Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'release/scripts/modules/mocap_tools.py')
-rw-r--r--release/scripts/modules/mocap_tools.py904
1 files changed, 0 insertions, 904 deletions
diff --git a/release/scripts/modules/mocap_tools.py b/release/scripts/modules/mocap_tools.py
deleted file mode 100644
index 6c22f718296..00000000000
--- a/release/scripts/modules/mocap_tools.py
+++ /dev/null
@@ -1,904 +0,0 @@
-# ##### BEGIN GPL LICENSE BLOCK #####
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU General Public License
-# as published by the Free Software Foundation; either version 2
-# of the License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software Foundation,
-# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
-#
-# ##### END GPL LICENSE BLOCK #####
-
-# <pep8 compliant>
-
-from math import hypot, sqrt, isfinite, radians, pi
-import bpy
-import time
-from mathutils import Vector, Matrix
-
-
-# A Python implementation of n sized Vectors.
-# Mathutils has a max size of 4, and we need at least 5 for Simplify Curves and even more for Cross Correlation.
-# Vector utility functions
-class NdVector:
- vec = []
-
- def __init__(self, vec):
- self.vec = vec[:]
-
- def __len__(self):
- return len(self.vec)
-
- def __mul__(self, otherMember):
- if (isinstance(otherMember, int) or
- isinstance(otherMember, float)):
- return NdVector([otherMember * x for x in self.vec])
- else:
- a = self.vec
- b = otherMember.vec
- n = len(self)
- return sum([a[i] * b[i] for i in range(n)])
-
- def __sub__(self, otherVec):
- a = self.vec
- b = otherVec.vec
- n = len(self)
- return NdVector([a[i] - b[i] for i in range(n)])
-
- def __add__(self, otherVec):
- a = self.vec
- b = otherVec.vec
- n = len(self)
- return NdVector([a[i] + b[i] for i in range(n)])
-
- def __div__(self, scalar):
- return NdVector([x / scalar for x in self.vec])
-
- def vecLength(self):
- return sqrt(self * self)
-
- def vecLengthSq(self):
- return (self * self)
-
- def normalize(self):
- len = self.length
- self.vec = [x / len for x in self.vec]
-
- def copy(self):
- return NdVector(self.vec)
-
- def __getitem__(self, i):
- return self.vec[i]
-
- def x(self):
- return self.vec[0]
-
- def y(self):
- return self.vec[1]
-
- def resize_2d(self):
- return Vector((self.x, self.y))
-
- length = property(vecLength)
- lengthSq = property(vecLengthSq)
- x = property(x)
- y = property(y)
-
-
-#Sampled Data Point class for Simplify Curves
-class dataPoint:
- index = 0
- # x,y1,y2,y3 coordinate of original point
- co = NdVector((0, 0, 0, 0, 0))
- #position according to parametric view of original data, [0,1] range
- u = 0
- #use this for anything
- temp = 0
-
- def __init__(self, index, co, u=0):
- self.index = index
- self.co = co
- self.u = u
-
-
-#Cross Correlation Function
-#http://en.wikipedia.org/wiki/Cross_correlation
-#IN: curvesA, curvesB - bpy_collection/list of fcurves to analyze. Auto-Correlation is when they are the same.
-# margin - When searching for the best "start" frame, how large a neighborhood of frames should we inspect (similar to epsilon in Calculus)
-#OUT: startFrame, length of new anim, and curvesA
-def crossCorrelationMatch(curvesA, curvesB, margin):
- dataA = []
- dataB = []
- start, end = curvesA[0].range()
- start = int(start)
- end = int(end)
-
- #transfer all fcurves data on each frame to a single NdVector.
- for i in range(1, end):
- vec = []
- for fcurve in curvesA:
- vec.append(fcurve.evaluate(i))
- dataA.append(NdVector(vec))
- vec = []
- for fcurve in curvesB:
- vec.append(fcurve.evaluate(i))
- dataB.append(NdVector(vec))
-
- #Comparator for Cross Correlation. "Classic" implementation uses dot product, as do we.
- def comp(a, b):
- return a * b
-
- #Create Rxy, which holds the Cross Correlation data.
- N = len(dataA)
- Rxy = [0.0] * N
- for i in range(N):
- for j in range(i, min(i + N, N)):
- Rxy[i] += comp(dataA[j], dataB[j - i])
- for j in range(i):
- Rxy[i] += comp(dataA[j], dataB[j - i + N])
- Rxy[i] /= float(N)
-
- #Find the Local maximums in the Cross Correlation data via numerical derivative.
