Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'release/scripts/mesh_skin.py')
-rw-r--r--release/scripts/mesh_skin.py639
1 files changed, 0 insertions, 639 deletions
diff --git a/release/scripts/mesh_skin.py b/release/scripts/mesh_skin.py
deleted file mode 100644
index 4a330a516fb..00000000000
--- a/release/scripts/mesh_skin.py
+++ /dev/null
@@ -1,639 +0,0 @@
-#!BPY
-
-"""
-Name: 'Skin Faces/Edge-Loops'
-Blender: 243
-Group: 'MeshFaceKey'
-Tooltip: 'Select 2 vert loops, then run this script.'
-"""
-
-__author__ = "Campbell Barton AKA Ideasman"
-__url__ = ["blenderartists.org", "www.blender.org"]
-__version__ = "1.1 2006/12/26"
-
-__bpydoc__ = """\
-With this script vertex loops can be skinned: faces are created to connect the
-selected loops of vertices.
-
-Usage:
-
-In mesh Edit mode select the vertices of the loops (closed paths / curves of
-vertices: circles, for example) that should be skinned, then run this script.
-A pop-up will provide further options, if the results of a method are not adequate try one of the others.
-"""
-
-
-# $Id$
-#
-# --------------------------------------------------------------------------
-# Skin Selected edges 1.0 By Campbell Barton (AKA Ideasman)
-# --------------------------------------------------------------------------
-# ***** BEGIN GPL LICENSE BLOCK *****
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU General Public License
-# as published by the Free Software Foundation; either version 2
-# of the License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software Foundation,
-# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-#
-# ***** END GPL LICENCE BLOCK *****
-# --------------------------------------------------------------------------
-
-# Made by Ideasman/Campbell 2005/06/15 - cbarton@metavr.com
-
-import Blender
-import bpy
-from Blender import Window
-from Blender.Mathutils import MidpointVecs, Vector
-from Blender.Mathutils import AngleBetweenVecs as _AngleBetweenVecs_
-import BPyMessages
-
-from Blender.Draw import PupMenu
-
-BIG_NUM = 1<<30
-
-global CULL_METHOD
-CULL_METHOD = 0
-
-def AngleBetweenVecs(a1,a2):
- try:
- return _AngleBetweenVecs_(a1,a2)
- except:
- return 180.0
-
-class edge(object):
- __slots__ = 'v1', 'v2', 'co1', 'co2', 'length', 'removed', 'match', 'cent', 'angle', 'next', 'prev', 'normal', 'fake'
- def __init__(self, v1,v2):
- self.v1 = v1
- self.v2 = v2
- co1, co2= v1.co, v2.co
- self.co1= co1
- self.co2= co2
-
- # uv1 uv2 vcol1 vcol2 # Add later
- self.length = (co1 - co2).length
- self.removed = 0 # Have we been culled from the eloop
- self.match = None # The other edge were making a face with
-
- self.cent= MidpointVecs(co1, co2)
- self.angle= 0.0
- self.fake= False
-
-class edgeLoop(object):
- __slots__ = 'centre', 'edges', 'normal', 'closed', 'backup_edges'
- def __init__(self, loop, me, closed): # Vert loop
- # Use next and prev, nextDist, prevDist
-
- # Get Loops centre.
- fac= len(loop)
- verts = me.verts
- self.centre= reduce(lambda a,b: a+verts[b].co/fac, loop, Vector())
-
- # Convert Vert loop to Edges.
- self.edges = [edge(verts[loop[vIdx-1]], verts[loop[vIdx]]) for vIdx in xrange(len(loop))]
-
- if not closed:
- self.edges[0].fake = True # fake edge option
-
- self.closed = closed
-
-
- # Assign linked list
- for eIdx in xrange(len(self.edges)-1):
- self.edges[eIdx].next = self.edges[eIdx+1]
- self.edges[eIdx].prev = self.edges[eIdx-1]
- # Now last
- self.edges[-1].next = self.edges[0]
- self.edges[-1].prev = self.edges[-2]
-
-
-
- # GENERATE AN AVERAGE NORMAL FOR THE WHOLE LOOP.
- self.normal = Vector()
- for e in self.edges:
- n = (self.centre-e.co1).cross(self.centre-e.co2)
- # Do we realy need tot normalize?
