Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/dynamicpaint.c')
-rw-r--r--source/blender/blenkernel/intern/dynamicpaint.c4874
1 files changed, 4874 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/dynamicpaint.c b/source/blender/blenkernel/intern/dynamicpaint.c
new file mode 100644
index 00000000000..3085876f592
--- /dev/null
+++ b/source/blender/blenkernel/intern/dynamicpaint.c
@@ -0,0 +1,4874 @@
+/**
+***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * Contributor(s): Miika Hämäläinen
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+
+#include "MEM_guardedalloc.h"
+
+#include <math.h>
+#include <stdio.h>
+
+#include "BLI_blenlib.h"
+#include "BLI_math.h"
+#include "BLI_kdtree.h"
+#include "BLI_threads.h"
+#include "BLI_utildefines.h"
+
+#include "DNA_anim_types.h"
+#include "DNA_dynamicpaint_types.h"
+#include "DNA_group_types.h" /*GroupObject*/
+#include "DNA_material_types.h"
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_modifier_types.h"
+#include "DNA_object_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_space_types.h"
+#include "DNA_texture_types.h"
+
+#include "BKE_animsys.h"
+#include "BKE_bvhutils.h" /* bvh tree */
+#include "BKE_blender.h"
+#include "BKE_cdderivedmesh.h"
+#include "BKE_context.h"
+#include "BKE_customdata.h"
+#include "BKE_colortools.h"
+#include "BKE_deform.h"
+#include "BKE_depsgraph.h"
+#include "BKE_DerivedMesh.h"
+#include "BKE_dynamicpaint.h"
+#include "BKE_effect.h"
+#include "BKE_global.h"
+#include "BKE_image.h"
+#include "BKE_main.h"
+#include "BKE_material.h"
+#include "BKE_modifier.h"
+#include "BKE_object.h"
+#include "BKE_particle.h"
+#include "BKE_pointcache.h"
+#include "BKE_scene.h"
+#include "BKE_texture.h"
+
+#include "RNA_access.h"
+#include "RNA_define.h"
+#include "RNA_enum_types.h"
+
+/* for image output */
+#include "IMB_imbuf_types.h"
+#include "IMB_imbuf.h"
+
+/* to read material/texture color */
+#include "RE_render_ext.h"
+#include "RE_shader_ext.h"
+
+#ifdef _OPENMP
+#include <omp.h>
+#endif
+
+/* precalculated gaussian factors for 5x super sampling */
+static float gaussianFactors[5] = { 0.996849f,
+ 0.596145f,
+ 0.596145f,
+ 0.596145f,
+ 0.524141f};
+static float gaussianTotal = 3.309425f;
+
+/* UV Image neighbouring pixel table x and y list */
+static int neighX[8] = {1,1,0,-1,-1,-1, 0, 1};
+static int neighY[8] = {0,1,1, 1, 0,-1,-1,-1};
+
+/* subframe_updateObject() flags */
+#define UPDATE_PARENTS (1<<0)
+#define UPDATE_MESH (1<<1)
+#define UPDATE_EVERYTHING (UPDATE_PARENTS|UPDATE_MESH)
+/* surface_getBrushFlags() return vals */
+#define BRUSH_USES_VELOCITY (1<<0)
+/* brush mesh raycast status */
+#define HIT_VOLUME 1
+#define HIT_PROXIMITY 2
+/* paint effect default movement per frame in global units */
+#define EFF_MOVEMENT_PER_FRAME 0.05f
+/* initial wave time factor */
+#define WAVE_TIME_FAC 0.1
+/* drying limits */
+#define MIN_WETNESS 0.001f
+/* dissolve macro */
+#define VALUE_DISSOLVE(VALUE, TIME, SCALE, LOG) (VALUE) = (LOG) ? (VALUE) * (pow(MIN_WETNESS,1.0f/(1.2f*((float)(TIME))/(SCALE)))) : (VALUE) - 1.0f/(TIME)*(SCALE)
+
+/***************************** Internal Structs ***************************/
+
+typedef struct Bounds2D {
+ float min[2], max[2];
+} Bounds2D;
+
+typedef struct Bounds3D {
+ int valid;
+ float min[3], max[3];
+} Bounds3D;
+
+typedef struct VolumeGrid {
+ int dim[3];
+ Bounds3D grid_bounds; /* whole grid bounds */
+
+ Bounds3D *bounds; /* (x*y*z) precalculated grid cell bounds */
+ unsigned int *s_pos; /* (x*y*z) t_index begin id */
+ unsigned int *s_num; /* (x*y*z) number of t_index points */
+ unsigned int *t_index; /* actual surface point index,
+ access: (s_pos+s_num) */
+} VolumeGrid;
+
+typedef struct Vec3f {
+ float v[3];
+} Vec3f;
+
+typedef struct BakeNeighPoint {
+ float dir[3]; /* vector pointing towards this neighbour */
+ float dist; /* distance to */
+} BakeNeighPoint;
+
+/* Surface data used while processing a frame */
+typedef struct PaintBakeNormal {
+ float invNorm[3]; /* current pixel world-space inverted normal */
+ float normal_scale; /* normal directional scale for displace mapping */
+} PaintBakeNormal;
+
+/* Temp surface data used to process a frame */
+typedef struct PaintBakeData {
+ /* point space data */
+ PaintBakeNormal *bNormal;
+ unsigned int *s_pos; /* index to start reading point sample realCoord */
+ unsigned int *s_num; /* num of realCoord samples */
+ Vec3f *realCoord; /* current pixel center world-space coordinates for each sample
+ * ordered as (s_pos+s_num)*/
+
+ /* adjacency info */
+ BakeNeighPoint *bNeighs; /* current global neighbour distances and directions, if required */
+ double average_dist;
+ /* space partitioning */
+ VolumeGrid *grid; /* space partitioning grid to optimize brush checks */
+
+ /* velocity and movement */
+ Vec3f *velocity; /* speed vector in global space movement per frame, if required */
+ Vec3f *prev_velocity;
+ float *brush_velocity; /* special temp data for post-p velocity based brushes like smudge
+ * 3 float dir vec + 1 float str */
+ MVert *prev_verts; /* copy of previous frame vertices. used to observe surface movement */
+ float prev_obmat[4][4]; /* previous frame object matrix */
+ int clear; /* flag to check if surface was cleared/reset -> have to redo velocity etc. */
+
+} PaintBakeData;
+
+/* UV Image sequence format point */
+typedef struct PaintUVPoint {
+ /* Pixel / mesh data */
+ unsigned int face_index, pixel_index; /* face index on domain derived mesh */
+ unsigned int v1, v2, v3; /* vertex indexes */
+
+ unsigned int neighbour_pixel; /* If this pixel isn't uv mapped to any face,
+ but it's neighbouring pixel is */
+ short quad;
+} PaintUVPoint;
+
+typedef struct ImgSeqFormatData {
+ PaintUVPoint *uv_p;
+ Vec3f *barycentricWeights; /* b-weights for all pixel samples */
+} ImgSeqFormatData;
+
+typedef struct EffVelPoint {
+ float previous_pos[3];
+ float previous_vel[3];
+} EffVelPoint;
+
+
+/* adjacency data flags */
+#define ADJ_ON_MESH_EDGE (1<<0)
+
+typedef struct PaintAdjData {
+ unsigned int *n_target; /* array of neighbouring point indexes,
+ for single sample use (n_index+neigh_num) */
+ unsigned int *n_index; /* index to start reading n_target for each point */
+ unsigned int *n_num; /* num of neighs for each point */
+ unsigned int *flags; /* vertex adjacency flags */
+ unsigned int total_targets; /* size of n_target */
+} PaintAdjData;
+
+/***************************** General Utils ******************************/
+
+/* Set canvas error string to display at the bake report */
+static int setError(DynamicPaintCanvasSettings *canvas, char *string)
+{
+ /* Add error to canvas ui info label */
+ BLI_snprintf(canvas->error, sizeof(canvas->error), string);
+ return 0;
+}
+
+/* Get number of surface points for cached types */
+static int dynamicPaint_surfaceNumOfPoints(DynamicPaintSurface *surface)
+{
+ if (surface->format == MOD_DPAINT_SURFACE_F_PTEX) {
+ return 0; /* not supported atm */
+ }
+ else if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ if (!surface->canvas->dm) return 0; /* invalid derived mesh */
+ return surface->canvas->dm->getNumVerts(surface->canvas->dm);
+ }
+ else
+ return 0;
+}
+
+/* checks whether surface's format/type has realtime preview */
+int dynamicPaint_surfaceHasColorPreview(DynamicPaintSurface *surface)
+{
+ if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) return 0;
+ else if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
+ surface->type == MOD_DPAINT_SURFACE_T_WAVE) return 0;
+ else return 1;
+ }
+ else return 1;
+}
+
+/* get currently active surface (in user interface) */
+struct DynamicPaintSurface *get_activeSurface(DynamicPaintCanvasSettings *canvas)
+{
+ DynamicPaintSurface *surface = canvas->surfaces.first;
+ int i;
+
+ for(i=0; surface; surface=surface->next) {
+ if(i == canvas->active_sur)
+ return surface;
+ i++;
+ }
+ return NULL;
+}
+
+/* set preview to first previewable surface */
+void dynamicPaint_resetPreview(DynamicPaintCanvasSettings *canvas)
+{
+ DynamicPaintSurface *surface = canvas->surfaces.first;
+ int done=0;
+
+ for(; surface; surface=surface->next) {
+ if (!done && dynamicPaint_surfaceHasColorPreview(surface)) {
+ surface->flags |= MOD_DPAINT_PREVIEW;
+ done=1;
+ }
+ else
+ surface->flags &= ~MOD_DPAINT_PREVIEW;
+ }
+}
+
+/* set preview to defined surface */
+static void dynamicPaint_setPreview(DynamicPaintSurface *t_surface)
+{
+ DynamicPaintSurface *surface = t_surface->canvas->surfaces.first;
+ for(; surface; surface=surface->next) {
+ if (surface == t_surface)
+ surface->flags |= MOD_DPAINT_PREVIEW;
+ else
+ surface->flags &= ~MOD_DPAINT_PREVIEW;
+ }
+}
+
+int dynamicPaint_outputLayerExists(struct DynamicPaintSurface *surface, Object *ob, int index)
+{
+ char *name;
+
+ if (index == 0)
+ name = surface->output_name;
+ else if (index == 1)
+ name = surface->output_name2;
+ else
+ return 0;
+
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ Mesh *me = ob->data;
+ return (CustomData_get_named_layer_index(&me->fdata, CD_MCOL, name) != -1);
+ }
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WEIGHT)
+ return (defgroup_name_index(ob, surface->output_name) != -1);
+ }
+
+ return 0;
+}
+
+static int surface_duplicateOutputExists(void *arg, const char *name)
+{
+ DynamicPaintSurface *t_surface = (DynamicPaintSurface*)arg;
+ DynamicPaintSurface *surface = t_surface->canvas->surfaces.first;
+
+ for(; surface; surface=surface->next) {
+ if (surface!=t_surface && surface->type==t_surface->type &&
+ surface->format==t_surface->format) {
+ if (surface->output_name[0]!='\0' && !strcmp(name, surface->output_name)) return 1;
+ if (surface->output_name2[0]!='\0' && !strcmp(name, surface->output_name2)) return 1;
+ }
+ }
+ return 0;
+}
+
+void surface_setUniqueOutputName(DynamicPaintSurface *surface, char *basename, int output)
+{
+ char name[64];
+ BLI_strncpy(name, basename, sizeof(name)); /* in case basename is surface->name use a copy */
+ if (!output)
+ BLI_uniquename_cb(surface_duplicateOutputExists, surface, name, '.', surface->output_name, sizeof(surface->output_name));
+ if (output)
+ BLI_uniquename_cb(surface_duplicateOutputExists, surface, name, '.', surface->output_name2, sizeof(surface->output_name2));
+}
+
+
+static int surface_duplicateNameExists(void *arg, const char *name)
+{
+ DynamicPaintSurface *t_surface = (DynamicPaintSurface*)arg;
+ DynamicPaintSurface *surface = t_surface->canvas->surfaces.first;
+
+ for(; surface; surface=surface->next) {
+ if (surface!=t_surface && !strcmp(name, surface->name)) return 1;
+ }
+ return 0;
+}
+
+void dynamicPaintSurface_setUniqueName(DynamicPaintSurface *surface, char *basename)
+{
+ char name[64];
+ BLI_strncpy(name, basename, sizeof(name)); /* in case basename is surface->name use a copy */
+ BLI_uniquename_cb(surface_duplicateNameExists, surface, name, '.', surface->name, sizeof(surface->name));
+}
+
+
+/* change surface data to defaults on new type */
+void dynamicPaintSurface_updateType(struct DynamicPaintSurface *surface)
+{
+ if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
+ surface->output_name[0]='\0';
+ surface->output_name2[0]='\0';
+ surface->flags |= MOD_DPAINT_ANTIALIAS;
+ surface->depth_clamp = 1.0f;
+ }
+ else {
+ sprintf(surface->output_name, "dp_");
+ strcpy(surface->output_name2,surface->output_name);
+ surface->flags &= ~MOD_DPAINT_ANTIALIAS;
+ surface->depth_clamp = 0.0f;
+ }
+
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ strcat(surface->output_name,"paintmap");
+ strcat(surface->output_name2,"wetmap");
+ surface_setUniqueOutputName(surface, surface->output_name2, 1);
+ }
+ else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE) {
+ strcat(surface->output_name,"displace");
+ }
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WEIGHT) {
+ strcat(surface->output_name,"weight");
+ }
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ strcat(surface->output_name,"wave");
+ }
+
+ surface_setUniqueOutputName(surface, surface->output_name, 0);
+
+ /* update preview */
+ if (dynamicPaint_surfaceHasColorPreview(surface))
+ dynamicPaint_setPreview(surface);
+ else
+ dynamicPaint_resetPreview(surface->canvas);
+}
+
+static int surface_totalSamples(DynamicPaintSurface *surface)
+{
+ if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ &&
+ surface->flags & MOD_DPAINT_ANTIALIAS)
+ return (surface->data->total_points*5);
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX &&