- def LocalMaximums(Rxy):
- Rxyd = [Rxy[i] - Rxy[i - 1] for i in range(1, len(Rxy))]
- maxs = []
- for i in range(1, len(Rxyd) - 1):
- a = Rxyd[i - 1]
- b = Rxyd[i]
- #sign change (zerocrossing) at point i, denoting max point (only)
- if (a >= 0 and b < 0) or (a < 0 and b >= 0):
- maxs.append((i, max(Rxy[i], Rxy[i - 1])))
- return [x[0] for x in maxs]
- #~ return max(maxs, key=lambda x: x[1])[0]
-
- #flms - the possible offsets of the first part of the animation. In Auto-Corr, this is the length of the loop.
- flms = LocalMaximums(Rxy[0:int(len(Rxy))])
- ss = []
-
- #for every local maximum, find the best one - i.e. also has the best start frame.
- for flm in flms:
- diff = []
-
- for i in range(len(dataA) - flm):
- diff.append((dataA[i] - dataB[i + flm]).lengthSq)
-
- def lowerErrorSlice(diff, e):
- #index, error at index
- bestSlice = (0, 100000)
- for i in range(e, len(diff) - e):
- errorSlice = sum(diff[i - e:i + e + 1])
- if errorSlice < bestSlice[1]:
- bestSlice = (i, errorSlice, flm)
- return bestSlice
-
- s = lowerErrorSlice(diff, margin)
- ss.append(s)
-
- #Find the best result and return it.
- ss.sort(key=lambda x: x[1])
- return ss[0][2], ss[0][0], dataA
-
-
-#Uses auto correlation (cross correlation of the same set of curves) and trims the active_object's fcurves
-#Except for location curves (which in mocap tend to be not cyclic, e.g. a walk cycle forward)
-#Transfers the fcurve data to a list of NdVector (length of list is number of fcurves), and calls the cross correlation function.
-#Then trims the fcurve accordingly.
-#IN: Nothing, set the object you want as active and call. Assumes object has animation_data.action!
-#OUT: Trims the object's fcurves (except location curves).
-def autoloop_anim():
- context = bpy.context
- obj = context.active_object
-
- def locCurve(x):
- x.data_path == "location"
-
- fcurves = [x for x in obj.animation_data.action.fcurves if not locCurve(x)]
-
- margin = 10
-
- flm, s, data = crossCorrelationMatch(fcurves, fcurves, margin)
- loop = data[s:s + flm]
-
- #performs blending with a root falloff on the seam's neighborhood to ensure good tiling.
- for i in range(1, margin + 1):
- w1 = sqrt(float(i) / margin)
- loop[-i] = (loop[-i] * w1) + (loop[0] * (1 - w1))
-
- for curve in fcurves:
- pts = curve.keyframe_points
- for i in range(len(pts) - 1, -1, -1):
- pts.remove(pts[i])
-
- for c, curve in enumerate(fcurves):
- pts = curve.keyframe_points
- for i in range(len(loop)):
- pts.insert(i + 2, loop[i][c])
-
- context.scene.frame_end = flm
-
-
-#simplifyCurves: performes the bulk of the samples to bezier conversion.
-#IN: curveGroup - which can be a collection of singleFcurves, or grouped (via nested lists) .
-# error - threshold of permittable error (max distance) of the new beziers to the original data
-# reparaError - threshold of error where we should try to fix the parameterization rather than split the existing curve. > error, usually by a small constant factor for best performance.
-# maxIterations - maximum number of iterations of reparameterizations we should attempt. (Newton-Rahpson is not guarenteed to converge, so this is needed).
-# group_mode - boolean, indicating wether we should place bezier keyframes on the same x (frame), or optimize each individual curve.
-#OUT: None. Deletes the existing curves and creates the new beziers.
-def simplifyCurves(curveGroup, error, reparaError, maxIterations, group_mode):
-
- #Calculates the unit tangent of point v
- def unitTangent(v, data_pts):
- tang = NdVector((0, 0, 0, 0, 0))
- if v != 0:
- #If it's not the first point, we can calculate a leftside tangent
- tang += data_pts[v].co - data_pts[v - 1].co
- if v != len(data_pts) - 1:
- #If it's not the last point, we can calculate a rightside tangent
- tang += data_pts[v + 1].co - data_pts[v].co
- tang.normalize()
- return tang
-
- #assign parametric u value for each point in original data, via relative arc length
- #http://en.wikipedia.org/wiki/Arc_length
- def chordLength(data_pts, s, e):
- totalLength = 0
- for pt in data_pts[s:e + 1]:
- i = pt.index
- if i == s:
- chordLength = 0
- else:
- chordLength = (data_pts[i].co - data_pts[i - 1].co).length
- totalLength += chordLength
- pt.temp = totalLength
- for pt in data_pts[s:e + 1]:
- if totalLength == 0:
- print(s, e)
- pt.u = (pt.temp / totalLength)
-
- # get binomial coefficient lookup table, this function/table is only called with args
- # (3,0),(3,1),(3,2),(3,3),(2,0),(2,1),(2,2)!
