Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/alembic/intern/abc_util.cc')
-rw-r--r--source/blender/alembic/intern/abc_util.cc437
1 files changed, 437 insertions, 0 deletions
diff --git a/source/blender/alembic/intern/abc_util.cc b/source/blender/alembic/intern/abc_util.cc
new file mode 100644
index 00000000000..fbab0bcdf34
--- /dev/null
+++ b/source/blender/alembic/intern/abc_util.cc
@@ -0,0 +1,437 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * Contributor(s): Esteban Tovagliari, Cedric Paille, Kevin Dietrich
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "abc_util.h"
+
+#include <algorithm>
+
+extern "C" {
+#include "DNA_object_types.h"
+
+#include "BLI_math.h"
+}
+
+std::string get_id_name(Object *ob)
+{
+ if (!ob) {
+ return "";
+ }
+
+ return get_id_name(&ob->id);
+}
+
+std::string get_id_name(ID *id)
+{
+ std::string name(id->name + 2);
+ std::replace(name.begin(), name.end(), ' ', '_');
+ std::replace(name.begin(), name.end(), '.', '_');
+ std::replace(name.begin(), name.end(), ':', '_');
+
+ return name;
+}
+
+std::string get_object_dag_path_name(Object *ob, Object *dupli_parent)
+{
+ std::string name = get_id_name(ob);
+
+ Object *p = ob->parent;
+
+ while (p) {
+ name = get_id_name(p) + "/" + name;
+ p = p->parent;
+ }
+
+ if (dupli_parent && (ob != dupli_parent)) {
+ name = get_id_name(dupli_parent) + "/" + name;
+ }
+
+ return name;
+}
+
+bool object_selected(Object *ob)
+{
+ return ob->flag & SELECT;
+}
+
+bool parent_selected(Object *ob)
+{
+ if (object_selected(ob)) {
+ return true;
+ }
+
+ bool do_export = false;
+
+ Object *parent = ob->parent;
+
+ while (parent != NULL) {
+ if (object_selected(parent)) {
+ do_export = true;
+ break;
+ }
+
+ parent = parent->parent;
+ }
+
+ return do_export;
+}
+
+Imath::M44d convert_matrix(float mat[4][4])
+{
+ Imath::M44d m;
+
+ for (int i = 0; i < 4; ++i) {
+ for (int j = 0; j < 4; ++j) {
+ m[i][j] = mat[i][j];
+ }
+ }
+
+ return m;
+}
+
+void split(const std::string &s, const char delim, std::vector<std::string> &tokens)
+{
+ tokens.clear();
+
+ std::stringstream ss(s);
+ std::string item;
+
+ while (std::getline(ss, item, delim)) {
+ if (!item.empty()) {
+ tokens.push_back(item);
+ }
+ }
+}
+
+/* Create a rotation matrix for each axis from euler angles.