+ surface->flags & MOD_DPAINT_ANTIALIAS && surface->data->adj_data)
+ return (surface->data->total_points+surface->data->adj_data->total_targets);
+
+ return surface->data->total_points;
+}
+
+static void blendColors(float t_color[3], float t_alpha, float s_color[3], float s_alpha, float result[4])
+{
+ int i;
+ float i_alpha = 1.0f - s_alpha;
+ float f_alpha = t_alpha*i_alpha + s_alpha;
+
+ /* blend colors */
+ if (f_alpha) {
+ for (i=0; i<3; i++) {
+ result[i] = (t_color[i]*t_alpha*i_alpha + s_color[i]*s_alpha)/f_alpha;
+ }
+ }
+ else {
+ copy_v3_v3(result, t_color);
+ }
+ /* return final alpha */
+ result[3] = f_alpha;
+}
+
+/* assumes source alpha > 0.0f or results NaN colors */
+static void mixColors(float *t_color, float t_alpha, float *s_color, float s_alpha)
+{
+ float factor = (s_alpha<t_alpha) ? 1.0f : t_alpha/s_alpha;
+
+ /* set initial color depending on existing alpha */
+ interp_v3_v3v3(t_color, s_color, t_color, factor);
+ /* mix final color */
+ interp_v3_v3v3(t_color, t_color, s_color, s_alpha);
+}
+
+/* set "ignore cache" flag for all caches on this object */
+static void object_cacheIgnoreClear(Object *ob, int state)
+{
+ ListBase pidlist;
+ PTCacheID *pid;
+ BKE_ptcache_ids_from_object(&pidlist, ob, NULL, 0);
+
+ for(pid=pidlist.first; pid; pid=pid->next) {
+ if(pid->cache) {
+ if (state)
+ pid->cache->flag |= PTCACHE_IGNORE_CLEAR;
+ else
+ pid->cache->flag &= ~PTCACHE_IGNORE_CLEAR;
+ }
+ }
+
+ BLI_freelistN(&pidlist);
+}
+
+static void subframe_updateObject(Scene *scene, Object *ob, int flags, float frame)
+{
+ DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)modifiers_findByType(ob, eModifierType_DynamicPaint);
+
+ /* if other is dynamic paint canvas, dont update */
+ if (pmd && pmd->canvas)
+ return;
+
+ /* if object has parent, update it too */
+ if ((flags & UPDATE_PARENTS) && ob->parent) subframe_updateObject(scene, ob->parent, 0, frame);
+ if ((flags & UPDATE_PARENTS) && ob->track) subframe_updateObject(scene, ob->track, 0, frame);
+
+ /* for curve following objects, parented curve has to be updated too */
+ if(ob->type==OB_CURVE) {
+ Curve *cu= ob->data;
+ BKE_animsys_evaluate_animdata(scene, &cu->id, cu->adt, frame, ADT_RECALC_ANIM);
+ }
+
+ ob->recalc |= OB_RECALC_ALL;
+ BKE_animsys_evaluate_animdata(scene, &ob->id, ob->adt, frame, ADT_RECALC_ANIM);
+ if (flags & UPDATE_MESH) {
+ /* ignore cache clear during subframe updates
+ * to not mess up cache validity */
+ object_cacheIgnoreClear(ob, 1);
+ object_handle_update(scene, ob);
+ object_cacheIgnoreClear(ob, 0);
+ }
+ else
+ where_is_object_time(scene, ob, frame);
+}
+
+static void scene_setSubframe(Scene *scene, float subframe)
+{
+ /* dynamic paint subframes must be done on previous frame */
+ scene->r.cfra -= 1;
+ scene->r.subframe = subframe;
+}
+
+#define BRUSH_USES_VELOCITY (1<<0)
+
+static int surface_getBrushFlags(DynamicPaintSurface *surface, Scene *scene, Object *ob)
+{
+ Base *base = NULL;
+ GroupObject *go = NULL;
+ Object *brushObj = NULL;
+ ModifierData *md = NULL;
+
+ int flags = 0;
+
+ if(surface->brush_group)
+ go = surface->brush_group->gobject.first;
+ else
+ base = scene->base.first;
+
+ while (base || go)
+ {
+ brushObj = NULL;
+
+ /* select object */
+ if(surface->brush_group) {
+ if(go->ob) brushObj = go->ob;
+ }
+ else
+ brushObj = base->object;
+
+ if(!brushObj)
+ {
+ if(surface->brush_group) go = go->next;
+ else base= base->next;
+ continue;
+ }
+
+ if(surface->brush_group)
+ go = go->next;
+ else
+ base= base->next;
+
+ md = modifiers_findByType(brushObj, eModifierType_DynamicPaint);
+ if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
+ {
+ DynamicPaintModifierData *pmd2 = (DynamicPaintModifierData *)md;
+
+ if (pmd2->brush)
+ {
+ DynamicPaintBrushSettings *brush = pmd2->brush;
+
+ if (brush->flags & MOD_DPAINT_USES_VELOCITY)
+ flags |= BRUSH_USES_VELOCITY;
+ }
+ }
+ }
+
+ return flags;
+}
+
+/* check whether two bounds intersect */
+static int boundsIntersect(Bounds3D *b1, Bounds3D *b2)
+{
+ int i=2;
+ if (!b1->valid || !b2->valid) return 0;
+ for (; i>=0; i-=1)
+ if (!(b1->min[i] <= b2->max[i] && b1->max[i] >= b2->min[i])) return 0;
+ return 1;
+}
+
+/* check whether two bounds intersect inside defined proximity */
+static int boundsIntersectDist(Bounds3D *b1, Bounds3D *b2, float dist)
+{
+ int i=2;
+ if (!b1->valid || !b2->valid) return 0;
+ for (; i>=0; i-=1)
+ if (!(b1->min[i] <= (b2->max[i]+dist) && b1->max[i] >= (b2->min[i]-dist))) return 0;
+ return 1;
+}
+
+/* check whether bounds intersects a point with given radius */
+static int boundIntersectPoint(Bounds3D *b, float point[3], float radius)
+{
+ int i=2;
+ if (!b->valid) return 0;
+ for (; i>=0; i-=1)
+ if (!(b->min[i] <= (point[i]+radius) && b->max[i] >= (point[i]-radius))) return 0;
+ return 1;
+}
+
+/* expand bounds by a new point */
+static void boundInsert(Bounds3D *b, float point[3])
+{
+ int i=2;
+ if (!b->valid) {
+ copy_v3_v3(b->min, point);
+ copy_v3_v3(b->max, point);
+ b->valid = 1;
+ }
+ else {
+ for (; i>=0; i-=1) {
+ if (point[i] < b->min[i]) b->min[i]=point[i];
+ if (point[i] > b->max[i]) b->max[i]=point[i];
+ }
+ }
+}
+
+static void freeGrid(PaintSurfaceData *data)
+{
+ PaintBakeData *bData = data->bData;
+ VolumeGrid *grid = bData->grid;
+
+ if (grid->bounds) MEM_freeN(grid->bounds);
+ if (grid->s_pos) MEM_freeN(grid->s_pos);
+ if (grid->s_num) MEM_freeN(grid->s_num);
+ if (grid->t_index) MEM_freeN(grid->t_index);
+
+ MEM_freeN(bData->grid);
+ bData->grid = NULL;
+}
+
+static void surfaceGenerateGrid(struct DynamicPaintSurface *surface)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ Bounds3D *grid_bounds;
+ VolumeGrid *grid;
+ int grid_cells, axis = 3;
+ int *temp_t_index = NULL;
+ int *temp_s_num = NULL;
+
+#ifdef _OPENMP
+ int num_of_threads = omp_get_max_threads();
+#else
+ int num_of_threads = 1;
+#endif
+
+ if (bData->grid)
+ freeGrid(sData);
+
+ /* allocate separate bounds for each thread */
+ grid_bounds = MEM_callocN(sizeof(Bounds3D)*num_of_threads, "Grid Bounds");
+ bData->grid = MEM_callocN(sizeof(VolumeGrid), "Surface Grid");
+ grid = bData->grid;
+
+ if (grid && grid_bounds) {
+ int i, error = 0;
+ float dim_factor, volume, dim[3];
+ float td[3];
+ float min_dim;
+
+ /* calculate canvas dimensions */
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ #ifdef _OPENMP
+ int id = omp_get_thread_num();
+ boundInsert(&grid_bounds[id], (bData->realCoord[bData->s_pos[i]].v));
+ #else
+ boundInsert(&grid_bounds[0], (bData->realCoord[bData->s_pos[i]].v));
+ #endif
+ }
+
+ /* get final dimensions */
+ for (i=0; i<num_of_threads; i++) {
+ boundInsert(&grid->grid_bounds, grid_bounds[i].min);
+ boundInsert(&grid->grid_bounds, grid_bounds[i].max);
+ }
+
+ /* get dimensions */
+ sub_v3_v3v3(dim, grid->grid_bounds.max, grid->grid_bounds.min);
+ copy_v3_v3(td, dim);
+ min_dim = MAX3(td[0],td[1],td[2]) / 1000.f;
+
+ /* deactivate zero axises */
+ for (i=0; i<3; i++) {
+ if (td[i]<min_dim) {td[i]=1.0f; axis-=1;}
+ }
+
+ if (axis == 0 || MAX3(td[0],td[1],td[2]) < 0.0001f) {
+ MEM_freeN(grid_bounds);
+ MEM_freeN(bData->grid);
+ bData->grid = NULL;
+ return;
+ }
+
+ /* now calculate grid volume/area/width depending on num of active axis */
+ volume = td[0]*td[1]*td[2];
+
+ /* determine final grid size by trying to fit average 10.000 points per grid cell */
+ dim_factor = pow(volume / ((double)sData->total_points / 10000.f), 1.0f/axis);
+
+ /* define final grid size using dim_factor, use min 3 for active axises */
+ for (i=0; i<3; i++) {
+ grid->dim[i] = (int)floor(td[i] / dim_factor);
+ CLAMP(grid->dim[i], (dim[i]>=min_dim) ? 3 : 1, 100);
+ }
+ grid_cells = grid->dim[0]*grid->dim[1]*grid->dim[2];
+
+ /* allocate memory for grids */
+ grid->bounds = MEM_callocN(sizeof(Bounds3D) * grid_cells, "Surface Grid Bounds");
+ grid->s_pos = MEM_callocN(sizeof(int) * grid_cells, "Surface Grid Position");
+ grid->s_num = MEM_callocN(sizeof(int) * grid_cells*num_of_threads, "Surface Grid Points");
+ temp_s_num = MEM_callocN(sizeof(int) * grid_cells, "Temp Surface Grid Points");
+ grid->t_index = MEM_callocN(sizeof(int) * sData->total_points, "Surface Grid Target Ids");
+ temp_t_index = MEM_callocN(sizeof(int) * sData->total_points, "Temp Surface Grid Target Ids");
+
+ /* in case of an allocation failture abort here */
+ if (!grid->bounds || !grid->s_pos || !grid->s_num || !grid->t_index || !temp_s_num || !temp_t_index)
+ error = 1;
+
+ if (!error) {
+ /* calculate number of points withing each cell */
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ int co[3], j;
+ for (j=0; j<3; j++) {
+ co[j] = floor((bData->realCoord[bData->s_pos[i]].v[j] - grid->grid_bounds.min[j])/dim[j]*grid->dim[j]);
+ CLAMP(co[j], 0, grid->dim[j]-1);
+ }
+
+ temp_t_index[i] = co[0] + co[1] * grid->dim[0] + co[2] * grid->dim[0]*grid->dim[1];
+ #ifdef _OPENMP
+ grid->s_num[temp_t_index[i]+omp_get_thread_num()*grid_cells]++;
+ #else
+ grid->s_num[temp_t_index[i]]++;
+ #endif
+ }
+
+ /* for first cell only calc s_num */
+ for (i=1; i<num_of_threads; i++) {
+ grid->s_num[0] += grid->s_num[i*grid_cells];
+ }
+
+ /* calculate grid indexes */
+ for (i=1; i<grid_cells; i++) {
+ int id;
+ for (id=1; id<num_of_threads; id++) {
+ grid->s_num[i] += grid->s_num[i+id*grid_cells];
+ }
+ grid->s_pos[i] = grid->s_pos[i-1] + grid->s_num[i-1];
+ }
+
+ /* save point indexes to final array */
+ for (i=0; i<sData->total_points; i++) {
+ int pos = grid->s_pos[temp_t_index[i]] + temp_s_num[temp_t_index[i]];
+ grid->t_index[pos] = i;
+
+ temp_s_num[temp_t_index[i]]++;
+ }
+
+ /* calculate cell bounds */
+ {
+ int x;
+ #pragma omp parallel for schedule(static)
+ for (x=0; x<grid->dim[0]; x++) {
+ int y;
+ for (y=0; y<grid->dim[1]; y++) {
+ int z;
+ for (z=0; z<grid->dim[2]; z++) {
+ int j, b_index = x + y * grid->dim[0] + z * grid->dim[0]*grid->dim[1];
+ /* set bounds */
+ for (j=0; j<3; j++) {
+ int s = (j==0) ? x : ((j==1) ? y : z);
+ grid->bounds[b_index].min[j] = grid->grid_bounds.min[j] + dim[j]/grid->dim[j]*s;
+ grid->bounds[b_index].max[j] = grid->grid_bounds.min[j] + dim[j]/grid->dim[j]*(s+1);
+ }
+ grid->bounds[b_index].valid = 1;
+ }
+ }
+ }
+ }
+ }
+
+ if (temp_s_num) MEM_freeN(temp_s_num);
+ if (temp_t_index) MEM_freeN(temp_t_index);
+
+ /* free per thread s_num values */
+ grid->s_num = MEM_reallocN(grid->s_num, sizeof(int) * grid_cells);
+
+ if (error || !grid->s_num) {
+ setError(surface->canvas, "Not enough free memory.");
+ freeGrid(sData);
+ }
+ }
+
+ if (grid_bounds) MEM_freeN(grid_bounds);
+}
+
+/***************************** Freeing data ******************************/
+
+/* Free brush data */
+void dynamicPaint_freeBrush(struct DynamicPaintModifierData *pmd)
+{
+ if(pmd->brush) {
+ if(pmd->brush->dm)
+ pmd->brush->dm->release(pmd->brush->dm);
+ pmd->brush->dm = NULL;
+
+ if(pmd->brush->paint_ramp)
+ MEM_freeN(pmd->brush->paint_ramp);
+ pmd->brush->paint_ramp = NULL;
+ if(pmd->brush->vel_ramp)
+ MEM_freeN(pmd->brush->vel_ramp);
+ pmd->brush->vel_ramp = NULL;
+
+ MEM_freeN(pmd->brush);
+ pmd->brush = NULL;
+ }
+}
+
+static void dynamicPaint_freeAdjData(PaintSurfaceData *data)
+{
+ if (data->adj_data) {
+ if (data->adj_data->n_index) MEM_freeN(data->adj_data->n_index);
+ if (data->adj_data->n_num) MEM_freeN(data->adj_data->n_num);
+ if (data->adj_data->n_target) MEM_freeN(data->adj_data->n_target);
+ if (data->adj_data->flags) MEM_freeN(data->adj_data->flags);
+ MEM_freeN(data->adj_data);
+ data->adj_data = NULL;
+ }
+}
+
+static void free_bakeData(PaintSurfaceData *data)
+{
+ PaintBakeData *bData = data->bData;
+ if (bData) {
+ if (bData->bNormal) MEM_freeN(bData->bNormal);
+ if (bData->s_pos) MEM_freeN(bData->s_pos);
+ if (bData->s_num) MEM_freeN(bData->s_num);
+ if (bData->realCoord) MEM_freeN(bData->realCoord);
+ if (bData->bNeighs) MEM_freeN(bData->bNeighs);
+ if (bData->grid) freeGrid(data);
+ if (bData->prev_verts) MEM_freeN(bData->prev_verts);
+ if (bData->velocity) MEM_freeN(bData->velocity);
+ if (bData->prev_velocity) MEM_freeN(bData->prev_velocity);
+
+ MEM_freeN(data->bData);
+ data->bData = NULL;
+ }
+}
+
+/* free surface data if it's not used anymore */
+void surface_freeUnusedData(DynamicPaintSurface *surface)
+{
+ if (!surface->data) return;
+
+ /* free bakedata if not active or surface is baked */
+ if (!(surface->flags & MOD_DPAINT_ACTIVE) ||
+ (surface->pointcache && surface->pointcache->flag & PTCACHE_BAKED))
+ free_bakeData(surface->data);
