lambda)));
+ if (max_L_sq_value < abs_sq_value) {
+ max_L_sq_value = abs_sq_value;
+ max_L_sq_index = i;
+ }
+ }
+ // Ensure positiveness of the largest value corresponding to lambda_ii.
+ L_sq = L_sq * Sign(L_sq(IJToIndex(max_L_sq_index,
+ max_L_sq_index,
+ num_lambda)));
+
+ Vec L(num_lambda);
+ L(max_L_sq_index) = sqrt(L_sq(IJToIndex(max_L_sq_index,
+ max_L_sq_index,
+ num_lambda)));
+
+ for (int i = 0; i < num_lambda; ++i) {
+ if (i != max_L_sq_index) {
+ L(i) = L_sq(IJToIndex(max_L_sq_index, i, num_lambda)) / L(max_L_sq_index);
+ }
+ }
+
+ // Correct the scale using the fact that the last constraint is equal to 1.
+ L = L / (V.row(num_m_columns - 1).dot(L));
+ Vec X = V * L;
+
+ // Recover the distances from the camera center to the 3D points Q.
+ Vec d(num_points);
+ d.setZero();
+ for (int c_point = num_m_rows; c_point < num_tt_variables; ++c_point) {
+ d(c_point - num_m_rows) = sqrt(X(c_point));
+ }
+
+ // Create the 3D points in the camera system.
+ Mat X_cam(3, num_points);
+ for (int c_point = 0; c_point < num_points; ++c_point) {
+ X_cam.col(c_point) = d(c_point) * x_camera_unit.col(c_point);
+ }
+ // Recover the camera translation and rotation.
+ AbsoluteOrientation(X_world, X_cam, R, t);
+}
+
+// Selects 4 virtual control points using mean and PCA.
+static void SelectControlPoints(const Mat3X &X_world,
+ Mat *X_centered,
+ Mat34 *X_control_points) {
+ size_t num_points = X_world.cols();
+
+ // The first virtual control point, C0, is the centroid.
+ Vec mean, variance;
+ MeanAndVarianceAlongRows(X_world, &mean, &variance);
+ X_control_points->col(0) = mean;
+
+ // Computes PCA
+ X_centered->resize(3, num_points);
+ for (size_t c = 0; c < num_points; c++) {
+ X_centered->col(c) = X_world.col(c) - mean;
+ }
+ Mat3 X_centered_sq = (*X_centered) * X_centered->transpose();
+ Eigen::JacobiSVD<Mat3> X_centered_sq_svd(X_centered_sq, Eigen::ComputeFullU);
+ Vec3 w = X_centered_sq_svd.singularValues();
+ Mat3 u = X_centered_sq_svd.matrixU();
+ for (size_t c = 0; c < 3; c++) {
+ double k = sqrt(w(c) / num_points);
+ X_control_points->col(c + 1) = mean + k * u.col(c);
+ }
+}
+
+// Computes the barycentric coordinates for all real points
+static void ComputeBarycentricCoordinates(const Mat3X &X_world_centered,
+ const Mat34 &X_control_points,
+ Mat4X *alphas) {
+ size_t num_points = X_world_centered.cols();
+ Mat3 C2;
+ for (size_t c = 1; c < 4; c++) {
+ C2.col(c-1) = X_control_points.col(c) - X_control_points.col(0);
+ }
+
+ Mat3 C2inv = C2.inverse();
+ Mat3X a = C2inv * X_world_centered;
+
+ alphas->resize(4, num_points);
+ alphas->setZero();
+ alphas->block(1, 0, 3, num_points) = a;
+ for (size_t c = 0; c < num_points; c++) {
+ (*alphas)(0, c) = 1.0 - alphas->col(c).sum();
+ }
+}
+
+// Estimates the coordinates of all real points in the camera coordinate frame
+static void ComputePointsCoordinatesInCameraFrame(
+ const Mat4X &alphas,
+ const Vec4 &betas,
+ const Eigen::Matrix<double, 12, 12> &U,
+ Mat3X *X_camera) {
+ size_t num_points = alphas.cols();
+
+ // Estimates the control points in the camera reference frame.
+ Mat34 C2b; C2b.setZero();
+ for (size_t cu = 0; cu < 4; cu++) {
+ for (size_t c = 0; c < 4; c++) {
+ C2b.col(c) += betas(cu) * U.block(11 - cu, c * 3, 1, 3).transpose();
+ }
+ }
+
+ // Estimates the 3D points in the camera reference frame
+ X_camera->resize(3, num_points);
+ for (size_t c = 0; c < num_points; c++) {
+ X_camera->col(c) = C2b * alphas.col(c);
+ }
+
+ // Check the sign of the z coordinate of the points (should be positive)
+ uint num_z_neg = 0;
+ for (size_t i = 0; i < X_camera->cols(); ++i) {
+ if ((*X_camera)(2, i) < 0) {
+ num_z_neg++;
+ }
+ }
+
+ // If more than 50% of z are negative, we change the signs
+ if (num_z_neg > 0.5 * X_camera->cols()) {
+ C2b = -C2b;
+ *X_camera = -(*X_camera);
+ }
+}
+
+bool EuclideanResectionEPnP(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R, Vec3 *t) {
+ CHECK(x_camera.cols() == X_world.cols());
+ CHECK(x_camera.cols() > 3);
+ size_t num_points = X_world.cols();
+
+ // Select the control points.
+ Mat34 X_control_points;
+ Mat X_centered;
+ SelectControlPoints(X_world, &X_centered, &X_control_points);
+
+ // Compute the barycentric coordinates.
+ Mat4X alphas(4, num_points);
+ ComputeBarycentricCoordinates(X_centered, X_control_points, &alphas);
+
+ // Estimates the M matrix with the barycentric coordinates
+ Mat M(2 * num_points, 12);
+ Eigen::Matrix<double, 2, 12> sub_M;
+ for (size_t c = 0; c < num_points; c++) {
+ double a0 = alphas(0, c);
+ double a1 = alphas(1, c);
+ double a2 = alphas(2, c);
+ double a3 = alphas(3, c);
+ double ui = x_camera(0, c);
+ double vi = x_camera(1, c);
+ M.block(2*c, 0, 2, 12) << a0, 0,
+ a0*(-ui), a1, 0,
+ a1*(-ui), a2, 0,
+ a2*(-ui), a3, 0,
+ a3*(-ui), 0,
+ a0, a0*(-vi), 0,
+ a1, a1*(-vi), 0,
+ a2, a2*(-vi), 0,
+ a3, a3*(-vi);
+ }
+
+ // TODO(julien): Avoid the transpose by rewriting the u2.block() calls.
+ Eigen::JacobiSVD<Mat> MtMsvd(M.transpose()*M, Eigen::ComputeFullU);
+ Eigen::Matrix<double, 12, 12> u2 = MtMsvd.matrixU().transpose();
+
+ // Estimate the L matrix.
+ Eigen::Matrix<double, 6, 3> dv1;
+ Eigen::Matrix<double, 6, 3> dv2;
+ Eigen::Matrix<double, 6, 3> dv3;
+ Eigen::Matrix<double, 6, 3> dv4;
+
+ dv1.row(0) = u2.block(11, 0, 1, 3) - u2.block(11, 3, 1, 3);
+ dv1.row(1) = u2.block(11, 0, 1, 3) - u2.block(11, 6, 1, 3);
+ dv1.row(2) = u2.block(11, 0, 1, 3) - u2.block(11, 9, 1, 3);
+ dv1.row(3) = u2.block(11, 3, 1, 3) - u2.block(11, 6, 1, 3);
+ dv1.row(4) = u2.block(11, 3, 1, 3) - u2.block(11, 9, 1, 3);
+ dv1.row(5) = u2.block(11, 6, 1, 3) - u2.block(11, 9, 1, 3);
+ dv2.row(0) = u2.block(10, 0, 1, 3) - u2.block(10, 3, 1, 3);
+ dv2.row(1) = u2.block(10, 0, 1, 3) - u2.block(10, 6, 1, 3);
+ dv2.row(2) = u2.block(10, 0, 1, 3) - u2.block(10, 9, 1, 3);
+ dv2.row(3) = u2.block(10, 3, 1, 3) - u2.block(10, 6, 1, 3);
+ dv2.row(4) = u2.block(10, 3, 1, 3) - u2.block(10, 9, 1, 3);
+ dv2.row(5) = u2.block(10, 6, 1, 3) - u2.block(10, 9, 1, 3);
+ dv3.row(0) = u2.block(9, 0, 1, 3) - u2.block(9, 3, 1, 3);
+ dv3.row(1) = u2.block(9, 0, 1, 3) - u2.block(9, 6, 1, 3);
+ dv3.row(2) = u2.block(9, 0, 1, 3) - u2.block(9, 9, 1, 3);
+ dv3.row(3) = u2.block(9, 3, 1, 3) - u2.block(9, 6, 1, 3);
+ dv3.row(4) = u2.block(9, 3, 1, 3) - u2.block(9, 9, 1, 3);
+ dv3.row(5) = u2.block(9, 6, 1, 3) - u2.block(9, 9, 1, 3);
+ dv4.row(0) = u2.block(8, 0, 1, 3) - u2.block(8, 3, 1, 3);
+ dv4.row(1) = u2.block(8, 0, 1, 3) - u2.block(8, 6, 1, 3);
+ dv4.row(2) = u2.block(8, 0, 1, 3) - u2.block(8, 9, 1, 3);
+ dv4.row(3) = u2.block(8, 3, 1, 3) - u2.block(8, 6, 1, 3);
+ dv4.row(4) = u2.block(8, 3, 1, 3) - u2.block(8, 9, 1, 3);
+ dv4.row(5) = u2.block(8, 6, 1, 3) - u2.block(8, 9, 1, 3);
+
+ Eigen::Matrix<double, 6, 10> L;
+ for (size_t r = 0; r < 6; r++) {
+ L.row(r) << dv1.row(r).dot(dv1.row(r)),
+ 2.0 * dv1.row(r).dot(dv2.row(r)),
+ dv2.row(r).dot(dv2.row(r)),
+ 2.0 * dv1.row(r).dot(dv3.row(r)),
+ 2.0 * dv2.row(r).dot(dv3.row(r)),
+ dv3.row(r).dot(dv3.row(r)),
+ 2.0 * dv1.row(r).dot(dv4.row(r)),
+ 2.0 * dv2.row(r).dot(dv4.row(r)),
+ 2.0 * dv3.row(r).dot(dv4.row(r)),
+ dv4.row(r).dot(dv4.row(r));
+ }
+ Vec6 rho;
+ rho << (X_control_points.col(0) - X_control_points.col(1)).squaredNorm(),
+ (X_control_points.col(0) - X_control_points.col(2)).squaredNorm(),
+ (X_control_points.col(0) - X_control_points.col(3)).squaredNorm(),
+ (X_control_points.col(1) - X_control_points.col(2)).squaredNorm(),
+ (X_control_points.col(1) - X_control_points.col(3)).squaredNorm(),
+ (X_control_points.col(2) - X_control_points.col(3)).squaredNorm();
+
+ // There are three possible solutions based on the three approximations of L
+ // (betas). Below, each one is solved for then the best one is chosen.
+ Mat3X X_camera;
+ Mat3 K; K.setIdentity();
+ vector<Mat3> Rs(3);
+ vector<Vec3> ts(3);
+ Vec rmse(3);
+
+ // At one point this threshold was 1e-3, and caused no end of problems in
+ // Blender by causing frames to not resect when they would have worked fine.
+ // When the resect failed, the projective followup is run leading to worse
+ // results, and often the dreaded "flipping" where objects get flipped
+ // between frames. Instead, disable the check for now, always succeeding. The
+ // ultimate check is always reprojection error anyway.
+ //
+ // TODO(keir): Decide if setting this to infinity, effectively disabling the
+ // check, is the right approach. So far this seems the case.
+ double kSuccessThreshold = std::numeric_limits<double>::max();
+
+ // Find the first possible solution for R, t corresponding to:
+ // Betas = [b00 b01 b11 b02 b12 b22 b03 b13 b23 b33]
+ // Betas_approx_1 = [b00 b01 b02 b03]
+ Vec4 betas = Vec4::Zero();
+ Eigen::Matrix<double, 6, 4> l_6x4;
+ for (size_t r = 0; r < 6; r++) {
+ l_6x4.row(r) << L(r, 0), L(r, 1), L(r, 3), L(r, 6);
+ }
+ Eigen::JacobiSVD<Mat> svd_of_l4(l_6x4,
+ Eigen::ComputeFullU | Eigen::ComputeFullV);
+ Vec4 b4 = svd_of_l4.solve(rho);
+ if ((l_6x4 * b4).isApprox(rho, kSuccessThreshold)) {
+ if (b4(0) < 0) {
+ b4 = -b4;
+ }
+ b4(0) = std::sqrt(b4(0));
+ betas << b4(0), b4(1) / b4(0), b4(2) / b4(0), b4(3) / b4(0);
+ ComputePointsCoordinatesInCameraFrame(alphas, betas, u2, &X_camera);
+ AbsoluteOrientation(X_world, X_camera, &Rs[0], &ts[0]);
+ rmse(0) = RootMeanSquareError(x_camera, X_world, K, Rs[0], ts[0]);
+ } else {
+ LOG(ERROR) << "First approximation of beta not good enough.";
+ ts[0].setZero();
+ rmse(0) = std::numeric_limits<double>::max();
+ }
+
+ // Find the second possible solution for R, t corresponding to:
+ // Betas = [b00 b01 b11 b02 b12 b22 b03 b13 b23 b33]
+ // Betas_approx_2 = [b00 b01 b11]
+ betas.setZero();
+ Eigen::Matrix<double, 6, 3> l_6x3;
+ l_6x3 = L.block(0, 0, 6, 3);
+ Eigen::JacobiSVD<Mat> svdOfL3(l_6x3,
+ Eigen::ComputeFullU | Eigen::ComputeFullV);
+ Vec3 b3 = svdOfL3.solve(rho);
+ VLOG(2) << " rho = " << rho;
+ VLOG(2) << " l_6x3 * b3 = " << l_6x3 * b3;
+ if ((l_6x3 * b3).isApprox(rho, kSuccessThreshold)) {
+ if (b3(0) < 0) {
+ betas(0) = std::sqrt(-b3(0));
+ betas(1) = (b3(2) < 0) ? std::sqrt(-b3(2)) : 0;
+ } else {
+ betas(0) = std::sqrt(b3(0));
+ betas(1) = (b3(2) > 0) ? std::sqrt(b3(2)) : 0;
+ }
+ if (b3(1) < 0) {
+ betas(0) = -betas(0);
+ }
+ betas(2) = 0;
+ betas(3) = 0;
+ ComputePointsCoordinatesInCameraFrame(alphas, betas, u2, &X_camera);
+ AbsoluteOrientation(X_world, X_camera, &Rs[1], &ts[1]);
+ rmse(1) = RootMeanSquareError(x_camera, X_world, K, Rs[1], ts[1]);
+ } else {
+ LOG(ERROR) << "Second approximation of beta not good enough.";
+ ts[1].setZero();
+ rmse(1) = std::numeric_limits<double>::max();
+ }
+
+ // Find the third possible solution for R, t corresponding to:
+ // Betas = [b00 b01 b11 b02 b12 b22 b03 b13 b23 b33]
+ // Betas_approx_3 = [b00 b01 b11 b02 b12]
+ betas.setZero();
+ Eigen::Matrix<double, 6, 5> l_6x5;
+ l_6x5 = L.block(0, 0, 6, 5);
+ Eigen::JacobiSVD<Mat> svdOfL5(l_6x5,
+ Eigen::ComputeFullU | Eigen::ComputeFullV);
+ Vec5 b5 = svdOfL5.solve(rho);
+ if ((l_6x5 * b5).isApprox(rho, kSuccessThreshold)) {
+ if (b5(0) < 0) {
+ betas(0) = std::sqrt(-b5(0));
+ if (b5(2) < 0) {
+ betas(1) = std::sqrt(-b5(2));
+ } else {
+ b5(2) = 0;
+ }
+ } else {
+ betas(0) = std::sqrt(b5(0));
+ if (b5(2) > 0) {
+ betas(1) = std::sqrt(b5(2));
+ } else {
+ b5(2) = 0;
+ }
+ }
+ if (b5(1) < 0) {
+ betas(0) = -betas(0);
+ }
+ betas(2) = b5(3) / betas(0);
+ betas(3) = 0;
+ ComputePointsCoordinatesInCameraFrame(alphas, betas, u2, &X_camera);
+ AbsoluteOrientation(X_world, X_camera, &Rs[2], &ts[2]);
+ rmse(2) = RootMeanSquareError(x_camera, X_world, K, Rs[2], ts[2]);
+ } else {
+ LOG(ERROR) << "Third approximation of beta not good enough.";
+ ts[2].setZero();
+ rmse(2) = std::numeric_limits<double>::max();
+ }
+
+ // Finally, with all three solutions, select the (R, t) with the best RMSE.
+ VLOG(2) << "RMSE for solution 0: " << rmse(0);
+ VLOG(2) << "RMSE for solution 1: " << rmse(1);
+ VLOG(2) << "RMSE for solution 2: " << rmse(2);
+ size_t n = 0;
+ if (rmse(1) < rmse(0)) {
+ n = 1;
+ }
+ if (rmse(2) < rmse(n)) {
+ n = 2;
+ }
+ if (rmse(n) == std::numeric_limits<double>::max()) {
+ LOG(ERROR) << "All three possibilities failed. Reporting failure.";
+ return false;
+ }
+
+ VLOG(1) << "RMSE for best solution #" << n << ": " << rmse(n);
+ *R = Rs[n];
+ *t = ts[n];
+
+ // TODO(julien): Improve the solutions with non-linear refinement.
+ return true;
+}
+
+/*
+
+ Straight from the paper:
+ http://www.diegm.uniud.it/fusiello/papers/3dimpvt12-b.pdf
+
+ function [R T] = ppnp(P,S,tol)
+ % input
+ % P : matrix (nx3) image coordinates in camera reference [u v 1]
+ % S : matrix (nx3) coordinates in world reference [X Y Z]
+ % tol: exit threshold
+ %
+ % output
+ % R : matrix (3x3) rotation (world-to-camera)
+ % T : vector (3x1) translation (world-to-camera)
+ %
+ n = size(P,1);
+ Z = zeros(n);
+ e = ones(n,1);
+ A = eye(n)-((e*e’)./n);
+ II = e./n;
+ err = +Inf;
+ E_old = 1000*ones(n,3);
+ while err>tol
+ [U,˜,V] = svd(P’*Z*A*S);
+ VT = V’;
+ R=U*[1 0 0; 0 1 0; 0 0 det(U*VT)]*VT;
+ PR = P*R;
+ c = (S-Z*PR)’*II;
+ Y = S-e*c’;
+ Zmindiag = diag(PR*Y’)./(sum(P.*P,2));
+ Zmindiag(Zmindiag<0)=0;
+ Z = diag(Zmindiag);
+ E = Y-Z*PR;
+ err = norm(E-E_old,’fro’);
+ E_old = E;
+ end
+ T = -R*c;
+ end
+
+ */
+// TODO(keir): Re-do all the variable names and add comments matching the paper.
+// This implementation has too much of the terseness of the original. On the
+// other hand, it did work on the first try.
+bool EuclideanResectionPPnP(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R, Vec3 *t) {
+ int n = x_camera.cols();
+ Mat Z = Mat::Zero(n, n);
+ Vec e = Vec::Ones(n);
+ Mat A = Mat::Identity(n, n) - (e * e.transpose() / n);
+ Vec II = e / n;
+
+ Mat P(n, 3);
+ P.col(0) = x_camera.row(0);
+ P.col(1) = x_camera.row(1);
+ P.col(2).setConstant(1.0);
+
+ Mat S = X_world.transpose();
+
+ double error = std::numeric_limits<double>::infinity();
+ Mat E_old = 1000 * Mat::Ones(n, 3);
+
+ Vec3 c;
+ Mat E(n, 3);
+
+ int iteration = 0;
+ double tolerance = 1e-5;
+ // TODO(keir): The limit of 100 can probably be reduced, but this will require
+ // some investigation.
+ while (error > tolerance && iteration < 100) {
+ Mat3 tmp = P.transpose() * Z * A * S;
+ Eigen::JacobiSVD<Mat3> svd(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
+ Mat3 U = svd.matrixU();
+ Mat3 VT = svd.matrixV().transpose();
+ Vec3 s;
+ s << 1, 1, (U * VT).determinant();
+ *R = U * s.asDiagonal() * VT;
+ Mat PR = P * *R; // n x 3
+ c = (S - Z*PR).transpose() * II;
+ Mat Y = S - e*c.transpose(); // n x 3
+ Vec Zmindiag = (PR * Y.transpose()).diagonal()
+ .cwiseQuotient(P.rowwise().squaredNorm());
+ for (int i = 0; i < n; ++i) {
+ Zmindiag[i] = std::max(Zmindiag[i], 0.0);
+ }
+ Z = Zmindiag.asDiagonal();
+ E = Y - Z*PR;
+ error = (E - E_old).norm();
+ LOG(INFO) << "PPnP error(" << (iteration++) << "): " << error;
+ E_old = E;
+ }
+ *t = -*R*c;
+
+ // TODO(keir): Figure out what the failure cases are. Is it too many
+ // iterations? Spend some time going through the math figuring out if there
+ // is some way to detect that the algorithm is going crazy, and return false.