- binomDict = {(3, 0): 1,
- (3, 1): 3,
- (3, 2): 3,
- (3, 3): 1,
- (2, 0): 1,
- (2, 1): 2,
- (2, 2): 1}
-
- #value at pt t of a single bernstein Polynomial
- def bernsteinPoly(n, i, t):
- binomCoeff = binomDict[(n, i)]
- return binomCoeff * pow(t, i) * pow(1 - t, n - i)
-
- # fit a single cubic to data points in range [s(tart),e(nd)].
- def fitSingleCubic(data_pts, s, e):
-
- # A - matrix used for calculating C matrices for fitting
- def A(i, j, s, e, t1, t2):
- if j == 1:
- t = t1
- if j == 2:
- t = t2
- u = data_pts[i].u
- return t * bernsteinPoly(3, j, u)
-
- # X component, used for calculating X matrices for fitting
- def xComponent(i, s, e):
- di = data_pts[i].co
- u = data_pts[i].u
- v0 = data_pts[s].co
- v3 = data_pts[e].co
- a = v0 * bernsteinPoly(3, 0, u)
- b = v0 * bernsteinPoly(3, 1, u)
- c = v3 * bernsteinPoly(3, 2, u)
- d = v3 * bernsteinPoly(3, 3, u)
- return (di - (a + b + c + d))
-
- t1 = unitTangent(s, data_pts)
- t2 = unitTangent(e, data_pts)
- c11 = sum([A(i, 1, s, e, t1, t2) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
- c12 = sum([A(i, 1, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
- c21 = c12
- c22 = sum([A(i, 2, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
-
- x1 = sum([xComponent(i, s, e) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
- x2 = sum([xComponent(i, s, e) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
-
- # calculate Determinate of the 3 matrices
- det_cc = c11 * c22 - c21 * c12
- det_cx = c11 * x2 - c12 * x1
- det_xc = x1 * c22 - x2 * c12
-
- # if matrix is not homogenous, fudge the data a bit
- if det_cc == 0:
- det_cc = 0.01
-
- # alpha's are the correct offset for bezier handles
- alpha0 = det_xc / det_cc # offset from right (first) point
- alpha1 = det_cx / det_cc # offset from left (last) point
-
- sRightHandle = data_pts[s].co.copy()
- sTangent = t1 * abs(alpha0)
- sRightHandle += sTangent # position of first pt's handle
- eLeftHandle = data_pts[e].co.copy()
- eTangent = t2 * abs(alpha1)
- eLeftHandle += eTangent # position of last pt's handle.
-
- # return a 4 member tuple representing the bezier
- return (data_pts[s].co,
- sRightHandle,
- eLeftHandle,
- data_pts[e].co)
-
- # convert 2 given data points into a cubic bezier.
- # handles are offset along the tangent at
- # a 3rd of the length between the points.
- def fitSingleCubic2Pts(data_pts, s, e):
- alpha0 = alpha1 = (data_pts[s].co - data_pts[e].co).length / 3
-
- sRightHandle = data_pts[s].co.copy()
- sTangent = unitTangent(s, data_pts) * abs(alpha0)
- sRightHandle += sTangent # position of first pt's handle
- eLeftHandle = data_pts[e].co.copy()
- eTangent = unitTangent(e, data_pts) * abs(alpha1)
- eLeftHandle += eTangent # position of last pt's handle.
-
- #return a 4 member tuple representing the bezier
- return (data_pts[s].co,
- sRightHandle,
- eLeftHandle,
- data_pts[e].co)
-
- #evaluate bezier, represented by a 4 member tuple (pts) at point t.
- def bezierEval(pts, t):
- sumVec = NdVector((0, 0, 0, 0, 0))
- for i in range(4):
- sumVec += pts[i] * bernsteinPoly(3, i, t)
- return sumVec
-
- #calculate the highest error between bezier and original data
- #returns the distance and the index of the point where max error occurs.