+}
+
+void dynamicPaint_freeSurfaceData(DynamicPaintSurface *surface)
+{
+ PaintSurfaceData *data = surface->data;
+ if (!data) return;
+ if (data->format_data) {
+ /* format specific free */
+ if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
+ ImgSeqFormatData *format_data = (ImgSeqFormatData*)data->format_data;
+ if (format_data->uv_p)
+ MEM_freeN(format_data->uv_p);
+ if (format_data->barycentricWeights)
+ MEM_freeN(format_data->barycentricWeights);
+ }
+ MEM_freeN(data->format_data);
+ }
+ /* type data */
+ if (data->type_data) MEM_freeN(data->type_data);
+ dynamicPaint_freeAdjData(data);
+ /* bake data */
+ free_bakeData(data);
+
+ MEM_freeN(surface->data);
+ surface->data = NULL;
+}
+
+void dynamicPaint_freeSurface(DynamicPaintSurface *surface)
+{
+ /* point cache */
+ BKE_ptcache_free_list(&(surface->ptcaches));
+ surface->pointcache = NULL;
+
+ if(surface->effector_weights)
+ MEM_freeN(surface->effector_weights);
+ surface->effector_weights = NULL;
+
+ BLI_remlink(&(surface->canvas->surfaces), surface);
+ dynamicPaint_freeSurfaceData(surface);
+ MEM_freeN(surface);
+}
+
+/* Free canvas data */
+void dynamicPaint_freeCanvas(DynamicPaintModifierData *pmd)
+{
+ if(pmd->canvas) {
+ /* Free surface data */
+ DynamicPaintSurface *surface = pmd->canvas->surfaces.first;
+ DynamicPaintSurface *next_surface = NULL;
+
+ while (surface) {
+ next_surface = surface->next;
+ dynamicPaint_freeSurface(surface);
+ surface = next_surface;
+ }
+
+ /* free dm copy */
+ if (pmd->canvas->dm)
+ pmd->canvas->dm->release(pmd->canvas->dm);
+ pmd->canvas->dm = NULL;
+
+ MEM_freeN(pmd->canvas);
+ pmd->canvas = NULL;
+ }
+}
+
+/* Free whole dp modifier */
+void dynamicPaint_Modifier_free(struct DynamicPaintModifierData *pmd)
+{
+ if(pmd) {
+ dynamicPaint_freeCanvas(pmd);
+ dynamicPaint_freeBrush(pmd);
+ }
+}
+
+
+/***************************** Initialize and reset ******************************/
+
+/*
+* Creates a new surface and adds it to the list
+* If scene is null, frame range of 1-250 is used
+* A pointer to this surface is returned
+*/
+struct DynamicPaintSurface *dynamicPaint_createNewSurface(DynamicPaintCanvasSettings *canvas, Scene *scene)
+{
+ DynamicPaintSurface *surface= MEM_callocN(sizeof(DynamicPaintSurface), "DynamicPaintSurface");
+ if (!surface) return NULL;
+
+ surface->canvas = canvas;
+ surface->format = MOD_DPAINT_SURFACE_F_VERTEX;
+ surface->type = MOD_DPAINT_SURFACE_T_PAINT;
+
+ /* cache */
+ surface->pointcache = BKE_ptcache_add(&(surface->ptcaches));
+ surface->pointcache->flag |= PTCACHE_DISK_CACHE;
+ surface->pointcache->step = 1;
+
+ /* Set initial values */
+ surface->flags = MOD_DPAINT_ANTIALIAS | MOD_DPAINT_MULALPHA | MOD_DPAINT_DRY_LOG | MOD_DPAINT_DISSOLVE_LOG |
+ MOD_DPAINT_ACTIVE | MOD_DPAINT_PREVIEW | MOD_DPAINT_OUT1;
+ surface->effect = 0;
+ surface->effect_ui = 1;
+
+ surface->diss_speed = 250;
+ surface->dry_speed = 500;
+ surface->depth_clamp = 0.0f;
+ surface->disp_factor = 1.0f;
+ surface->disp_type = MOD_DPAINT_DISP_DISPLACE;
+ surface->image_fileformat = MOD_DPAINT_IMGFORMAT_PNG;
+
+ surface->init_color[0] = 1.0f;
+ surface->init_color[1] = 1.0f;
+ surface->init_color[2] = 1.0f;
+ surface->init_color[3] = 1.0f;
+
+ surface->image_resolution = 256;
+ surface->substeps = 0;
+
+ if (scene) {
+ surface->start_frame = scene->r.sfra;
+ surface->end_frame = scene->r.efra;
+ }
+ else {
+ surface->start_frame = 1;
+ surface->end_frame = 250;
+ }
+
+ surface->spread_speed = 1.0f;
+ surface->color_spread_speed = 1.0f;
+ surface->shrink_speed = 1.0f;
+
+ surface->wave_damping = 0.05f;
+ surface->wave_speed = 1.0f;
+ surface->wave_timescale = 1.0f;
+ surface->wave_spring = 0.20;
+
+ BLI_snprintf(surface->image_output_path, sizeof(surface->image_output_path), "%sdynamicpaint", U.textudir);
+ BLI_cleanup_dir(NULL, surface->image_output_path);
+ dynamicPaintSurface_setUniqueName(surface, "Surface");
+
+ surface->effector_weights = BKE_add_effector_weights(NULL);
+
+ dynamicPaintSurface_updateType(surface);
+
+ BLI_addtail(&canvas->surfaces, surface);
+
+ return surface;
+}
+
+/*
+* Initialize modifier data
+*/
+int dynamicPaint_createType(struct DynamicPaintModifierData *pmd, int type, struct Scene *scene)
+{
+ if(pmd) {
+ if(type == MOD_DYNAMICPAINT_TYPE_CANVAS) {
+ DynamicPaintCanvasSettings *canvas;
+ if(pmd->canvas)
+ dynamicPaint_freeCanvas(pmd);
+
+ canvas = pmd->canvas = MEM_callocN(sizeof(DynamicPaintCanvasSettings), "DynamicPaint Canvas");
+ if (!canvas)
+ return 0;
+ canvas->pmd = pmd;
+ canvas->dm = NULL;
+
+ /* Create one surface */
+ if (!dynamicPaint_createNewSurface(canvas, scene))
+ return 0;
+
+ }
+ else if(type == MOD_DYNAMICPAINT_TYPE_BRUSH) {
+ DynamicPaintBrushSettings *brush;
+ if(pmd->brush)
+ dynamicPaint_freeBrush(pmd);
+
+ brush = pmd->brush = MEM_callocN(sizeof(DynamicPaintBrushSettings), "DynamicPaint Paint");
+ if (!brush)
+ return 0;
+ brush->pmd = pmd;
+
+ brush->psys = NULL;
+
+ brush->flags = MOD_DPAINT_ABS_ALPHA | MOD_DPAINT_RAMP_ALPHA;
+ brush->collision = MOD_DPAINT_COL_VOLUME;
+
+ brush->mat = NULL;
+ brush->r = 0.15f;
+ brush->g = 0.4f;
+ brush->b = 0.8f;
+ brush->alpha = 1.0f;
+ brush->wetness = 1.0f;
+
+ brush->paint_distance = 1.0f;
+ brush->proximity_falloff = MOD_DPAINT_PRFALL_SMOOTH;
+
+ brush->particle_radius = 0.2f;
+ brush->particle_smooth = 0.05f;
+
+ brush->wave_factor = 1.0f;
+ brush->wave_clamp = 0.0f;
+ brush->smudge_strength = 0.3f;
+ brush->max_velocity = 1.0f;
+
+ brush->dm = NULL;
+
+ /* Paint proximity falloff colorramp. */
+ {
+ CBData *ramp;
+
+ brush->paint_ramp = add_colorband(0);
+ if (!brush->paint_ramp)
+ return 0;
+ ramp = brush->paint_ramp->data;
+ /* Add default smooth-falloff ramp. */
+ ramp[0].r = ramp[0].g = ramp[0].b = ramp[0].a = 1.0f;
+ ramp[0].pos = 0.0f;
+ ramp[1].r = ramp[1].g = ramp[1].b = ramp[1].pos = 1.0f;
+ ramp[1].a = 0.0f;
+ pmd->brush->paint_ramp->tot = 2;
+ }
+
+ /* Brush velocity ramp. */
+ {
+ CBData *ramp;
+
+ brush->vel_ramp = add_colorband(0);
+ if (!brush->vel_ramp)
+ return 0;
+ ramp = brush->vel_ramp->data;
+ ramp[0].r = ramp[0].g = ramp[0].b = ramp[0].a = ramp[0].pos = 0.0f;
+ ramp[1].r = ramp[1].g = ramp[1].b = ramp[1].a = ramp[1].pos = 1.0f;
+ brush->paint_ramp->tot = 2;
+ }
+ }
+ }
+ else
+ return 0;
+
+ return 1;
+}
+
+void dynamicPaint_Modifier_copy(struct DynamicPaintModifierData *pmd, struct DynamicPaintModifierData *tpmd)
+{
+ /* Init modifier */
+ tpmd->type = pmd->type;
+ if (pmd->canvas)
+ dynamicPaint_createType(tpmd, MOD_DYNAMICPAINT_TYPE_CANVAS, NULL);
+ if (pmd->brush)
+ dynamicPaint_createType(tpmd, MOD_DYNAMICPAINT_TYPE_BRUSH, NULL);
+
+ /* Copy data */
+ if (tpmd->canvas) {
+ tpmd->canvas->pmd = tpmd;
+
+ } else if (tpmd->brush) {
+ DynamicPaintBrushSettings *brush = pmd->brush, *t_brush = tpmd->brush;
+ t_brush->pmd = tpmd;
+
+ t_brush->flags = brush->flags;
+ t_brush->collision = brush->collision;
+
+ t_brush->mat = brush->mat;
+ t_brush->r = brush->r;
+ t_brush->g = brush->g;
+ t_brush->b = brush->b;
+ t_brush->alpha = brush->alpha;
+ t_brush->wetness = brush->wetness;
+
+ t_brush->particle_radius = brush->particle_radius;
+ t_brush->particle_smooth = brush->particle_smooth;
+ t_brush->paint_distance = brush->paint_distance;
+ t_brush->psys = brush->psys;
+
+ if (brush->paint_ramp)
+ memcpy(t_brush->paint_ramp, brush->paint_ramp, sizeof(ColorBand));
+ if (brush->vel_ramp)
+ memcpy(t_brush->vel_ramp, brush->vel_ramp, sizeof(ColorBand));
+
+ t_brush->proximity_falloff = brush->proximity_falloff;
+ t_brush->wave_type = brush->wave_type;
+ t_brush->ray_dir = brush->ray_dir;
+
+ t_brush->wave_factor = brush->wave_factor;
+ t_brush->wave_clamp = brush->wave_clamp;
+ t_brush->max_velocity = brush->max_velocity;
+ t_brush->smudge_strength = brush->smudge_strength;
+ }
+}
+
+/* allocates surface data depending on surface type */
+static void dynamicPaint_allocateSurfaceType(DynamicPaintSurface *surface)
+{
+ PaintSurfaceData *sData = surface->data;
+
+ switch (surface->type) {
+ case MOD_DPAINT_SURFACE_T_PAINT:
+ sData->type_data = MEM_callocN(sizeof(PaintPoint)*sData->total_points, "DynamicPaintSurface Data");
+ break;
+ case MOD_DPAINT_SURFACE_T_DISPLACE:
+ sData->type_data = MEM_callocN(sizeof(float)*sData->total_points, "DynamicPaintSurface DepthData");
+ break;
+ case MOD_DPAINT_SURFACE_T_WEIGHT:
+ sData->type_data = MEM_callocN(sizeof(float)*sData->total_points, "DynamicPaintSurface WeightData");
+ break;
+ case MOD_DPAINT_SURFACE_T_WAVE:
+ sData->type_data = MEM_callocN(sizeof(PaintWavePoint)*sData->total_points, "DynamicPaintSurface WaveData");
+ break;
+ }
+
+ if (sData->type_data == NULL) setError(surface->canvas, "Not enough free memory!");
+}
+
+static int surface_usesAdjDistance(DynamicPaintSurface *surface)
+{
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT && surface->effect) return 1;
+ if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) return 1;
+ return 0;
+}
+
+static int surface_usesAdjData(DynamicPaintSurface *surface)
+{
+ if (surface_usesAdjDistance(surface)) return 1;
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX &&
+ surface->flags & MOD_DPAINT_ANTIALIAS) return 1;
+
+ return 0;
+}
+
+/* initialize surface adjacency data */
+static void dynamicPaint_initAdjacencyData(DynamicPaintSurface *surface, int force_init)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintAdjData *ed;
+ int *temp_data;
+ int neigh_points = 0;
+
+ if (!surface_usesAdjData(surface) && !force_init) return;
+
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ /* For vertex format, neighbours are connected by edges */
+ neigh_points = 2*surface->canvas->dm->getNumEdges(surface->canvas->dm);
+ }
+ else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ)
+ neigh_points = sData->total_points*8;
+
+ if (!neigh_points) return;
+
+ /* allocate memory */
+ ed = sData->adj_data = MEM_callocN(sizeof(PaintAdjData), "Surface Adj Data");
+ if (!ed) return;
+ ed->n_index = MEM_callocN(sizeof(int)*sData->total_points, "Surface Adj Index");
+ ed->n_num = MEM_callocN(sizeof(int)*sData->total_points, "Surface Adj Counts");
+ temp_data = MEM_callocN(sizeof(int)*sData->total_points, "Temp Adj Data");
+ ed->n_target = MEM_callocN(sizeof(int)*neigh_points, "Surface Adj Targets");
+ ed->flags = MEM_callocN(sizeof(int)*sData->total_points, "Surface Adj Flags");
+ ed->total_targets = neigh_points;
+
+ /* in case of allocation error, free memory */
+ if (!ed->n_index || !ed->n_num || !ed->n_target || !temp_data) {
+ dynamicPaint_freeAdjData(sData);
+ if (temp_data) MEM_freeN(temp_data);
+ setError(surface->canvas, "Not enough free memory.");
+ return;
+ }
+
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ int i;
+ int n_pos;
+
+ /* For vertex format, count every vertex that is connected by an edge */
+ int numOfEdges = surface->canvas->dm->getNumEdges(surface->canvas->dm);
+ int numOfFaces = surface->canvas->dm->getNumFaces(surface->canvas->dm);
+ struct MEdge *edge = surface->canvas->dm->getEdgeArray(surface->canvas->dm);
+ struct MFace *face = surface->canvas->dm->getFaceArray(surface->canvas->dm);
+
+ /* count number of edges per vertex */
+ for (i=0; i<numOfEdges; i++) {
+ ed->n_num[edge[i].v1]++;
+ ed->n_num[edge[i].v2]++;
+
+ temp_data[edge[i].v1]++;
+ temp_data[edge[i].v2]++;
+ }
+
+ /* to locate points on "mesh edge" */
+ for (i=0; i<numOfFaces; i++) {
+ temp_data[face[i].v1]++;
+ temp_data[face[i].v2]++;
+ temp_data[face[i].v3]++;
+ if (face[i].v4)
+ temp_data[face[i].v4]++;
+ }
+
+ /* now check if total number of edges+faces for
+ * each vertex is even, if not -> vertex is on mesh edge */
+ for (i=0; i<sData->total_points; i++) {
+ if ((temp_data[i]%2) ||
+ temp_data[i] < 4)
+ ed->flags[i] |= ADJ_ON_MESH_EDGE;
+
+ /* reset temp data */
+ temp_data[i] = 0;
+ }
+
+ /* order n_index array */
+ n_pos = 0;
+ for (i=0; i<sData->total_points; i++) {
+ ed->n_index[i] = n_pos;
+ n_pos += ed->n_num[i];
+ }
+
+ /* and now add neighbour data using that info */
+ for (i=0; i<numOfEdges; i++) {
+ /* first vertex */
+ int index = edge[i].v1;
+ n_pos = ed->n_index[index]+temp_data[index];
+ ed->n_target[n_pos] = edge[i].v2;
+ temp_data[index]++;
+
+ /* second vertex */
+ index = edge[i].v2;
+ n_pos = ed->n_index[index]+temp_data[index];
+ ed->n_target[n_pos] = edge[i].v1;
+ temp_data[index]++;
+ }
+ }
+ else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
+ /* for image sequences, only allocate memory.