+ return true;
+}
+
+
+} // namespace resection
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/euclidean_resection.h b/intern/libmv/libmv/multiview/euclidean_resection.h
new file mode 100644
index 00000000000..28eae92611c
--- /dev/null
+++ b/intern/libmv/libmv/multiview/euclidean_resection.h
@@ -0,0 +1,148 @@
+// Copyright (c) 2010 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_EUCLIDEAN_RESECTION_H_
+#define LIBMV_MULTIVIEW_EUCLIDEAN_RESECTION_H_
+
+#include "libmv/numeric/numeric.h"
+#include "libmv/multiview/projection.h"
+
+namespace libmv {
+namespace euclidean_resection {
+
+enum ResectionMethod {
+ RESECTION_ANSAR_DANIILIDIS,
+
+ // The "EPnP" algorithm by Lepetit et al.
+ // http://cvlab.epfl.ch/~lepetit/papers/lepetit_ijcv08.pdf
+ RESECTION_EPNP,
+
+ // The Procrustes PNP algorithm ("PPnP")
+ // http://www.diegm.uniud.it/fusiello/papers/3dimpvt12-b.pdf
+ RESECTION_PPNP
+};
+
+/**
+ * Computes the extrinsic parameters, R and t for a calibrated camera
+ * from 4 or more 3D points and their normalized images.
+ *
+ * \param x_camera Image points in normalized camera coordinates e.g. x_camera
+ * = inv(K) * x_image.
+ * \param X_world 3D points in the world coordinate system
+ * \param R Solution for the camera rotation matrix
+ * \param t Solution for the camera translation vector
+ * \param method The resection method to use.
+ */
+bool EuclideanResection(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R, Vec3 *t,
+ ResectionMethod method = RESECTION_EPNP);
+
+/**
+ * Computes the extrinsic parameters, R and t for a calibrated camera
+ * from 4 or more 3D points and their images.
+ *
+ * \param x_image Image points in non-normalized image coordinates. The
+ * coordates are laid out one per row. The matrix can be Nx2
+ * or Nx3 for euclidean or homogenous 2D coordinates.
+ * \param X_world 3D points in the world coordinate system
+ * \param K Intrinsic parameters camera matrix
+ * \param R Solution for the camera rotation matrix
+ * \param t Solution for the camera translation vector
+ * \param method Resection method
+ */
+bool EuclideanResection(const Mat &x_image,
+ const Mat3X &X_world,
+ const Mat3 &K,
+ Mat3 *R, Vec3 *t,
+ ResectionMethod method = RESECTION_EPNP);
+
+/**
+ * The absolute orientation algorithm recovers the transformation between a set
+ * of 3D points, X and Xp such that:
+ *
+ * Xp = R*X + t
+ *
+ * The recovery of the absolute orientation is implemented after this article:
+ * Horn, Hilden, "Closed-form solution of absolute orientation using
+ * orthonormal matrices"
+ */
+void AbsoluteOrientation(const Mat3X &X,
+ const Mat3X &Xp,
+ Mat3 *R,
+ Vec3 *t);
+
+/**
+ * Computes the extrinsic parameters, R and t for a calibrated camera from 4 or
+ * more 3D points and their images.
+ *
+ * \param x_camera Image points in normalized camera coordinates, e.g.
+ * x_camera=inv(K)*x_image
+ * \param X_world 3D points in the world coordinate system
+ * \param R Solution for the camera rotation matrix
+ * \param t Solution for the camera translation vector
+ *
+ * This is the algorithm described in: "Linear Pose Estimation from Points or
+ * Lines", by Ansar, A. and Daniilidis, PAMI 2003. vol. 25, no. 5.
+ */
+void EuclideanResectionAnsarDaniilidis(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R, Vec3 *t);
+/**
+ * Computes the extrinsic parameters, R and t for a calibrated camera from 4 or
+ * more 3D points and their images.
+ *
+ * \param x_camera Image points in normalized camera coordinates,
+ * e.g. x_camera = inv(K) * x_image
+ * \param X_world 3D points in the world coordinate system
+ * \param R Solution for the camera rotation matrix
+ * \param t Solution for the camera translation vector
+ *
+ * This is the algorithm described in:
+ * "{EP$n$P: An Accurate $O(n)$ Solution to the P$n$P Problem", by V. Lepetit
+ * and F. Moreno-Noguer and P. Fua, IJCV 2009. vol. 81, no. 2
+ * \note: the non-linear optimization is not implemented here.
+ */
+bool EuclideanResectionEPnP(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R, Vec3 *t);
+
+/**
+ * Computes the extrinsic parameters, R and t for a calibrated camera from 4 or
+ * more 3D points and their images.
+ *
+ * \param x_camera Image points in normalized camera coordinates,
+ * e.g. x_camera = inv(K) * x_image
+ * \param X_world 3D points in the world coordinate system
+ * \param R Solution for the camera rotation matrix
+ * \param t Solution for the camera translation vector
+ *
+ * Straight from the paper:
+ * http://www.diegm.uniud.it/fusiello/papers/3dimpvt12-b.pdf
+ */
+bool EuclideanResectionPPnP(const Mat2X &x_camera,
+ const Mat3X &X_world,
+ Mat3 *R, Vec3 *t);
+
+} // namespace euclidean_resection
+} // namespace libmv
+
+
+#endif /* LIBMV_MULTIVIEW_EUCLIDEAN_RESECTION_H_ */
diff --git a/intern/libmv/libmv/multiview/euclidean_resection_test.cc b/intern/libmv/libmv/multiview/euclidean_resection_test.cc
new file mode 100644
index 00000000000..378837d3d2d
--- /dev/null
+++ b/intern/libmv/libmv/multiview/euclidean_resection_test.cc
@@ -0,0 +1,237 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/euclidean_resection.h"
+#include "libmv/numeric/numeric.h"
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/projection.h"
+#include "testing/testing.h"
+
+using namespace libmv::euclidean_resection;
+using namespace libmv;
+
+// Generates all necessary inputs and expected outputs for EuclideanResection.
+static void CreateCameraSystem(const Mat3& KK,
+ const Mat3X& x_image,
+ const Vec& X_distances,
+ const Mat3& R_input,
+ const Vec3& T_input,
+ Mat2X *x_camera,
+ Mat3X *X_world,
+ Mat3 *R_expected,
+ Vec3 *T_expected) {
+ int num_points = x_image.cols();
+
+ Mat3X x_unit_cam(3, num_points);
+ x_unit_cam = KK.inverse() * x_image;
+
+ // Create normalized camera coordinates to be used as an input to the PnP
+ // function, instead of using NormalizeColumnVectors(&x_unit_cam).
+ *x_camera = x_unit_cam.block(0, 0, 2, num_points);
+ for (int i = 0; i < num_points; ++i) {
+ x_unit_cam.col(i).normalize();
+ }
+
+ // Create the 3D points in the camera system.
+ Mat X_camera(3, num_points);
+ for (int i = 0; i < num_points; ++i) {
+ X_camera.col(i) = X_distances(i) * x_unit_cam.col(i);
+ }
+
+ // Apply the transformation to the camera 3D points
+ Mat translation_matrix(3, num_points);
+ translation_matrix.row(0).setConstant(T_input(0));
+ translation_matrix.row(1).setConstant(T_input(1));
+ translation_matrix.row(2).setConstant(T_input(2));
+
+ *X_world = R_input * X_camera + translation_matrix;
+
+ // Create the expected result for comparison.
+ *R_expected = R_input.transpose();
+ *T_expected = *R_expected * (-T_input);
+};
+
+TEST(AbsoluteOrientation, QuaternionSolution) {
+ int num_points = 4;
+ Mat X;
+ Mat Xp;
+ X = 100 * Mat::Random(3, num_points);
+
+ // Create a random translation and rotation.
+ Mat3 R_input;
+ R_input = Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitZ())
+ * Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitY())
+ * Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitZ());
+
+ Vec3 t_input;
+ t_input.setRandom();
+ t_input = 100 * t_input;
+
+ Mat translation_matrix(3, num_points);
+ translation_matrix.row(0).setConstant(t_input(0));
+ translation_matrix.row(1).setConstant(t_input(1));
+ translation_matrix.row(2).setConstant(t_input(2));
+
+ // Create the transformed 3D points Xp as Xp = R * X + t.
+ Xp = R_input * X + translation_matrix;
+
+ // Output variables.
+ Mat3 R;
+ Vec3 t;
+
+ AbsoluteOrientation(X, Xp, &R, &t);
+
+ EXPECT_MATRIX_NEAR(t, t_input, 1e-6);
+ EXPECT_MATRIX_NEAR(R, R_input, 1e-8);
+}
+
+TEST(EuclideanResection, Points4KnownImagePointsRandomTranslationRotation) {
+ // In this test only the translation and rotation are random. The image
+ // points are selected from a real case and are well conditioned.
+ Vec2i image_dimensions;
+ image_dimensions << 1600, 1200;
+
+ Mat3 KK;
+ KK << 2796, 0, 804,
+ 0 , 2796, 641,
+ 0, 0, 1;
+
+ // The real image points.
+ int num_points = 4;
+ Mat3X x_image(3, num_points);
+ x_image << 1164.06, 734.948, 749.599, 430.727,
+ 681.386, 844.59, 496.315, 580.775,
+ 1, 1, 1, 1;
+
+
+ // A vector of the 4 distances to the 3D points.
+ Vec X_distances = 100 * Vec::Random(num_points).array().abs();
+
+ // Create the random camera motion R and t that resection should recover.
+ Mat3 R_input;
+ R_input = Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitZ())
+ * Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitY())
+ * Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitZ());
+
+ Vec3 T_input;
+ T_input.setRandom();
+ T_input = 100 * T_input;
+
+ // Create the camera system, also getting the expected result of the
+ // transformation.
+ Mat3 R_expected;
+ Vec3 T_expected;
+ Mat3X X_world;
+ Mat2X x_camera;
+ CreateCameraSystem(KK, x_image, X_distances, R_input, T_input,
+ &x_camera, &X_world, &R_expected, &T_expected);
+
+ // Finally, run the code under test.
+ Mat3 R_output;
+ Vec3 T_output;
+ EuclideanResection(x_camera, X_world,
+ &R_output, &T_output,
+ RESECTION_ANSAR_DANIILIDIS);
+
+ EXPECT_MATRIX_NEAR(T_output, T_expected, 1e-5);
+ EXPECT_MATRIX_NEAR(R_output, R_expected, 1e-7);
+
+ // For now, the EPnP doesn't have a non-linear optimization step and so is
+ // not precise enough with only 4 points.
+ //
+ // TODO(jmichot): Reenable this test when there is nonlinear refinement.
+#if 0
+ R_output.setIdentity();
+ T_output.setZero();
+
+ EuclideanResection(x_camera, X_world,
+ &R_output, &T_output,
+ RESECTION_EPNP);
+
+ EXPECT_MATRIX_NEAR(T_output, T_expected, 1e-5);
+ EXPECT_MATRIX_NEAR(R_output, R_expected, 1e-7);*/
+#endif
+}
+
+// TODO(jmichot): Reduce the code duplication here with the code above.
+TEST(EuclideanResection, Points6AllRandomInput) {
+ Mat3 KK;
+ KK << 2796, 0, 804,
+ 0 , 2796, 641,
+ 0, 0, 1;
+
+ // Create random image points for a 1600x1200 image.
+ int w = 1600;
+ int h = 1200;
+ int num_points = 6;
+ Mat3X x_image(3, num_points);
+ x_image.row(0) = w * Vec::Random(num_points).array().abs();
+ x_image.row(1) = h * Vec::Random(num_points).array().abs();
+ x_image.row(2).setOnes();
+
+ // Normalized camera coordinates to be used as an input to the PnP function.
+ Mat2X x_camera;
+ Vec X_distances = 100 * Vec::Random(num_points).array().abs();
+
+ // Create the random camera motion R and t that resection should recover.
+ Mat3 R_input;
+ R_input = Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitZ())
+ * Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitY())
+ * Eigen::AngleAxisd(rand(), Eigen::Vector3d::UnitZ());
+
+ Vec3 T_input;
+ T_input.setRandom();
+ T_input = 100 * T_input;
+
+ // Create the camera system.
+ Mat3 R_expected;
+ Vec3 T_expected;
+ Mat3X X_world;
+ CreateCameraSystem(KK, x_image, X_distances, R_input, T_input,
+ &x_camera, &X_world, &R_expected, &T_expected);
+
+ // Test each of the resection methods.
+ {
+ Mat3 R_output;
+ Vec3 T_output;
+ EuclideanResection(x_camera, X_world,
+ &R_output, &T_output,
+ RESECTION_ANSAR_DANIILIDIS);
+ EXPECT_MATRIX_NEAR(T_output, T_expected, 1e-5);
+ EXPECT_MATRIX_NEAR(R_output, R_expected, 1e-7);
+ }
+ {
+ Mat3 R_output;
+ Vec3 T_output;
+ EuclideanResection(x_camera, X_world,
+ &R_output, &T_output,
+ RESECTION_EPNP);
+ EXPECT_MATRIX_NEAR(T_output, T_expected, 1e-5);
+ EXPECT_MATRIX_NEAR(R_output, R_expected, 1e-7);
+ }
+ {
+ Mat3 R_output;
+ Vec3 T_output;
+ EuclideanResection(x_image, X_world, KK,
+ &R_output, &T_output);
+ EXPECT_MATRIX_NEAR(T_output, T_expected, 1e-5);
+ EXPECT_MATRIX_NEAR(R_output, R_expected, 1e-7);
+ }
+}
diff --git a/intern/libmv/libmv/multiview/fundamental.cc b/intern/libmv/libmv/multiview/fundamental.cc
new file mode 100644
index 00000000000..ea8594c8cc0
--- /dev/null
+++ b/intern/libmv/libmv/multiview/fundamental.cc
@@ -0,0 +1,544 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/fundamental.h"
+
+#include "ceres/ceres.h"
+#include "libmv/logging/logging.h"
+#include "libmv/numeric/numeric.h"
+#include "libmv/numeric/poly.h"
+#include "libmv/multiview/conditioning.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/triangulation.h"
+
+namespace libmv {
+
+static void EliminateRow(const Mat34 &P, int row, Mat *X) {
+ X->resize(2, 4);
+
+ int first_row = (row + 1) % 3;
+ int second_row = (row + 2) % 3;
+
+ for (int i = 0; i < 4; ++i) {
+ (*X)(0, i) = P(first_row, i);
+ (*X)(1, i) = P(second_row, i);
+ }
+}
+
+void ProjectionsFromFundamental(const Mat3 &F, Mat34 *P1, Mat34 *P2) {
+ *P1 << Mat3::Identity(), Vec3::Zero();
+ Vec3 e2;
+ Mat3 Ft = F.transpose();
+ Nullspace(&Ft, &e2);
+ *P2 << CrossProductMatrix(e2) * F, e2;
+}
+
+// Addapted from vgg_F_from_P.
+void FundamentalFromProjections(const Mat34 &P1, const Mat34 &P2, Mat3 *F) {
+ Mat X[3];
+ Mat Y[3];
+ Mat XY;
+
+ for (int i = 0; i < 3; ++i) {
+ EliminateRow(P1, i, X + i);
+ EliminateRow(P2, i, Y + i);
+ }
+
+ for (int i = 0; i < 3; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ VerticalStack(X[j], Y[i], &XY);
+ (*F)(i, j) = XY.determinant();
+ }
+ }
+}
+
+// HZ 11.1 pag.279 (x1 = x, x2 = x')
+// http://www.cs.unc.edu/~marc/tutorial/node54.html
+static double EightPointSolver(const Mat &x1, const Mat &x2, Mat3 *F) {
+ DCHECK_EQ(x1.rows(), 2);
+ DCHECK_GE(x1.cols(), 8);
+ DCHECK_EQ(x1.rows(), x2.rows());
+ DCHECK_EQ(x1.cols(), x2.cols());
+
+ int n = x1.cols();
+ Mat A(n, 9);
+ for (int i = 0; i < n; ++i) {
+ A(i, 0) = x2(0, i) * x1(0, i);
+ A(i, 1) = x2(0, i) * x1(1, i);
+ A(i, 2) = x2(0, i);
+ A(i, 3) = x2(1, i) * x1(0, i);
+ A(i, 4) = x2(1, i) * x1(1, i);
+ A(i, 5) = x2(1, i);
+ A(i, 6) = x1(0, i);
+ A(i, 7) = x1(1, i);
+ A(i, 8) = 1;
+ }
+
+ Vec9 f;
+ double smaller_singular_value = Nullspace(&A, &f);
+ *F = Map<RMat3>(f.data());
+ return smaller_singular_value;
+}
+
+// HZ 11.1.1 pag.280
+void EnforceFundamentalRank2Constraint(Mat3 *F) {
+ Eigen::JacobiSVD<Mat3> USV(*F, Eigen::ComputeFullU | Eigen::ComputeFullV);
+ Vec3 d = USV.singularValues();
+ d(2) = 0.0;
+ *F = USV.matrixU() * d.asDiagonal() * USV.matrixV().transpose();
+}
+
+// HZ 11.2 pag.281 (x1 = x, x2 = x')
+double NormalizedEightPointSolver(const Mat &x1,
+ const Mat &x2,
+ Mat3 *F) {
+ DCHECK_EQ(x1.rows(), 2);
+ DCHECK_GE(x1.cols(), 8);
+ DCHECK_EQ(x1.rows(), x2.rows());
+ DCHECK_EQ(x1.cols(), x2.cols());
+
+ // Normalize the data.
+ Mat3 T1, T2;
+ PreconditionerFromPoints(x1, &T1);
+ PreconditionerFromPoints(x2, &T2);
+ Mat x1_normalized, x2_normalized;
+ ApplyTransformationToPoints(x1, T1, &x1_normalized);
+ ApplyTransformationToPoints(x2, T2, &x2_normalized);
+
+ // Estimate the fundamental matrix.
+ double smaller_singular_value =
+ EightPointSolver(x1_normalized, x2_normalized, F);
+ EnforceFundamentalRank2Constraint(F);
+
+ // Denormalize the fundamental matrix.
+ *F = T2.transpose() * (*F) * T1;
+
+ return smaller_singular_value;
+}
+
+// Seven-point algorithm.
+// http://www.cs.unc.edu/~marc/tutorial/node55.html
+double FundamentalFrom7CorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ std::vector<Mat3> *F) {
+ DCHECK_EQ(x1.rows(), 2);
+ DCHECK_EQ(x1.cols(), 7);
+ DCHECK_EQ(x1.rows(), x2.rows());
+ DCHECK_EQ(x2.cols(), x2.cols());
+
+ // Build a 9 x n matrix from point matches, where each row is equivalent to
+ // the equation x'T*F*x = 0 for a single correspondence pair (x', x). The
+ // domain of the matrix is a 9 element vector corresponding to F. The
+ // nullspace should be rank two; the two dimensions correspond to the set of
+ // F matrices satisfying the epipolar geometry.
+ Matrix<double, 7, 9> A;
+ for (int ii = 0; ii < 7; ++ii) {
+ A(ii, 0) = x1(0, ii) * x2(0, ii); // 0 represents x coords,
+ A(ii, 1) = x1(1, ii) * x2(0, ii); // 1 represents y coords.
+ A(ii, 2) = x2(0, ii);
+ A(ii, 3) = x1(0, ii) * x2(1, ii);
+ A(ii, 4) = x1(1, ii) * x2(1, ii);
+ A(ii, 5) = x2(1, ii);
+ A(ii, 6) = x1(0, ii);
+ A(ii, 7) = x1(1, ii);
+ A(ii, 8) = 1.0;
+ }
+
+ // Find the two F matrices in the nullspace of A.
+ Vec9 f1, f2;
+ double s = Nullspace2(&A, &f1, &f2);
+ Mat3 F1 = Map<RMat3>(f1.data());
+ Mat3 F2 = Map<RMat3>(f2.data());
+
+ // Then, use the condition det(F) = 0 to determine F. In other words, solve
+ // det(F1 + a*F2) = 0 for a.
+ double a = F1(0, 0), j = F2(0, 0),
+ b = F1(0, 1), k = F2(0, 1),
+ c = F1(0, 2), l = F2(0, 2),
+ d = F1(1, 0), m = F2(1, 0),
+ e = F1(1, 1), n = F2(1, 1),
+ f = F1(1, 2), o = F2(1, 2),
+ g = F1(2, 0), p = F2(2, 0),
+ h = F1(2, 1), q = F2(2, 1),
+ i = F1(2, 2), r = F2(2, 2);
+
+ // Run fundamental_7point_coeffs.py to get the below coefficients.
+ // The coefficients are in ascending powers of alpha, i.e. P[N]*x^N.
+ double P[4] = {
+ a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g,
+ a*e*r + a*i*n + b*f*p + b*g*o + c*d*q + c*h*m + d*h*l + e*i*j + f*g*k -
+ a*f*q - a*h*o - b*d*r - b*i*m - c*e*p - c*g*n - d*i*k - e*g*l - f*h*j,
+ a*n*r + b*o*p + c*m*q + d*l*q + e*j*r + f*k*p + g*k*o + h*l*m + i*j*n -
+ a*o*q - b*m*r - c*n*p - d*k*r - e*l*p - f*j*q - g*l*n - h*j*o - i*k*m,
+ j*n*r + k*o*p + l*m*q - j*o*q - k*m*r - l*n*p,
+ };
+
+ // Solve for the roots of P[3]*x^3 + P[2]*x^2 + P[1]*x + P[0] = 0.
+ double roots[3];
+ int num_roots = SolveCubicPolynomial(P, roots);
+
+ // Build the fundamental matrix for each solution.
+ for (int kk = 0; kk < num_roots; ++kk) {
+ F->push_back(F1 + roots[kk] * F2);
+ }
+ return s;
+}
+
+double FundamentalFromCorrespondences7Point(const Mat &x1,
+ const Mat &x2,
+ std::vector<Mat3> *F) {
+ DCHECK_EQ(x1.rows(), 2);
+ DCHECK_GE(x1.cols(), 7);
+ DCHECK_EQ(x1.rows(), x2.rows());
+ DCHECK_EQ(x1.cols(), x2.cols());
+
+ // Normalize the data.