- def maxErrorAmount(data_pts, bez, s, e):
- maxError = 0
- maxErrorPt = s
- if e - s < 3:
- return 0, None
- for pt in data_pts[s:e + 1]:
- bezVal = bezierEval(bez, pt.u)
- normalize_error = pt.co.length
- if normalize_error == 0:
- normalize_error = 1
- tmpError = (pt.co - bezVal).length / normalize_error
- if tmpError >= maxError:
- maxError = tmpError
- maxErrorPt = pt.index
- return maxError, maxErrorPt
-
- #calculated bezier derivative at point t.
- #That is, tangent of point t.
- def getBezDerivative(bez, t):
- n = len(bez) - 1
- sumVec = NdVector((0, 0, 0, 0, 0))
- for i in range(n - 1):
- sumVec += (bez[i + 1] - bez[i]) * bernsteinPoly(n - 1, i, t)
- return sumVec
-
- #use Newton-Raphson to find a better paramterization of datapoints,
- #one that minimizes the distance (or error)
- # between bezier and original data.
- def newtonRaphson(data_pts, s, e, bez):
- for pt in data_pts[s:e + 1]:
- if pt.index == s:
- pt.u = 0
- elif pt.index == e:
- pt.u = 1
- else:
- u = pt.u
- qu = bezierEval(bez, pt.u)
- qud = getBezDerivative(bez, u)
- #we wish to minimize f(u),
- #the squared distance between curve and data
- fu = (qu - pt.co).length ** 2
- fud = (2 * (qu.x - pt.co.x) * (qud.x)) - (2 * (qu.y - pt.co.y) * (qud.y))
- if fud == 0:
- fu = 0
- fud = 1
- pt.u = pt.u - (fu / fud)
-
- #Create data_pts, a list of dataPoint type, each is assigned index i, and an NdVector
- def createDataPts(curveGroup, group_mode):
- data_pts = []
- if group_mode:
- print([x.data_path for x in curveGroup])
- for i in range(len(curveGroup[0].keyframe_points)):
- x = curveGroup[0].keyframe_points[i].co.x
- y1 = curveGroup[0].keyframe_points[i].co.y
- y2 = curveGroup[1].keyframe_points[i].co.y
- y3 = curveGroup[2].keyframe_points[i].co.y
- y4 = 0
- if len(curveGroup) == 4:
- y4 = curveGroup[3].keyframe_points[i].co.y
- data_pts.append(dataPoint(i, NdVector((x, y1, y2, y3, y4))))
- else:
- for i in range(len(curveGroup.keyframe_points)):
- x = curveGroup.keyframe_points[i].co.x
- y1 = curveGroup.keyframe_points[i].co.y
- y2 = 0
- y3 = 0
- y4 = 0
- data_pts.append(dataPoint(i, NdVector((x, y1, y2, y3, y4))))
- return data_pts
-
- #Recursively fit cubic beziers to the data_pts between s and e
- def fitCubic(data_pts, s, e):
- # if there are less than 3 points, fit a single basic bezier
- if e - s < 3:
- bez = fitSingleCubic2Pts(data_pts, s, e)
- else:
- #if there are more, parameterize the points
- # and fit a single cubic bezier
- chordLength(data_pts, s, e)
- bez = fitSingleCubic(data_pts, s, e)
-
- #calculate max error and point where it occurs
- maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)
- #if error is small enough, reparameterization might be enough
- if maxError < reparaError and maxError > error:
- for i in range(maxIterations):
- newtonRaphson(data_pts, s, e, bez)
- if e - s < 3:
- bez = fitSingleCubic2Pts(data_pts, s, e)
- else:
- bez = fitSingleCubic(data_pts, s, e)
-
- #recalculate max error and point where it occurs
- maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)
-
- #repara wasn't enough, we need 2 beziers for this range.
- #Split the bezier at point of maximum error
- if maxError > error:
- fitCubic(data_pts, s, maxErrorPt)
- fitCubic(data_pts, maxErrorPt, e)
- else:
- #error is small enough, return the beziers.
- beziers.append(bez)
- return
-
- # deletes the sampled points and creates beziers.
- def createNewCurves(curveGroup, beziers, group_mode):
- #remove all existing data points
- if group_mode:
- for fcurve in curveGroup:
- for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
- fcurve.keyframe_points.remove(fcurve.keyframe_points[i])
- else:
- fcurve = curveGroup
- for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
- fcurve.keyframe_points.remove(fcurve.keyframe_points[i])
-
- #insert the calculated beziers to blender data.\
- if group_mode:
- for fullbez in beziers:
- for i, fcurve in enumerate(curveGroup):
- bez = [Vector((vec[0], vec[i + 1])) for vec in fullbez]
- newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y)
- newKey.handle_right = (bez[1].x, bez[1].y)
-
- newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y)
- newKey.handle_left = (bez[2].x, bez[2].y)
- else:
- for bez in beziers:
- for vec in bez:
- vec.resize_2d()
- newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y)
- newKey.handle_right = (bez[1].x, bez[1].y)
-
- newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y)
- newKey.handle_left = (bez[2].x, bez[2].y)
-
- # indices are detached from data point's frame (x) value and
- # stored in the dataPoint object, represent a range
-
- data_pts = createDataPts(curveGroup, group_mode)
-
- s = 0 # start
- e = len(data_pts) - 1 # end
-
- beziers = []
-
- #begin the recursive fitting algorithm.