+ * Euler angles are swaped to change coordinate system. */
+static void create_rotation_matrix(
+ float rot_x_mat[3][3], float rot_y_mat[3][3],
+ float rot_z_mat[3][3], const float euler[3], const bool to_yup)
+{
+ const float rx = euler[0];
+ const float ry = (to_yup) ? euler[2] : -euler[2];
+ const float rz = (to_yup) ? -euler[1] : euler[1];
+
+ unit_m3(rot_x_mat);
+ unit_m3(rot_y_mat);
+ unit_m3(rot_z_mat);
+
+ rot_x_mat[1][1] = cos(rx);
+ rot_x_mat[2][1] = -sin(rx);
+ rot_x_mat[1][2] = sin(rx);
+ rot_x_mat[2][2] = cos(rx);
+
+ rot_y_mat[2][2] = cos(ry);
+ rot_y_mat[0][2] = -sin(ry);
+ rot_y_mat[2][0] = sin(ry);
+ rot_y_mat[0][0] = cos(ry);
+
+ rot_z_mat[0][0] = cos(rz);
+ rot_z_mat[1][0] = -sin(rz);
+ rot_z_mat[0][1] = sin(rz);
+ rot_z_mat[1][1] = cos(rz);
+}
+
+/* Recompute transform matrix of object in new coordinate system
+ * (from Y-Up to Z-Up). */
+void create_transform_matrix(float r_mat[4][4])
+{
+ float rot_mat[3][3], rot[3][3], scale_mat[4][4], invmat[4][4], transform_mat[4][4];
+ float rot_x_mat[3][3], rot_y_mat[3][3], rot_z_mat[3][3];
+ float loc[3], scale[3], euler[3];
+
+ zero_v3(loc);
+ zero_v3(scale);
+ zero_v3(euler);
+ unit_m3(rot);
+ unit_m3(rot_mat);
+ unit_m4(scale_mat);
+ unit_m4(transform_mat);
+ unit_m4(invmat);
+
+ /* Compute rotation matrix. */
+
+ /* Extract location, rotation, and scale from matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, r_mat);
+
+ /* Get euler angles from rotation matrix. */
+ mat3_to_eulO(euler, ROT_MODE_XYZ, rot);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, false);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+
+ /* Add rotation matrix to transformation matrix. */
+ copy_m4_m3(transform_mat, rot_mat);
+
+ /* Add translation to transformation matrix. */
+ copy_yup_zup(transform_mat[3], loc);
+
+ /* Create scale matrix. */
+ scale_mat[0][0] = scale[0];
+ scale_mat[1][1] = scale[2];
+ scale_mat[2][2] = scale[1];
+
+ /* Add scale to transformation matrix. */
+ mul_m4_m4m4(transform_mat, transform_mat, scale_mat);
+
+ copy_m4_m4(r_mat, transform_mat);
+}
+
+void create_input_transform(const Alembic::AbcGeom::ISampleSelector &sample_sel,
+ const Alembic::AbcGeom::IXform &ixform, Object *ob,
+ float r_mat[4][4], float scale, bool has_alembic_parent)
+{
+
+ const Alembic::AbcGeom::IXformSchema &ixform_schema = ixform.getSchema();
+ Alembic::AbcGeom::XformSample xs;
+ ixform_schema.get(xs, sample_sel);
+ const Imath::M44d &xform = xs.getMatrix();
+
+ for (int i = 0; i < 4; ++i) {
+ for (int j = 0; j < 4; ++j) {
+ r_mat[i][j] = xform[i][j];
+ }
+ }
+
+ if (ob->type == OB_CAMERA) {
+ float cam_to_yup[4][4];
+ unit_m4(cam_to_yup);
+ rotate_m4(cam_to_yup, 'X', M_PI_2);
+ mul_m4_m4m4(r_mat, r_mat, cam_to_yup);
+ }
+
+ create_transform_matrix(r_mat);
+
+ if (ob->parent) {
+ mul_m4_m4m4(r_mat, ob->parent->obmat, r_mat);
+ }
+ /* TODO(kevin) */
+ else if (!has_alembic_parent) {
+ /* Only apply scaling to root objects, parenting will propagate it. */
+ float scale_mat[4][4];
+ scale_m4_fl(scale_mat, scale);
+ mul_m4_m4m4(r_mat, r_mat, scale_mat);
+ mul_v3_fl(r_mat[3], scale);
+ }
+}
+
+/* Recompute transform matrix of object in new coordinate system (from Z-Up to Y-Up). */
+void create_transform_matrix(Object *obj, float transform_mat[4][4])
+{
+ float rot_mat[3][3], rot[3][3], scale_mat[4][4], invmat[4][4], mat[4][4];
+ float rot_x_mat[3][3], rot_y_mat[3][3], rot_z_mat[3][3];
+ float loc[3], scale[3], euler[3];
+
+ zero_v3(loc);
+ zero_v3(scale);
+ zero_v3(euler);
+ unit_m3(rot);
+ unit_m3(rot_mat);
+ unit_m4(scale_mat);
+ unit_m4(transform_mat);
+ unit_m4(invmat);
+ unit_m4(mat);
+
+ /* get local matrix. */
+ if (obj->parent) {
+ invert_m4_m4(invmat, obj->parent->obmat);