+ Mat3 T1, T2;
+ PreconditionerFromPoints(x1, &T1);
+ PreconditionerFromPoints(x2, &T2);
+ Mat x1_normalized, x2_normalized;
+ ApplyTransformationToPoints(x1, T1, &x1_normalized);
+ ApplyTransformationToPoints(x2, T2, &x2_normalized);
+
+ // Estimate the fundamental matrix.
+ double smaller_singular_value =
+ FundamentalFrom7CorrespondencesLinear(x1_normalized, x2_normalized, &(*F));
+
+ for (int k = 0; k < F->size(); ++k) {
+ Mat3 & Fmat = (*F)[k];
+ // Denormalize the fundamental matrix.
+ Fmat = T2.transpose() * Fmat * T1;
+ }
+ return smaller_singular_value;
+}
+
+void NormalizeFundamental(const Mat3 &F, Mat3 *F_normalized) {
+ *F_normalized = F / FrobeniusNorm(F);
+ if ((*F_normalized)(2, 2) < 0) {
+ *F_normalized *= -1;
+ }
+}
+
+double SampsonDistance(const Mat &F, const Vec2 &x1, const Vec2 &x2) {
+ Vec3 x(x1(0), x1(1), 1.0);
+ Vec3 y(x2(0), x2(1), 1.0);
+
+ Vec3 F_x = F * x;
+ Vec3 Ft_y = F.transpose() * y;
+ double y_F_x = y.dot(F_x);
+
+ return Square(y_F_x) / ( F_x.head<2>().squaredNorm()
+ + Ft_y.head<2>().squaredNorm());
+}
+
+double SymmetricEpipolarDistance(const Mat &F, const Vec2 &x1, const Vec2 &x2) {
+ Vec3 x(x1(0), x1(1), 1.0);
+ Vec3 y(x2(0), x2(1), 1.0);
+
+ Vec3 F_x = F * x;
+ Vec3 Ft_y = F.transpose() * y;
+ double y_F_x = y.dot(F_x);
+
+ return Square(y_F_x) * ( 1 / F_x.head<2>().squaredNorm()
+ + 1 / Ft_y.head<2>().squaredNorm());
+}
+
+// HZ 9.6 pag 257 (formula 9.12)
+void EssentialFromFundamental(const Mat3 &F,
+ const Mat3 &K1,
+ const Mat3 &K2,
+ Mat3 *E) {
+ *E = K2.transpose() * F * K1;
+}
+
+// HZ 9.6 pag 257 (formula 9.12)
+// Or http://ai.stanford.edu/~birch/projective/node20.html
+void FundamentalFromEssential(const Mat3 &E,
+ const Mat3 &K1,
+ const Mat3 &K2,
+ Mat3 *F) {
+ *F = K2.inverse().transpose() * E * K1.inverse();
+}
+
+void RelativeCameraMotion(const Mat3 &R1,
+ const Vec3 &t1,
+ const Mat3 &R2,
+ const Vec3 &t2,
+ Mat3 *R,
+ Vec3 *t) {
+ *R = R2 * R1.transpose();
+ *t = t2 - (*R) * t1;
+}
+
+// HZ 9.6 pag 257
+void EssentialFromRt(const Mat3 &R1,
+ const Vec3 &t1,
+ const Mat3 &R2,
+ const Vec3 &t2,
+ Mat3 *E) {
+ Mat3 R;
+ Vec3 t;
+ RelativeCameraMotion(R1, t1, R2, t2, &R, &t);
+ Mat3 Tx = CrossProductMatrix(t);
+ *E = Tx * R;
+}
+
+// HZ 9.6 pag 259 (Result 9.19)
+void MotionFromEssential(const Mat3 &E,
+ std::vector<Mat3> *Rs,
+ std::vector<Vec3> *ts) {
+ Eigen::JacobiSVD<Mat3> USV(E, Eigen::ComputeFullU | Eigen::ComputeFullV);
+ Mat3 U = USV.matrixU();
+ Mat3 Vt = USV.matrixV().transpose();
+
+ // Last column of U is undetermined since d = (a a 0).
+ if (U.determinant() < 0) {
+ U.col(2) *= -1;
+ }
+ // Last row of Vt is undetermined since d = (a a 0).
+ if (Vt.determinant() < 0) {
+ Vt.row(2) *= -1;
+ }
+
+ Mat3 W;
+ W << 0, -1, 0,
+ 1, 0, 0,
+ 0, 0, 1;
+
+ Mat3 U_W_Vt = U * W * Vt;
+ Mat3 U_Wt_Vt = U * W.transpose() * Vt;
+
+ Rs->resize(4);
+ (*Rs)[0] = U_W_Vt;
+ (*Rs)[1] = U_W_Vt;
+ (*Rs)[2] = U_Wt_Vt;
+ (*Rs)[3] = U_Wt_Vt;
+
+ ts->resize(4);
+ (*ts)[0] = U.col(2);
+ (*ts)[1] = -U.col(2);
+ (*ts)[2] = U.col(2);
+ (*ts)[3] = -U.col(2);
+}
+
+int MotionFromEssentialChooseSolution(const std::vector<Mat3> &Rs,
+ const std::vector<Vec3> &ts,
+ const Mat3 &K1,
+ const Vec2 &x1,
+ const Mat3 &K2,
+ const Vec2 &x2) {
+ DCHECK_EQ(4, Rs.size());
+ DCHECK_EQ(4, ts.size());
+
+ Mat34 P1, P2;
+ Mat3 R1;
+ Vec3 t1;
+ R1.setIdentity();
+ t1.setZero();
+ P_From_KRt(K1, R1, t1, &P1);
+ for (int i = 0; i < 4; ++i) {
+ const Mat3 &R2 = Rs[i];
+ const Vec3 &t2 = ts[i];
+ P_From_KRt(K2, R2, t2, &P2);
+ Vec3 X;
+ TriangulateDLT(P1, x1, P2, x2, &X);
+ double d1 = Depth(R1, t1, X);
+ double d2 = Depth(R2, t2, X);
+ // Test if point is front to the two cameras.
+ if (d1 > 0 && d2 > 0) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+bool MotionFromEssentialAndCorrespondence(const Mat3 &E,
+ const Mat3 &K1,
+ const Vec2 &x1,
+ const Mat3 &K2,
+ const Vec2 &x2,
+ Mat3 *R,
+ Vec3 *t) {
+ std::vector<Mat3> Rs;
+ std::vector<Vec3> ts;
+ MotionFromEssential(E, &Rs, &ts);
+ int solution = MotionFromEssentialChooseSolution(Rs, ts, K1, x1, K2, x2);
+ if (solution >= 0) {
+ *R = Rs[solution];
+ *t = ts[solution];
+ return true;
+ } else {
+ return false;
+ }
+}
+
+void FundamentalToEssential(const Mat3 &F, Mat3 *E) {
+ Eigen::JacobiSVD<Mat3> svd(F, Eigen::ComputeFullU | Eigen::ComputeFullV);
+
+ // See Hartley & Zisserman page 294, result 11.1, which shows how to get the
+ // closest essential matrix to a matrix that is "almost" an essential matrix.
+ double a = svd.singularValues()(0);
+ double b = svd.singularValues()(1);
+ double s = (a + b) / 2.0;
+
+ LG << "Initial reconstruction's rotation is non-euclidean by "
+ << (((a - b) / std::max(a, b)) * 100) << "%; singular values:"
+ << svd.singularValues().transpose();
+
+ Vec3 diag;
+ diag << s, s, 0;
+
+ *E = svd.matrixU() * diag.asDiagonal() * svd.matrixV().transpose();
+}
+
+// Default settings for fundamental estimation which should be suitable
+// for a wide range of use cases.
+EstimateFundamentalOptions::EstimateFundamentalOptions(void) :
+ max_num_iterations(50),
+ expected_average_symmetric_distance(1e-16) {
+}
+
+namespace {
+// Cost functor which computes symmetric epipolar distance
+// used for fundamental matrix refinement.
+class FundamentalSymmetricEpipolarCostFunctor {
+ public:
+ FundamentalSymmetricEpipolarCostFunctor(const Vec2 &x,
+ const Vec2 &y)
+ : x_(x), y_(y) {}
+
+ template<typename T>
+ bool operator()(const T *fundamental_parameters, T *residuals) const {
+ typedef Eigen::Matrix<T, 3, 3> Mat3;
+ typedef Eigen::Matrix<T, 3, 1> Vec3;
+
+ Mat3 F(fundamental_parameters);
+
+ Vec3 x(T(x_(0)), T(x_(1)), T(1.0));
+ Vec3 y(T(y_(0)), T(y_(1)), T(1.0));
+
+ Vec3 F_x = F * x;
+ Vec3 Ft_y = F.transpose() * y;
+ T y_F_x = y.dot(F_x);
+
+ residuals[0] = y_F_x * T(1) / F_x.head(2).norm();
+ residuals[1] = y_F_x * T(1) / Ft_y.head(2).norm();
+
+ return true;
+ }
+
+ const Mat x_;
+ const Mat y_;
+};
+
+// Termination checking callback used for fundamental estimation.
+// It finished the minimization as soon as actual average of
+// symmetric epipolar distance is less or equal to the expected
+// average value.
+class TerminationCheckingCallback : public ceres::IterationCallback {
+ public:
+ TerminationCheckingCallback(const Mat &x1, const Mat &x2,
+ const EstimateFundamentalOptions &options,
+ Mat3 *F)
+ : options_(options), x1_(x1), x2_(x2), F_(F) {}
+
+ virtual ceres::CallbackReturnType operator()(
+ const ceres::IterationSummary& summary) {
+ // If the step wasn't successful, there's nothing to do.
+ if (!summary.step_is_successful) {
+ return ceres::SOLVER_CONTINUE;
+ }
+
+ // Calculate average of symmetric epipolar distance.
+ double average_distance = 0.0;
+ for (int i = 0; i < x1_.cols(); i++) {
+ average_distance = SymmetricEpipolarDistance(*F_,
+ x1_.col(i),
+ x2_.col(i));
+ }
+ average_distance /= x1_.cols();
+
+ if (average_distance <= options_.expected_average_symmetric_distance) {
+ return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
+ }
+
+ return ceres::SOLVER_CONTINUE;
+ }
+
+ private:
+ const EstimateFundamentalOptions &options_;
+ const Mat &x1_;
+ const Mat &x2_;
+ Mat3 *F_;
+};
+} // namespace
+
+/* Fundamental transformation estimation. */
+bool EstimateFundamentalFromCorrespondences(
+ const Mat &x1,
+ const Mat &x2,
+ const EstimateFundamentalOptions &options,
+ Mat3 *F) {
+ // Step 1: Algebraic fundamental estimation.
+
+ // Assume algebraic estiation always succeeds,
+ NormalizedEightPointSolver(x1, x2, F);
+
+ LG << "Estimated matrix after algebraic estimation:\n" << *F;
+
+ // Step 2: Refine matrix using Ceres minimizer.
+ ceres::Problem problem;
+ for (int i = 0; i < x1.cols(); i++) {
+ FundamentalSymmetricEpipolarCostFunctor
+ *fundamental_symmetric_epipolar_cost_function =
+ new FundamentalSymmetricEpipolarCostFunctor(x1.col(i),
+ x2.col(i));
+
+ problem.AddResidualBlock(
+ new ceres::AutoDiffCostFunction<
+ FundamentalSymmetricEpipolarCostFunctor,
+ 2, // num_residuals
+ 9>(fundamental_symmetric_epipolar_cost_function),
+ NULL,
+ F->data());
+ }
+
+ // Configure the solve.
+ ceres::Solver::Options solver_options;
+ solver_options.linear_solver_type = ceres::DENSE_QR;
+ solver_options.max_num_iterations = options.max_num_iterations;
+ solver_options.update_state_every_iteration = true;
+
+ // Terminate if the average symmetric distance is good enough.
+ TerminationCheckingCallback callback(x1, x2, options, F);
+ solver_options.callbacks.push_back(&callback);
+
+ // Run the solve.
+ ceres::Solver::Summary summary;
+ ceres::Solve(solver_options, &problem, &summary);
+
+ VLOG(1) << "Summary:\n" << summary.FullReport();
+
+ LG << "Final refined matrix:\n" << *F;
+
+ return summary.IsSolutionUsable();
+}
+
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/fundamental.h b/intern/libmv/libmv/multiview/fundamental.h
new file mode 100644
index 00000000000..a6c7a6802fe
--- /dev/null
+++ b/intern/libmv/libmv/multiview/fundamental.h
@@ -0,0 +1,180 @@
+// Copyright (c) 2007, 2008, 2011 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_FUNDAMENTAL_H_
+#define LIBMV_MULTIVIEW_FUNDAMENTAL_H_
+
+#include <vector>
+
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+void ProjectionsFromFundamental(const Mat3 &F, Mat34 *P1, Mat34 *P2);
+void FundamentalFromProjections(const Mat34 &P1, const Mat34 &P2, Mat3 *F);
+
+/**
+ * 7 points (minimal case, points coordinates must be normalized before):
+ */
+double FundamentalFrom7CorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ std::vector<Mat3> *F);
+
+/**
+ * 7 points (points coordinates must be in image space):
+ */
+double FundamentalFromCorrespondences7Point(const Mat &x1,
+ const Mat &x2,
+ std::vector<Mat3> *F);
+
+/**
+ * 8 points (points coordinates must be in image space):
+ */
+double NormalizedEightPointSolver(const Mat &x1,
+ const Mat &x2,
+ Mat3 *F);
+
+/**
+ * Fundamental matrix utility function:
+ */
+void EnforceFundamentalRank2Constraint(Mat3 *F);
+
+void NormalizeFundamental(const Mat3 &F, Mat3 *F_normalized);
+
+/**
+ * Approximate squared reprojection errror.
+ *
+ * See page 287 of HZ equation 11.9. This avoids triangulating the point,
+ * relying only on the entries in F.
+ */
+double SampsonDistance(const Mat &F, const Vec2 &x1, const Vec2 &x2);
+
+/**
+ * Calculates the sum of the distances from the points to the epipolar lines.
+ *
+ * See page 288 of HZ equation 11.10.
+ */
+double SymmetricEpipolarDistance(const Mat &F, const Vec2 &x1, const Vec2 &x2);
+
+/**
+ * Compute the relative camera motion between two cameras.
+ *
+ * Given the motion parameters of two cameras, computes the motion parameters
+ * of the second one assuming the first one to be at the origin.
+ * If T1 and T2 are the camera motions, the computed relative motion is
+ * T = T2 T1^{-1}
+ */
+void RelativeCameraMotion(const Mat3 &R1,
+ const Vec3 &t1,
+ const Mat3 &R2,
+ const Vec3 &t2,
+ Mat3 *R,
+ Vec3 *t);
+
+void EssentialFromFundamental(const Mat3 &F,
+ const Mat3 &K1,
+ const Mat3 &K2,
+ Mat3 *E);
+
+void FundamentalFromEssential(const Mat3 &E,
+ const Mat3 &K1,
+ const Mat3 &K2,
+ Mat3 *F);
+
+void EssentialFromRt(const Mat3 &R1,
+ const Vec3 &t1,
+ const Mat3 &R2,
+ const Vec3 &t2,
+ Mat3 *E);
+
+void MotionFromEssential(const Mat3 &E,
+ std::vector<Mat3> *Rs,
+ std::vector<Vec3> *ts);
+
+/**
+ * Choose one of the four possible motion solutions from an essential matrix.
+ *
+ * Decides the right solution by checking that the triangulation of a match
+ * x1--x2 lies in front of the cameras. See HZ 9.6 pag 259 (9.6.3 Geometrical
+ * interpretation of the 4 solutions)
+ *
+ * \return index of the right solution or -1 if no solution.
+ */
+int MotionFromEssentialChooseSolution(const std::vector<Mat3> &Rs,
+ const std::vector<Vec3> &ts,
+ const Mat3 &K1,
+ const Vec2 &x1,
+ const Mat3 &K2,
+ const Vec2 &x2);
+
+bool MotionFromEssentialAndCorrespondence(const Mat3 &E,
+ const Mat3 &K1,
+ const Vec2 &x1,
+ const Mat3 &K2,
+ const Vec2 &x2,
+ Mat3 *R,
+ Vec3 *t);
+
+/**
+ * Find closest essential matrix E to fundamental F
+ */
+void FundamentalToEssential(const Mat3 &F, Mat3 *E);
+
+/**
+ * This structure contains options that controls how the fundamental
+ * estimation operates.
+ *
+ * Defaults should be suitable for a wide range of use cases, but
+ * better performance and accuracy might require tweaking/
+ */
+struct EstimateFundamentalOptions {
+ // Default constructor which sets up a options for generic usage.
+ EstimateFundamentalOptions(void);
+
+ // Maximal number of iterations for refinement step.
+ int max_num_iterations;
+
+ // Expected average of symmetric epipolar distance between
+ // actual destination points and original ones transformed by
+ // estimated fundamental matrix.
+ //
+ // Refinement will finish as soon as average of symmetric
+ // epipolar distance is less or equal to this value.
+ //
+ // This distance is measured in the same units as input points are.
+ double expected_average_symmetric_distance;
+};
+
+/**
+ * Fundamental transformation estimation.
+ *
+ * This function estimates the fundamental transformation from a list of 2D
+ * correspondences by doing algebraic estimation first followed with result
+ * refinement.
+ */
+bool EstimateFundamentalFromCorrespondences(
+ const Mat &x1,
+ const Mat &x2,
+ const EstimateFundamentalOptions &options,
+ Mat3 *F);
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_FUNDAMENTAL_H_
diff --git a/intern/libmv/libmv/multiview/fundamental_test.cc b/intern/libmv/libmv/multiview/fundamental_test.cc
new file mode 100644
index 00000000000..da0eb449b8f
--- /dev/null
+++ b/intern/libmv/libmv/multiview/fundamental_test.cc
@@ -0,0 +1,162 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include <iostream>
+
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/conditioning.h"
+#include "libmv/multiview/fundamental.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/test_data_sets.h"
+#include "libmv/numeric/numeric.h"
+#include "testing/testing.h"
+
+namespace {
+
+using namespace libmv;
+
+TEST(Fundamental, FundamentalFromProjections) {
+ Mat34 P1_gt, P2_gt;
+ P1_gt << 1, 0, 0, 0,
+ 0, 1, 0, 0,
+ 0, 0, 1, 0;
+ P2_gt << 1, 1, 1, 3,
+ 0, 2, 0, 3,
+ 0, 1, 1, 0;
+ Mat3 F_gt;
+ FundamentalFromProjections(P1_gt, P2_gt, &F_gt);
+
+ Mat34 P1, P2;
+ ProjectionsFromFundamental(F_gt, &P1, &P2);
+
+ Mat3 F;
+ FundamentalFromProjections(P1, P2, &F);
+
+ EXPECT_MATRIX_PROP(F_gt, F, 1e-6);
+}
+
+TEST(Fundamental, PreconditionerFromPoints) {
+ int n = 4;
+ Mat points(2, n);
+ points << 0, 0, 1, 1,
+ 0, 2, 1, 3;
+
+ Mat3 T;
+ PreconditionerFromPoints(points, &T);
+
+ Mat normalized_points;
+ ApplyTransformationToPoints(points, T, &normalized_points);
+
+ Vec mean, variance;
+ MeanAndVarianceAlongRows(normalized_points, &mean, &variance);
+
+ EXPECT_NEAR(0, mean(0), 1e-8);
+ EXPECT_NEAR(0, mean(1), 1e-8);
+ EXPECT_NEAR(2, variance(0), 1e-8);
+ EXPECT_NEAR(2, variance(1), 1e-8);
+}
+
+TEST(Fundamental, EssentialFromFundamental) {
+ TwoViewDataSet d = TwoRealisticCameras();
+
+ Mat3 E_from_Rt;
+ EssentialFromRt(d.R1, d.t1, d.R2, d.t2, &E_from_Rt);
+
+ Mat3 E_from_F;
+ EssentialFromFundamental(d.F, d.K1, d.K2, &E_from_F);
+
+ EXPECT_MATRIX_PROP(E_from_Rt, E_from_F, 1e-6);
+}
+
+TEST(Fundamental, MotionFromEssential) {
+ TwoViewDataSet d = TwoRealisticCameras();
+
+ Mat3 E;
+ EssentialFromRt(d.R1, d.t1, d.R2, d.t2, &E);
+
+ Mat3 R;
+ Vec3 t;
+ RelativeCameraMotion(d.R1, d.t1, d.R2, d.t2, &R, &t);
+ NormalizeL2(&t);
+
+ std::vector<Mat3> Rs;
+ std::vector<Vec3> ts;
+ MotionFromEssential(E, &Rs, &ts);
+ bool one_solution_is_correct = false;
+ for (size_t i = 0; i < Rs.size(); ++i) {
+ if (FrobeniusDistance(Rs[i], R) < 1e-8 && DistanceL2(ts[i], t) < 1e-8) {
+ one_solution_is_correct = true;
+ break;
+ }
+ }
+ EXPECT_TRUE(one_solution_is_correct);
+}
+
+TEST(Fundamental, MotionFromEssentialChooseSolution) {
+ TwoViewDataSet d = TwoRealisticCameras();
+
+ Mat3 E;
+ EssentialFromRt(d.R1, d.t1, d.R2, d.t2, &E);
+
+ Mat3 R;
+ Vec3 t;
+ RelativeCameraMotion(d.R1, d.t1, d.R2, d.t2, &R, &t);
+ NormalizeL2(&t);
+
+ std::vector<Mat3> Rs;
+ std::vector<Vec3> ts;
+ MotionFromEssential(E, &Rs, &ts);
+
+ Vec2 x1, x2;
+ MatrixColumn(d.x1, 0, &x1);
+ MatrixColumn(d.x2, 0, &x2);
+ int solution = MotionFromEssentialChooseSolution(Rs, ts, d.K1, x1, d.K2, x2);
+
+ EXPECT_LE(0, solution);
+ EXPECT_LE(solution, 3);
+ EXPECT_LE(FrobeniusDistance(Rs[solution], R), 1e-8);
+ EXPECT_LE(DistanceL2(ts[solution], t), 1e-8);
+}
+
+TEST(Fundamental, MotionFromEssentialAndCorrespondence) {
+ TwoViewDataSet d = TwoRealisticCameras();
+
+ Mat3 E;
+ EssentialFromRt(d.R1, d.t1, d.R2, d.t2, &E);
+
+ Mat3 R;
+ Vec3 t;
+ RelativeCameraMotion(d.R1, d.t1, d.R2, d.t2, &R, &t);
+ NormalizeL2(&t);
+
+ Vec2 x1, x2;
+ MatrixColumn(d.x1, 0, &x1);
+ MatrixColumn(d.x2, 0, &x2);
+
+ Mat3 R_estimated;
+ Vec3 t_estimated;
+ MotionFromEssentialAndCorrespondence(E, d.K1, x1, d.K2, x2,
+ &R_estimated, &t_estimated);
+
+ EXPECT_LE(FrobeniusDistance(R_estimated, R), 1e-8);
+ EXPECT_LE(DistanceL2(t_estimated, t), 1e-8);
+}
+
+} // namespace
diff --git a/intern/libmv/libmv/multiview/homography.cc b/intern/libmv/libmv/multiview/homography.cc
new file mode 100644
index 00000000000..ce533a3ead2
--- /dev/null
+++ b/intern/libmv/libmv/multiview/homography.cc
@@ -0,0 +1,465 @@
+// Copyright (c) 2008, 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/homography.h"
+
+#include "ceres/ceres.h"
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/conditioning.h"
+#include "libmv/multiview/homography_parameterization.h"
+
+namespace libmv {
+/** 2D Homography transformation estimation in the case that points are in
+ * euclidean coordinates.