- fitCubic(data_pts, s, e)
- #remove old Fcurves and insert the new ones
- createNewCurves(curveGroup, beziers, group_mode)
-
-
-#Main function of simplification, which called by Operator
-#IN:
-# sel_opt- either "sel" (selected) or "all" for which curves to effect
-# error- maximum error allowed, in fraction (20% = 0.0020, which is the default),
-# i.e. divide by 10000 from percentage wanted.
-# group_mode- boolean, to analyze each curve seperately or in groups,
-# where a group is all curves that effect the same property/RNA path
-def fcurves_simplify(context, obj, sel_opt="all", error=0.002, group_mode=True):
- # main vars
- fcurves = obj.animation_data.action.fcurves
-
- if sel_opt == "sel":
- sel_fcurves = [fcurve for fcurve in fcurves if fcurve.select]
- else:
- sel_fcurves = fcurves[:]
-
- #Error threshold for Newton Raphson reparamatizing
- reparaError = error * 32
- maxIterations = 16
-
- if group_mode:
- fcurveDict = {}
- #this loop sorts all the fcurves into groups of 3 or 4,
- #based on their RNA Data path, which corresponds to
- #which property they effect
- for curve in sel_fcurves:
- if curve.data_path in fcurveDict: # if this bone has been added, append the curve to its list
- fcurveDict[curve.data_path].append(curve)
- else:
- fcurveDict[curve.data_path] = [curve] # new bone, add a new dict value with this first curve
- fcurveGroups = fcurveDict.values()
- else:
- fcurveGroups = sel_fcurves
-
- if error > 0.00000:
- #simplify every selected curve.
- totalt = 0
- for i, fcurveGroup in enumerate(fcurveGroups):
- print("Processing curve " + str(i + 1) + "/" + str(len(fcurveGroups)))
- t = time.clock()
- simplifyCurves(fcurveGroup, error, reparaError, maxIterations, group_mode)
- t = time.clock() - t
- print(str(t)[:5] + " seconds to process last curve")
- totalt += t
- print(str(totalt)[:5] + " seconds, total time elapsed")
-
- return
-
-
-# Implementation of non-linear median filter, with variable kernel size
-# Double pass - one marks spikes, the other smooths them
-# Expects sampled keyframes on everyframe
-# IN: None. Performs the operations on the active_object's fcurves. Expects animation_data.action to exist!
-# OUT: None. Fixes the fcurves "in-place".
-def denoise_median():
- context = bpy.context
- obj = context.active_object
- fcurves = obj.animation_data.action.fcurves
- medKernel = 1 # actually *2+1... since it this is offset
- flagKernel = 4
- highThres = (flagKernel * 2) - 1
- lowThres = 0
- for fcurve in fcurves:
- orgPts = fcurve.keyframe_points[:]
- flaggedFrames = []
- # mark frames that are spikes by sorting a large kernel
- for i in range(flagKernel, len(fcurve.keyframe_points) - flagKernel):
- center = orgPts[i]
- neighborhood = orgPts[i - flagKernel: i + flagKernel]
- neighborhood.sort(key=lambda pt: pt.co[1])
- weight = neighborhood.index(center)
- if weight >= highThres or weight <= lowThres:
- flaggedFrames.append((i, center))
- # clean marked frames with a simple median filter
- # averages all frames in the kernel equally, except center which has no weight
- for i, pt in flaggedFrames:
- newValue = 0
- sumWeights = 0
- neighborhood = [neighpt.co[1] for neighpt in orgPts[i - medKernel: i + medKernel + 1] if neighpt != pt]
- newValue = sum(neighborhood) / len(neighborhood)
- pt.co[1] = newValue
- return
-
-
-# Recieves armature, and rotations all bones by 90 degrees along the X axis
-# This fixes the common axis issue BVH files have when importing.