+ mul_m4_m4m4(mat, invmat, obj->obmat);
+ }
+ else {
+ copy_m4_m4(mat, obj->obmat);
+ }
+
+ /* Compute rotation matrix. */
+ switch (obj->rotmode) {
+ case ROT_MODE_AXISANGLE:
+ {
+ /* Get euler angles from axis angle rotation. */
+ axis_angle_to_eulO(euler, ROT_MODE_XYZ, obj->rotAxis, obj->rotAngle);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, true);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+
+ /* Extract location and scale from matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ break;
+ }
+ case ROT_MODE_QUAT:
+ {
+ float q[4];
+ copy_v4_v4(q, obj->quat);
+
+ /* Swap axis. */
+ q[2] = obj->quat[3];
+ q[3] = -obj->quat[2];
+
+ /* Compute rotation matrix from quaternion. */
+ quat_to_mat3(rot_mat, q);
+
+ /* Extract location and scale from matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ break;
+ }
+ case ROT_MODE_XYZ:
+ {
+ /* Extract location, rotation, and scale form matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ /* Get euler angles from rotation matrix. */
+ mat3_to_eulO(euler, ROT_MODE_XYZ, rot);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, true);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+
+ break;
+ }
+ case ROT_MODE_XZY:
+ {
+ /* Extract location, rotation, and scale form matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ /* Get euler angles from rotation matrix. */
+ mat3_to_eulO(euler, ROT_MODE_XZY, rot);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, true);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+
+ break;
+ }
+ case ROT_MODE_YXZ:
+ {
+ /* Extract location, rotation, and scale form matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ /* Get euler angles from rotation matrix. */
+ mat3_to_eulO(euler, ROT_MODE_YXZ, rot);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, true);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+
+ break;
+ }
+ case ROT_MODE_YZX:
+ {
+ /* Extract location, rotation, and scale form matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ /* Get euler angles from rotation matrix. */
+ mat3_to_eulO(euler, ROT_MODE_YZX, rot);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, true);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+
+ break;
+ }
+ case ROT_MODE_ZXY:
+ {
+ /* Extract location, rotation, and scale form matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ /* Get euler angles from rotation matrix. */
+ mat3_to_eulO(euler, ROT_MODE_ZXY, rot);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, true);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+
+ break;
+ }
+ case ROT_MODE_ZYX:
+ {
+ /* Extract location, rotation, and scale form matrix. */
+ mat4_to_loc_rot_size(loc, rot, scale, mat);
+
+ /* Get euler angles from rotation matrix. */
+ mat3_to_eulO(euler, ROT_MODE_ZYX, rot);
+
+ /* Create X, Y, Z rotation matrices from euler angles. */
+ create_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, true);
+
+ /* Concatenate rotation matrices. */
+ mul_m3_m3m3(rot_mat, rot_mat, rot_x_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_z_mat);
+ mul_m3_m3m3(rot_mat, rot_mat, rot_y_mat);
+
+ break;
+ }
+ }
+
+ /* Add rotation matrix to transformation matrix. */
+ copy_m4_m3(transform_mat, rot_mat);
+
+ /* Add translation to transformation matrix. */
+ copy_zup_yup(transform_mat[3], loc);
+
+ /* Create scale matrix. */
+ scale_mat[0][0] = scale[0];
+ scale_mat[1][1] = scale[2];
+ scale_mat[2][2] = scale[1];
+
+ /* Add scale to transformation matrix. */
+ mul_m4_m4m4(transform_mat, transform_mat, scale_mat);
+}
+
+bool has_property(const Alembic::Abc::ICompoundProperty &prop, const std::string &name)
+{
+ if (!prop.valid()) {
+ return false;
+ }
+
+ return prop.getPropertyHeader(name) != NULL;
+}