+ *
+ * x = H y
+ * x and y vector must have the same direction, we could write
+ * crossproduct(|x|, * H * |y| ) = |0|
+ *
+ * | 0 -1 x2| |a b c| |y1| |0|
+ * | 1 0 -x1| * |d e f| * |y2| = |0|
+ * |-x2 x1 0| |g h 1| |1 | |0|
+ *
+ * That gives :
+ *
+ * (-d+x2*g)*y1 + (-e+x2*h)*y2 + -f+x2 |0|
+ * (a-x1*g)*y1 + (b-x1*h)*y2 + c-x1 = |0|
+ * (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f |0|
+ */
+static bool Homography2DFromCorrespondencesLinearEuc(
+ const Mat &x1,
+ const Mat &x2,
+ Mat3 *H,
+ double expected_precision) {
+ assert(2 == x1.rows());
+ assert(4 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ int n = x1.cols();
+ MatX8 L = Mat::Zero(n * 3, 8);
+ Mat b = Mat::Zero(n * 3, 1);
+ for (int i = 0; i < n; ++i) {
+ int j = 3 * i;
+ L(j, 0) = x1(0, i); // a
+ L(j, 1) = x1(1, i); // b
+ L(j, 2) = 1.0; // c
+ L(j, 6) = -x2(0, i) * x1(0, i); // g
+ L(j, 7) = -x2(0, i) * x1(1, i); // h
+ b(j, 0) = x2(0, i); // i
+
+ ++j;
+ L(j, 3) = x1(0, i); // d
+ L(j, 4) = x1(1, i); // e
+ L(j, 5) = 1.0; // f
+ L(j, 6) = -x2(1, i) * x1(0, i); // g
+ L(j, 7) = -x2(1, i) * x1(1, i); // h
+ b(j, 0) = x2(1, i); // i
+
+ // This ensures better stability
+ // TODO(julien) make a lite version without this 3rd set
+ ++j;
+ L(j, 0) = x2(1, i) * x1(0, i); // a
+ L(j, 1) = x2(1, i) * x1(1, i); // b
+ L(j, 2) = x2(1, i); // c
+ L(j, 3) = -x2(0, i) * x1(0, i); // d
+ L(j, 4) = -x2(0, i) * x1(1, i); // e
+ L(j, 5) = -x2(0, i); // f
+ }
+ // Solve Lx=B
+ Vec h = L.fullPivLu().solve(b);
+ Homography2DNormalizedParameterization<double>::To(h, H);
+ if ((L * h).isApprox(b, expected_precision)) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
+/** 2D Homography transformation estimation in the case that points are in
+ * homogeneous coordinates.
+ *
+ * | 0 -x3 x2| |a b c| |y1| -x3*d+x2*g -x3*e+x2*h -x3*f+x2*1 |y1| (-x3*d+x2*g)*y1 (-x3*e+x2*h)*y2 (-x3*f+x2*1)*y3 |0|
+ * | x3 0 -x1| * |d e f| * |y2| = x3*a-x1*g x3*b-x1*h x3*c-x1*1 * |y2| = (x3*a-x1*g)*y1 (x3*b-x1*h)*y2 (x3*c-x1*1)*y3 = |0|
+ * |-x2 x1 0| |g h 1| |y3| -x2*a+x1*d -x2*b+x1*e -x2*c+x1*f |y3| (-x2*a+x1*d)*y1 (-x2*b+x1*e)*y2 (-x2*c+x1*f)*y3 |0|
+ * X = |a b c d e f g h|^t
+ */
+bool Homography2DFromCorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ Mat3 *H,
+ double expected_precision) {
+ if (x1.rows() == 2) {
+ return Homography2DFromCorrespondencesLinearEuc(x1, x2, H,
+ expected_precision);
+ }
+ assert(3 == x1.rows());
+ assert(4 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ const int x = 0;
+ const int y = 1;
+ const int w = 2;
+ int n = x1.cols();
+ MatX8 L = Mat::Zero(n * 3, 8);
+ Mat b = Mat::Zero(n * 3, 1);
+ for (int i = 0; i < n; ++i) {
+ int j = 3 * i;
+ L(j, 0) = x2(w, i) * x1(x, i); // a
+ L(j, 1) = x2(w, i) * x1(y, i); // b
+ L(j, 2) = x2(w, i) * x1(w, i); // c
+ L(j, 6) = -x2(x, i) * x1(x, i); // g
+ L(j, 7) = -x2(x, i) * x1(y, i); // h
+ b(j, 0) = x2(x, i) * x1(w, i);
+
+ ++j;
+ L(j, 3) = x2(w, i) * x1(x, i); // d
+ L(j, 4) = x2(w, i) * x1(y, i); // e
+ L(j, 5) = x2(w, i) * x1(w, i); // f
+ L(j, 6) = -x2(y, i) * x1(x, i); // g
+ L(j, 7) = -x2(y, i) * x1(y, i); // h
+ b(j, 0) = x2(y, i) * x1(w, i);
+
+ // This ensures better stability
+ ++j;
+ L(j, 0) = x2(y, i) * x1(x, i); // a
+ L(j, 1) = x2(y, i) * x1(y, i); // b
+ L(j, 2) = x2(y, i) * x1(w, i); // c
+ L(j, 3) = -x2(x, i) * x1(x, i); // d
+ L(j, 4) = -x2(x, i) * x1(y, i); // e
+ L(j, 5) = -x2(x, i) * x1(w, i); // f
+ }
+ // Solve Lx=B
+ Vec h = L.fullPivLu().solve(b);
+ if ((L * h).isApprox(b, expected_precision)) {
+ Homography2DNormalizedParameterization<double>::To(h, H);
+ return true;
+ } else {
+ return false;
+ }
+}
+
+// Default settings for homography estimation which should be suitable
+// for a wide range of use cases.
+EstimateHomographyOptions::EstimateHomographyOptions(void) :
+ use_normalization(true),
+ max_num_iterations(50),
+ expected_average_symmetric_distance(1e-16) {
+}
+
+namespace {
+void GetNormalizedPoints(const Mat &original_points,
+ Mat *normalized_points,
+ Mat3 *normalization_matrix) {
+ IsotropicPreconditionerFromPoints(original_points, normalization_matrix);
+ ApplyTransformationToPoints(original_points,
+ *normalization_matrix,
+ normalized_points);
+}
+
+// Cost functor which computes symmetric geometric distance
+// used for homography matrix refinement.
+class HomographySymmetricGeometricCostFunctor {
+ public:
+ HomographySymmetricGeometricCostFunctor(const Vec2 &x,
+ const Vec2 &y)
+ : x_(x), y_(y) { }
+
+ template<typename T>
+ bool operator()(const T *homography_parameters, T *residuals) const {
+ typedef Eigen::Matrix<T, 3, 3> Mat3;
+ typedef Eigen::Matrix<T, 3, 1> Vec3;
+
+ Mat3 H(homography_parameters);
+
+ Vec3 x(T(x_(0)), T(x_(1)), T(1.0));
+ Vec3 y(T(y_(0)), T(y_(1)), T(1.0));
+
+ Vec3 H_x = H * x;
+ Vec3 Hinv_y = H.inverse() * y;
+
+ H_x /= H_x(2);
+ Hinv_y /= Hinv_y(2);
+
+ // This is a forward error.
+ residuals[0] = H_x(0) - T(y_(0));
+ residuals[1] = H_x(1) - T(y_(1));
+
+ // This is a backward error.
+ residuals[2] = Hinv_y(0) - T(x_(0));
+ residuals[3] = Hinv_y(1) - T(x_(1));
+
+ return true;
+ }
+
+ const Vec2 x_;
+ const Vec2 y_;
+};
+
+// Termination checking callback used for homography estimation.
+// It finished the minimization as soon as actual average of
+// symmetric geometric distance is less or equal to the expected
+// average value.
+class TerminationCheckingCallback : public ceres::IterationCallback {
+ public:
+ TerminationCheckingCallback(const Mat &x1, const Mat &x2,
+ const EstimateHomographyOptions &options,
+ Mat3 *H)
+ : options_(options), x1_(x1), x2_(x2), H_(H) {}
+
+ virtual ceres::CallbackReturnType operator()(
+ const ceres::IterationSummary& summary) {
+ // If the step wasn't successful, there's nothing to do.
+ if (!summary.step_is_successful) {
+ return ceres::SOLVER_CONTINUE;
+ }
+
+ // Calculate average of symmetric geometric distance.
+ double average_distance = 0.0;
+ for (int i = 0; i < x1_.cols(); i++) {
+ average_distance = SymmetricGeometricDistance(*H_,
+ x1_.col(i),
+ x2_.col(i));
+ }
+ average_distance /= x1_.cols();
+
+ if (average_distance <= options_.expected_average_symmetric_distance) {
+ return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
+ }
+
+ return ceres::SOLVER_CONTINUE;
+ }
+
+ private:
+ const EstimateHomographyOptions &options_;
+ const Mat &x1_;
+ const Mat &x2_;
+ Mat3 *H_;
+};
+} // namespace
+
+/** 2D Homography transformation estimation in the case that points are in
+ * euclidean coordinates.
+ */
+bool EstimateHomography2DFromCorrespondences(
+ const Mat &x1,
+ const Mat &x2,
+ const EstimateHomographyOptions &options,
+ Mat3 *H) {
+ // TODO(sergey): Support homogenous coordinates, not just euclidean.
+
+ assert(2 == x1.rows());
+ assert(4 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ Mat3 T1 = Mat3::Identity(),
+ T2 = Mat3::Identity();
+
+ // Step 1: Algebraic homography estimation.
+ Mat x1_normalized, x2_normalized;
+
+ if (options.use_normalization) {
+ LG << "Estimating homography using normalization.";
+ GetNormalizedPoints(x1, &x1_normalized, &T1);
+ GetNormalizedPoints(x2, &x2_normalized, &T2);
+ } else {
+ x1_normalized = x1;
+ x2_normalized = x2;
+ }
+
+ // Assume algebraic estiation always suceeds,
+ Homography2DFromCorrespondencesLinear(x1_normalized, x2_normalized, H);
+
+ // Denormalize the homography matrix.
+ if (options.use_normalization) {
+ *H = T2.inverse() * (*H) * T1;
+ }
+
+ LG << "Estimated matrix after algebraic estimation:\n" << *H;
+
+ // Step 2: Refine matrix using Ceres minimizer.
+ ceres::Problem problem;
+ for (int i = 0; i < x1.cols(); i++) {
+ HomographySymmetricGeometricCostFunctor
+ *homography_symmetric_geometric_cost_function =
+ new HomographySymmetricGeometricCostFunctor(x1.col(i),
+ x2.col(i));
+
+ problem.AddResidualBlock(
+ new ceres::AutoDiffCostFunction<
+ HomographySymmetricGeometricCostFunctor,
+ 4, // num_residuals
+ 9>(homography_symmetric_geometric_cost_function),
+ NULL,
+ H->data());
+ }
+
+ // Configure the solve.
+ ceres::Solver::Options solver_options;
+ solver_options.linear_solver_type = ceres::DENSE_QR;
+ solver_options.max_num_iterations = options.max_num_iterations;
+ solver_options.update_state_every_iteration = true;
+
+ // Terminate if the average symmetric distance is good enough.
+ TerminationCheckingCallback callback(x1, x2, options, H);
+ solver_options.callbacks.push_back(&callback);
+
+ // Run the solve.
+ ceres::Solver::Summary summary;
+ ceres::Solve(solver_options, &problem, &summary);
+
+ VLOG(1) << "Summary:\n" << summary.FullReport();
+
+ LG << "Final refined matrix:\n" << *H;
+
+ return summary.IsSolutionUsable();
+}
+
+/**
+ * x2 ~ A * x1
+ * x2^t * Hi * A *x1 = 0
+ * H1 = H2 = H3 =
+ * | 0 0 0 1| |-x2w| |0 0 0 0| | 0 | | 0 0 1 0| |-x2z|
+ * | 0 0 0 0| -> | 0 | |0 0 1 0| -> |-x2z| | 0 0 0 0| -> | 0 |
+ * | 0 0 0 0| | 0 | |0-1 0 0| | x2y| |-1 0 0 0| | x2x|
+ * |-1 0 0 0| | x2x| |0 0 0 0| | 0 | | 0 0 0 0| | 0 |
+ * H4 = H5 = H6 =
+ * |0 0 0 0| | 0 | | 0 1 0 0| |-x2y| |0 0 0 0| | 0 |
+ * |0 0 0 1| -> |-x2w| |-1 0 0 0| -> | x2x| |0 0 0 0| -> | 0 |
+ * |0 0 0 0| | 0 | | 0 0 0 0| | 0 | |0 0 0 1| |-x2w|
+ * |0-1 0 0| | x2y| | 0 0 0 0| | 0 | |0 0-1 0| | x2z|
+ * |a b c d|
+ * A = |e f g h|
+ * |i j k l|
+ * |m n o 1|
+ *
+ * x2^t * H1 * A *x1 = (-x2w*a +x2x*m )*x1x + (-x2w*b +x2x*n )*x1y + (-x2w*c +x2x*o )*x1z + (-x2w*d +x2x*1 )*x1w = 0
+ * x2^t * H2 * A *x1 = (-x2z*e +x2y*i )*x1x + (-x2z*f +x2y*j )*x1y + (-x2z*g +x2y*k )*x1z + (-x2z*h +x2y*l )*x1w = 0
+ * x2^t * H3 * A *x1 = (-x2z*a +x2x*i )*x1x + (-x2z*b +x2x*j )*x1y + (-x2z*c +x2x*k )*x1z + (-x2z*d +x2x*l )*x1w = 0
+ * x2^t * H4 * A *x1 = (-x2w*e +x2y*m )*x1x + (-x2w*f +x2y*n )*x1y + (-x2w*g +x2y*o )*x1z + (-x2w*h +x2y*1 )*x1w = 0
+ * x2^t * H5 * A *x1 = (-x2y*a +x2x*e )*x1x + (-x2y*b +x2x*f )*x1y + (-x2y*c +x2x*g )*x1z + (-x2y*d +x2x*h )*x1w = 0
+ * x2^t * H6 * A *x1 = (-x2w*i +x2z*m )*x1x + (-x2w*j +x2z*n )*x1y + (-x2w*k +x2z*o )*x1z + (-x2w*l +x2z*1 )*x1w = 0
+ *
+ * X = |a b c d e f g h i j k l m n o|^t
+*/
+bool Homography3DFromCorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ Mat4 *H,
+ double expected_precision) {
+ assert(4 == x1.rows());
+ assert(5 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+ const int x = 0;
+ const int y = 1;
+ const int z = 2;
+ const int w = 3;
+ int n = x1.cols();
+ MatX15 L = Mat::Zero(n * 6, 15);
+ Mat b = Mat::Zero(n * 6, 1);
+ for (int i = 0; i < n; ++i) {
+ int j = 6 * i;
+ L(j, 0) = -x2(w, i) * x1(x, i); // a
+ L(j, 1) = -x2(w, i) * x1(y, i); // b
+ L(j, 2) = -x2(w, i) * x1(z, i); // c
+ L(j, 3) = -x2(w, i) * x1(w, i); // d
+ L(j, 12) = x2(x, i) * x1(x, i); // m
+ L(j, 13) = x2(x, i) * x1(y, i); // n
+ L(j, 14) = x2(x, i) * x1(z, i); // o
+ b(j, 0) = -x2(x, i) * x1(w, i);
+
+ ++j;
+ L(j, 4) = -x2(z, i) * x1(x, i); // e
+ L(j, 5) = -x2(z, i) * x1(y, i); // f
+ L(j, 6) = -x2(z, i) * x1(z, i); // g
+ L(j, 7) = -x2(z, i) * x1(w, i); // h
+ L(j, 8) = x2(y, i) * x1(x, i); // i
+ L(j, 9) = x2(y, i) * x1(y, i); // j
+ L(j, 10) = x2(y, i) * x1(z, i); // k
+ L(j, 11) = x2(y, i) * x1(w, i); // l
+
+ ++j;
+ L(j, 0) = -x2(z, i) * x1(x, i); // a
+ L(j, 1) = -x2(z, i) * x1(y, i); // b
+ L(j, 2) = -x2(z, i) * x1(z, i); // c
+ L(j, 3) = -x2(z, i) * x1(w, i); // d
+ L(j, 8) = x2(x, i) * x1(x, i); // i
+ L(j, 9) = x2(x, i) * x1(y, i); // j
+ L(j, 10) = x2(x, i) * x1(z, i); // k
+ L(j, 11) = x2(x, i) * x1(w, i); // l
+
+ ++j;
+ L(j, 4) = -x2(w, i) * x1(x, i); // e
+ L(j, 5) = -x2(w, i) * x1(y, i); // f
+ L(j, 6) = -x2(w, i) * x1(z, i); // g
+ L(j, 7) = -x2(w, i) * x1(w, i); // h
+ L(j, 12) = x2(y, i) * x1(x, i); // m
+ L(j, 13) = x2(y, i) * x1(y, i); // n
+ L(j, 14) = x2(y, i) * x1(z, i); // o
+ b(j, 0) = -x2(y, i) * x1(w, i);
+
+ ++j;
+ L(j, 0) = -x2(y, i) * x1(x, i); // a
+ L(j, 1) = -x2(y, i) * x1(y, i); // b
+ L(j, 2) = -x2(y, i) * x1(z, i); // c
+ L(j, 3) = -x2(y, i) * x1(w, i); // d
+ L(j, 4) = x2(x, i) * x1(x, i); // e
+ L(j, 5) = x2(x, i) * x1(y, i); // f
+ L(j, 6) = x2(x, i) * x1(z, i); // g
+ L(j, 7) = x2(x, i) * x1(w, i); // h
+
+ ++j;
+ L(j, 8) = -x2(w, i) * x1(x, i); // i
+ L(j, 9) = -x2(w, i) * x1(y, i); // j
+ L(j, 10) = -x2(w, i) * x1(z, i); // k
+ L(j, 11) = -x2(w, i) * x1(w, i); // l
+ L(j, 12) = x2(z, i) * x1(x, i); // m
+ L(j, 13) = x2(z, i) * x1(y, i); // n
+ L(j, 14) = x2(z, i) * x1(z, i); // o
+ b(j, 0) = -x2(z, i) * x1(w, i);
+ }
+ // Solve Lx=B
+ Vec h = L.fullPivLu().solve(b);
+ if ((L * h).isApprox(b, expected_precision)) {
+ Homography3DNormalizedParameterization<double>::To(h, H);
+ return true;
+ } else {
+ return false;
+ }
+}
+
+double SymmetricGeometricDistance(const Mat3 &H,
+ const Vec2 &x1,
+ const Vec2 &x2) {
+ Vec3 x(x1(0), x1(1), 1.0);
+ Vec3 y(x2(0), x2(1), 1.0);
+
+ Vec3 H_x = H * x;
+ Vec3 Hinv_y = H.inverse() * y;
+
+ H_x /= H_x(2);
+ Hinv_y /= Hinv_y(2);
+
+ return (H_x.head<2>() - y.head<2>()).squaredNorm() +
+ (Hinv_y.head<2>() - x.head<2>()).squaredNorm();
+}
+
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/homography.h b/intern/libmv/libmv/multiview/homography.h
new file mode 100644
index 00000000000..6d810c845ed
--- /dev/null
+++ b/intern/libmv/libmv/multiview/homography.h
@@ -0,0 +1,145 @@
+// Copyright (c) 2011 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_HOMOGRAPHY_H_
+#define LIBMV_MULTIVIEW_HOMOGRAPHY_H_
+
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+/**
+ * 2D homography transformation estimation.