+ * bake initialization takes care of rest */
+ }
+
+ MEM_freeN(temp_data);
+}
+
+void dynamicPaint_setInitialColor(DynamicPaintSurface *surface)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintPoint* pPoint = (PaintPoint*)sData->type_data;
+ DerivedMesh *dm = surface->canvas->dm;
+ int i;
+
+ if (surface->type != MOD_DPAINT_SURFACE_T_PAINT)
+ return;
+
+ if (surface->init_color_type == MOD_DPAINT_INITIAL_NONE)
+ return;
+ /* Single color */
+ else if (surface->init_color_type == MOD_DPAINT_INITIAL_COLOR) {
+ /* apply color to every surface point */
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ copy_v3_v3(pPoint[i].color, surface->init_color);
+ pPoint[i].alpha = surface->init_color[3];
+ }
+ }
+ /* UV mapped texture */
+ else if (surface->init_color_type == MOD_DPAINT_INITIAL_TEXTURE) {
+ Tex *tex = surface->init_texture;
+ MTFace *tface;
+ MFace *mface = dm->getFaceArray(dm);
+ int numOfFaces = dm->getNumFaces(dm);
+ char uvname[40];
+
+ if (!tex) return;
+
+ /* get uv layer */
+ CustomData_validate_layer_name(&dm->faceData, CD_MTFACE, surface->init_layername, uvname);
+ tface = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, uvname);
+ if (!tface) return;
+
+ /* for vertex surface loop through tfaces and find uv color
+ * that provides highest alpha */
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfFaces; i++) {
+ int numOfVert = (mface[i].v4) ? 4 : 3;
+ float uv[3] = {0.0f};
+ int j;
+ for (j=0; j<numOfVert; j++) {
+ TexResult texres = {0};
+ unsigned int *vert = (&mface[i].v1)+j;
+
+ /* remap to -1.0 to 1.0 */
+ uv[0] = tface[i].uv[j][0]*2.0f - 1.0f;
+ uv[1] = tface[i].uv[j][1]*2.0f - 1.0f;
+
+ multitex_ext_safe(tex, uv, &texres);
+
+ if (texres.tin > pPoint[*vert].alpha) {
+ copy_v3_v3(pPoint[*vert].color, &texres.tr);
+ pPoint[*vert].alpha = texres.tin;
+ }
+ }
+ }
+ }
+ else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
+ ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
+ int samples = (surface->flags & MOD_DPAINT_ANTIALIAS) ? 5 : 1;
+
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ float uv[9] = {0.0f};
+ float uv_final[3] = {0.0f};
+ int j;
+ TexResult texres = {0};
+
+ /* collect all uvs */
+ for (j=0; j<3; j++) {
+ int v=(f_data->uv_p[i].quad && j>0) ? j+1 : j;
+ copy_v2_v2(&uv[j*3], tface[f_data->uv_p[i].face_index].uv[v]);
+ }
+
+ /* interpolate final uv pos */
+ interp_v3_v3v3v3( uv_final, &uv[0], &uv[3], &uv[6],
+ f_data->barycentricWeights[i*samples].v);
+ /* remap to -1.0 to 1.0 */
+ uv_final[0] = uv_final[0]*2.0f - 1.0f;
+ uv_final[1] = uv_final[1]*2.0f - 1.0f;
+
+ multitex_ext_safe(tex, uv_final, &texres);
+
+ /* apply color */
+ copy_v3_v3(pPoint[i].color, &texres.tr);
+ pPoint[i].alpha = texres.tin;
+ }
+ }
+ }
+ /* vertex color layer */
+ else if (surface->init_color_type == MOD_DPAINT_INITIAL_VERTEXCOLOR) {
+ MCol *col = CustomData_get_layer_named(&dm->faceData, CD_MCOL, surface->init_layername);
+ if (!col) return;
+
+ /* for vertex surface, just copy colors from mcol */
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ MFace *mface = dm->getFaceArray(dm);
+ int numOfFaces = dm->getNumFaces(dm);
+
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfFaces; i++) {
+ int numOfVert = (mface[i].v4) ? 4 : 3;
+ int j;
+ for (j=0; j<numOfVert; j++) {
+ unsigned int *vert = ((&mface[i].v1)+j);
+
+ pPoint[*vert].color[0] = 1.0f/255.f*(float)col[i*4+j].b;
+ pPoint[*vert].color[1] = 1.0f/255.f*(float)col[i*4+j].g;
+ pPoint[*vert].color[2] = 1.0f/255.f*(float)col[i*4+j].r;
+ pPoint[*vert].alpha = 1.0f/255.f*(float)col[i*4+j].a;
+ }
+ }
+ }
+ else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
+ ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
+ int samples = (surface->flags & MOD_DPAINT_ANTIALIAS) ? 5 : 1;
+
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ int face_ind = f_data->uv_p[i].face_index;
+ float colors[3][4] = {{0.0f,0.0f,0.0f,0.0f}};
+ float final_color[4];
+ int j;
+ /* collect color values */
+ for (j=0; j<3; j++) {
+ int v=(f_data->uv_p[i].quad && j>0) ? j+1 : j;
+ colors[j][0] = 1.0f/255.f*(float)col[face_ind*4+v].b;
+ colors[j][1] = 1.0f/255.f*(float)col[face_ind*4+v].g;
+ colors[j][2] = 1.0f/255.f*(float)col[face_ind*4+v].r;
+ colors[j][3] = 1.0f/255.f*(float)col[face_ind*4+v].a;
+ }
+
+ /* interpolate final color */
+ interp_v4_v4v4v4( final_color, colors[0], colors[1], colors[2],
+ f_data->barycentricWeights[i*samples].v);
+
+ copy_v3_v3(pPoint[i].color, final_color);
+ pPoint[i].alpha = final_color[3];
+ }
+ }
+ }
+}
+
+/* clears surface data back to zero */
+void dynamicPaint_clearSurface(DynamicPaintSurface *surface)
+{
+ PaintSurfaceData *sData = surface->data;
+ if (sData && sData->type_data) {
+ unsigned int data_size;
+
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT)
+ data_size = sizeof(PaintPoint);
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE)
+ data_size = sizeof(PaintWavePoint);
+ else
+ data_size = sizeof(float);
+
+ memset(sData->type_data, 0, data_size * sData->total_points);
+
+ /* set initial color */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT)
+ dynamicPaint_setInitialColor(surface);
+
+ if (sData->bData)
+ sData->bData->clear = 1;
+ }
+}
+
+/* completely (re)initializes surface (only for point cache types)*/
+int dynamicPaint_resetSurface(DynamicPaintSurface *surface)
+{
+ int numOfPoints = dynamicPaint_surfaceNumOfPoints(surface);
+ /* dont touch image sequence types. they get handled only on bake */
+ if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) return 1;
+
+ if (surface->data) dynamicPaint_freeSurfaceData(surface);
+ if (numOfPoints < 1) return 0;
+
+ /* allocate memory */
+ surface->data = MEM_callocN(sizeof(PaintSurfaceData), "PaintSurfaceData");
+ if (!surface->data) return 0;
+
+ /* allocate data depending on surface type and format */
+ surface->data->total_points = numOfPoints;
+ dynamicPaint_allocateSurfaceType(surface);
+ dynamicPaint_initAdjacencyData(surface, 0);
+
+ /* set initial color */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT)
+ dynamicPaint_setInitialColor(surface);
+
+ return 1;
+}
+
+/* make sure allocated surface size matches current requirements */
+static void dynamicPaint_checkSurfaceData(DynamicPaintSurface *surface)
+{
+ if (!surface->data || ((dynamicPaint_surfaceNumOfPoints(surface) != surface->data->total_points))) {
+ dynamicPaint_resetSurface(surface);
+ }
+}
+
+
+/***************************** Modifier processing ******************************/
+
+
+/* apply displacing vertex surface to the derived mesh */
+static void dynamicPaint_applySurfaceDisplace(DynamicPaintSurface *surface, DerivedMesh *result, int update_normals)
+{
+ PaintSurfaceData *sData = surface->data;
+
+ if (!sData || surface->format != MOD_DPAINT_SURFACE_F_VERTEX) return;
+
+ /* displace paint */
+ if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE) {
+ MVert *mvert = result->getVertArray(result);
+ int i;
+ float* value = (float*)sData->type_data;
+
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ float normal[3], val=value[i]*surface->disp_factor;
+ normal_short_to_float_v3(normal, mvert[i].no);
+ normalize_v3(normal);
+
+ mvert[i].co[0] -= normal[0]*val;
+ mvert[i].co[1] -= normal[1]*val;
+ mvert[i].co[2] -= normal[2]*val;
+ }
+ }
+ else return;
+
+ if (update_normals)
+ CDDM_calc_normals(result);
+}
+
+/*
+* Apply canvas data to the object derived mesh
+*/
+static struct DerivedMesh *dynamicPaint_Modifier_apply(DynamicPaintModifierData *pmd, Scene *scene, Object *ob, DerivedMesh *dm)
+{
+ DerivedMesh *result = CDDM_copy(dm);
+
+ if(pmd->canvas && !(pmd->canvas->flags & MOD_DPAINT_BAKING)) {
+
+ DynamicPaintSurface *surface = pmd->canvas->surfaces.first;
+ pmd->canvas->flags &= ~MOD_DPAINT_PREVIEW_READY;
+
+ /* loop through surfaces */
+ for (; surface; surface=surface->next) {
+ PaintSurfaceData *sData = surface->data;
+
+ if (surface && surface->format != MOD_DPAINT_SURFACE_F_IMAGESEQ && sData) {
+ if (!(surface->flags & (MOD_DPAINT_ACTIVE))) continue;
+
+ /* process vertex surface previews */
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+
+ /* vertex color paint */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+
+ MFace *mface = result->getFaceArray(result);
+ int numOfFaces = result->getNumFaces(result);
+ int i;
+ PaintPoint* pPoint = (PaintPoint*)sData->type_data;
+ MCol *col;
+
+ /* paint is stored on dry and wet layers, so mix final color first */
+ float *fcolor = MEM_callocN(sizeof(float)*sData->total_points*4, "Temp paint color");
+
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ /* blend dry and wet layer */
+ blendColors(pPoint[i].color, pPoint[i].alpha, pPoint[i].e_color, pPoint[i].e_alpha, &fcolor[i*4]);
+ }
+
+ /* viewport preview */
+ if (surface->flags & MOD_DPAINT_PREVIEW) {
+ /* Save preview results to weight layer, to be
+ * able to share same drawing methods */
+ col = result->getFaceDataArray(result, CD_WEIGHT_MCOL);
+ if (!col) col = CustomData_add_layer(&result->faceData, CD_WEIGHT_MCOL, CD_CALLOC, NULL, numOfFaces);
+
+ if (col) {
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfFaces; i++) {
+ int j=0;
+ Material *material = give_current_material(ob, mface[i].mat_nr+1);
+
+ for (; j<((mface[i].v4)?4:3); j++) {
+ int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
+
+ if (surface->preview_id == MOD_DPAINT_SURFACE_PREV_PAINT) {
+ float c[3];
+ index *= 4;
+
+ /* Apply material color as base vertex color for preview */
+ col[i*4+j].a = 255;
+ if (material) {
+ c[0] = material->r;
+ c[1] = material->g;
+ c[2] = material->b;
+ }
+ else { /* default grey */
+ c[0] = 0.65f;
+ c[1] = 0.65f;
+ c[2] = 0.65f;
+ }
+ /* mix surface color */
+ interp_v3_v3v3(c, c, &fcolor[index], fcolor[index+3]);
+
+ col[i*4+j].r = FTOCHAR(c[2]);
+ col[i*4+j].g = FTOCHAR(c[1]);
+ col[i*4+j].b = FTOCHAR(c[0]);