-# IN: Armature (bpy.types.Armature)
-def rotate_fix_armature(arm_data):
- global_matrix = Matrix.Rotation(radians(90), 4, "X")
- bpy.ops.object.mode_set(mode='EDIT', toggle=False)
- #disconnect all bones for ease of global rotation
- connectedBones = []
- for bone in arm_data.edit_bones:
- if bone.use_connect:
- connectedBones.append(bone.name)
- bone.use_connect = False
-
- #rotate all the bones around their center
- for bone in arm_data.edit_bones:
- bone.transform(global_matrix)
-
- #reconnect the bones
- for bone in connectedBones:
- arm_data.edit_bones[bone].use_connect = True
- bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
-
-
-#Roughly scales the performer armature to match the enduser armature
-#IN: perfromer_obj, enduser_obj, Blender objects whose .data is an armature.
-def scale_fix_armature(performer_obj, enduser_obj):
- perf_bones = performer_obj.data.bones
- end_bones = enduser_obj.data.bones
-
- def calculateBoundingRadius(bones):
- center = Vector()
- for bone in bones:
- center += bone.head_local
- center /= len(bones)
- radius = 0
- for bone in bones:
- dist = (bone.head_local - center).length
- if dist > radius:
- radius = dist
- return radius
-
- perf_rad = calculateBoundingRadius(performer_obj.data.bones)
- end_rad = calculateBoundingRadius(enduser_obj.data.bones)
- #end_avg = enduser_obj.dimensions
- factor = end_rad / perf_rad * 1.2
- performer_obj.scale *= factor
-
-
-#Guess Mapping
-#Given a performer and enduser armature, attempts to guess the hiearchy mapping
-def guessMapping(performer_obj, enduser_obj):
- perf_bones = performer_obj.data.bones
- end_bones = enduser_obj.data.bones
-
- root = perf_bones[0]
-
- def findBoneSide(bone):
- if "Left" in bone:
- return "Left", bone.replace("Left", "").lower().replace(".", "")
- if "Right" in bone:
- return "Right", bone.replace("Right", "").lower().replace(".", "")
- if "L" in bone:
- return "Left", bone.replace("Left", "").lower().replace(".", "")
- if "R" in bone:
- return "Right", bone.replace("Right", "").lower().replace(".", "")
- return "", bone
-
- def nameMatch(bone_a, bone_b):
- # nameMatch - recieves two strings, returns 2 if they are relatively the same, 1 if they are the same but R and L and 0 if no match at all
- side_a, noside_a = findBoneSide(bone_a)
- side_b, noside_b = findBoneSide(bone_b)
- if side_a == side_b:
- if noside_a in noside_b or noside_b in noside_a:
- return 2
- else:
- if noside_a in noside_b or noside_b in noside_a:
- return 1
- return 0
-
- def guessSingleMapping(perf_bone):
- possible_bones = [end_bones[0]]
-
- while possible_bones:
- for end_bone in possible_bones:
- match = nameMatch(perf_bone.name, end_bone.name)
- if match == 2 and not perf_bone.map:
- perf_bone.map = end_bone.name
- #~ elif match == 1 and not perf_bone.map:
- #~ oppo = perf_bones[oppositeBone(perf_bone)].map
- # if oppo:
- # perf_bone = oppo
- newPossibleBones = []
- for end_bone in possible_bones:
- newPossibleBones += list(end_bone.children)
- possible_bones = newPossibleBones
-
- for child in perf_bone.children:
- guessSingleMapping(child)
-
- guessSingleMapping(root)
-
-
-# Creates limit rotation constraints on the enduser armature based on range of motion (max min of fcurves) of the performer.
-# IN: context (bpy.context, etc.), and 2 blender objects which are armatures
-# OUT: creates the limit constraints.