+ *
+ * This function estimates the homography transformation from a list of 2D
+ * correspondences which represents either:
+ *
+ * - 3D points on a plane, with a general moving camera.
+ * - 3D points with a rotating camera (pure rotation).
+ * - 3D points + different planar projections
+ *
+ * \param x1 The first 2xN or 3xN matrix of euclidean or homogeneous points.
+ * \param x2 The second 2xN or 3xN matrix of euclidean or homogeneous points.
+ * \param H The 3x3 homography transformation matrix (8 dof) such that
+ * x2 = H * x1 with |a b c|
+ * H = |d e f|
+ * |g h 1|
+ * \param expected_precision The expected precision in order for instance
+ * to accept almost homography matrices.
+ *
+ * \return True if the transformation estimation has succeeded.
+ * \note There must be at least 4 non-colinear points.
+ */
+bool Homography2DFromCorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ Mat3 *H,
+ double expected_precision =
+ EigenDouble::dummy_precision());
+
+/**
+ * This structure contains options that controls how the homography
+ * estimation operates.
+ *
+ * Defaults should be suitable for a wide range of use cases, but
+ * better performance and accuracy might require tweaking/
+ */
+struct EstimateHomographyOptions {
+ // Default constructor which sets up a options for generic usage.
+ EstimateHomographyOptions(void);
+
+ // Normalize correspondencies before estimating the homography
+ // in order to increase estimation stability.
+ //
+ // Normaliztion will make it so centroid od correspondences
+ // is the coordinate origin and their average distance from
+ // the origin is sqrt(2).
+ //
+ // See:
+ // - R. Hartley and A. Zisserman. Multiple View Geometry in Computer
+ // Vision. Cambridge University Press, second edition, 2003.
+ // - https://www.cs.ubc.ca/grads/resources/thesis/May09/Dubrofsky_Elan.pdf
+ bool use_normalization;
+
+ // Maximal number of iterations for the refinement step.
+ int max_num_iterations;
+
+ // Expected average of symmetric geometric distance between
+ // actual destination points and original ones transformed by
+ // estimated homography matrix.
+ //
+ // Refinement will finish as soon as average of symmetric
+ // geometric distance is less or equal to this value.
+ //
+ // This distance is measured in the same units as input points are.
+ double expected_average_symmetric_distance;
+};
+
+/**
+ * 2D homography transformation estimation.
+ *
+ * This function estimates the homography transformation from a list of 2D
+ * correspondences by doing algebraic estimation first followed with result
+ * refinement.
+ */
+bool EstimateHomography2DFromCorrespondences(
+ const Mat &x1,
+ const Mat &x2,
+ const EstimateHomographyOptions &options,
+ Mat3 *H);
+
+/**
+ * 3D Homography transformation estimation.
+ *
+ * This function can be used in order to estimate the homography transformation
+ * from a list of 3D correspondences.
+ *
+ * \param[in] x1 The first 4xN matrix of homogeneous points
+ * \param[in] x2 The second 4xN matrix of homogeneous points
+ * \param[out] H The 4x4 homography transformation matrix (15 dof) such that
+ * x2 = H * x1 with |a b c d|
+ * H = |e f g h|
+ * |i j k l|
+ * |m n o 1|
+ * \param[in] expected_precision The expected precision in order for instance
+ * to accept almost homography matrices.
+ *
+ * \return true if the transformation estimation has succeeded
+ *
+ * \note Need at least 5 non coplanar points
+ * \note Points coordinates must be in homogeneous coordinates
+ */
+bool Homography3DFromCorrespondencesLinear(const Mat &x1,
+ const Mat &x2,
+ Mat4 *H,
+ double expected_precision =
+ EigenDouble::dummy_precision());
+
+/**
+ * Calculate symmetric geometric cost:
+ *
+ * D(H * x1, x2)^2 + D(H^-1 * x2, x1)
+ */
+double SymmetricGeometricDistance(const Mat3 &H,
+ const Vec2 &x1,
+ const Vec2 &x2);
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_HOMOGRAPHY_H_
diff --git a/intern/libmv/libmv/multiview/homography_error.h b/intern/libmv/libmv/multiview/homography_error.h
new file mode 100644
index 00000000000..f8b9d45e73c
--- /dev/null
+++ b/intern/libmv/libmv/multiview/homography_error.h
@@ -0,0 +1,248 @@
+// Copyright (c) 2011 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_HOMOGRAPHY_ERRORS_H_
+#define LIBMV_MULTIVIEW_HOMOGRAPHY_ERRORS_H_
+
+#include "libmv/multiview/projection.h"
+
+namespace libmv {
+namespace homography {
+namespace homography2D {
+
+ /**
+ * Structure for estimating the asymmetric error between a vector x2 and the
+ * transformed x1 such that
+ * Error = ||x2 - Psi(H * x1)||^2
+ * where Psi is the function that transforms homogeneous to euclidean coords.
+ * \note It should be distributed as Chi-squared with k = 2.
+ */
+struct AsymmetricError {
+ /**
+ * Computes the asymmetric residuals between a set of 2D points x2 and the
+ * transformed 2D point set x1 such that
+ * Residuals_i = x2_i - Psi(H * x1_i)
+ * where Psi is the function that transforms homogeneous to euclidean coords.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \param[in] x2 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \param[out] dx A 2xN matrix of column vectors of residuals errors
+ */
+ static void Residuals(const Mat &H, const Mat &x1,
+ const Mat &x2, Mat2X *dx) {
+ dx->resize(2, x1.cols());
+ Mat3X x2h_est;
+ if (x1.rows() == 2)
+ x2h_est = H * EuclideanToHomogeneous(static_cast<Mat2X>(x1));
+ else
+ x2h_est = H * x1;
+ dx->row(0) = x2h_est.row(0).array() / x2h_est.row(2).array();
+ dx->row(1) = x2h_est.row(1).array() / x2h_est.row(2).array();
+ if (x2.rows() == 2)
+ *dx = x2 - *dx;
+ else
+ *dx = HomogeneousToEuclidean(static_cast<Mat3X>(x2)) - *dx;
+ }
+ /**
+ * Computes the asymmetric residuals between a 2D point x2 and the transformed
+ * 2D point x1 such that
+ * Residuals = x2 - Psi(H * x1)
+ * where Psi is the function that transforms homogeneous to euclidean coords.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \param[in] x2 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \param[out] dx A vector of size 2 of the residual error
+ */
+ static void Residuals(const Mat &H, const Vec &x1,
+ const Vec &x2, Vec2 *dx) {
+ Vec3 x2h_est;
+ if (x1.rows() == 2)
+ x2h_est = H * EuclideanToHomogeneous(static_cast<Vec2>(x1));
+ else
+ x2h_est = H * x1;
+ if (x2.rows() == 2)
+ *dx = x2 - x2h_est.head<2>() / x2h_est[2];
+ else
+ *dx = HomogeneousToEuclidean(static_cast<Vec3>(x2)) -
+ x2h_est.head<2>() / x2h_est[2];
+ }
+ /**
+ * Computes the squared norm of the residuals between a set of 2D points x2
+ * and the transformed 2D point set x1 such that
+ * Error = || x2 - Psi(H * x1) ||^2
+ * where Psi is the function that transforms homogeneous to euclidean coords.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \param[in] x2 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \return The squared norm of the asymmetric residuals errors
+ */
+ static double Error(const Mat &H, const Mat &x1, const Mat &x2) {
+ Mat2X dx;
+ Residuals(H, x1, x2, &dx);
+ return dx.squaredNorm();
+ }
+ /**
+ * Computes the squared norm of the residuals between a 2D point x2 and the
+ * transformed 2D point x1 such that rms = || x2 - Psi(H * x1) ||^2
+ * where Psi is the function that transforms homogeneous to euclidean coords.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \param[in] x2 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \return The squared norm of the asymmetric residual error
+ */
+ static double Error(const Mat &H, const Vec &x1, const Vec &x2) {
+ Vec2 dx;
+ Residuals(H, x1, x2, &dx);
+ return dx.squaredNorm();
+ }
+};
+
+ /**
+ * Structure for estimating the symmetric error
+ * between a vector x2 and the transformed x1 such that
+ * Error = ||x2 - Psi(H * x1)||^2 + ||x1 - Psi(H^-1 * x2)||^2
+ * where Psi is the function that transforms homogeneous to euclidean coords.
+ * \note It should be distributed as Chi-squared with k = 4.
+ */
+struct SymmetricError {
+ /**
+ * Computes the squared norm of the residuals between x2 and the
+ * transformed x1 such that
+ * Error = ||x2 - Psi(H * x1)||^2 + ||x1 - Psi(H^-1 * x2)||^2
+ * where Psi is the function that transforms homogeneous to euclidean coords.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \param[in] x2 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \return The squared norm of the symmetric residuals errors
+ */
+ static double Error(const Mat &H, const Vec &x1, const Vec &x2) {
+ // TODO(keir): This is awesomely inefficient because it does a 3x3
+ // inversion for each evaluation.
+ Mat3 Hinv = H.inverse();
+ return AsymmetricError::Error(H, x1, x2) +
+ AsymmetricError::Error(Hinv, x2, x1);
+ }
+ // TODO(julien) Add residuals function \see AsymmetricError
+};
+ /**
+ * Structure for estimating the algebraic error (cross product)
+ * between a vector x2 and the transformed x1 such that
+ * Error = ||[x2] * H * x1||^^2
+ * where [x2] is the skew matrix of x2.
+ */
+struct AlgebraicError {
+ // TODO(julien) Make an AlgebraicError2Rows and AlgebraicError3Rows
+
+ /**
+ * Computes the algebraic residuals (cross product) between a set of 2D
+ * points x2 and the transformed 2D point set x1 such that
+ * [x2] * H * x1 where [x2] is the skew matrix of x2.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \param[in] x2 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \param[out] dx A 3xN matrix of column vectors of residuals errors
+ */
+ static void Residuals(const Mat &H, const Mat &x1,
+ const Mat &x2, Mat3X *dx) {
+ dx->resize(3, x1.cols());
+ Vec3 col;
+ for (int i = 0; i < x1.cols(); ++i) {
+ Residuals(H, x1.col(i), x2.col(i), &col);
+ dx->col(i) = col;
+ }
+ }
+ /**
+ * Computes the algebraic residuals (cross product) between a 2D point x2
+ * and the transformed 2D point x1 such that
+ * [x2] * H * x1 where [x2] is the skew matrix of x2.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \param[in] x2 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \param[out] dx A vector of size 3 of the residual error
+ */
+ static void Residuals(const Mat &H, const Vec &x1,
+ const Vec &x2, Vec3 *dx) {
+ Vec3 x2h_est;
+ if (x1.rows() == 2)
+ x2h_est = H * EuclideanToHomogeneous(static_cast<Vec2>(x1));
+ else
+ x2h_est = H * x1;
+ if (x2.rows() == 2)
+ *dx = SkewMat(EuclideanToHomogeneous(static_cast<Vec2>(x2))) * x2h_est;
+ else
+ *dx = SkewMat(x2) * x2h_est;
+ // TODO(julien) This is inefficient since it creates an
+ // identical 3x3 skew matrix for each evaluation.
+ }
+ /**
+ * Computes the squared norm of the algebraic residuals between a set of 2D
+ * points x2 and the transformed 2D point set x1 such that
+ * [x2] * H * x1 where [x2] is the skew matrix of x2.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \param[in] x2 A set of 2D points (2xN or 3xN matrix of column vectors).
+ * \return The squared norm of the asymmetric residuals errors
+ */
+ static double Error(const Mat &H, const Mat &x1, const Mat &x2) {
+ Mat3X dx;
+ Residuals(H, x1, x2, &dx);
+ return dx.squaredNorm();
+ }
+ /**
+ * Computes the squared norm of the algebraic residuals between a 2D point x2
+ * and the transformed 2D point x1 such that
+ * [x2] * H * x1 where [x2] is the skew matrix of x2.
+ *
+ * \param[in] H The 3x3 homography matrix.
+ * The estimated homography should approximatelly hold the condition y = H x.
+ * \param[in] x1 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \param[in] x2 A 2D point (vector of size 2 or 3 (euclidean/homogeneous))
+ * \return The squared norm of the asymmetric residual error
+ */
+ static double Error(const Mat &H, const Vec &x1, const Vec &x2) {
+ Vec3 dx;
+ Residuals(H, x1, x2, &dx);
+ return dx.squaredNorm();
+ }
+};
+// TODO(keir): Add error based on ideal points.
+
+} // namespace homography2D
+// TODO(julien) add homography3D errors
+} // namespace homography
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_HOMOGRAPHY_ERRORS_H_
diff --git a/intern/libmv/libmv/multiview/homography_parameterization.h b/intern/libmv/libmv/multiview/homography_parameterization.h
new file mode 100644
index 00000000000..ca8fbd8066e
--- /dev/null
+++ b/intern/libmv/libmv/multiview/homography_parameterization.h
@@ -0,0 +1,91 @@
+// Copyright (c) 2011 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_HOMOGRAPHY_PARAMETERIZATION_H_
+#define LIBMV_MULTIVIEW_HOMOGRAPHY_PARAMETERIZATION_H_
+
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+/** A parameterization of the 2D homography matrix that uses 8 parameters so
+ * that the matrix is normalized (H(2,2) == 1).
+ * The homography matrix H is built from a list of 8 parameters (a, b,...g, h)
+ * as follows
+ * |a b c|
+ * H = |d e f|
+ * |g h 1|
+ */
+template<typename T = double>
+class Homography2DNormalizedParameterization {
+ public:
+ typedef Eigen::Matrix<T, 8, 1> Parameters; // a, b, ... g, h
+ typedef Eigen::Matrix<T, 3, 3> Parameterized; // H
+
+ /// Convert from the 8 parameters to a H matrix.
+ static void To(const Parameters &p, Parameterized *h) {
+ *h << p(0), p(1), p(2),
+ p(3), p(4), p(5),
+ p(6), p(7), 1.0;
+ }
+
+ /// Convert from a H matrix to the 8 parameters.
+ static void From(const Parameterized &h, Parameters *p) {
+ *p << h(0, 0), h(0, 1), h(0, 2),
+ h(1, 0), h(1, 1), h(1, 2),
+ h(2, 0), h(2, 1);
+ }
+};
+
+/** A parameterization of the 2D homography matrix that uses 15 parameters so
+ * that the matrix is normalized (H(3,3) == 1).
+ * The homography matrix H is built from a list of 15 parameters (a, b,...n, o)
+ * as follows
+ * |a b c d|
+ * H = |e f g h|
+ * |i j k l|
+ * |m n o 1|
+ */
+template<typename T = double>
+class Homography3DNormalizedParameterization {
+ public:
+ typedef Eigen::Matrix<T, 15, 1> Parameters; // a, b, ... n, o
+ typedef Eigen::Matrix<T, 4, 4> Parameterized; // H
+
+ /// Convert from the 15 parameters to a H matrix.
+ static void To(const Parameters &p, Parameterized *h) {
+ *h << p(0), p(1), p(2), p(3),
+ p(4), p(5), p(6), p(7),
+ p(8), p(9), p(10), p(11),
+ p(12), p(13), p(14), 1.0;
+ }
+
+ /// Convert from a H matrix to the 15 parameters.
+ static void From(const Parameterized &h, Parameters *p) {
+ *p << h(0, 0), h(0, 1), h(0, 2), h(0, 3),
+ h(1, 0), h(1, 1), h(1, 2), h(1, 3),
+ h(2, 0), h(2, 1), h(2, 2), h(2, 3),
+ h(3, 0), h(3, 1), h(3, 2);
+ }
+};
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_HOMOGRAPHY_PARAMETERIZATION_H_
diff --git a/intern/libmv/libmv/multiview/homography_test.cc b/intern/libmv/libmv/multiview/homography_test.cc
new file mode 100644
index 00000000000..8d7266e3d11
--- /dev/null
+++ b/intern/libmv/libmv/multiview/homography_test.cc
@@ -0,0 +1,261 @@
+// Copyright (c) 2011 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "testing/testing.h"
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/homography.h"
+
+namespace {
+using namespace libmv;
+
+namespace {
+
+// Check whether homography transform M actually transforms
+// given vectors x1 to x2. Used to check validness of a reconstructed
+// homography matrix.
+// TODO(sergey): Consider using this in all tests since possible homography
+// matrix is not fixed to a single value and different-looking matrices
+// might actually crrespond to the same exact transform.
+void CheckHomography2DTransform(const Mat3 &H,
+ const Mat &x1,
+ const Mat &x2) {
+ for (int i = 0; i < x2.cols(); ++i) {
+ Vec3 x2_expected = x2.col(i);
+ Vec3 x2_observed = H * x1.col(i);
+ x2_observed /= x2_observed(2);
+ EXPECT_MATRIX_NEAR(x2_expected, x2_observed, 1e-8);
+ }
+}
+
+} // namespace
+
+TEST(Homography2DTest, Rotation45AndTranslationXY) {
+ Mat x1(3, 4);
+ x1 << 0, 1, 0, 5,
+ 0, 0, 2, 3,
+ 1, 1, 1, 1;
+
+ double angle = 45.0;
+ Mat3 m;
+ m << cos(angle), -sin(angle), -2,
+ sin(angle), cos(angle), 5,
+ 0, 0, 1;
+
+ Mat x2 = x1;
+ // Transform point from ground truth matrix
+ for (int i = 0; i < x2.cols(); ++i)
+ x2.col(i) = m * x1.col(i);
+
+ Mat3 homography_mat;
+ EXPECT_TRUE(Homography2DFromCorrespondencesLinear(x1, x2, &homography_mat));
+ VLOG(1) << "Mat Homography2D ";
+ VLOG(1) << homography_mat;
+ VLOG(1) << "Mat GT ";
+ VLOG(1) << m;
+ EXPECT_MATRIX_NEAR(homography_mat, m, 1e-8);
+}
+
+TEST(Homography2DTest, AffineGeneral4) {
+ // TODO(julien) find why it doesn't work with 4 points!!!