+ }
+ else {
+ col[i*4+j].a = 255;
+ col[i*4+j].r = FTOCHAR(pPoint[index].wetness);
+ col[i*4+j].g = FTOCHAR(pPoint[index].wetness);
+ col[i*4+j].b = FTOCHAR(pPoint[index].wetness);
+ }
+ }
+ }
+ pmd->canvas->flags |= MOD_DPAINT_PREVIEW_READY;
+ }
+ }
+
+
+ /* save layer data to output layer */
+
+ /* paint layer */
+ col = CustomData_get_layer_named(&result->faceData, CD_MCOL, surface->output_name);
+ if (col) {
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfFaces; i++) {
+ int j=0;
+ for (; j<((mface[i].v4)?4:3); j++) {
+ int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
+ index *= 4;
+
+ col[i*4+j].a = FTOCHAR(fcolor[index+3]);
+ col[i*4+j].r = FTOCHAR(fcolor[index+2]);
+ col[i*4+j].g = FTOCHAR(fcolor[index+1]);
+ col[i*4+j].b = FTOCHAR(fcolor[index]);
+ }
+ }
+ }
+
+ MEM_freeN(fcolor);
+
+ /* wet layer */
+ col = CustomData_get_layer_named(&result->faceData, CD_MCOL, surface->output_name2);
+ if (col) {
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfFaces; i++) {
+ int j=0;
+
+ for (; j<((mface[i].v4)?4:3); j++) {
+ int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
+ col[i*4+j].a = 255;
+ col[i*4+j].r = FTOCHAR(pPoint[index].wetness);
+ col[i*4+j].g = FTOCHAR(pPoint[index].wetness);
+ col[i*4+j].b = FTOCHAR(pPoint[index].wetness);
+ }
+ }
+ }
+ }
+ /* vertex group paint */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WEIGHT) {
+ int defgrp_index = defgroup_name_index(ob, surface->output_name);
+ MDeformVert *dvert = result->getVertDataArray(result, CD_MDEFORMVERT);
+ float *weight = (float*)sData->type_data;
+ /* viewport preview */
+ if (surface->flags & MOD_DPAINT_PREVIEW) {
+ /* Save preview results to weight layer, to be
+ * able to share same drawing methods */
+ MFace *mface = result->getFaceArray(result);
+ int numOfFaces = result->getNumFaces(result);
+ int i;
+ MCol *col = result->getFaceDataArray(result, CD_WEIGHT_MCOL);
+ if (!col) col = CustomData_add_layer(&result->faceData, CD_WEIGHT_MCOL, CD_CALLOC, NULL, numOfFaces);
+
+ if (col) {
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfFaces; i++) {
+ float temp_color[3];
+ int j=0;
+ for (; j<((mface[i].v4)?4:3); j++) {
+ int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
+
+ weight_to_rgb(weight[index], temp_color, temp_color+1, temp_color+2);
+ col[i*4+j].r = FTOCHAR(temp_color[2]);
+ col[i*4+j].g = FTOCHAR(temp_color[1]);
+ col[i*4+j].b = FTOCHAR(temp_color[0]);
+ col[i*4+j].a = 255;
+ }
+ }
+ pmd->canvas->flags |= MOD_DPAINT_PREVIEW_READY;
+ }
+ }
+
+ /* apply weights into a vertex group, if doesnt exists add a new layer */
+ if (defgrp_index >= 0 && !dvert && strlen(surface->output_name)>0)
+ dvert = CustomData_add_layer_named(&result->vertData, CD_MDEFORMVERT, CD_CALLOC,
+ NULL, sData->total_points, surface->output_name);
+ if (defgrp_index >= 0 && dvert) {
+ int i;
+ for(i=0; i<sData->total_points; i++) {
+ MDeformVert *dv= &dvert[i];
+ MDeformWeight *def_weight = defvert_find_index(dv, defgrp_index);
+
+ /* skip if weight value is 0 and no existing weight is found */
+ if (!def_weight && !weight[i])
+ continue;
+
+ /* if not found, add a weight for it */
+ if (!def_weight) {
+ MDeformWeight *newdw = MEM_callocN(sizeof(MDeformWeight)*(dv->totweight+1),
+ "deformWeight");
+ if(dv->dw){
+ memcpy(newdw, dv->dw, sizeof(MDeformWeight)*dv->totweight);
+ MEM_freeN(dv->dw);
+ }
+ dv->dw=newdw;
+ dv->dw[dv->totweight].def_nr=defgrp_index;
+ def_weight = &dv->dw[dv->totweight];
+ dv->totweight++;
+ }
+
+ /* set weight value */
+ def_weight->weight = weight[i];
+ }
+ }
+ }
+ /* wave simulation */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ MVert *mvert = result->getVertArray(result);
+ int i;
+ PaintWavePoint* wPoint = (PaintWavePoint*)sData->type_data;
+
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<sData->total_points; i++) {
+ float normal[3];
+ normal_short_to_float_v3(normal, mvert[i].no);
+ normalize_v3(normal);
+
+ mvert[i].co[0] += normal[0]*wPoint[i].height;
+ mvert[i].co[1] += normal[1]*wPoint[i].height;
+ mvert[i].co[2] += normal[2]*wPoint[i].height;
+ }
+ CDDM_calc_normals(result);
+ }
+
+ /* displace */
+ dynamicPaint_applySurfaceDisplace(surface, result, 1);
+ }
+ }
+ }
+ }
+ /* make a copy of dm to use as brush data */
+ if (pmd->brush) {
+ if (pmd->brush->dm) pmd->brush->dm->release(pmd->brush->dm);
+ pmd->brush->dm = CDDM_copy(result);
+ }
+
+ return result;
+}
+
+/* update cache frame range */
+void dynamicPaint_cacheUpdateFrames(DynamicPaintSurface *surface)
+{
+ if (surface->pointcache) {
+ surface->pointcache->startframe = surface->start_frame;
+ surface->pointcache->endframe = surface->end_frame;
+ }
+}
+
+void canvas_copyDerivedMesh(DynamicPaintCanvasSettings *canvas, DerivedMesh *dm)
+{
+ if (canvas->dm) canvas->dm->release(canvas->dm);
+ canvas->dm = CDDM_copy(dm);
+}
+
+/*
+* Updates derived mesh copy and processes dynamic paint step / caches.
+*/
+static void dynamicPaint_frameUpdate(DynamicPaintModifierData *pmd, Scene *scene, Object *ob, DerivedMesh *dm)
+{
+ if(pmd->canvas) {
+ DynamicPaintCanvasSettings *canvas = pmd->canvas;
+ DynamicPaintSurface *surface = canvas->surfaces.first;
+
+ /* update derived mesh copy */
+ canvas_copyDerivedMesh(canvas, dm);
+
+ /* in case image sequence baking, stop here */
+ if (canvas->flags & MOD_DPAINT_BAKING) return;
+
+ /* loop through surfaces */
+ for (; surface; surface=surface->next) {
+ int current_frame = (int)scene->r.cfra;
+
+ /* free bake data if not required anymore */
+ surface_freeUnusedData(surface);
+
+ /* image sequences are handled by bake operator */
+ if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) continue;
+ if (!(surface->flags & MOD_DPAINT_ACTIVE)) continue;
+
+ /* make sure surface is valid */
+ dynamicPaint_checkSurfaceData(surface);
+
+ /* limit frame range */
+ CLAMP(current_frame, surface->start_frame, surface->end_frame);
+
+ if (current_frame != surface->current_frame || (int)scene->r.cfra == surface->start_frame) {
+ PointCache *cache = surface->pointcache;
+ PTCacheID pid;
+ surface->current_frame = current_frame;
+
+ /* read point cache */
+ BKE_ptcache_id_from_dynamicpaint(&pid, ob, surface);
+ pid.cache->startframe = surface->start_frame;
+ pid.cache->endframe = surface->end_frame;
+ BKE_ptcache_id_time(&pid, scene, scene->r.cfra, NULL, NULL, NULL);
+
+ /* reset non-baked cache at first frame */
+ if((int)scene->r.cfra == surface->start_frame && !(cache->flag & PTCACHE_BAKED))
+ {
+ cache->flag |= PTCACHE_REDO_NEEDED;
+ BKE_ptcache_id_reset(scene, &pid, PTCACHE_RESET_OUTDATED);
+ cache->flag &= ~PTCACHE_REDO_NEEDED;
+ }
+
+ /* try to read from cache */
+ if(BKE_ptcache_read(&pid, (float)scene->r.cfra)) {
+ BKE_ptcache_validate(cache, (int)scene->r.cfra);
+ }
+ /* if read failed and we're on surface range do recalculate */
+ else if ((int)scene->r.cfra == current_frame
+ && !(cache->flag & PTCACHE_BAKED)) {
+ /* calculate surface frame */
+ canvas->flags |= MOD_DPAINT_BAKING;
+ dynamicPaint_calculateFrame(surface, scene, ob, current_frame);
+ canvas->flags &= ~MOD_DPAINT_BAKING;
+
+ /* restore canvas derivedmesh if required */
+ if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE &&
+ surface->flags & MOD_DPAINT_DISP_INCREMENTAL && surface->next)
+ canvas_copyDerivedMesh(canvas, dm);
+
+ BKE_ptcache_validate(cache, surface->current_frame);
+ BKE_ptcache_write(&pid, surface->current_frame);
+ }
+ }
+ }
+ }
+}
+
+/* Modifier call. Processes dynamic paint modifier step. */
+struct DerivedMesh *dynamicPaint_Modifier_do(DynamicPaintModifierData *pmd, Scene *scene, Object *ob, DerivedMesh *dm)
+{
+ /* Update canvas data for a new frame */
+ dynamicPaint_frameUpdate(pmd, scene, ob, dm);
+
+ /* Return output mesh */
+ return dynamicPaint_Modifier_apply(pmd, scene, ob, dm);
+}
+
+
+/***************************** Image Sequence / UV Image Surface Calls ******************************/
+
+/*
+* Tries to find the neighbouring pixel in given (uv space) direction.
+* Result is used by effect system to move paint on the surface.
+*
+* px,py : origin pixel x and y
+* n_index : lookup direction index (use neighX,neighY to get final index)
+*/
+static int dynamicPaint_findNeighbourPixel(PaintUVPoint *tempPoints, DerivedMesh *dm, char *uvname, int w, int h, int px, int py, int n_index)
+{
+ /* Note: Current method only uses polygon edges to detect neighbouring pixels.
+ * -> It doesn't always lead to the optimum pixel but is accurate enough
+ * and faster/simplier than including possible face tip point links)
+ */
+
+ int x,y;
+ PaintUVPoint *tPoint = NULL;
+ PaintUVPoint *cPoint = NULL;
+
+ /* shift position by given n_index */
+ x = px + neighX[n_index];
+ y = py + neighY[n_index];
+
+ if (x<0 || x>=w) return -1;
+ if (y<0 || y>=h) return -1;
+
+ tPoint = &tempPoints[x+w*y]; /* UV neighbour */
+ cPoint = &tempPoints[px+w*py]; /* Origin point */
+
+ /*
+ * Check if shifted point is on same face -> it's a correct neighbour
+ * (and if it isn't marked as an "edge pixel")
+ */
+ if ((tPoint->face_index == cPoint->face_index) && (tPoint->neighbour_pixel == -1))
+ return (x+w*y);
+
+ /*
+ * Even if shifted point is on another face
+ * -> use this point.
+ *
+ * !! Replace with "is uv faces linked" check !!
+ * This should work fine as long as uv island
+ * margin is > 1 pixel.
+ */
+ if ((tPoint->face_index != -1) && (tPoint->neighbour_pixel == -1)) {
+ return (x+w*y);
+ }
+
+ /*
+ * If we get here, the actual neighbouring pixel
+ * is located on a non-linked uv face, and we have to find
+ * it's "real" position.
+ *
+ * Simple neighbouring face finding algorithm:
+ * - find closest uv edge to shifted pixel and get
+ * the another face that shares that edge
+ * - find corresponding position of that new face edge
+ * in uv space
+ *
+ * TODO: Implement something more accurate / optimized?