- n.normalize()
- self.normal += n
-
- # Generate the angle
- va= e.cent - e.prev.cent
- vb= e.next.cent - e.cent
-
- e.angle= AngleBetweenVecs(va, vb)
-
- # Blur the angles
- #for e in self.edges:
- # e.angle= (e.angle+e.next.angle)/2
-
- # Blur the angles
- #for e in self.edges:
- # e.angle= (e.angle+e.prev.angle)/2
-
- self.normal.normalize()
-
- # Generate a normal for each edge.
- for e in self.edges:
-
- n1 = e.co1
- n2 = e.co2
- n3 = e.prev.co1
-
- a = n1-n2
- b = n1-n3
- normal1 = a.cross(b)
- normal1.normalize()
-
- n1 = e.co2
- n3 = e.next.co2
- n2 = e.co1
-
- a = n1-n2
- b = n1-n3
-
- normal2 = a.cross(b)
- normal2.normalize()
-
- # Reuse normal1 var
- normal1 += normal1 + normal2
- normal1.normalize()
-
- e.normal = normal1
- #print e.normal
-
-
-
- def backup(self):
- # Keep a backup of the edges
- self.backup_edges = self.edges[:]
-
- def restore(self):
- self.edges = self.backup_edges[:]
- for e in self.edges:
- e.removed = 0
-
- def reverse(self):
- self.edges.reverse()
- self.normal.negate()
-
- for e in self.edges:
- e.normal.negate()
- e.v1, e.v2 = e.v2, e.v1
- e.co1, e.co2 = e.co2, e.co1
- e.next, e.prev = e.prev, e.next
-
-
- def removeSmallest(self, cullNum, otherLoopLen):
- '''
- Removes N Smallest edges and backs up the loop,
- this is so we can loop between 2 loops as if they are the same length,
- backing up and restoring incase the loop needs to be skinned with another loop of a different length.
- '''
- global CULL_METHOD
- if CULL_METHOD == 1: # Shortest edge
- eloopCopy = self.edges[:]
-
- # Length sort, smallest first
- try: eloopCopy.sort(key = lambda e1: e1.length)
- except: eloopCopy.sort(lambda e1, e2: cmp(e1.length, e2.length ))
-
- # Dont use atm
- #eloopCopy.sort(lambda e1, e2: cmp(e1.angle*e1.length, e2.angle*e2.length)) # Length sort, smallest first
- #eloopCopy.sort(lambda e1, e2: cmp(e1.angle, e2.angle)) # Length sort, smallest first
-
- remNum = 0
- for i, e in enumerate(eloopCopy):
- if not e.fake:
- e.removed = 1
- self.edges.remove( e ) # Remove from own list, still in linked list.
- remNum += 1
-
- if not remNum < cullNum:
- break
-
- else: # CULL METHOD is even
-
- culled = 0
-
- step = int(otherLoopLen / float(cullNum)) * 2
-
- currentEdge = self.edges[0]
- while culled < cullNum:
-
- # Get the shortest face in the next STEP
- step_count= 0
- bestAng= 360.0
- smallestEdge= None
- while step_count<=step or smallestEdge==None:
- step_count+=1
- if not currentEdge.removed: # 0 or -1 will not be accepted
- if currentEdge.angle<bestAng and not currentEdge.fake:
- smallestEdge= currentEdge
- bestAng= currentEdge.angle
-
- currentEdge = currentEdge.next
-
- # In that stepping length we have the smallest edge.remove it
- smallestEdge.removed = 1
- self.edges.remove(smallestEdge)
-
- # Start scanning from the edge we found? - result is over fanning- no good.
- #currentEdge= smallestEdge.next
-
- culled+=1
-
-
-# Returns face edges.
-# face must have edge data.