+ Mat x1(3, 4);
+ x1 << 0, 1, 0, 2,
+ 0, 0, 1, 2,
+ 1, 1, 1, 1;
+ Mat3 m;
+ m << 3, -1, 4,
+ 6, -2, -3,
+ 0, 0, 1;
+
+ Mat x2 = x1;
+ for (int i = 0; i < x2.cols(); ++i) {
+ x2.col(i) = m * x1.col(i);
+ }
+
+ Mat3 homography_mat;
+ EXPECT_TRUE(Homography2DFromCorrespondencesLinear(x1, x2, &homography_mat));
+ VLOG(1) << "Mat Homography2D";
+ VLOG(1) << homography_mat;
+ CheckHomography2DTransform(homography_mat, x1, x2);
+
+ // Test with euclidean coordinates
+ Mat eX1, eX2;
+ HomogeneousToEuclidean(x1, &eX1);
+ HomogeneousToEuclidean(x2, &eX2);
+ homography_mat.setIdentity();
+ EXPECT_TRUE(Homography2DFromCorrespondencesLinear(eX1, eX2, &homography_mat));
+
+ VLOG(1) << "Mat Homography2D ";
+ VLOG(1) << homography_mat;
+ CheckHomography2DTransform(homography_mat, x1, x2);
+}
+
+TEST(Homography2DTest, AffineGeneral5) {
+ Mat x1(3, 5);
+ x1 << 0, 1, 0, 2, 5,
+ 0, 0, 1, 2, 2,
+ 1, 1, 1, 1, 1;
+ Mat3 m;
+ m << 3, -1, 4,
+ 6, -2, -3,
+ 0, 0, 1;
+
+ Mat x2 = x1;
+ for (int i = 0; i < x2.cols(); ++i)
+ x2.col(i) = m * x1.col(i);
+
+ Mat3 homography_mat;
+ EXPECT_TRUE(Homography2DFromCorrespondencesLinear(x1, x2, &homography_mat));
+
+ VLOG(1) << "Mat Homography2D ";
+ VLOG(1) << homography_mat;
+ EXPECT_MATRIX_NEAR(homography_mat, m, 1e-8);
+
+ // Test with euclidean coordinates
+ Mat eX1, eX2;
+ HomogeneousToEuclidean(x1, &eX1);
+ HomogeneousToEuclidean(x2, &eX2);
+ homography_mat.setIdentity();
+ EXPECT_TRUE(Homography2DFromCorrespondencesLinear(eX1, eX2, &homography_mat));
+
+ VLOG(1) << "Mat Homography2D ";
+ VLOG(1) << homography_mat;
+ EXPECT_MATRIX_NEAR(homography_mat, m, 1e-8);
+}
+
+TEST(Homography2DTest, HomographyGeneral) {
+ Mat x1(3, 4);
+ x1 << 0, 1, 0, 5,
+ 0, 0, 2, 3,
+ 1, 1, 1, 1;
+ Mat3 m;
+ m << 3, -1, 4,
+ 6, -2, -3,
+ 1, -3, 1;
+
+ Mat x2 = x1;
+ for (int i = 0; i < x2.cols(); ++i)
+ x2.col(i) = m * x1.col(i);
+
+ Mat3 homography_mat;
+ EXPECT_TRUE(Homography2DFromCorrespondencesLinear(x1, x2, &homography_mat));
+
+ VLOG(1) << "Mat Homography2D ";
+ VLOG(1) << homography_mat;
+ EXPECT_MATRIX_NEAR(homography_mat, m, 1e-8);
+}
+
+TEST(Homography3DTest, RotationAndTranslationXYZ) {
+ Mat x1(4, 5);
+ x1 << 0, 0, 1, 5, 2,
+ 0, 1, 2, 3, 5,
+ 0, 2, 0, 1, 5,
+ 1, 1, 1, 1, 1;
+ Mat4 M;
+ M.setIdentity();
+ /*
+ M = AngleAxisd(45.0, Vector3f::UnitZ())
+ * AngleAxisd(25.0, Vector3f::UnitX())
+ * AngleAxisd(5.0, Vector3f::UnitZ());*/
+
+ // Rotation on x + translation
+ double angle = 45.0;
+ Mat4 rot;
+ rot << 1, 0, 0, 1,
+ 0, cos(angle), -sin(angle), 3,
+ 0, sin(angle), cos(angle), -2,
+ 0, 0, 0, 1;
+ M *= rot;
+ // Rotation on y
+ angle = 25.0;
+ rot << cos(angle), 0, sin(angle), 0,
+ 0, 1, 0, 0,
+ -sin(angle), 0, cos(angle), 0,
+ 0, 0, 0, 1;
+ M *= rot;
+ // Rotation on z
+ angle = 5.0;
+ rot << cos(angle), -sin(angle), 0, 0,
+ sin(angle), cos(angle), 0, 0,
+ 0, 0, 1, 0,
+ 0, 0, 0, 1;
+ M *= rot;
+ Mat x2 = x1;
+ for (int i = 0; i < x2.cols(); ++i) {
+ x2.col(i) = M * x1.col(i);
+ }
+
+ Mat4 homography_mat;
+ EXPECT_TRUE(Homography3DFromCorrespondencesLinear(x1, x2, &homography_mat));
+
+ VLOG(1) << "Mat Homography3D " << homography_mat;
+ VLOG(1) << "Mat GT " << M;
+ EXPECT_MATRIX_NEAR(homography_mat, M, 1e-8);
+}
+
+TEST(Homography3DTest, AffineGeneral) {
+ Mat x1(4, 5);
+ x1 << 0, 0, 1, 5, 2,
+ 0, 1, 2, 3, 5,
+ 0, 2, 0, 1, 5,
+ 1, 1, 1, 1, 1;
+ Mat4 m;
+ m << 3, -1, 4, 1,
+ 6, -2, -3, -6,
+ 1, 0, 1, 2,
+ 0, 0, 0, 1;
+
+ Mat x2 = x1;
+ for (int i = 0; i < x2.cols(); ++i) {
+ x2.col(i) = m * x1.col(i);
+ }
+
+ Mat4 homography_mat;
+ EXPECT_TRUE(Homography3DFromCorrespondencesLinear(x1, x2, &homography_mat));
+ VLOG(1) << "Mat Homography3D ";
+ VLOG(1) << homography_mat;
+ EXPECT_MATRIX_NEAR(homography_mat, m, 1e-8);
+}
+
+TEST(Homography3DTest, HomographyGeneral) {
+ Mat x1(4, 5);
+ x1 << 0, 0, 1, 5, 2,
+ 0, 1, 2, 3, 5,
+ 0, 2, 0, 1, 5,
+ 1, 1, 1, 1, 1;
+ Mat4 m;
+ m << 3, -1, 4, 1,
+ 6, -2, -3, -6,
+ 1, 0, 1, 2,
+ -3, 1, 0, 1;
+
+ Mat x2 = x1;
+ for (int i = 0; i < x2.cols(); ++i) {
+ x2.col(i) = m * x1.col(i);
+ }
+
+ Mat4 homography_mat;
+ EXPECT_TRUE(Homography3DFromCorrespondencesLinear(x1, x2, &homography_mat));
+ VLOG(1) << "Mat Homography3D";
+ VLOG(1) << homography_mat;
+ EXPECT_MATRIX_NEAR(homography_mat, m, 1e-8);
+}
+
+} // namespace
diff --git a/intern/libmv/libmv/multiview/nviewtriangulation.h b/intern/libmv/libmv/multiview/nviewtriangulation.h
new file mode 100644
index 00000000000..f4614ab1a5c
--- /dev/null
+++ b/intern/libmv/libmv/multiview/nviewtriangulation.h
@@ -0,0 +1,80 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+//
+// Compute a 3D position of a point from several images of it. In particular,
+// compute the projective point X in R^4 such that x = PX.
+//
+// Algorithm is the standard DLT; for derivation see appendix of Keir's thesis.
+
+#ifndef LIBMV_MULTIVIEW_NVIEWTRIANGULATION_H
+#define LIBMV_MULTIVIEW_NVIEWTRIANGULATION_H
+
+#include "libmv/base/vector.h"
+#include "libmv/logging/logging.h"
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+// x's are 2D coordinates (x,y,1) in each image; Ps are projective cameras. The
+// output, X, is a homogeneous four vectors.
+template<typename T>
+void NViewTriangulate(const Matrix<T, 2, Dynamic> &x,
+ const vector<Matrix<T, 3, 4> > &Ps,
+ Matrix<T, 4, 1> *X) {
+ int nviews = x.cols();
+ assert(nviews == Ps.size());
+
+ Matrix<T, Dynamic, Dynamic> design(3*nviews, 4 + nviews);
+ design.setConstant(0.0);
+ for (int i = 0; i < nviews; i++) {
+ design.template block<3, 4>(3*i, 0) = -Ps[i];
+ design(3*i + 0, 4 + i) = x(0, i);
+ design(3*i + 1, 4 + i) = x(1, i);
+ design(3*i + 2, 4 + i) = 1.0;
+ }
+ Matrix<T, Dynamic, 1> X_and_alphas;
+ Nullspace(&design, &X_and_alphas);
+ X->resize(4);
+ *X = X_and_alphas.head(4);
+}
+
+// x's are 2D coordinates (x,y,1) in each image; Ps are projective cameras. The
+// output, X, is a homogeneous four vectors.
+// This method uses the algebraic distance approximation.
+// Note that this method works better when the 2D points are normalized
+// with an isotopic normalization.
+template<typename T>
+void NViewTriangulateAlgebraic(const Matrix<T, 2, Dynamic> &x,
+ const vector<Matrix<T, 3, 4> > &Ps,
+ Matrix<T, 4, 1> *X) {
+ int nviews = x.cols();
+ assert(nviews == Ps.size());
+
+ Matrix<T, Dynamic, 4> design(2*nviews, 4);
+ for (int i = 0; i < nviews; i++) {
+ design.template block<2, 4>(2*i, 0) = SkewMatMinimal(x.col(i)) * Ps[i];
+ }
+ X->resize(4);
+ Nullspace(&design, X);
+}
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_RESECTION_H
diff --git a/intern/libmv/libmv/multiview/nviewtriangulation_test.cc b/intern/libmv/libmv/multiview/nviewtriangulation_test.cc
new file mode 100644
index 00000000000..5a4d8499753
--- /dev/null
+++ b/intern/libmv/libmv/multiview/nviewtriangulation_test.cc
@@ -0,0 +1,94 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include <iostream>
+
+#include "libmv/base/vector.h"
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/nviewtriangulation.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/test_data_sets.h"
+#include "libmv/numeric/numeric.h"
+#include "testing/testing.h"
+
+namespace {
+
+using namespace libmv;
+
+TEST(NViewTriangulate, FiveViews) {
+ int nviews = 5;
+ int npoints = 6;
+ NViewDataSet d = NRealisticCamerasFull(nviews, npoints);
+
+ // Collect P matrices together.
+ vector<Mat34> Ps(nviews);
+ for (int j = 0; j < nviews; ++j) {
+ Ps[j] = d.P(j);
+ }
+
+ for (int i = 0; i < npoints; ++i) {
+ // Collect the image of point i in each frame.
+ Mat2X xs(2, nviews);
+ for (int j = 0; j < nviews; ++j) {
+ xs.col(j) = d.x[j].col(i);
+ }
+ Vec4 X;
+ NViewTriangulate(xs, Ps, &X);
+
+ // Check reprojection error. Should be nearly zero.
+ for (int j = 0; j < nviews; ++j) {
+ Vec3 x_reprojected = Ps[j]*X;
+ x_reprojected /= x_reprojected(2);
+ double error = (x_reprojected.head(2) - xs.col(j)).norm();
+ EXPECT_NEAR(error, 0.0, 1e-9);
+ }
+ }
+}
+
+TEST(NViewTriangulateAlgebraic, FiveViews) {
+ int nviews = 5;
+ int npoints = 6;
+ NViewDataSet d = NRealisticCamerasFull(nviews, npoints);
+
+ // Collect P matrices together.
+ vector<Mat34> Ps(nviews);
+ for (int j = 0; j < nviews; ++j) {
+ Ps[j] = d.P(j);
+ }
+
+ for (int i = 0; i < npoints; ++i) {
+ // Collect the image of point i in each frame.
+ Mat2X xs(2, nviews);
+ for (int j = 0; j < nviews; ++j) {
+ xs.col(j) = d.x[j].col(i);
+ }
+ Vec4 X;
+ NViewTriangulate(xs, Ps, &X);
+
+ // Check reprojection error. Should be nearly zero.
+ for (int j = 0; j < nviews; ++j) {
+ Vec3 x_reprojected = Ps[j]*X;
+ x_reprojected /= x_reprojected(2);
+ double error = (x_reprojected.head<2>() - xs.col(j)).norm();
+ EXPECT_NEAR(error, 0.0, 1e-9);
+ }
+ }
+}
+} // namespace
diff --git a/intern/libmv/libmv/multiview/panography.cc b/intern/libmv/libmv/multiview/panography.cc
new file mode 100644
index 00000000000..b62802948c4
--- /dev/null
+++ b/intern/libmv/libmv/multiview/panography.cc
@@ -0,0 +1,125 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+//
+
+#include "libmv/multiview/panography.h"
+
+namespace libmv {
+
+static bool Build_Minimal2Point_PolynomialFactor(
+ const Mat & x1, const Mat & x2,
+ double * P) { // P must be a double[4]
+ assert(2 == x1.rows());
+ assert(2 == x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ // Setup the variable of the input problem:
+ Vec xx1 = (x1.col(0)).transpose();
+ Vec yx1 = (x1.col(1)).transpose();
+
+ double a12 = xx1.dot(yx1);
+ Vec xx2 = (x2.col(0)).transpose();
+ Vec yx2 = (x2.col(1)).transpose();
+ double b12 = xx2.dot(yx2);
+
+ double a1 = xx1.squaredNorm();
+ double a2 = yx1.squaredNorm();
+
+ double b1 = xx2.squaredNorm();
+ double b2 = yx2.squaredNorm();
+
+ // Build the 3rd degre polynomial in F^2.
+ //
+ // f^6 * p + f^4 * q + f^2* r + s = 0;
+ //
+ // Coefficients in ascending powers of alpha, i.e. P[N]*x^N.
+ // Run panography_coeffs.py to get the below coefficients.
+ P[0] = b1*b2*a12*a12-a1*a2*b12*b12;
+ P[1] = -2*a1*a2*b12+2*a12*b1*b2+b1*a12*a12+b2*a12*a12-a1*b12*b12-a2*b12*b12;
+ P[2] = b1*b2-a1*a2-2*a1*b12-2*a2*b12+2*a12*b1+2*a12*b2+a12*a12-b12*b12;
+ P[3] = b1+b2-2*b12-a1-a2+2*a12;
+
+ // If P[3] equal to 0 we get ill conditionned data
+ return (P[3] != 0.0);
+}
+
+// This implements a minimal solution (2 points) for panoramic stitching:
+//
+// http://www.cs.ubc.ca/~mbrown/minimal/minimal.html
+//
+// [1] M. Brown and R. Hartley and D. Nister. Minimal Solutions for Panoramic
+// Stitching. CVPR07.
+void F_FromCorrespondance_2points(const Mat &x1, const Mat &x2,
+ vector<double> *fs) {
+ // Build Polynomial factor to get squared focal value.
+ double P[4];
+ Build_Minimal2Point_PolynomialFactor(x1, x2, &P[0]);
+
+ // Solve it by using F = f^2 and a Cubic polynomial solver
+ //
+ // F^3 * p + F^2 * q + F^1 * r + s = 0
+ //
+ double roots[3];
+ int num_roots = SolveCubicPolynomial(P, roots);
+ for (int i = 0; i < num_roots; ++i) {
+ if (roots[i] > 0.0) {
+ fs->push_back(sqrt(roots[i]));
+ }
+ }
+}
+
+// Compute the 3x3 rotation matrix that fits two 3D point clouds in the least
+// square sense. The method is from:
+//
+// K. Arun,T. Huand and D. Blostein. Least-squares fitting of 2 3-D point
+// sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
+// 9:698-700, 1987.
+void GetR_FixedCameraCenter(const Mat &x1, const Mat &x2,
+ const double focal,
+ Mat3 *R) {
+ assert(3 == x1.rows());
+ assert(2 <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ // Build simplified K matrix
+ Mat3 K(Mat3::Identity() * 1.0/focal);
+ K(2, 2)= 1.0;
+
+ // Build the correlation matrix; equation (22) in [1].
+ Mat3 C = Mat3::Zero();
+ for (int i = 0; i < x1.cols(); ++i) {
+ Mat r1i = (K * x1.col(i)).normalized();
+ Mat r2i = (K * x2.col(i)).normalized();
+ C += r2i * r1i.transpose();
+ }
+
+ // Solve for rotation. Equations (24) and (25) in [1].
+ Eigen::JacobiSVD<Mat> svd(C, Eigen::ComputeThinU | Eigen::ComputeThinV);
+ Mat3 scale = Mat3::Identity();
+ scale(2, 2) = ((svd.matrixU() * svd.matrixV().transpose()).determinant() > 0.0)
+ ? 1.0
+ : -1.0;
+
+ (*R) = svd.matrixU() * scale * svd.matrixV().transpose();
+}
+
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/panography.h b/intern/libmv/libmv/multiview/panography.h
new file mode 100644
index 00000000000..6e87bd71304
--- /dev/null
+++ b/intern/libmv/libmv/multiview/panography.h
@@ -0,0 +1,99 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+//
+
+#ifndef LIBMV_MULTIVIEW_PANOGRAPHY_H
+#define LIBMV_MULTIVIEW_PANOGRAPHY_H
+
+#include "libmv/numeric/numeric.h"
+#include "libmv/numeric/poly.h"
+#include "libmv/base/vector.h"
+
+namespace libmv {
+
+// This implements a minimal solution (2 points) for panoramic stitching:
+//
+// http://www.cs.ubc.ca/~mbrown/minimal/minimal.html
+//
+// [1] M. Brown and R. Hartley and D. Nister. Minimal Solutions for Panoramic
+// Stitching. CVPR07.
+//
+// The 2-point algorithm solves for the rotation of the camera with a single
+// focal length (4 degrees of freedom).
+//
+// Compute from 1 to 3 possible focal lenght for 2 point correspondences.
+// Suppose that the cameras share the same optical center and focal lengths:
+//
+// Image 1 => H*x = x' => Image 2
+// x (u1j) x' (u2j)
+// a (u11) a' (u21)
+// b (u12) b' (u22)
+//
+// The return values are 1 to 3 possible values for the focal lengths such
+// that:
+//
+// [f 0 0]
+// K = [0 f 0]
+// [0 0 1]
+//
+void F_FromCorrespondance_2points(const Mat &x1, const Mat &x2,
+ vector<double> *fs);
+
+// Compute the 3x3 rotation matrix that fits two 3D point clouds in the least
+// square sense. The method is from:
+//
+// K. Arun,T. Huand and D. Blostein. Least-squares fitting of 2 3-D point
+// sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
+// 9:698-700, 1987.
+//
+// Given the calibration matrices K1, K2 solve for the rotation from
+// corresponding image rays.
+//
+// R = min || X2 - R * x1 ||.
+//
+// In case of panography, which is for a camera that shares the same camera
+// center,
+//
+// H = K2 * R * K1.inverse();
+//
+// For the full explanation, see Section 8, Solving for Rotation from [1].
+//
+// Parameters:
+//
+// x1 : Point cloud A (3D coords)
+// x2 : Point cloud B (3D coords)
+//
+// [f 0 0]
+// K1 = [0 f 0]
+// [0 0 1]
+//
+// K2 (the same form as K1, but may have different f)
+//
+// Returns: A rotation matrix that minimizes
+//
+// R = arg min || X2 - R * x1 ||
+//
+void GetR_FixedCameraCenter(const Mat &x1, const Mat &x2,
+ const double focal,
+ Mat3 *R);
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_PANOGRAPHY_H
diff --git a/intern/libmv/libmv/multiview/panography_kernel.cc b/intern/libmv/libmv/multiview/panography_kernel.cc
new file mode 100644
index 00000000000..8fdc9e79aed
--- /dev/null
+++ b/intern/libmv/libmv/multiview/panography_kernel.cc
@@ -0,0 +1,51 @@
+// Copyright (c) 2008, 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/panography_kernel.h"
+#include "libmv/multiview/panography.h"
+
+namespace libmv {
+namespace panography {
+namespace kernel {
+
+void TwoPointSolver::Solve(const Mat &x1, const Mat &x2, vector<Mat3> *Hs) {
+ // Solve for the focal lengths.
+ vector<double> fs;
+ F_FromCorrespondance_2points(x1, x2, &fs);
+
+ // Then solve for the rotations and homographies.
+ Mat x1h, x2h;
+ EuclideanToHomogeneous(x1, &x1h);
+ EuclideanToHomogeneous(x2, &x2h);
+ for (int i = 0; i < fs.size(); ++i) {
+ Mat3 K1 = Mat3::Identity() * fs[i];
+ K1(2, 2) = 1.0;
+
+ Mat3 R;
+ GetR_FixedCameraCenter(x1h, x2h, fs[i], &R);
+ R /= R(2, 2);
+
+ (*Hs).push_back(K1 * R * K1.inverse());
+ }
+}
+
+} // namespace kernel
+} // namespace panography
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/panography_kernel.h b/intern/libmv/libmv/multiview/panography_kernel.h
new file mode 100644
index 00000000000..a6adbd54b20
--- /dev/null
+++ b/intern/libmv/libmv/multiview/panography_kernel.h
@@ -0,0 +1,54 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_PANOGRAPHY_KERNEL_H
+#define LIBMV_MULTIVIEW_PANOGRAPHY_KERNEL_H
+
+#include "libmv/base/vector.h"
+#include "libmv/multiview/conditioning.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/two_view_kernel.h"
+#include "libmv/multiview/homography_error.h"
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+namespace panography {
+namespace kernel {
+
+struct TwoPointSolver {
+ enum { MINIMUM_SAMPLES = 2 };
+ static void Solve(const Mat &x1, const Mat &x2, vector<Mat3> *Hs);
+};
+
+typedef two_view::kernel::Kernel<
+ TwoPointSolver, homography::homography2D::AsymmetricError, Mat3>
+ UnnormalizedKernel;
+
+typedef two_view::kernel::Kernel<
+ two_view::kernel::NormalizedSolver<TwoPointSolver, UnnormalizerI>,
+ homography::homography2D::AsymmetricError,
+ Mat3>
+ Kernel;
+
+} // namespace kernel
+} // namespace panography
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_PANOGRAPHY_KERNEL_H
diff --git a/intern/libmv/libmv/multiview/panography_test.cc b/intern/libmv/libmv/multiview/panography_test.cc
new file mode 100644
index 00000000000..f6faf0f6022
--- /dev/null
+++ b/intern/libmv/libmv/multiview/panography_test.cc
@@ -0,0 +1,144 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/panography.h"
+#include "libmv/multiview/panography_kernel.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/numeric/numeric.h"
+#include "testing/testing.h"
+
+namespace libmv {
+namespace {
+
+TEST(Panography, PrintSomeSharedFocalEstimationValues) {
+ Mat x1(2, 2), x2(2, 2);
+ x1<< 158, 78,
+ 124, 113;
+ x2<< 300, 214,
+ 125, 114;
+
+ // Normalize data (set principal point 0,0 and image border to 1.0).
+ x1.block<1, 2>(0, 0) /= 320;
+ x1.block<1, 2>(1, 0) /= 240;
+ x2.block<1, 2>(0, 0) /= 320;
+ x2.block<1, 2>(1, 0) /= 240;
+ x1+=Mat2::Constant(0.5);
+ x2+=Mat2::Constant(0.5);
+
+ vector<double> fs;
+ F_FromCorrespondance_2points(x1, x2, &fs);
+
+ // Assert we found a valid solution.
+ EXPECT_EQ(1, fs.size());
+ EXPECT_NEAR(1.01667, fs[1], 1e-3);
+}
+
+TEST(Panography, GetR_FixedCameraCenterWithIdentity) {
+ Mat x1(3, 3);
+ x1 << 0.5, 0.6, 0.7,
+ 0.5, 0.5, 0.4,
+ 10.0, 10.0, 10.0;
+
+ Mat3 R;
+ GetR_FixedCameraCenter(x1, x1, 1.0, &R);
+ R /= R(2, 2);
+ EXPECT_MATRIX_NEAR(Mat3::Identity(), R, 1e-8);
+ LOG(INFO) << "R \n" << R;
+}
+
+TEST(Panography, Homography_GetR_Test_PitchY30) {
+ int n = 3;
+
+ Mat x1(3, n);
+ x1 << 0.5, 0.6, 0.7,
+ 0.5, 0.5, 0.4,
+ 10, 10, 10;
+
+ Mat x2 = x1;
+ const double alpha = 30.0 * M_PI / 180.0;
+ Mat3 rotY;
+ rotY << cos(alpha), 0, -sin(alpha),
+ 0, 1, 0,
+ sin(alpha), 0, cos(alpha);
+
+ for (int i = 0; i < n; ++i) {
+ x2.block<3, 1>(0, i) = rotY * x1.col(i);
+ }
+
+ Mat3 R;
+ GetR_FixedCameraCenter(x1, x2, 1.0, &R);
+
+ // Assert that residuals are small enough
+ for (int i = 0; i < n; ++i) {
+ Vec residuals = (R * x1.col(i)) - x2.col(i);
+ EXPECT_NEAR(0, residuals.norm(), 1e-6);
+ }
+
+ // Check that the rotation angle along Y is the expected one.