-def limit_dof(context, performer_obj, enduser_obj):
- limitDict = {}
- perf_bones = [bone for bone in performer_obj.pose.bones if bone.bone.map]
- c_frame = context.scene.frame_current
- for bone in perf_bones:
- limitDict[bone.bone.map] = [1000, 1000, 1000, -1000, -1000, -1000]
- for t in range(context.scene.frame_start, context.scene.frame_end):
- context.scene.frame_set(t)
- for bone in perf_bones:
- end_bone = enduser_obj.pose.bones[bone.bone.map]
- bake_matrix = bone.matrix
- rest_matrix = end_bone.bone.matrix_local
-
- if end_bone.parent and end_bone.bone.use_inherit_rotation:
- srcParent = bone.parent
- parent_mat = srcParent.matrix
- parent_rest = end_bone.parent.bone.matrix_local
- parent_rest_inv = parent_rest.inverted()
- parent_mat_inv = parent_mat.inverted()
- bake_matrix = parent_mat_inv * bake_matrix
- rest_matrix = parent_rest_inv * rest_matrix
-
- rest_matrix_inv = rest_matrix.inverted()
- bake_matrix = rest_matrix_inv * bake_matrix
-
- mat = bake_matrix
- euler = mat.to_euler()
- limitDict[bone.bone.map][0] = min(limitDict[bone.bone.map][0], euler.x)
- limitDict[bone.bone.map][1] = min(limitDict[bone.bone.map][1], euler.y)
- limitDict[bone.bone.map][2] = min(limitDict[bone.bone.map][2], euler.z)
- limitDict[bone.bone.map][3] = max(limitDict[bone.bone.map][3], euler.x)
- limitDict[bone.bone.map][4] = max(limitDict[bone.bone.map][4], euler.y)
- limitDict[bone.bone.map][5] = max(limitDict[bone.bone.map][5], euler.z)
- for bone in enduser_obj.pose.bones:
- existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
- if existingConstraint:
- bone.constraints.remove(existingConstraint[0])
- end_bones = [bone for bone in enduser_obj.pose.bones if bone.name in limitDict.keys()]
- for bone in end_bones:
- #~ if not bone.is_in_ik_chain:
- newCons = bone.constraints.new("LIMIT_ROTATION")
- newCons.name = "DOF Limitation"
- newCons.owner_space = "LOCAL"
- newCons.min_x, newCons.min_y, newCons.min_z, newCons.max_x, newCons.max_y, newCons.max_z = limitDict[bone.name]
- newCons.use_limit_x = True
- newCons.use_limit_y = True
- newCons.use_limit_z = True
- context.scene.frame_set(c_frame)
-
-
-# Removes the constraints that were added by limit_dof on the enduser_obj
-def limit_dof_toggle_off(context, enduser_obj):
- for bone in enduser_obj.pose.bones:
- existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
- if existingConstraint:
- bone.constraints.remove(existingConstraint[0])
-
-
-# Reparameterizes a blender path via keyframing it's eval_time to match a stride_object's forward velocity.
-# IN: Context, stride object (blender object with location keyframes), path object.
-def path_editing(context, stride_obj, path):
- y_fcurve = [fcurve for fcurve in stride_obj.animation_data.action.fcurves if fcurve.data_path == "location"][1]
- s, e = context.scene.frame_start, context.scene.frame_end # y_fcurve.range()
- s = int(s)
- e = int(e)
- y_s = y_fcurve.evaluate(s)
- y_e = y_fcurve.evaluate(e)
- direction = (y_e - y_s) / abs(y_e - y_s)
- existing_cons = [constraint for constraint in stride_obj.constraints if constraint.type == "FOLLOW_PATH"]
- for cons in existing_cons:
- stride_obj.constraints.remove(cons)
- path_cons = stride_obj.constraints.new("FOLLOW_PATH")
- if direction < 0:
- path_cons.forward_axis = "TRACK_NEGATIVE_Y"
- else:
- path_cons.forward_axis = "FORWARD_Y"
- path_cons.target = path
- path_cons.use_curve_follow = True
- path.data.path_duration = e - s
- try:
- path.data.animation_data.action.fcurves
- except AttributeError:
- path.data.keyframe_insert("eval_time", frame=0)
- eval_time_fcurve = [fcurve for fcurve in path.data.animation_data.action.fcurves if fcurve.data_path == "eval_time"]
- eval_time_fcurve = eval_time_fcurve[0]
- totalLength = 0
- parameterization = {}
- print("evaluating curve")
- for t in range(s, e - 1):
- if s == t:
- chordLength = 0
- else:
- chordLength = (y_fcurve.evaluate(t) - y_fcurve.evaluate(t + 1))
- totalLength += chordLength
- parameterization[t] = totalLength
- for t in range(s + 1, e - 1):
- if totalLength == 0:
- print("no forward motion")
- parameterization[t] /= totalLength
- parameterization[t] *= e - s
- parameterization[e] = e - s
- for t in parameterization.keys():
- eval_time_fcurve.keyframe_points.insert(frame=t, value=parameterization[t])
- y_fcurve.mute = True
- print("finished path editing")
-
-
-#Animation Stitching
-#Stitches two retargeted animations together via NLA settings.
-#IN: enduser_obj, a blender armature that has had two retargets applied.