-
-def getSelectedEdges(me, ob):
- MESH_MODE= Blender.Mesh.Mode()
-
- if MESH_MODE & Blender.Mesh.SelectModes.EDGE or MESH_MODE & Blender.Mesh.SelectModes.VERTEX:
- Blender.Mesh.Mode(Blender.Mesh.SelectModes.EDGE)
- edges= [ ed for ed in me.edges if ed.sel ]
- # print len(edges), len(me.edges)
- Blender.Mesh.Mode(MESH_MODE)
- return edges
-
- elif MESH_MODE & Blender.Mesh.SelectModes.FACE:
- Blender.Mesh.Mode(Blender.Mesh.SelectModes.EDGE)
-
- # value is [edge, face_sel_user_in]
- '''
- try: # Python 2.4 only
- edge_dict= dict((ed.key, [ed, 0]) for ed in me.edges)
- except:
- '''
- # Cant try 2.4 syntax because python 2.3 will complain still
- edge_dict= dict([(ed.key, [ed, 0]) for ed in me.edges])
-
- for f in me.faces:
- if f.sel:
- for edkey in f.edge_keys:
- edge_dict[edkey][1] += 1
-
- Blender.Mesh.Mode(MESH_MODE)
- return [ ed_data[0] for ed_data in edge_dict.itervalues() if ed_data[1] == 1 ]
-
-
-
-def getVertLoops(selEdges, me):
- '''
- return a list of vert loops, closed and open [(loop, closed)...]
- '''
-
- mainVertLoops = []
- # second method
- tot = len(me.verts)
- vert_siblings = [[] for i in xrange(tot)]
- vert_used = [False] * tot
-
- for ed in selEdges:
- i1, i2 = ed.key
- vert_siblings[i1].append(i2)
- vert_siblings[i2].append(i1)
-
- # find the first used vert and keep looping.
- for i in xrange(tot):
- if vert_siblings[i] and not vert_used[i]:
- sbl = vert_siblings[i] # siblings
-
- if len(sbl) > 2:
- return None
-
- vert_used[i] = True
-
- # do an edgeloop seek
- if len(sbl) == 2:
- contextVertLoop= [sbl[0], i, sbl[1]] # start the vert loop
- vert_used[contextVertLoop[ 0]] = True
- vert_used[contextVertLoop[-1]] = True
- else:
- contextVertLoop= [i, sbl[0]]
- vert_used[contextVertLoop[ 1]] = True
-
- # Always seek up
- ok = True
- while ok:
- ok = False
- closed = False
- sbl = vert_siblings[contextVertLoop[-1]]
- if len(sbl) == 2:
- next = sbl[not sbl.index( contextVertLoop[-2] )]
- if vert_used[next]:
- closed = True
- # break
- else:
- contextVertLoop.append( next ) # get the vert that isnt the second last
- vert_used[next] = True
- ok = True
-
- # Seek down as long as the starting vert was not at the edge.
- if not closed and len(vert_siblings[i]) == 2:
-
- ok = True
- while ok:
- ok = False
- sbl = vert_siblings[contextVertLoop[0]]
- if len(sbl) == 2:
- next = sbl[not sbl.index( contextVertLoop[1] )]
- if vert_used[next]:
- closed = True
- else:
- contextVertLoop.insert(0, next) # get the vert that isnt the second last
- vert_used[next] = True
- ok = True
-
- mainVertLoops.append((contextVertLoop, closed))
-
-
- verts = me.verts
- # convert from indicies to verts
- # mainVertLoops = [([verts[i] for i in contextVertLoop], closed) for contextVertLoop, closed in mainVertLoops]
- # print len(mainVertLoops)
- return mainVertLoops
-
-
-
-def skin2EdgeLoops(eloop1, eloop2, me, ob, MODE):
-
- new_faces= [] #
-
- # Make sure e1 loops is bigger then e2
- if len(eloop1.edges) != len(eloop2.edges):
- if len(eloop1.edges) < len(eloop2.edges):
- eloop1, eloop2 = eloop2, eloop1
-
- eloop1.backup() # were about to cull faces
- CULL_FACES = len(eloop1.edges) - len(eloop2.edges)
- eloop1.removeSmallest(CULL_FACES, len(eloop1.edges))
- else:
- CULL_FACES = 0
- # First make sure poly vert loops are in sync with eachother.
-
- # The vector allong which we are skinning.
- skinVector = eloop1.centre - eloop2.centre
-
- loopDist = skinVector.length
-
- # IS THE LOOP FLIPPED, IF SO FLIP BACK. we keep it flipped, its ok,
- if eloop1.closed or eloop2.closed:
- angleBetweenLoopNormals = AngleBetweenVecs(eloop1.normal, eloop2.normal)
- if angleBetweenLoopNormals > 90:
- eloop2.reverse()
-
-
- DIR= eloop1.centre - eloop2.centre
-
- # if eloop2.closed:
- bestEloopDist = BIG_NUM
- bestOffset = 0
- # Loop rotation offset to test.1
- eLoopIdxs = range(len(eloop1.edges))
- for offset in xrange(len(eloop1.edges)):
- totEloopDist = 0 # Measure this total distance for thsi loop.