+ // Use the euler approximation to recover the angle.
+ double pitch_y = asin(R(2, 0)) * 180.0 / M_PI;
+ EXPECT_NEAR(30, pitch_y, 1e-4);
+}
+
+TEST(MinimalPanoramic, Real_Case_Kernel) {
+ const int n = 2;
+ Mat x1(2, n); // From image 0.jpg
+ x1<< 158, 78,
+ 124, 113;
+
+ Mat x2(2, n); // From image 3.jpg
+ x2<< 300, 214,
+ 125, 114;
+
+ Mat3 Ground_TruthHomography;
+ Ground_TruthHomography<< 1, 0.02, 129.83,
+ -0.02, 1.012, 0.07823,
+ 0, 0, 1;
+
+ vector<Mat3> Hs;
+
+ libmv::panography::kernel::TwoPointSolver::Solve(x1, x2, &Hs);
+
+ LOG(INFO) << "Got " << Hs.size() << " solutions.";
+ for (int j = 0; j < Hs.size(); ++j) {
+ Mat3 H = Hs[j];
+
+ EXPECT_MATRIX_NEAR(H, Ground_TruthHomography, 1e-1);
+
+ Mat x1h, x2h;
+ EuclideanToHomogeneous(x1, &x1h);
+ EuclideanToHomogeneous(x2, &x2h);
+
+ // Assert that residuals are small enough
+ for (int i = 0; i < n; ++i) {
+ Vec x1p = H * x1h.col(i);
+ Vec residuals = x1p/x1p(2) - x2h.col(i);
+ EXPECT_MATRIX_NEAR_ZERO(residuals, 1e-5);
+ }
+ }
+}
+
+} // namespace
+} // namespace libmv
+
+// TODO(pmoulon): Add a real test case based on images.
+// TODO(pmoulon): Add a check for the actual f value for the real images.
+// TODO(pmoulon): Add a test that has some inliers and outliers.
diff --git a/intern/libmv/libmv/multiview/projection.cc b/intern/libmv/libmv/multiview/projection.cc
new file mode 100644
index 00000000000..f8bece3de68
--- /dev/null
+++ b/intern/libmv/libmv/multiview/projection.cc
@@ -0,0 +1,224 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/projection.h"
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+void P_From_KRt(const Mat3 &K, const Mat3 &R, const Vec3 &t, Mat34 *P) {
+ P->block<3, 3>(0, 0) = R;
+ P->col(3) = t;
+ (*P) = K * (*P);
+}
+
+void KRt_From_P(const Mat34 &P, Mat3 *Kp, Mat3 *Rp, Vec3 *tp) {
+ // Decompose using the RQ decomposition HZ A4.1.1 pag.579.
+ Mat3 K = P.block(0, 0, 3, 3);
+
+ Mat3 Q;
+ Q.setIdentity();
+
+ // Set K(2,1) to zero.
+ if (K(2, 1) != 0) {
+ double c = -K(2, 2);
+ double s = K(2, 1);
+ double l = sqrt(c * c + s * s);
+ c /= l;
+ s /= l;
+ Mat3 Qx;
+ Qx << 1, 0, 0,
+ 0, c, -s,
+ 0, s, c;
+ K = K * Qx;
+ Q = Qx.transpose() * Q;
+ }
+ // Set K(2,0) to zero.
+ if (K(2, 0) != 0) {
+ double c = K(2, 2);
+ double s = K(2, 0);
+ double l = sqrt(c * c + s * s);
+ c /= l;
+ s /= l;
+ Mat3 Qy;
+ Qy << c, 0, s,
+ 0, 1, 0,
+ -s, 0, c;
+ K = K * Qy;
+ Q = Qy.transpose() * Q;
+ }
+ // Set K(1,0) to zero.
+ if (K(1, 0) != 0) {
+ double c = -K(1, 1);
+ double s = K(1, 0);
+ double l = sqrt(c * c + s * s);
+ c /= l;
+ s /= l;
+ Mat3 Qz;
+ Qz << c, -s, 0,
+ s, c, 0,
+ 0, 0, 1;
+ K = K * Qz;
+ Q = Qz.transpose() * Q;
+ }
+
+ Mat3 R = Q;
+
+ // Ensure that the diagonal is positive.
+ // TODO(pau) Change this to ensure that:
+ // - K(0,0) > 0
+ // - K(2,2) = 1
+ // - det(R) = 1
+ if (K(2, 2) < 0) {
+ K = -K;
+ R = -R;
+ }
+ if (K(1, 1) < 0) {
+ Mat3 S;
+ S << 1, 0, 0,
+ 0, -1, 0,
+ 0, 0, 1;
+ K = K * S;
+ R = S * R;
+ }
+ if (K(0, 0) < 0) {
+ Mat3 S;
+ S << -1, 0, 0,
+ 0, 1, 0,
+ 0, 0, 1;
+ K = K * S;
+ R = S * R;
+ }
+
+ // Compute translation.
+ Vec p(3);
+ p << P(0, 3), P(1, 3), P(2, 3);
+ // TODO(pau) This sould be done by a SolveLinearSystem(A, b, &x) call.
+ // TODO(keir) use the eigen LU solver syntax...
+ Vec3 t = K.inverse() * p;
+
+ // scale K so that K(2,2) = 1
+ K = K / K(2, 2);
+
+ *Kp = K;
+ *Rp = R;
+ *tp = t;
+}
+
+void ProjectionShiftPrincipalPoint(const Mat34 &P,
+ const Vec2 &principal_point,
+ const Vec2 &principal_point_new,
+ Mat34 *P_new) {
+ Mat3 T;
+ T << 1, 0, principal_point_new(0) - principal_point(0),
+ 0, 1, principal_point_new(1) - principal_point(1),
+ 0, 0, 1;
+ *P_new = T * P;
+}
+
+void ProjectionChangeAspectRatio(const Mat34 &P,
+ const Vec2 &principal_point,
+ double aspect_ratio,
+ double aspect_ratio_new,
+ Mat34 *P_new) {
+ Mat3 T;
+ T << 1, 0, 0,
+ 0, aspect_ratio_new / aspect_ratio, 0,
+ 0, 0, 1;
+ Mat34 P_temp;
+
+ ProjectionShiftPrincipalPoint(P, principal_point, Vec2(0, 0), &P_temp);
+ P_temp = T * P_temp;
+ ProjectionShiftPrincipalPoint(P_temp, Vec2(0, 0), principal_point, P_new);
+}
+
+void HomogeneousToEuclidean(const Mat &H, Mat *X) {
+ int d = H.rows() - 1;
+ int n = H.cols();
+ X->resize(d, n);
+ for (size_t i = 0; i < n; ++i) {
+ double h = H(d, i);
+ for (int j = 0; j < d; ++j) {
+ (*X)(j, i) = H(j, i) / h;
+ }
+ }
+}
+
+void HomogeneousToEuclidean(const Mat3X &h, Mat2X *e) {
+ e->resize(2, h.cols());
+ e->row(0) = h.row(0).array() / h.row(2).array();
+ e->row(1) = h.row(1).array() / h.row(2).array();
+}
+void HomogeneousToEuclidean(const Mat4X &h, Mat3X *e) {
+ e->resize(3, h.cols());
+ e->row(0) = h.row(0).array() / h.row(3).array();
+ e->row(1) = h.row(1).array() / h.row(3).array();
+ e->row(2) = h.row(2).array() / h.row(3).array();
+}
+
+void HomogeneousToEuclidean(const Vec3 &H, Vec2 *X) {
+ double w = H(2);
+ *X << H(0) / w, H(1) / w;
+}
+
+void HomogeneousToEuclidean(const Vec4 &H, Vec3 *X) {
+ double w = H(3);
+ *X << H(0) / w, H(1) / w, H(2) / w;
+}
+
+void EuclideanToHomogeneous(const Mat &X, Mat *H) {
+ int d = X.rows();
+ int n = X.cols();
+ H->resize(d + 1, n);
+ H->block(0, 0, d, n) = X;
+ H->row(d).setOnes();
+}
+
+void EuclideanToHomogeneous(const Vec2 &X, Vec3 *H) {
+ *H << X(0), X(1), 1;
+}
+
+void EuclideanToHomogeneous(const Vec3 &X, Vec4 *H) {
+ *H << X(0), X(1), X(2), 1;
+}
+
+// TODO(julien) Call conditioning.h/ApplyTransformationToPoints ?
+void EuclideanToNormalizedCamera(const Mat2X &x, const Mat3 &K, Mat2X *n) {
+ Mat3X x_image_h;
+ EuclideanToHomogeneous(x, &x_image_h);
+ Mat3X x_camera_h = K.inverse() * x_image_h;
+ HomogeneousToEuclidean(x_camera_h, n);
+}
+
+void HomogeneousToNormalizedCamera(const Mat3X &x, const Mat3 &K, Mat2X *n) {
+ Mat3X x_camera_h = K.inverse() * x;
+ HomogeneousToEuclidean(x_camera_h, n);
+}
+
+double Depth(const Mat3 &R, const Vec3 &t, const Vec3 &X) {
+ return (R*X)(2) + t(2);
+}
+
+double Depth(const Mat3 &R, const Vec3 &t, const Vec4 &X) {
+ Vec3 Xe = X.head<3>() / X(3);
+ return Depth(R, t, Xe);
+}
+
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/projection.h b/intern/libmv/libmv/multiview/projection.h
new file mode 100644
index 00000000000..3220bc2dbbc
--- /dev/null
+++ b/intern/libmv/libmv/multiview/projection.h
@@ -0,0 +1,231 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_PROJECTION_H_
+#define LIBMV_MULTIVIEW_PROJECTION_H_
+
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+void P_From_KRt(const Mat3 &K, const Mat3 &R, const Vec3 &t, Mat34 *P);
+void KRt_From_P(const Mat34 &P, Mat3 *K, Mat3 *R, Vec3 *t);
+
+// Applies a change of basis to the image coordinates of the projection matrix
+// so that the principal point becomes principal_point_new.
+void ProjectionShiftPrincipalPoint(const Mat34 &P,
+ const Vec2 &principal_point,
+ const Vec2 &principal_point_new,
+ Mat34 *P_new);
+
+// Applies a change of basis to the image coordinates of the projection matrix
+// so that the aspect ratio becomes aspect_ratio_new. This is done by
+// stretching the y axis. The aspect ratio is defined as the quotient between
+// the focal length of the y and the x axis.
+void ProjectionChangeAspectRatio(const Mat34 &P,
+ const Vec2 &principal_point,
+ double aspect_ratio,
+ double aspect_ratio_new,
+ Mat34 *P_new);
+
+void HomogeneousToEuclidean(const Mat &H, Mat *X);
+void HomogeneousToEuclidean(const Mat3X &h, Mat2X *e);
+void HomogeneousToEuclidean(const Mat4X &h, Mat3X *e);
+void HomogeneousToEuclidean(const Vec3 &H, Vec2 *X);
+void HomogeneousToEuclidean(const Vec4 &H, Vec3 *X);
+inline Vec2 HomogeneousToEuclidean(const Vec3 &h) {
+ return h.head<2>() / h(2);
+}
+inline Vec3 HomogeneousToEuclidean(const Vec4 &h) {
+ return h.head<3>() / h(3);
+}
+inline Mat2X HomogeneousToEuclidean(const Mat3X &h) {
+ Mat2X e(2, h.cols());
+ e.row(0) = h.row(0).array() / h.row(2).array();
+ e.row(1) = h.row(1).array() / h.row(2).array();
+ return e;
+}
+
+void EuclideanToHomogeneous(const Mat &X, Mat *H);
+inline Mat3X EuclideanToHomogeneous(const Mat2X &x) {
+ Mat3X h(3, x.cols());
+ h.block(0, 0, 2, x.cols()) = x;
+ h.row(2).setOnes();
+ return h;
+}
+inline void EuclideanToHomogeneous(const Mat2X &x, Mat3X *h) {
+ h->resize(3, x.cols());
+ h->block(0, 0, 2, x.cols()) = x;
+ h->row(2).setOnes();
+}
+inline Mat4X EuclideanToHomogeneous(const Mat3X &x) {
+ Mat4X h(4, x.cols());
+ h.block(0, 0, 3, x.cols()) = x;
+ h.row(3).setOnes();
+ return h;
+}
+inline void EuclideanToHomogeneous(const Mat3X &x, Mat4X *h) {
+ h->resize(4, x.cols());
+ h->block(0, 0, 3, x.cols()) = x;
+ h->row(3).setOnes();
+}
+void EuclideanToHomogeneous(const Vec2 &X, Vec3 *H);
+void EuclideanToHomogeneous(const Vec3 &X, Vec4 *H);
+inline Vec3 EuclideanToHomogeneous(const Vec2 &x) {
+ return Vec3(x(0), x(1), 1);
+}
+inline Vec4 EuclideanToHomogeneous(const Vec3 &x) {
+ return Vec4(x(0), x(1), x(2), 1);
+}
+// Conversion from image coordinates to normalized camera coordinates
+void EuclideanToNormalizedCamera(const Mat2X &x, const Mat3 &K, Mat2X *n);
+void HomogeneousToNormalizedCamera(const Mat3X &x, const Mat3 &K, Mat2X *n);
+
+inline Vec2 Project(const Mat34 &P, const Vec3 &X) {
+ Vec4 HX;
+ HX << X, 1.0;
+ Vec3 hx = P * HX;
+ return hx.head<2>() / hx(2);
+}
+
+inline void Project(const Mat34 &P, const Vec4 &X, Vec3 *x) {
+ *x = P * X;
+}
+
+inline void Project(const Mat34 &P, const Vec4 &X, Vec2 *x) {
+ Vec3 hx = P * X;
+ *x = hx.head<2>() / hx(2);
+}
+
+inline void Project(const Mat34 &P, const Vec3 &X, Vec3 *x) {
+ Vec4 HX;
+ HX << X, 1.0;
+ Project(P, HX, x);
+}
+
+inline void Project(const Mat34 &P, const Vec3 &X, Vec2 *x) {
+ Vec3 hx;
+ Project(P, X, x);
+ *x = hx.head<2>() / hx(2);
+}
+
+inline void Project(const Mat34 &P, const Mat4X &X, Mat2X *x) {
+ x->resize(2, X.cols());
+ for (int c = 0; c < X.cols(); ++c) {
+ Vec3 hx = P * X.col(c);
+ x->col(c) = hx.head<2>() / hx(2);
+ }
+}
+
+inline Mat2X Project(const Mat34 &P, const Mat4X &X) {
+ Mat2X x;
+ Project(P, X, &x);
+ return x;
+}
+
+inline void Project(const Mat34 &P, const Mat3X &X, Mat2X *x) {
+ x->resize(2, X.cols());
+ for (int c = 0; c < X.cols(); ++c) {
+ Vec4 HX;
+ HX << X.col(c), 1.0;
+ Vec3 hx = P * HX;
+ x->col(c) = hx.head<2>() / hx(2);
+ }
+}
+
+inline void Project(const Mat34 &P, const Mat3X &X, const Vecu &ids, Mat2X *x) {
+ x->resize(2, ids.size());
+ Vec4 HX;
+ Vec3 hx;
+ for (int c = 0; c < ids.size(); ++c) {
+ HX << X.col(ids[c]), 1.0;
+ hx = P * HX;
+ x->col(c) = hx.head<2>() / hx(2);
+ }
+}
+
+inline Mat2X Project(const Mat34 &P, const Mat3X &X) {
+ Mat2X x(2, X.cols());
+ Project(P, X, &x);
+ return x;
+}
+
+inline Mat2X Project(const Mat34 &P, const Mat3X &X, const Vecu &ids) {
+ Mat2X x(2, ids.size());
+ Project(P, X, ids, &x);
+ return x;
+}
+
+double Depth(const Mat3 &R, const Vec3 &t, const Vec3 &X);
+double Depth(const Mat3 &R, const Vec3 &t, const Vec4 &X);
+
+/**
+* Returns true if the homogenious 3D point X is in front of
+* the camera P.
+*/
+inline bool isInFrontOfCamera(const Mat34 &P, const Vec4 &X) {
+ double condition_1 = P.row(2).dot(X) * X[3];
+ double condition_2 = X[2] * X[3];
+ if (condition_1 > 0 && condition_2 > 0)
+ return true;
+ else
+ return false;
+}
+
+inline bool isInFrontOfCamera(const Mat34 &P, const Vec3 &X) {
+ Vec4 X_homo;
+ X_homo.segment<3>(0) = X;
+ X_homo(3) = 1;
+ return isInFrontOfCamera( P, X_homo);
+}
+
+/**
+* Transforms a 2D point from pixel image coordinates to a 2D point in
+* normalized image coordinates.
+*/
+inline Vec2 ImageToNormImageCoordinates(Mat3 &Kinverse, Vec2 &x) {
+ Vec3 x_h = Kinverse*EuclideanToHomogeneous(x);
+ return HomogeneousToEuclidean( x_h );
+}
+
+/// Estimates the root mean square error (2D)
+inline double RootMeanSquareError(const Mat2X &x_image,
+ const Mat4X &X_world,
+ const Mat34 &P) {
+ size_t num_points = x_image.cols();
+ Mat2X dx = Project(P, X_world) - x_image;
+ return dx.norm() / num_points;
+}
+
+/// Estimates the root mean square error (2D)
+inline double RootMeanSquareError(const Mat2X &x_image,
+ const Mat3X &X_world,
+ const Mat3 &K,
+ const Mat3 &R,
+ const Vec3 &t) {
+ Mat34 P;
+ P_From_KRt(K, R, t, &P);
+ size_t num_points = x_image.cols();
+ Mat2X dx = Project(P, X_world) - x_image;
+ return dx.norm() / num_points;
+}
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_PROJECTION_H_
diff --git a/intern/libmv/libmv/multiview/projection_test.cc b/intern/libmv/libmv/multiview/projection_test.cc
new file mode 100644
index 00000000000..460a186e7c4
--- /dev/null
+++ b/intern/libmv/libmv/multiview/projection_test.cc
@@ -0,0 +1,115 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include <iostream>
+
+#include "libmv/multiview/projection.h"
+#include "libmv/numeric/numeric.h"
+#include "testing/testing.h"
+
+namespace {
+using namespace libmv;
+
+TEST(Projection, P_From_KRt) {
+ Mat3 K, Kp;
+ K << 10, 1, 30,
+ 0, 20, 40,
+ 0, 0, 1;
+
+ Mat3 R, Rp;
+ R << 1, 0, 0,
+ 0, 1, 0,
+ 0, 0, 1;
+
+ Vec3 t, tp;
+ t << 1, 2, 3;
+
+ Mat34 P;
+ P_From_KRt(K, R, t, &P);
+ KRt_From_P(P, &Kp, &Rp, &tp);
+
+ EXPECT_MATRIX_NEAR(K, Kp, 1e-8);
+ EXPECT_MATRIX_NEAR(R, Rp, 1e-8);
+ EXPECT_MATRIX_NEAR(t, tp, 1e-8);
+
+ // TODO(keir): Change the code to ensure det(R) == 1, which is not currently
+ // the case. Also add a test for that here.
+}
+
+Vec4 GetRandomPoint() {
+ Vec4 X;
+ X.setRandom();
+ X(3) = 1;
+ return X;
+}
+
+TEST(Projection, isInFrontOfCamera) {
+ Mat34 P;
+ P << 1, 0, 0, 0,
+ 0, 1, 0, 0,
+ 0, 0, 1, 0;
+
+ Vec4 X_front = GetRandomPoint();
+ Vec4 X_back = GetRandomPoint();
+ X_front(2) = 10; // Any point in the positive Z direction
+ // where Z > 1 is infront of the camera.
+ X_back(2) = -10; // Any point int he negative Z dirstaion
+ // is behind the camera.
+
+ bool res_front = isInFrontOfCamera(P, X_front);
+ bool res_back = isInFrontOfCamera(P, X_back);
+
+ EXPECT_TRUE(res_front);
+ EXPECT_FALSE(res_back);
+}
+
+TEST(AutoCalibration, ProjectionShiftPrincipalPoint) {
+ Mat34 P1, P2;
+ P1 << 1, 0, 0, 0,
+ 0, 1, 0, 0,
+ 0, 0, 1, 0;
+ P2 << 1, 0, 3, 0,
+ 0, 1, 4, 0,
+ 0, 0, 1, 0;
+ Mat34 P1_computed, P2_computed;
+ ProjectionShiftPrincipalPoint(P1, Vec2(0, 0), Vec2(3, 4), &P2_computed);
+ ProjectionShiftPrincipalPoint(P2, Vec2(3, 4), Vec2(0, 0), &P1_computed);
+
+ EXPECT_MATRIX_EQ(P1, P1_computed);
+ EXPECT_MATRIX_EQ(P2, P2_computed);
+}
+
+TEST(AutoCalibration, ProjectionChangeAspectRatio) {
+ Mat34 P1, P2;
+ P1 << 1, 0, 3, 0,
+ 0, 1, 4, 0,
+ 0, 0, 1, 0;
+ P2 << 1, 0, 3, 0,
+ 0, 2, 4, 0,
+ 0, 0, 1, 0;
+ Mat34 P1_computed, P2_computed;
+ ProjectionChangeAspectRatio(P1, Vec2(3, 4), 1, 2, &P2_computed);
+ ProjectionChangeAspectRatio(P2, Vec2(3, 4), 2, 1, &P1_computed);
+
+ EXPECT_MATRIX_EQ(P1, P1_computed);
+ EXPECT_MATRIX_EQ(P2, P2_computed);
+}
+
+} // namespace
diff --git a/intern/libmv/libmv/multiview/resection.h b/intern/libmv/libmv/multiview/resection.h
new file mode 100644
index 00000000000..c142d6deeb2
--- /dev/null
+++ b/intern/libmv/libmv/multiview/resection.h
@@ -0,0 +1,62 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+//
+// Compute the projection matrix from a set of 3D points X and their
+// projections x = PX in 2D. This is useful if a point cloud is reconstructed.