+ */
+ {
+ int numOfFaces = dm->getNumFaces(dm);
+ MFace *mface = dm->getFaceArray(dm);
+ MTFace *tface = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, uvname);
+
+ /* Get closest edge to that subpixel on UV map */
+ {
+ float pixel[2], dist, t_dist;
+ int i, uindex[2], edge1_index, edge2_index,
+ e1_index, e2_index, target_face;
+ float closest_point[2], lambda, dir_vec[2];
+ int target_uv1, target_uv2, final_pixel[2], final_index;
+
+ float *s_uv1, *s_uv2, *t_uv1, *t_uv2;
+
+ pixel[0] = ((float)(px + neighX[n_index]) + 0.5f) / (float)w;
+ pixel[1] = ((float)(py + neighY[n_index]) + 0.5f) / (float)h;
+
+ /* Get uv indexes for current face part */
+ if (cPoint->quad) {
+ uindex[0] = 0; uindex[1] = 2; uindex[2] = 3;
+ }
+ else {
+ uindex[0] = 0; uindex[1] = 1; uindex[2] = 2;
+ }
+
+ /*
+ * Find closest edge to that pixel
+ */
+ /* Dist to first edge */
+ e1_index = cPoint->v1; e2_index = cPoint->v2; edge1_index = uindex[0]; edge2_index = uindex[1];
+ dist = dist_to_line_segment_v2(pixel, tface[cPoint->face_index].uv[edge1_index], tface[cPoint->face_index].uv[edge2_index]);
+
+ /* Dist to second edge */
+ t_dist = dist_to_line_segment_v2(pixel, tface[cPoint->face_index].uv[uindex[1]], tface[cPoint->face_index].uv[uindex[2]]);
+ if (t_dist < dist) {e1_index = cPoint->v2; e2_index = cPoint->v3; edge1_index = uindex[1]; edge2_index = uindex[2]; dist = t_dist;}
+
+ /* Dist to third edge */
+ t_dist = dist_to_line_segment_v2(pixel, tface[cPoint->face_index].uv[uindex[2]], tface[cPoint->face_index].uv[uindex[0]]);
+ if (t_dist < dist) {e1_index = cPoint->v3; e2_index = cPoint->v1; edge1_index = uindex[2]; edge2_index = uindex[0]; dist = t_dist;}
+
+
+ /*
+ * Now find another face that is linked to that edge
+ */
+ target_face = -1;
+
+ for (i=0; i<numOfFaces; i++) {
+ /*
+ * Check if both edge vertices share this face
+ */
+ int v4 = (mface[i].v4) ? mface[i].v4 : -1;
+
+ if ((e1_index == mface[i].v1 || e1_index == mface[i].v2 || e1_index == mface[i].v3 || e1_index == v4) &&
+ (e2_index == mface[i].v1 || e2_index == mface[i].v2 || e2_index == mface[i].v3 || e2_index == v4)) {
+ if (i == cPoint->face_index) continue;
+
+ target_face = i;
+
+ /*
+ * Get edge UV index
+ */
+ if (e1_index == mface[i].v1) target_uv1 = 0;
+ else if (e1_index == mface[i].v2) target_uv1 = 1;
+ else if (e1_index == mface[i].v3) target_uv1 = 2;
+ else target_uv1 = 3;
+
+ if (e2_index == mface[i].v1) target_uv2 = 0;
+ else if (e2_index == mface[i].v2) target_uv2 = 1;
+ else if (e2_index == mface[i].v3) target_uv2 = 2;
+ else target_uv2 = 3;
+
+ break;
+ }
+ }
+
+ /* If none found return -1 */
+ if (target_face == -1) return -1;
+
+ /*
+ * If target face is connected in UV space as well, just use original index
+ */
+ s_uv1 = (float *)tface[cPoint->face_index].uv[edge1_index];
+ s_uv2 = (float *)tface[cPoint->face_index].uv[edge2_index];
+ t_uv1 = (float *)tface[target_face].uv[target_uv1];
+ t_uv2 = (float *)tface[target_face].uv[target_uv2];
+
+ //printf("connected UV : %f,%f & %f,%f - %f,%f & %f,%f\n", s_uv1[0], s_uv1[1], s_uv2[0], s_uv2[1], t_uv1[0], t_uv1[1], t_uv2[0], t_uv2[1]);
+
+ if (((s_uv1[0] == t_uv1[0] && s_uv1[1] == t_uv1[1]) &&
+ (s_uv2[0] == t_uv2[0] && s_uv2[1] == t_uv2[1]) ) ||
+ ((s_uv2[0] == t_uv1[0] && s_uv2[1] == t_uv1[1]) &&
+ (s_uv1[0] == t_uv2[0] && s_uv1[1] == t_uv2[1]) )) return ((px+neighX[n_index]) + w*(py+neighY[n_index]));
+
+ /*
+ * Find a point that is relatively at same edge position
+ * on this other face UV
+ */
+ lambda = closest_to_line_v2(closest_point, pixel, tface[cPoint->face_index].uv[edge1_index], tface[cPoint->face_index].uv[edge2_index]);
+ if (lambda < 0.0f) lambda = 0.0f;
+ if (lambda > 1.0f) lambda = 1.0f;
+
+ sub_v2_v2v2(dir_vec, tface[target_face].uv[target_uv2], tface[target_face].uv[target_uv1]);
+
+ mul_v2_fl(dir_vec, lambda);
+
+ copy_v2_v2(pixel, tface[target_face].uv[target_uv1]);
+ add_v2_v2(pixel, dir_vec);
+ pixel[0] = (pixel[0] * (float)w) - 0.5f;
+ pixel[1] = (pixel[1] * (float)h) - 0.5f;
+
+ final_pixel[0] = (int)floor(pixel[0]);
+ final_pixel[1] = (int)floor(pixel[1]);
+
+ /* If current pixel uv is outside of texture */
+ if (final_pixel[0] < 0 || final_pixel[0] >= w) return -1;
+ if (final_pixel[1] < 0 || final_pixel[1] >= h) return -1;
+
+ final_index = final_pixel[0] + w * final_pixel[1];
+
+ /* If we ended up to our origin point ( mesh has smaller than pixel sized faces) */
+ if (final_index == (px+w*py)) return -1;
+ /* If found pixel still lies on wrong face ( mesh has smaller than pixel sized faces) */
+ if (tempPoints[final_index].face_index != target_face) return -1;
+
+ /*
+ * If final point is an "edge pixel", use it's "real" neighbour instead
+ */
+ if (tempPoints[final_index].neighbour_pixel != -1) final_index = cPoint->neighbour_pixel;
+
+ return final_index;
+ }
+ }
+}
+
+/*
+* Create a surface for uv image sequence format
+*/
+int dynamicPaint_createUVSurface(DynamicPaintSurface *surface)
+{
+ /* Antialias jitter point relative coords */
+ float jitter5sample[10] = {0.0f, 0.0f,
+ -0.2f, -0.4f,
+ 0.2f, 0.4f,
+ 0.4f, -0.2f,
+ -0.4f, 0.3f};
+ int ty;
+ int w,h;
+ int numOfFaces;
+ char uvname[32];
+ int active_points = 0;
+ int error = 0;
+
+ PaintSurfaceData *sData;
+ DynamicPaintCanvasSettings *canvas = surface->canvas;
+ DerivedMesh *dm = canvas->dm;
+
+ PaintUVPoint *tempPoints = NULL;
+ Vec3f *tempWeights = NULL;
+ MVert *mvert = NULL;
+ MFace *mface = NULL;
+ MTFace *tface = NULL;
+ Bounds2D *faceBB = NULL;
+ int *final_index;
+ int aa_samples;
+
+ if (!dm) return setError(canvas, "Canvas mesh not updated.");
+ if (surface->format != MOD_DPAINT_SURFACE_F_IMAGESEQ) return setError(canvas, "Can't bake non-\"image sequence\" formats.");
+
+ numOfFaces = dm->getNumFaces(dm);
+ mvert = dm->getVertArray(dm);
+ mface = dm->getFaceArray(dm);
+
+ /* get uv layer */
+ CustomData_validate_layer_name(&dm->faceData, CD_MTFACE, surface->uvlayer_name, uvname);
+ tface = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, uvname);
+
+ /* Check for validity */
+ if (!tface) return setError(canvas, "No UV data on canvas.");
+ if (surface->image_resolution < 16 || surface->image_resolution > 8192) return setError(canvas, "Invalid resolution.");
+
+ w = h = surface->image_resolution;
+
+ /*
+ * Start generating the surface
+ */
+ printf("DynamicPaint: Preparing UV surface of %ix%i pixels and %i faces.\n", w, h, numOfFaces);
+
+ /* Init data struct */
+ if (surface->data) dynamicPaint_freeSurfaceData(surface);
+ sData = surface->data = MEM_callocN(sizeof(PaintSurfaceData), "PaintSurfaceData");
+ if (!surface->data) return setError(canvas, "Not enough free memory.");
+
+ aa_samples = (surface->flags & MOD_DPAINT_ANTIALIAS) ? 5 : 1;
+ tempPoints = (struct PaintUVPoint *) MEM_callocN(w*h*sizeof(struct PaintUVPoint), "Temp PaintUVPoint");
+ if (!tempPoints) error=1;
+
+ final_index = (int *) MEM_callocN(w*h*sizeof(int), "Temp UV Final Indexes");
+ if (!final_index) error=1;
+
+ tempWeights = (struct Vec3f *) MEM_mallocN(w*h*aa_samples*sizeof(struct Vec3f), "Temp bWeights");
+ if (!tempWeights) error=1;
+
+ /*
+ * Generate a temporary bounding box array for UV faces to optimize
+ * the pixel-inside-a-face search.
+ */
+ if (!error) {
+ faceBB = (struct Bounds2D *) MEM_mallocN(numOfFaces*sizeof(struct Bounds2D), "MPCanvasFaceBB");
+ if (!faceBB) error=1;
+ }
+
+ if (!error)
+ for (ty=0; ty<numOfFaces; ty++) {
+ int numOfVert = (mface[ty].v4) ? 4 : 3;
+ int i;
+
+ copy_v2_v2(faceBB[ty].min, tface[ty].uv[0]);
+ copy_v2_v2(faceBB[ty].max, tface[ty].uv[0]);
+
+ for (i = 1; i<numOfVert; i++) {
+ if (tface[ty].uv[i][0] < faceBB[ty].min[0]) faceBB[ty].min[0] = tface[ty].uv[i][0];
+ if (tface[ty].uv[i][1] < faceBB[ty].min[1]) faceBB[ty].min[1] = tface[ty].uv[i][1];
+ if (tface[ty].uv[i][0] > faceBB[ty].max[0]) faceBB[ty].max[0] = tface[ty].uv[i][0];
+ if (tface[ty].uv[i][1] > faceBB[ty].max[1]) faceBB[ty].max[1] = tface[ty].uv[i][1];
+
+ }
+ }
+
+ /*
+ * Loop through every pixel and check
+ * if pixel is uv-mapped on a canvas face.
+ */
+ if (!error) {
+ #pragma omp parallel for schedule(static)
+ for (ty = 0; ty < h; ty++)
+ {
+ int tx;
+ for (tx = 0; tx < w; tx++)
+ {
+ int i, sample;
+ int index = tx+w*ty;
+ PaintUVPoint *tPoint = (&tempPoints[index]);
+
+ short isInside = 0; /* if point is inside a uv face */
+
+ float d1[2], d2[2], d3[2], point[5][2];
+ float dot00,dot01,dot02,dot11,dot12, invDenom, u,v;
+
+ /* Init per pixel settings */
+ tPoint->face_index = -1;
+ tPoint->neighbour_pixel = -1;
+ tPoint->pixel_index = index;
+
+ /* Actual pixel center, used when collision is found */
+ point[0][0] = ((float)tx + 0.5f) / w;
+ point[0][1] = ((float)ty + 0.5f) / h;
+
+ /*
+ * A pixel middle sample isn't enough to find very narrow polygons
+ * So using 4 samples of each corner too
+ */
+ point[1][0] = ((float)tx) / w;
+ point[1][1] = ((float)ty) / h;
+
+ point[2][0] = ((float)tx+1) / w;
+ point[2][1] = ((float)ty) / h;
+
+ point[3][0] = ((float)tx) / w;
+ point[3][1] = ((float)ty+1) / h;
+
+ point[4][0] = ((float)tx+1) / w;
+ point[4][1] = ((float)ty+1) / h;
+
+
+ /* Loop through samples, starting from middle point */
+ for (sample=0; sample<5; sample++) {
+
+ /* Loop through every face in the mesh */
+ for (i=0; i<numOfFaces; i++) {
+
+ /* Check uv bb */
+ if (faceBB[i].min[0] > (point[sample][0])) continue;
+ if (faceBB[i].min[1] > (point[sample][1])) continue;
+ if (faceBB[i].max[0] < (point[sample][0])) continue;
+ if (faceBB[i].max[1] < (point[sample][1])) continue;
+
+ /* Calculate point inside a triangle check
+ * for uv0,1,2 */
+ sub_v2_v2v2(d1, tface[i].uv[2], tface[i].uv[0]); // uv2 - uv0
+ sub_v2_v2v2(d2, tface[i].uv[1], tface[i].uv[0]); // uv1 - uv0
+ sub_v2_v2v2(d3, point[sample], tface[i].uv[0]); // point - uv0
+
+ dot00 = d1[0]*d1[0] + d1[1]*d1[1];
+ dot01 = d1[0]*d2[0] + d1[1]*d2[1];
+ dot02 = d1[0]*d3[0] + d1[1]*d3[1];
+ dot11 = d2[0]*d2[0] + d2[1]*d2[1];
+ dot12 = d2[0]*d3[0] + d2[1]*d3[1];
+
+ invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
+ u = (dot11 * dot02 - dot01 * dot12) * invDenom;
+ v = (dot00 * dot12 - dot01 * dot02) * invDenom;
+
+ if ((u > 0) && (v > 0) && (u + v < 1)) {isInside=1;} /* is inside a triangle */
+
+ /* If collision wasn't found but the face is a quad
+ * do another check for the second half */
+ if ((!isInside) && mface[i].v4)
+ {
+
+ /* change d2 to test the other half */
+ sub_v2_v2v2(d2, tface[i].uv[3], tface[i].uv[0]); // uv3 - uv0
+
+ /* test again */
+ dot00 = d1[0]*d1[0] + d1[1]*d1[1];
+ dot01 = d1[0]*d2[0] + d1[1]*d2[1];
+ dot02 = d1[0]*d3[0] + d1[1]*d3[1];
+ dot11 = d2[0]*d2[0] + d2[1]*d2[1];
+ dot12 = d2[0]*d3[0] + d2[1]*d3[1];
+
+ invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
+ u = (dot11 * dot02 - dot01 * dot12) * invDenom;
+ v = (dot00 * dot12 - dot01 * dot02) * invDenom;
+
+ if ((u > 0) && (v > 0) && (u + v < 1)) {isInside=2;} /* is inside the second half of the quad */
+
+ }
+
+ /*
+ * If point was inside the face
+ */
+ if (isInside != 0) {
+
+ float uv1co[2], uv2co[2], uv3co[2], uv[2];
+ int j;
+
+ /* Get triagnle uvs */
+ if (isInside==1) {
+ copy_v2_v2(uv1co, tface[i].uv[0]);
+ copy_v2_v2(uv2co, tface[i].uv[1]);
+ copy_v2_v2(uv3co, tface[i].uv[2]);
+ }
+ else {
+ copy_v2_v2(uv1co, tface[i].uv[0]);
+ copy_v2_v2(uv2co, tface[i].uv[2]);
+ copy_v2_v2(uv3co, tface[i].uv[3]);
+ }
+
+ /* Add b-weights per anti-aliasing sample */
+ for (j=0; j<aa_samples; j++) {
+ uv[0] = point[0][0] + jitter5sample[j*2] / w;
+ uv[1] = point[0][1] + jitter5sample[j*2+1] / h;
+
+ barycentric_weights_v2(uv1co, uv2co, uv3co, uv, tempWeights[index*aa_samples+j].v);
+ }
+
+ /* Set surface point face values */
+ tPoint->face_index = i; /* face index */
+ tPoint->quad = (isInside == 2) ? 1 : 0; /* quad or tri part*/
+
+ /* save vertex indexes */
+ tPoint->v1 = (isInside == 2) ? mface[i].v1 : mface[i].v1;
+ tPoint->v2 = (isInside == 2) ? mface[i].v3 : mface[i].v2;
+ tPoint->v3 = (isInside == 2) ? mface[i].v4 : mface[i].v3;
+
+ sample = 5; /* make sure we exit sample loop as well */
+ break;
+ }
+ }
+ } /* sample loop */
+ }
+ }
+
+ /*
+ * Now loop through every pixel that was left without index
+ * and find if they have neighbouring pixels that have an index.