-
- offsetIndexLs = eLoopIdxs[offset:] + eLoopIdxs[:offset] # Make offset index list
-
-
- # e1Idx is always from 0uu to N, e2Idx is offset.
- for e1Idx, e2Idx in enumerate(offsetIndexLs):
- e1= eloop1.edges[e1Idx]
- e2= eloop2.edges[e2Idx]
-
-
- # Include fan connections in the measurement.
- OK= True
- while OK or e1.removed:
- OK= False
-
- # Measure the vloop distance ===============
- diff= ((e1.cent - e2.cent).length) #/ nangle1
-
- ed_dir= e1.cent-e2.cent
- a_diff= AngleBetweenVecs(DIR, ed_dir)/18 # 0 t0 18
-
- totEloopDist += (diff * (1+a_diff)) / (1+loopDist)
-
- # Premeture break if where no better off
- if totEloopDist > bestEloopDist:
- break
-
- e1=e1.next
-
- if totEloopDist < bestEloopDist:
- bestOffset = offset
- bestEloopDist = totEloopDist
-
- # Modify V2 LS for Best offset
- eloop2.edges = eloop2.edges[bestOffset:] + eloop2.edges[:bestOffset]
-
- else:
- # Both are open loops, easier to calculate.
-
-
- # Make sure the fake edges are at the start.
- for i, edloop in enumerate((eloop1, eloop2)):
- # print "LOOPO"
- if edloop.edges[0].fake:
- # alredy at the start
- #print "A"
- pass
- elif edloop.edges[-1].fake:
- # put the end at the start
- edloop.edges.insert(0, edloop.edges.pop())
- #print "B"
-
- else:
- for j, ed in enumerate(edloop.edges):
- if ed.fake:
- #print "C"
- edloop.edges = edloop.edges = edloop.edges[j:] + edloop.edges[:j]
- break
- # print "DONE"
- ed1, ed2 = eloop1.edges[0], eloop2.edges[0]
-
- if not ed1.fake or not ed2.fake:
- raise "Error"
-
- # Find the join that isnt flipped (juts like detecting a bow-tie face)
- a1 = (ed1.co1 - ed2.co1).length + (ed1.co2 - ed2.co2).length
- a2 = (ed1.co1 - ed2.co2).length + (ed1.co2 - ed2.co1).length
-
- if a1 > a2:
- eloop2.reverse()
- # make the first edge the start edge still
- eloop2.edges.insert(0, eloop2.edges.pop())
-
-
-
-
- for loopIdx in xrange(len(eloop2.edges)):
- e1 = eloop1.edges[loopIdx]
- e2 = eloop2.edges[loopIdx]
-
- # Remember the pairs for fan filling culled edges.
- e1.match = e2; e2.match = e1
-
- if not (e1.fake or e2.fake):
- new_faces.append([e1.v1, e1.v2, e2.v2, e2.v1])
-
- # FAN FILL MISSING FACES.
- if CULL_FACES:
- # Culled edges will be in eloop1.
- FAN_FILLED_FACES = 0
-
- contextEdge = eloop1.edges[0] # The larger of teh 2
- while FAN_FILLED_FACES < CULL_FACES:
- while contextEdge.next.removed == 0:
- contextEdge = contextEdge.next
-
- vertFanPivot = contextEdge.match.v2
-
- while contextEdge.next.removed == 1:
- #if not contextEdge.next.fake:
- new_faces.append([contextEdge.next.v1, contextEdge.next.v2, vertFanPivot])
-
- # Should we use another var?, this will work for now.
- contextEdge.next.removed = 1
-
- contextEdge = contextEdge.next
- FAN_FILLED_FACES += 1
-
- # may need to fan fill backwards 1 for non closed loops.
-
- eloop1.restore() # Add culled back into the list.