+//
+// Algorithm is the standard DLT as described in Hartley & Zisserman, page 179.
+
+#ifndef LIBMV_MULTIVIEW_RESECTION_H
+#define LIBMV_MULTIVIEW_RESECTION_H
+
+#include "libmv/logging/logging.h"
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+namespace resection {
+
+// x's are 2D image coordinates, (x,y,1), and X's are homogeneous four vectors.
+template<typename T>
+void Resection(const Matrix<T, 2, Dynamic> &x,
+ const Matrix<T, 4, Dynamic> &X,
+ Matrix<T, 3, 4> *P) {
+ int N = x.cols();
+ assert(X.cols() == N);
+
+ Matrix<T, Dynamic, 12> design(2*N, 12);
+ design.setZero();
+ for (int i = 0; i < N; i++) {
+ T xi = x(0, i);
+ T yi = x(1, i);
+ // See equation (7.2) on page 179 of H&Z.
+ design.template block<1, 4>(2*i, 4) = -X.col(i).transpose();
+ design.template block<1, 4>(2*i, 8) = yi*X.col(i).transpose();
+ design.template block<1, 4>(2*i + 1, 0) = X.col(i).transpose();
+ design.template block<1, 4>(2*i + 1, 8) = -xi*X.col(i).transpose();
+ }
+ Matrix<T, 12, 1> p;
+ Nullspace(&design, &p);
+ reshape(p, 3, 4, P);
+}
+
+} // namespace resection
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_RESECTION_H
diff --git a/intern/libmv/libmv/multiview/resection_test.cc b/intern/libmv/libmv/multiview/resection_test.cc
new file mode 100644
index 00000000000..368e2281cfa
--- /dev/null
+++ b/intern/libmv/libmv/multiview/resection_test.cc
@@ -0,0 +1,61 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include <iostream>
+
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/resection.h"
+#include "libmv/multiview/test_data_sets.h"
+#include "libmv/numeric/numeric.h"
+#include "testing/testing.h"
+#include "libmv/logging/logging.h"
+
+namespace {
+
+using namespace libmv;
+using namespace libmv::resection;
+
+TEST(Resection, ThreeViews) {
+ int nviews = 5;
+ int npoints = 6;
+ NViewDataSet d = NRealisticCamerasFull(nviews, npoints);
+ for (int i = 0; i < nviews; ++i) {
+ Mat4X X(4, npoints);
+ X.block(0, 0, 3, npoints) = d.X;
+ X.row(3).setOnes();
+ const Mat2X &x = d.x[i];
+ Mat34 P;
+ Resection(x, X, &P);
+ Mat34 P_expected = d.P(i);
+
+ // Because the P matrices are homogeneous, it is necessary to be tricky
+ // about the scale factor to make them match.
+ P_expected *= 1/P_expected.array().abs().sum();
+ P *= 1/P.array().abs().sum();
+ if (!((P(0, 0) > 0 && P_expected(0, 0) > 0) ||
+ (P(0, 0) < 0 && P_expected(0, 0) < 0))) {
+ P *= -1;
+ }
+
+ EXPECT_MATRIX_NEAR(P_expected, P, 1e-9);
+ }
+}
+
+} // namespace
diff --git a/intern/libmv/libmv/multiview/test_data_sets.cc b/intern/libmv/libmv/multiview/test_data_sets.cc
new file mode 100644
index 00000000000..110bde6f762
--- /dev/null
+++ b/intern/libmv/libmv/multiview/test_data_sets.cc
@@ -0,0 +1,196 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/test_data_sets.h"
+
+#include <cmath>
+
+#include "libmv/numeric/numeric.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/fundamental.h"
+
+namespace libmv {
+
+TwoViewDataSet TwoRealisticCameras(bool same_K) {
+ TwoViewDataSet d;
+
+ d.K1 << 320, 0, 160,
+ 0, 320, 120,
+ 0, 0, 1;
+ if (same_K) {
+ d.K2 = d.K1;
+ } else {
+ d.K2 << 360, 0, 170,
+ 0, 360, 110,
+ 0, 0, 1;
+ }
+ d.R1 = RotationAroundZ(-0.1);
+ d.R2 = RotationAroundX(-0.1);
+ d.t1 << 1, 1, 10;
+ d.t2 << -2, -1, 10;
+ P_From_KRt(d.K1, d.R1, d.t1, &d.P1);
+ P_From_KRt(d.K2, d.R2, d.t2, &d.P2);
+
+ FundamentalFromProjections(d.P1, d.P2, &d.F);
+
+ d.X.resize(3, 30);
+ d.X.setRandom();
+
+ Project(d.P1, d.X, &d.x1);
+ Project(d.P2, d.X, &d.x2);
+
+ return d;
+}
+
+nViewDatasetConfigator::nViewDatasetConfigator(int fx , int fy,
+ int cx, int cy,
+ double distance,
+ double jitter_amount) {
+ _fx = fx;
+ _fy = fy;
+ _cx = cx;
+ _cy = cy;
+ _dist = distance;
+ _jitter_amount = jitter_amount;
+}
+
+NViewDataSet NRealisticCamerasFull(int nviews, int npoints,
+ const nViewDatasetConfigator config) {
+ NViewDataSet d;
+ d.n = nviews;
+ d.K.resize(nviews);
+ d.R.resize(nviews);
+ d.t.resize(nviews);
+ d.C.resize(nviews);
+ d.x.resize(nviews);
+ d.x_ids.resize(nviews);
+
+ d.X.resize(3, npoints);
+ d.X.setRandom();
+ d.X *= 0.6;
+
+ Vecu all_point_ids(npoints);
+ for (size_t j = 0; j < npoints; ++j)
+ all_point_ids[j] = j;
+
+ for (size_t i = 0; i < nviews; ++i) {
+ Vec3 camera_center, t, jitter, lookdir;
+
+ double theta = i * 2 * M_PI / nviews;
+ camera_center << sin(theta), 0.0, cos(theta);
+ camera_center *= config._dist;
+ d.C[i] = camera_center;
+
+ jitter.setRandom();
+ jitter *= config._jitter_amount / camera_center.norm();
+ lookdir = -camera_center + jitter;
+
+ d.K[i] << config._fx, 0, config._cx,
+ 0, config._fy, config._cy,
+ 0, 0, 1;
+ d.R[i] = LookAt(lookdir);
+ d.t[i] = -d.R[i] * camera_center;
+ d.x[i] = Project(d.P(i), d.X);
+ d.x_ids[i] = all_point_ids;
+ }
+ return d;
+}
+
+
+NViewDataSet NRealisticCamerasSparse(int nviews, int npoints,
+ float view_ratio, unsigned min_projections,
+ const nViewDatasetConfigator config) {
+ assert(view_ratio <= 1.0);
+ assert(view_ratio > 0.0);
+ assert(min_projections <= npoints);
+ NViewDataSet d;
+ d.n = nviews;
+ d.K.resize(nviews);
+ d.R.resize(nviews);
+ d.t.resize(nviews);
+ d.C.resize(nviews);
+ d.x.resize(nviews);
+ d.x_ids.resize(nviews);
+
+ d.X.resize(3, npoints);
+ d.X.setRandom();
+ d.X *= 0.6;
+
+ Mat visibility(nviews, npoints);
+ visibility.setZero();
+ Mat randoms(nviews, npoints);
+ randoms.setRandom();
+ randoms = (randoms.array() + 1)/2.0;
+ unsigned num_visibles = 0;
+ for (size_t i = 0; i < nviews; ++i) {
+ num_visibles = 0;
+ for (size_t j = 0; j < npoints; j++) {
+ if (randoms(i, j) <= view_ratio) {
+ visibility(i, j) = true;
+ num_visibles++;
+ }
+ }
+ if (num_visibles < min_projections) {
+ unsigned num_projections_to_add = min_projections - num_visibles;
+ for (size_t j = 0; j < npoints && num_projections_to_add > 0; ++j) {
+ if (!visibility(i, j)) {
+ num_projections_to_add--;
+ }
+ }
+ num_visibles += num_projections_to_add;
+ }
+ d.x_ids[i].resize(num_visibles);
+ d.x[i].resize(2, num_visibles);
+ }
+
+ size_t j_visible = 0;
+ Vec3 X;
+ for (size_t i = 0; i < nviews; ++i) {
+ Vec3 camera_center, t, jitter, lookdir;
+
+ double theta = i * 2 * M_PI / nviews;
+ camera_center << sin(theta), 0.0, cos(theta);
+ camera_center *= config._dist;
+ d.C[i] = camera_center;
+
+ jitter.setRandom();
+ jitter *= config._jitter_amount / camera_center.norm();
+ lookdir = -camera_center + jitter;
+
+ d.K[i] << config._fx, 0, config._cx,
+ 0, config._fy, config._cy,
+ 0, 0, 1;
+ d.R[i] = LookAt(lookdir);
+ d.t[i] = -d.R[i] * camera_center;
+ j_visible = 0;
+ for (size_t j = 0; j < npoints; j++) {
+ if (visibility(i, j)) {
+ X = d.X.col(j);
+ d.x[i].col(j_visible) = Project(d.P(i), X);
+ d.x_ids[i][j_visible] = j;
+ j_visible++;
+ }
+ }
+ }
+ return d;
+}
+
+
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/test_data_sets.h b/intern/libmv/libmv/multiview/test_data_sets.h
new file mode 100644
index 00000000000..cf01663ca02
--- /dev/null
+++ b/intern/libmv/libmv/multiview/test_data_sets.h
@@ -0,0 +1,105 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_TEST_DATA_SETS_H_
+#define LIBMV_MULTIVIEW_TEST_DATA_SETS_H_
+
+#include "libmv/base/vector.h"
+#include "libmv/multiview/fundamental.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+struct TwoViewDataSet {
+ Mat3 K1, K2; // Internal parameters.
+ Mat3 R1, R2; // Rotation.
+ Vec3 t1, t2; // Translation.
+ Mat34 P1, P2; // Projection matrix, P = K(R|t)
+ Mat3 F; // Fundamental matrix.
+ Mat3X X; // 3D points.
+ Mat2X x1, x2; // Projected points.
+};
+
+// Two cameras at (-1,-1,-10) and (2,1,-10) looking approximately towards z+.
+TwoViewDataSet TwoRealisticCameras(bool same_K = false);
+
+// An N-view metric dataset . An important difference between this
+// and the other reconstruction data types is that all points are seen by all
+// cameras.
+struct NViewDataSet {
+ vector<Mat3> K; // Internal parameters (fx, fy, etc).
+ vector<Mat3> R; // Rotation.
+ vector<Vec3> t; // Translation.
+ vector<Vec3> C; // Camera centers.
+ Mat3X X; // 3D points.
+ vector<Mat2X> x; // Projected points; may have noise added.
+ vector<Vecu> x_ids; // Indexes of points corresponding to the projections
+
+ int n; // Actual number of cameras.
+
+ Mat34 P(int i) {
+ assert(i < n);
+ return K[i] * HStack(R[i], t[i]);
+ }
+ Mat3 F(int i, int j) {
+ Mat3 F_;
+ FundamentalFromProjections(P(i), P(j), &F_);
+ return F_;
+ }
+ void Reproject() {
+ for (int i = 0; i < n; ++i) {
+ x[i] = Project(P(i), X);
+ }
+ }
+ // TODO(keir): Add gaussian jitter functions.
+};
+
+struct nViewDatasetConfigator {
+ /// Internal camera parameters
+ int _fx;
+ int _fy;
+ int _cx;
+ int _cy;
+
+ /// Camera random position parameters
+ double _dist;
+ double _jitter_amount;
+
+ nViewDatasetConfigator(int fx = 1000, int fy = 1000,
+ int cx = 500, int cy = 500,
+ double distance = 1.5,
+ double jitter_amount = 0.01);
+};
+
+NViewDataSet NRealisticCamerasFull(int nviews, int npoints,
+ const nViewDatasetConfigator
+ config = nViewDatasetConfigator());
+
+// Generates sparse projections (not all points are projected)
+NViewDataSet NRealisticCamerasSparse(int nviews, int npoints,
+ float view_ratio = 0.6,
+ unsigned min_projections = 3,
+ const nViewDatasetConfigator
+ config = nViewDatasetConfigator());
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_TEST_DATA_SETS_H_
diff --git a/intern/libmv/libmv/multiview/triangulation.cc b/intern/libmv/libmv/multiview/triangulation.cc
new file mode 100644
index 00000000000..4d146c8f21b
--- /dev/null
+++ b/intern/libmv/libmv/multiview/triangulation.cc
@@ -0,0 +1,50 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include "libmv/multiview/triangulation.h"
+
+#include "libmv/numeric/numeric.h"
+#include "libmv/multiview/projection.h"
+
+namespace libmv {
+
+// HZ 12.2 pag.312
+void TriangulateDLT(const Mat34 &P1, const Vec2 &x1,
+ const Mat34 &P2, const Vec2 &x2,
+ Vec4 *X_homogeneous) {
+ Mat4 design;
+ for (int i = 0; i < 4; ++i) {
+ design(0, i) = x1(0) * P1(2, i) - P1(0, i);
+ design(1, i) = x1(1) * P1(2, i) - P1(1, i);
+ design(2, i) = x2(0) * P2(2, i) - P2(0, i);
+ design(3, i) = x2(1) * P2(2, i) - P2(1, i);
+ }
+ Nullspace(&design, X_homogeneous);
+}
+
+void TriangulateDLT(const Mat34 &P1, const Vec2 &x1,
+ const Mat34 &P2, const Vec2 &x2,
+ Vec3 *X_euclidean) {
+ Vec4 X_homogeneous;
+ TriangulateDLT(P1, x1, P2, x2, &X_homogeneous);
+ HomogeneousToEuclidean(X_homogeneous, X_euclidean);
+}
+
+} // namespace libmv
diff --git a/intern/libmv/libmv/multiview/triangulation.h b/intern/libmv/libmv/multiview/triangulation.h
new file mode 100644
index 00000000000..be878890242
--- /dev/null
+++ b/intern/libmv/libmv/multiview/triangulation.h
@@ -0,0 +1,38 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_TRIANGULATION_H_
+#define LIBMV_MULTIVIEW_TRIANGULATION_H_
+
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+
+void TriangulateDLT(const Mat34 &P1, const Vec2 &x1,
+ const Mat34 &P2, const Vec2 &x2,
+ Vec4 *X_homogeneous);
+
+void TriangulateDLT(const Mat34 &P1, const Vec2 &x1,
+ const Mat34 &P2, const Vec2 &x2,
+ Vec3 *X_euclidean);
+
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_TRIANGULATION_H_
diff --git a/intern/libmv/libmv/multiview/triangulation_test.cc b/intern/libmv/libmv/multiview/triangulation_test.cc
new file mode 100644
index 00000000000..66d1ee25a62
--- /dev/null
+++ b/intern/libmv/libmv/multiview/triangulation_test.cc
@@ -0,0 +1,47 @@
+// Copyright (c) 2007, 2008 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#include <iostream>
+
+#include "libmv/multiview/triangulation.h"
+#include "libmv/multiview/fundamental.h"
+#include "libmv/multiview/projection.h"
+#include "libmv/multiview/test_data_sets.h"
+#include "libmv/numeric/numeric.h"
+#include "testing/testing.h"
+
+namespace {
+using namespace libmv;
+
+TEST(Triangulation, TriangulateDLT) {
+ TwoViewDataSet d = TwoRealisticCameras();
+
+ for (int i = 0; i < d.X.cols(); ++i) {
+ Vec2 x1, x2;
+ MatrixColumn(d.x1, i, &x1);
+ MatrixColumn(d.x2, i, &x2);
+ Vec3 X_estimated, X_gt;
+ MatrixColumn(d.X, i, &X_gt);
+ TriangulateDLT(d.P1, x1, d.P2, x2, &X_estimated);
+ EXPECT_NEAR(0, DistanceLInfinity(X_estimated, X_gt), 1e-8);
+ }
+}
+
+} // namespace
diff --git a/intern/libmv/libmv/multiview/two_view_kernel.h b/intern/libmv/libmv/multiview/two_view_kernel.h
new file mode 100644
index 00000000000..7af0ed5ddab
--- /dev/null
+++ b/intern/libmv/libmv/multiview/two_view_kernel.h
@@ -0,0 +1,137 @@
+// Copyright (c) 2009 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+
+#ifndef LIBMV_MULTIVIEW_TWO_VIEW_KERNEL_H_
+#define LIBMV_MULTIVIEW_TWO_VIEW_KERNEL_H_
+
+#include "libmv/base/vector.h"
+#include "libmv/logging/logging.h"
+#include "libmv/multiview/conditioning.h"
+#include "libmv/numeric/numeric.h"
+
+namespace libmv {
+namespace two_view {
+namespace kernel {
+
+template<typename Solver, typename Unnormalizer>
+struct NormalizedSolver {
+ enum { MINIMUM_SAMPLES = Solver::MINIMUM_SAMPLES };
+ static void Solve(const Mat &x1, const Mat &x2, vector<Mat3> *models) {
+ assert(2 == x1.rows());
+ assert(MINIMUM_SAMPLES <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ // Normalize the data.
+ Mat3 T1, T2;
+ Mat x1_normalized, x2_normalized;
+ NormalizePoints(x1, &x1_normalized, &T1);
+ NormalizePoints(x2, &x2_normalized, &T2);
+
+ Solver::Solve(x1_normalized, x2_normalized, models);
+
+ for (int i = 0; i < models->size(); ++i) {
+ Unnormalizer::Unnormalize(T1, T2, &(*models)[i]);
+ }
+ }
+};
+
+template<typename Solver, typename Unnormalizer>
+struct IsotropicNormalizedSolver {
+ enum { MINIMUM_SAMPLES = Solver::MINIMUM_SAMPLES };
+ static void Solve(const Mat &x1, const Mat &x2, vector<Mat3> *models) {
+ assert(2 == x1.rows());
+ assert(MINIMUM_SAMPLES <= x1.cols());
+ assert(x1.rows() == x2.rows());
+ assert(x1.cols() == x2.cols());
+
+ // Normalize the data.
+ Mat3 T1, T2;
+ Mat x1_normalized, x2_normalized;
+ NormalizeIsotropicPoints(x1, &x1_normalized, &T1);
+ NormalizeIsotropicPoints(x2, &x2_normalized, &T2);
+
+ Solver::Solve(x1_normalized, x2_normalized, models);
+
+ for (int i = 0; i < models->size(); ++i) {
+ Unnormalizer::Unnormalize(T1, T2, &(*models)[i]);
+ }
+ }
+};
+// This is one example (targeted at solvers that operate on correspondences
+// between two views) that shows the "kernel" part of a robust fitting
+// problem:
+//
+// 1. The model; Mat3 in the case of the F or H matrix.
+// 2. The minimum number of samples needed to fit; 7 or 8 (or 4).
+// 3. A way to convert samples to a model.
+// 4. A way to convert a sample and a model to an error.
+//
+// Of particular note is that the kernel does not expose what the samples are.
+// All the robust fitting algorithm sees is that there is some number of
+// samples; it is able to fit subsets of them (via the kernel) and check their
+// error, but can never access the samples themselves.
+//
+// The Kernel objects must follow the following concept so that the robust
+// fitting alogrithm can fit this type of relation:
+//
+// 1. Kernel::Model
+// 2. Kernel::MINIMUM_SAMPLES
+// 3. Kernel::Fit(vector<int>, vector<Kernel::Model> *)
+// 4. Kernel::Error(int, Model) -> error
+//
+// The fit routine must not clear existing entries in the vector of models; it
+// should append new solutions to the end.
+template<typename SolverArg,
+ typename ErrorArg,
+ typename ModelArg = Mat3>
+class Kernel {
+ public:
+ Kernel(const Mat &x1, const Mat &x2) : x1_(x1), x2_(x2) {}
+ typedef SolverArg Solver;
+ typedef ModelArg Model;
+ enum { MINIMUM_SAMPLES = Solver::MINIMUM_SAMPLES };
+ void Fit(const vector<int> &samples, vector<Model> *models) const {
+ Mat x1 = ExtractColumns(x1_, samples);
+ Mat x2 = ExtractColumns(x2_, samples);
+ Solver::Solve(x1, x2, models);
+ }
+ double Error(int sample, const Model &model) const {
+ return ErrorArg::Error(model,
+ static_cast<Vec>(x1_.col(sample)),
+ static_cast<Vec>(x2_.col(sample)));
+ }
+ int NumSamples() const {
+ return x1_.cols();
+ }
+ static void Solve(const Mat &x1, const Mat &x2, vector<Model> *models) {
+ // By offering this, Kernel types can be passed to templates.
+ Solver::Solve(x1, x2, models);
+ }
+ protected:
+ const Mat &x1_;
+ const Mat &x2_;
+};
+
+} // namespace kernel
+} // namespace two_view
+} // namespace libmv
+
+#endif // LIBMV_MULTIVIEW_TWO_VIEW_KERNEL_H_