-def anim_stitch(context, enduser_obj):
- stitch_settings = enduser_obj.data.stitch_settings
- action_1 = stitch_settings.first_action
- action_2 = stitch_settings.second_action
- if stitch_settings.stick_bone != "":
- selected_bone = enduser_obj.pose.bones[stitch_settings.stick_bone]
- else:
- selected_bone = enduser_obj.pose.bones[0]
- scene = context.scene
- TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
- TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
- enduser_obj.data.active_mocap = action_1
- anim_data = enduser_obj.animation_data
- # add tracks for action 2
- mocapAction = bpy.data.actions[TrackNamesB.base_track]
- mocapTrack = anim_data.nla_tracks.new()
- mocapTrack.name = TrackNamesB.base_track
- mocapStrip = mocapTrack.strips.new(TrackNamesB.base_track, stitch_settings.blend_frame, mocapAction)
- mocapStrip.extrapolation = "HOLD_FORWARD"
- mocapStrip.blend_in = stitch_settings.blend_amount
- mocapStrip.action_frame_start += stitch_settings.second_offset
- mocapStrip.action_frame_end += stitch_settings.second_offset
- constraintTrack = anim_data.nla_tracks.new()
- constraintTrack.name = TrackNamesB.auto_fix_track
- constraintAction = bpy.data.actions[TrackNamesB.auto_fix_track]
- constraintStrip = constraintTrack.strips.new(TrackNamesB.auto_fix_track, stitch_settings.blend_frame, constraintAction)
- constraintStrip.extrapolation = "HOLD_FORWARD"
- constraintStrip.blend_in = stitch_settings.blend_amount
- userTrack = anim_data.nla_tracks.new()
- userTrack.name = TrackNamesB.manual_fix_track
- userAction = bpy.data.actions[TrackNamesB.manual_fix_track]
- userStrip = userTrack.strips.new(TrackNamesB.manual_fix_track, stitch_settings.blend_frame, userAction)
- userStrip.extrapolation = "HOLD_FORWARD"
- userStrip.blend_in = stitch_settings.blend_amount
- #stride bone
- if enduser_obj.parent:
- if enduser_obj.parent.name == "stride_bone":
- stride_bone = enduser_obj.parent
- stride_anim_data = stride_bone.animation_data
- stride_anim_data.use_nla = True
- stride_anim_data.action = None
- for track in stride_anim_data.nla_tracks:
- stride_anim_data.nla_tracks.remove(track)
- actionATrack = stride_anim_data.nla_tracks.new()
- actionATrack.name = TrackNamesA.stride_action
- actionAStrip = actionATrack.strips.new(TrackNamesA.stride_action, 0, bpy.data.actions[TrackNamesA.stride_action])
- actionAStrip.extrapolation = "NOTHING"
- actionBTrack = stride_anim_data.nla_tracks.new()
- actionBTrack.name = TrackNamesB.stride_action
- actionBStrip = actionBTrack.strips.new(TrackNamesB.stride_action, stitch_settings.blend_frame, bpy.data.actions[TrackNamesB.stride_action])
- actionBStrip.action_frame_start += stitch_settings.second_offset
- actionBStrip.action_frame_end += stitch_settings.second_offset
- actionBStrip.blend_in = stitch_settings.blend_amount
- actionBStrip.extrapolation = "NOTHING"
- #we need to change the stride_bone's action to add the offset
- scene.frame_set(stitch_settings.blend_frame - 1)
- desired_pos = (selected_bone.matrix.to_translation() * enduser_obj.matrix_world)
- scene.frame_set(stitch_settings.blend_frame)
- actual_pos = (selected_bone.matrix.to_translation() * enduser_obj.matrix_world)
- offset = actual_pos - desired_pos
-
- for i, fcurve in enumerate([fcurve for fcurve in bpy.data.actions[TrackNamesB.stride_action].fcurves if fcurve.data_path == "location"]):
- print(offset[i], i, fcurve.array_index)
- for pt in fcurve.keyframe_points:
- pt.co.y -= offset[i]
- pt.handle_left.y -= offset[i]
- pt.handle_right.y -= offset[i]
-
-
-#Guesses setting for animation stitching via Cross Correlation
-def guess_anim_stitch(context, enduser_obj):
- stitch_settings = enduser_obj.data.stitch_settings
- action_1 = stitch_settings.first_action
- action_2 = stitch_settings.second_action
- TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
- TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
- mocapA = bpy.data.actions[TrackNamesA.base_track]
- mocapB = bpy.data.actions[TrackNamesB.base_track]
- curvesA = mocapA.fcurves
- curvesB = mocapB.fcurves
- flm, s, data = crossCorrelationMatch(curvesA, curvesB, 10)
- print("Guessed the following for start and offset: ", s, flm)
- enduser_obj.data.stitch_settings.blend_frame = flm
- enduser_obj.data.stitch_settings.second_offset = s