-
- return new_faces
-
-def main():
- global CULL_METHOD
-
- is_editmode = Window.EditMode()
- if is_editmode: Window.EditMode(0)
- ob = bpy.data.scenes.active.objects.active
- if ob == None or ob.type != 'Mesh':
- BPyMessages.Error_NoMeshActive()
- return
-
- me = ob.getData(mesh=1)
-
- if me.multires:
- BPyMessages.Error_NoMeshMultiresEdit()
- return
-
- time1 = Blender.sys.time()
- selEdges = getSelectedEdges(me, ob)
- vertLoops = getVertLoops(selEdges, me) # list of lists of edges.
- if vertLoops == None:
- PupMenu('Error%t|Selection includes verts that are a part of more then 1 loop')
- if is_editmode: Window.EditMode(1)
- return
- # print len(vertLoops)
-
-
- if len(vertLoops) > 2:
- choice = PupMenu('Loft '+str(len(vertLoops))+' edge loops%t|loop|segment')
- if choice == -1:
- if is_editmode: Window.EditMode(1)
- return
- elif len(vertLoops) < 2:
- PupMenu('Error%t|No Vertloops found!')
- if is_editmode: Window.EditMode(1)
- return
- else:
- choice = 2
-
-
- # The line below checks if any of the vert loops are differenyt in length.
- if False in [len(v[0]) == len(vertLoops[0][0]) for v in vertLoops]:
- CULL_METHOD = PupMenu('Small to large edge loop distrobution method%t|remove edges evenly|remove smallest edges')
- if CULL_METHOD == -1:
- if is_editmode: Window.EditMode(1)
- return
-
- if CULL_METHOD ==1: # RESET CULL_METHOD
- CULL_METHOD = 0 # shortest
- else:
- CULL_METHOD = 1 # even
-
-
- time1 = Blender.sys.time()
- # Convert to special edge data.
- edgeLoops = []
- for vloop, closed in vertLoops:
- edgeLoops.append(edgeLoop(vloop, me, closed))
-
-
- # VERT LOOP ORDERING CODE
- # "Build a worm" list - grow from Both ends
- edgeOrderedList = [edgeLoops.pop()]
-
- # Find the closest.
- bestSoFar = BIG_NUM
- bestIdxSoFar = None
- for edLoopIdx, edLoop in enumerate(edgeLoops):
- l =(edgeOrderedList[-1].centre - edLoop.centre).length
- if l < bestSoFar:
- bestIdxSoFar = edLoopIdx
- bestSoFar = l
-
- edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
-
- # Now we have the 2 closest, append to either end-
- # Find the closest.
- while edgeLoops:
- bestSoFar = BIG_NUM
- bestIdxSoFar = None
- first_or_last = 0 # Zero is first
- for edLoopIdx, edLoop in enumerate(edgeLoops):
- l1 =(edgeOrderedList[-1].centre - edLoop.centre).length
-
- if l1 < bestSoFar:
- bestIdxSoFar = edLoopIdx
- bestSoFar = l1
- first_or_last = 1 # last
-
- l2 =(edgeOrderedList[0].centre - edLoop.centre).length
- if l2 < bestSoFar:
- bestIdxSoFar = edLoopIdx
- bestSoFar = l2
- first_or_last = 0 # last
-
- if first_or_last: # add closest Last
- edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
- else: # Add closest First
- edgeOrderedList.insert(0, edgeLoops.pop(bestIdxSoFar) ) # First
-
- faces = []
-
- for i in xrange(len(edgeOrderedList)-1):
- faces.extend( skin2EdgeLoops(edgeOrderedList[i], edgeOrderedList[i+1], me, ob, 0) )
- if choice == 1 and len(edgeOrderedList) > 2: # Loop
- faces.extend( skin2EdgeLoops(edgeOrderedList[0], edgeOrderedList[-1], me, ob, 0) )
-
- # REMOVE SELECTED FACES.
- MESH_MODE= Blender.Mesh.Mode()
- if MESH_MODE & Blender.Mesh.SelectModes.EDGE or MESH_MODE & Blender.Mesh.SelectModes.VERTEX: pass
- elif MESH_MODE & Blender.Mesh.SelectModes.FACE:
- try: me.faces.delete(1, [ f for f in me.faces if f.sel ])
- except: pass
-
- me.faces.extend(faces, smooth = True)
-
- print '\nSkin done in %.4f sec.' % (Blender.sys.time()-time1)
-
-
- if is_editmode: Window.EditMode(1)
-
-if __name__ == '__main__':
- main()