+ * If so use that polygon as pixel surface.
+ * (To avoid seams on uv island edges)
+ */
+ #pragma omp parallel for schedule(static)
+ for (ty = 0; ty < h; ty++)
+ {
+ int tx;
+ for (tx = 0; tx < w; tx++)
+ {
+ int index = tx+w*ty;
+ PaintUVPoint *tPoint = (&tempPoints[index]);
+
+ /* If point isnt't on canvas mesh */
+ if (tPoint->face_index == -1) {
+ int u_min, u_max, v_min, v_max;
+ int u,v, ind;
+ float point[2];
+
+ /* get loop area */
+ u_min = (tx > 0) ? -1 : 0;
+ u_max = (tx < (w-1)) ? 1 : 0;
+ v_min = (ty > 0) ? -1 : 0;
+ v_max = (ty < (h-1)) ? 1 : 0;
+
+ point[0] = ((float)tx + 0.5f) / w;
+ point[1] = ((float)ty + 0.5f) / h;
+
+ /* search through defined area for neighbour */
+ for (u=u_min; u<=u_max; u++)
+ for (v=v_min; v<=v_max; v++) {
+ /* if not this pixel itself */
+ if (u!=0 || v!=0) {
+ ind = (tx+u)+w*(ty+v);
+
+ /* if neighbour has index */
+ if (tempPoints[ind].face_index != -1) {
+
+ float uv1co[2], uv2co[2], uv3co[2], uv[2];
+ int i = tempPoints[ind].face_index, j;
+
+ /* Now calculate pixel data for this pixel as it was on polygon surface */
+ if (!tempPoints[ind].quad) {
+ copy_v2_v2(uv1co, tface[i].uv[0]);
+ copy_v2_v2(uv2co, tface[i].uv[1]);
+ copy_v2_v2(uv3co, tface[i].uv[2]);
+ }
+ else {
+ copy_v2_v2(uv1co, tface[i].uv[0]);
+ copy_v2_v2(uv2co, tface[i].uv[2]);
+ copy_v2_v2(uv3co, tface[i].uv[3]);
+ }
+
+ /* Add b-weights per anti-aliasing sample */
+ for (j=0; j<aa_samples; j++) {
+
+ uv[0] = point[0] + jitter5sample[j*2] / w;
+ uv[1] = point[1] + jitter5sample[j*2+1] / h;
+ barycentric_weights_v2(uv1co, uv2co, uv3co, uv, tempWeights[index*aa_samples+j].v);
+ }
+
+ /* Set values */
+ tPoint->neighbour_pixel = ind; // face index
+ tPoint->quad = tempPoints[ind].quad; // quad or tri
+
+ /* save vertex indexes */
+ tPoint->v1 = (tPoint->quad) ? mface[i].v1 : mface[i].v1;
+ tPoint->v2 = (tPoint->quad) ? mface[i].v3 : mface[i].v2;
+ tPoint->v3 = (tPoint->quad) ? mface[i].v4 : mface[i].v3;
+
+ u = u_max + 1; /* make sure we exit outer loop as well */
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /*
+ * When base loop is over convert found neighbour indexes to real ones
+ * Also count the final number of active surface points
+ */
+ for (ty = 0; ty < h; ty++)
+ {
+ int tx;
+ for (tx = 0; tx < w; tx++)
+ {
+ int index = tx+w*ty;
+ PaintUVPoint *tPoint = (&tempPoints[index]);
+
+ if (tPoint->face_index == -1 && tPoint->neighbour_pixel != -1) tPoint->face_index = tempPoints[tPoint->neighbour_pixel].face_index;
+ if (tPoint->face_index != -1) active_points++;
+ }
+ }
+
+ /* If any effect enabled, create surface effect / wet layer
+ * neighbour lists. Processes possibly moving data. */
+ if (surface_usesAdjData(surface)) {
+
+ int i, cursor=0;
+
+ /* Create a temporary array of final indexes (before unassigned
+ * pixels have been dropped) */
+ for (i=0; i<w*h; i++) {
+ if (tempPoints[i].face_index != -1) {
+ final_index[i] = cursor;
+ cursor++;
+ }
+ }
+ /* allocate memory */
+ sData->total_points = w*h;
+ dynamicPaint_initAdjacencyData(surface, 0);
+
+ if (sData->adj_data) {
+ PaintAdjData *ed = sData->adj_data;
+ unsigned int n_pos = 0;
+ //#pragma omp parallel for schedule(static)
+ for (ty = 0; ty < h; ty++)
+ {
+ int tx;
+ for (tx = 0; tx < w; tx++)
+ {
+ int i, index = tx+w*ty;
+
+ if (tempPoints[index].face_index != -1) {
+ ed->n_index[final_index[index]] = n_pos;
+ ed->n_num[final_index[index]] = 0;
+
+ for (i=0; i<8; i++) {
+
+ /* Try to find a neighbouring pixel in defined direction
+ * If not found, -1 is returned */
+ int n_target = dynamicPaint_findNeighbourPixel(tempPoints, dm, uvname, w, h, tx, ty, i);
+
+ if (n_target != -1) {
+ ed->n_target[n_pos] = final_index[n_target];
+ ed->n_num[final_index[index]]++;
+ n_pos++;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* Create final surface data without inactive points */
+ {
+ ImgSeqFormatData *f_data = MEM_callocN(sizeof(struct ImgSeqFormatData), "ImgSeqFormatData");
+ if (f_data) {
+ f_data->uv_p = MEM_callocN(active_points*sizeof(struct PaintUVPoint), "PaintUVPoint");
+ f_data->barycentricWeights = MEM_callocN(active_points*aa_samples*sizeof(struct Vec3f), "PaintUVPoint");
+
+ if (!f_data->uv_p || !f_data->barycentricWeights) error=1;
+ }
+ else error=1;
+
+ sData->total_points = active_points;
+
+ /* in case of allocation error, free everything */
+ if (error) {
+ if (f_data) {
+ if (f_data->uv_p) MEM_freeN(f_data->uv_p);
+ if (f_data->barycentricWeights) MEM_freeN(f_data->barycentricWeights);
+ MEM_freeN(f_data);
+ }
+ }
+ else {
+ int index, cursor = 0;
+ sData->total_points = active_points;
+ sData->format_data = f_data;
+
+ for(index = 0; index < (w*h); index++) {
+ if (tempPoints[index].face_index != -1) {
+ memcpy(&f_data->uv_p[cursor], &tempPoints[index], sizeof(PaintUVPoint));
+ memcpy(&f_data->barycentricWeights[cursor*aa_samples], &tempWeights[index*aa_samples], sizeof(Vec3f)*aa_samples);
+ cursor++;
+ }
+ }
+ }
+ }
+ }
+ if (error==1) setError(canvas, "Not enough free memory.");
+
+ if (faceBB) MEM_freeN(faceBB);
+ if (tempPoints) MEM_freeN(tempPoints);
+ if (tempWeights) MEM_freeN(tempWeights);
+ if (final_index) MEM_freeN(final_index);
+
+ /* Init surface type data */
+ if (!error) {
+ dynamicPaint_allocateSurfaceType(surface);
+
+#if 0
+ /* -----------------------------------------------------------------
+ * For debug, output pixel statuses to the color map
+ * -----------------------------------------------------------------*/
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
+ PaintUVPoint *uvPoint = &((PaintUVPoint*)f_data->uv_p)[index];
+ PaintPoint *pPoint = &((PaintPoint*)sData->type_data)[index];
+ pPoint->alpha=1.0f;
+
+ /* Every pixel that is assigned as "edge pixel" gets blue color */
+ if (uvPoint->neighbour_pixel != -1) pPoint->color[2] = 1.0f;
+ /* and every pixel that finally got an polygon gets red color */
+ if (uvPoint->face_index != -1) pPoint->color[0] = 1.0f;
+ /* green color shows pixel face index hash */
+ if (uvPoint->face_index != -1) pPoint->color[1] = (float)(uvPoint->face_index % 255)/256.0f;
+ }
+
+#endif
+ dynamicPaint_setInitialColor(surface);
+ }
+
+ return (error == 0);
+}
+
+/*
+* Outputs an image file from uv surface data.
+*/
+void dynamicPaint_outputSurfaceImage(DynamicPaintSurface *surface, char* filename, short output_layer)
+{
+ int index;
+ ImBuf* ibuf = NULL;
+ PaintSurfaceData *sData = surface->data;
+ ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
+ /* OpenEXR or PNG */
+ int format = (surface->image_fileformat & MOD_DPAINT_IMGFORMAT_OPENEXR) ? R_OPENEXR : R_PNG;
+ char output_file[FILE_MAX];
+
+ if (!sData || !sData->type_data) {setError(surface->canvas, "Image save failed: Invalid surface.");return;}
+ /* if selected format is openexr, but current build doesnt support one */
+ #ifndef WITH_OPENEXR
+ if (format == R_OPENEXR) format = R_PNG;
+ #endif
+ BLI_strncpy(output_file, filename, sizeof(output_file));
+ BKE_add_image_extension(output_file, format);
+
+ /* Validate output file path */
+ BLI_path_abs(output_file, G.main->name);
+ BLI_make_existing_file(output_file);
+
+ /* Init image buffer */
+ ibuf = IMB_allocImBuf(surface->image_resolution, surface->image_resolution, 32, IB_rectfloat);
+ if (ibuf == NULL) {setError(surface->canvas, "Image save failed: Not enough free memory.");return;}
+
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ int pos=f_data->uv_p[index].pixel_index*4; /* image buffer position */
+
+ /* Set values of preferred type */
+ if (output_layer == 1) {
+ /* wetmap */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ PaintPoint *point = &((PaintPoint*)sData->type_data)[index];
+ float value = (point->wetness > 1.0f) ? 1.0f : point->wetness;
+
+ ibuf->rect_float[pos]=value;
+ ibuf->rect_float[pos+1]=value;
+ ibuf->rect_float[pos+2]=value;
+ ibuf->rect_float[pos+3]=1.0f;
+ }
+ }
+ else if (output_layer == 0) {
+ /* Paintmap */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ PaintPoint *point = &((PaintPoint*)sData->type_data)[index];
+
+ ibuf->rect_float[pos] = point->color[0];
+ ibuf->rect_float[pos+1] = point->color[1];
+ ibuf->rect_float[pos+2] = point->color[2];
+ /* mix wet layer */
+ if (point->e_alpha) mixColors(&ibuf->rect_float[pos], point->alpha, point->e_color, point->e_alpha);
+
+ /* use highest alpha */
+ ibuf->rect_float[pos+3] = (point->e_alpha > point->alpha) ? point->e_alpha : point->alpha;
+
+ /* Multiply color by alpha if enabled */
+ if (surface->flags & MOD_DPAINT_MULALPHA) {
+ ibuf->rect_float[pos] *= ibuf->rect_float[pos+3];
+ ibuf->rect_float[pos+1] *= ibuf->rect_float[pos+3];
+ ibuf->rect_float[pos+2] *= ibuf->rect_float[pos+3];
+ }
+ }
+ /* displace */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE) {
+ float depth = ((float*)sData->type_data)[index];
+ if (surface->depth_clamp)
+ depth /= surface->depth_clamp;
+
+ if (surface->disp_type == MOD_DPAINT_DISP_DISPLACE) {
+ depth = (0.5f - depth/2.0f);
+ }
+
+ CLAMP(depth, 0.0f, 1.0f);
+
+ ibuf->rect_float[pos]=depth;
+ ibuf->rect_float[pos+1]=depth;
+ ibuf->rect_float[pos+2]=depth;
+ ibuf->rect_float[pos+3]=1.0f;
+ }
+ /* waves */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ PaintWavePoint *wPoint = &((PaintWavePoint*)sData->type_data)[index];
+ float depth = wPoint->height;
+ if (surface->depth_clamp)
+ depth /= surface->depth_clamp;
+ depth = (0.5f + depth/2.0f);
+ CLAMP(depth, 0.0f, 1.0f);
+
+ ibuf->rect_float[pos]=depth;
+ ibuf->rect_float[pos+1]=depth;
+ ibuf->rect_float[pos+2]=depth;
+ ibuf->rect_float[pos+3]=1.0f;
+ }
+ }
+ }
+
+ /* Set output format, png in case exr isnt supported */
+ ibuf->ftype= PNG|95;
+#ifdef WITH_OPENEXR
+ if (format == R_OPENEXR) { /* OpenEXR 32-bit float */
+ ibuf->ftype = OPENEXR | OPENEXR_COMPRESS;
+ }
+#endif
+
+ /* Save image */
+ IMB_saveiff(ibuf, output_file, IB_rectfloat);
+ IMB_freeImBuf(ibuf);
+}
+
+
+/***************************** Material / Texture Sampling ******************************/
+
+/* stores a copy of required materials to allow doing adjustments
+* without interfering the render/preview */
+typedef struct BrushMaterials {
+ Material *mat;
+ Material **ob_mats;
+ int tot;
+} BrushMaterials;
+
+/* Initialize materials for brush object:
+* Calculates inverse matrices for linked objects, updates
+* volume caches etc. */
+static void dynamicPaint_updateBrushMaterials(Object *brushOb, Material *ui_mat, Scene *scene, BrushMaterials *bMats)
+{
+ /* Calculate inverse transformation matrix
+ * for this object */
+ invert_m4_m4(brushOb->imat, brushOb->obmat);
+ copy_m4_m4(brushOb->imat_ren, brushOb->imat);
+
+ /* Now process every material linked to this brush object */
+ if ((ui_mat == NULL) && brushOb->mat && brushOb->totcol) {
+ int i, tot=(*give_totcolp(brushOb));
+
+ /* allocate material pointer array */
+ if (tot) {
+ bMats->ob_mats = MEM_callocN(sizeof(Material*)*(tot), "BrushMaterials");
+ for (i=0; i<tot; i++) {
+ bMats->ob_mats[i] = RE_init_sample_material(give_current_material(brushOb,(i+1)), scene);
+ }
+ }
+ bMats->tot = tot;
+ }
+ else {
+ bMats->mat = RE_init_sample_material(ui_mat, scene);
+ }
+}
+
+/* free all data allocated by dynamicPaint_updateBrushMaterials() */
+static void dynamicPaint_freeBrushMaterials(BrushMaterials *bMats)
+{
+ /* Now process every material linked to this brush object */
+ if (bMats->ob_mats) {
+ int i;
+ for (i=0; i<bMats->tot; i++) {
+ RE_free_sample_material(bMats->ob_mats[i]);
+ }
+ MEM_freeN(bMats->ob_mats);
+ }
+ else if (bMats->mat) {
+ RE_free_sample_material(bMats->mat);
+ }
+}
+
+/*
+* Get material diffuse color and alpha (including linked textures) in given coordinates
+*/
+void dynamicPaint_doMaterialTex(BrushMaterials *bMats, float color[3], float *alpha, Object *brushOb, const float volume_co[3], const float surface_co[3], int faceIndex, short isQuad, DerivedMesh *orcoDm)
+{
+ Material *mat = bMats->mat;
+ MFace *mface = orcoDm->getFaceArray(orcoDm);
+
+ /* If no material defined, use the one assigned to the mesh face */
+ if (mat == NULL) {
+ if (bMats->ob_mats) {
+ int mat_nr = mface[faceIndex].mat_nr;
+ if (mat_nr >= (*give_totcolp(brushOb))) return;
+ mat = bMats->ob_mats[mat_nr];
+ if (mat == NULL) return; /* No material assigned */
+ }
+ else return;
+ }
+
+ RE_sample_material_color(mat, color, alpha, volume_co, surface_co, faceIndex, isQuad, orcoDm, brushOb);
+}
+
+
+/***************************** Ray / Nearest Point Utils ******************************/
+
+
+/* A modified callback to bvh tree raycast. The tree must bust have been built using bvhtree_from_mesh_faces.
+* userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree.
+*
+* To optimize brush detection speed this doesn't calculate hit coordinates or normal.
+* If ray hit the second half of a quad, no[0] is set to 1.0f.
+*/
+static void mesh_faces_spherecast_dp(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
+{
+ const BVHTreeFromMesh *data = (BVHTreeFromMesh*) userdata;
+ MVert *vert = data->vert;
+ MFace *face = data->face + index;
+ short quad = 0;
+
+ float *t0, *t1, *t2, *t3;
+ t0 = vert[ face->v1 ].co;
+ t1 = vert[ face->v2 ].co;
+ t2 = vert[ face->v3 ].co;
+ t3 = face->v4 ? vert[ face->v4].co : NULL;
+
+ do
+ {
+ float dist = bvhtree_ray_tri_intersection(ray, hit->dist, t0, t1, t2);
+
+ if(dist >= 0 && dist < hit->dist)
+ {
+ hit->index = index;
+ hit->dist = dist;
+ hit->no[0] = (quad) ? 1.0f : 0.0f;
+ }
+
+ t1 = t2;
+ t2 = t3;
+ t3 = NULL;
+ quad = 1;
+
+ } while(t2);
+}
+
+/* A modified callback to bvh tree nearest point. The tree must bust have been built using bvhtree_from_mesh_faces.
+* userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree.
+*
+* To optimize brush detection speed this doesn't calculate hit normal.
+* If ray hit the second half of a quad, no[0] is set to 1.0f, else 0.0f
+*/
+static void mesh_faces_nearest_point_dp(void *userdata, int index, const float *co, BVHTreeNearest *nearest)
+{
+ const BVHTreeFromMesh *data = (BVHTreeFromMesh*) userdata;
+ MVert *vert = data->vert;
+ MFace *face = data->face + index;
+ short quad = 0;
+
+ float *t0, *t1, *t2, *t3;
+ t0 = vert[ face->v1 ].co;
+ t1 = vert[ face->v2 ].co;
+ t2 = vert[ face->v3 ].co;
+ t3 = face->v4 ? vert[ face->v4].co : NULL;
+
+ do
+ {
+ float nearest_tmp[3], dist;
+ int vertex, edge;
+
+ dist = nearest_point_in_tri_surface(t0, t1, t2, co, &vertex, &edge, nearest_tmp);
+ if(dist < nearest->dist)
+ {
+ nearest->index = index;
+ nearest->dist = dist;
+ copy_v3_v3(nearest->co, nearest_tmp);
+ nearest->no[0] = (quad) ? 1.0f : 0.0f;
+ }
+
+ t1 = t2;
+ t2 = t3;
+ t3 = NULL;
+ quad = 1;
+
+ } while(t2);
+}
+
+
+/***************************** Brush Painting Calls ******************************/
+
+/*
+* Mix color values to canvas point.
+*
+* surface : canvas surface
+* index : surface point index
+* paintFlags : paint object flags
+* paintColor,Alpha,Wetness : to be mixed paint values
+* timescale : value used to adjust time dependand
+* operations when using substeps
+*/
+static void dynamicPaint_mixPaintColors(DynamicPaintSurface *surface, int index, int paintFlags, float *paintColor, float *paintAlpha, float *paintWetness, float *timescale)
+{
+ PaintPoint *pPoint = &((PaintPoint*)surface->data->type_data)[index];
+
+ /* Add paint */
+ if (!(paintFlags & MOD_DPAINT_ERASE)) {
+ float mix[4];
+ float temp_alpha = (*paintAlpha) * ((paintFlags & MOD_DPAINT_ABS_ALPHA) ? 1.0f : (*timescale));
+
+ /* mix brush color with wet layer color */
+ blendColors(pPoint->e_color, pPoint->e_alpha, paintColor, temp_alpha, mix);
+ copy_v3_v3(pPoint->e_color, mix);
+
+ /* mix wetness and alpha depending on selected alpha mode */
+ if (paintFlags & MOD_DPAINT_ABS_ALPHA) {
+ /* update values to the brush level unless theyre higher already */
+ if (pPoint->e_alpha < (*paintAlpha)) pPoint->e_alpha = (*paintAlpha);
+ if (pPoint->wetness < (*paintWetness)) pPoint->wetness = (*paintWetness);
+ }
+ else {
+ float wetness = (*paintWetness);
+ CLAMP(wetness, 0.0f, 1.0f);
+ pPoint->e_alpha = mix[3];
+ pPoint->wetness = pPoint->wetness*(1.0f-wetness) + wetness;
+ }
+
+ if (pPoint->wetness<MIN_WETNESS) pPoint->wetness = MIN_WETNESS;
+
+ pPoint->state = DPAINT_PAINT_NEW;
+ }
+ /* Erase paint */
+ else {
+ float a_ratio, a_highest;
+ float wetness;
+ float invFact = 1.0f - (*paintAlpha);
+
+ /*
+ * Make highest alpha to match erased value
+ * but maintain alpha ratio
+ */
+ if (paintFlags & MOD_DPAINT_ABS_ALPHA) {
+ a_highest = (pPoint->e_alpha > pPoint->alpha) ? pPoint->e_alpha : pPoint->alpha;
+ if (a_highest > invFact) {
+ a_ratio = invFact / a_highest;
+
+ pPoint->e_alpha *= a_ratio;
+ pPoint->alpha *= a_ratio;
+ }
+ }
+ else {
+ pPoint->e_alpha -= (*paintAlpha) * (*timescale);
+ if (pPoint->e_alpha < 0.0f) pPoint->e_alpha = 0.0f;
+ pPoint->alpha -= (*paintAlpha) * (*timescale);
+ if (pPoint->alpha < 0.0f) pPoint->alpha = 0.0f;
+ }
+
+ wetness = (1.0f - (*paintWetness)) * pPoint->e_alpha;
+ if (pPoint->wetness > wetness) pPoint->wetness = wetness;
+ }
+}
+
+/* applies given brush intersection value for wave surface */
+static void dynamicPaint_mixWaveHeight(PaintWavePoint *wPoint, DynamicPaintBrushSettings *brush, float isect_height)
+{
+ int hit = 0;
+ isect_height *= brush->wave_factor;
+
+ /* determine hit depending on wave_factor */
+ if (brush->wave_factor > 0.0f && wPoint->height > isect_height)
+ hit = 1;
+ else if (brush->wave_factor < 0.0f && wPoint->height < isect_height)
+ hit = 1;
+
+ if (hit) {
+ if (brush->wave_type == MOD_DPAINT_WAVEB_DEPTH) {
+ wPoint->height = isect_height;
+ wPoint->state = DPAINT_WAVE_OBSTACLE;
+ wPoint->velocity = 0.0f;
+ }
+ else if (brush->wave_type == MOD_DPAINT_WAVEB_FORCE)
+ wPoint->velocity = isect_height;
+ else if (brush->wave_type == MOD_DPAINT_WAVEB_REFLECT)
+ wPoint->state = DPAINT_WAVE_REFLECT_ONLY;
+ }
+}
+
+/*
+* add brush results to the surface data depending on surface type
+*/
+static void dynamicPaint_updatePointData(DynamicPaintSurface *surface, unsigned int index, DynamicPaintBrushSettings *brush,
+ float paint[3], float influence, float depth, float vel_factor, float timescale)
+{
+ PaintSurfaceData *sData = surface->data;
+ float strength = influence * brush->alpha;
+ CLAMP(strength, 0.0f, 1.0f);
+
+ /* Sample velocity colorband if required */
+ if (brush->flags & (MOD_DPAINT_VELOCITY_ALPHA|MOD_DPAINT_VELOCITY_COLOR|MOD_DPAINT_VELOCITY_DEPTH)) {
+ float coba_res[4];
+ vel_factor /= brush->max_velocity;
+ CLAMP(vel_factor, 0.0f, 1.0f);
+
+ if (do_colorband(brush->vel_ramp, vel_factor, coba_res)) {
+ if (brush->flags & MOD_DPAINT_VELOCITY_COLOR) {
+ paint[0] = coba_res[0];
+ paint[1] = coba_res[1];
+ paint[2] = coba_res[2];
+ }
+ if (brush->flags & MOD_DPAINT_VELOCITY_ALPHA)
+ strength *= coba_res[3];
+ if (brush->flags & MOD_DPAINT_VELOCITY_DEPTH)
+ depth *= coba_res[3];
+ }
+ }
+
+ /* mix paint surface */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+
+ float paintWetness = brush->wetness * strength;
+ float paintAlpha = strength;
+
+ dynamicPaint_mixPaintColors(surface, index, brush->flags, paint, &paintAlpha, &paintWetness, &timescale);
+
+ }
+ /* displace surface */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE) {
+ float *value = (float*)sData->type_data;
+
+ if (surface->flags & MOD_DPAINT_DISP_INCREMENTAL)
+ depth = value[index] + depth;
+
+ if (surface->depth_clamp) {
+ CLAMP(depth, 0.0f-surface->depth_clamp, surface->depth_clamp);
+ }
+
+ if (brush->flags & MOD_DPAINT_ERASE) {
+ value[index] *= (1.0f - strength);
+ if (value[index] < 0.0f) value[index] = 0.0f;
+ }
+ else {
+ if (value[index] < depth) value[index] = depth;
+ }
+ }
+ /* vertex weight group surface */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WEIGHT) {
+ float *value = (float*)sData->type_data;
+
+ if (brush->flags & MOD_DPAINT_ERASE) {
+ value[index] *= (1.0f - strength);
+ if (value[index] < 0.0f) value[index] = 0.0f;
+ }
+ else {
+ if (value[index] < strength) value[index] = strength;
+ }
+ }
+ /* wave surface */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ if (brush->wave_clamp) {
+ CLAMP(depth, 0.0f-brush->wave_clamp, brush->wave_clamp);
+ }
+
+ dynamicPaint_mixWaveHeight(&((PaintWavePoint*)sData->type_data)[index],
+ brush, 0.0f-depth);
+ }
+
+ /* doing velocity based painting */
+ if (sData->bData->brush_velocity) {
+ sData->bData->brush_velocity[index*4+3] *= influence;
+ }
+}
+
+/* checks whether surface and brush bounds intersect depending on brush type */
+static int meshBrush_boundsIntersect(Bounds3D *b1, Bounds3D *b2, DynamicPaintBrushSettings *brush)
+{
+ if (brush->collision == MOD_DPAINT_COL_VOLUME)
+ return boundsIntersect(b1, b2);
+ else if (brush->collision == MOD_DPAINT_COL_DIST || brush->collision == MOD_DPAINT_COL_VOLDIST)
+ return boundsIntersectDist(b1, b2, brush->paint_distance);
+ else return 1;
+}
+
+/* calculate velocity for mesh vertices */
+static void dynamicPaint_brushMeshCalculateVelocity(Scene *scene, Object *ob, DynamicPaintBrushSettings *brush, Vec3f **brushVel, float timescale)
+{
+ int i;
+ float prev_obmat[4][4];
+ DerivedMesh *dm_p, *dm_c;
+ MVert *mvert_p, *mvert_c;
+ int numOfVerts_p, numOfVerts_c;
+
+ float cur_sfra = scene->r.subframe;
+ int cur_fra = scene->r.cfra;
+ float prev_sfra = cur_sfra - timescale;
+ int prev_fra = cur_fra;
+
+ if (prev_sfra < 0.0f) {
+ prev_sfra += 1.0f;
+ prev_fra = cur_fra - 1;
+ }
+
+ /* previous frame dm */
+ scene->r.cfra = prev_fra;
+ scene->r.subframe = prev_sfra;
+
+ subframe_updateObject(scene, ob, UPDATE_EVERYTHING, BKE_curframe(scene));
+ dm_p = CDDM_copy(brush->dm);
+ numOfVerts_p = dm_p->getNumVerts(dm_p);
+ mvert_p = dm_p->getVertArray(dm_p);
+ copy_m4_m4(prev_obmat, ob->obmat);
+
+ /* current frame dm */
+ scene->r.cfra = cur_fra;
+ scene->r.subframe = cur_sfra;
+
+ subframe_updateObject(scene, ob, UPDATE_EVERYTHING, BKE_curframe(scene));
+ dm_c = brush->dm;
+ numOfVerts_c = dm_c->getNumVerts(dm_c);
+ mvert_c = dm_p->getVertArray(dm_c);
+
+ (*brushVel) = (struct Vec3f *) MEM_mallocN(numOfVerts_c*sizeof(Vec3f), "Dynamic Paint brush velocity");
+ if (!(*brushVel)) return;
+
+ /* if mesh is constructive -> num of verts has changed,
+ * only use current frame derived mesh */
+ if (numOfVerts_p != numOfVerts_c)
+ mvert_p = mvert_c;
+
+ /* calculate speed */
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfVerts_c; i++) {
+ float p1[3], p2[3];
+
+ copy_v3_v3(p1, mvert_p[i].co);
+ mul_m4_v3(prev_obmat, p1);
+
+ copy_v3_v3(p2, mvert_c[i].co);
+ mul_m4_v3(ob->obmat, p2);
+
+ sub_v3_v3v3((*brushVel)[i].v, p2, p1);
+ mul_v3_fl((*brushVel)[i].v, 1.0f/timescale);
+ }
+
+ dm_p->release(dm_p);
+}
+
+/* calculate velocity for object center point */
+static void dynamicPaint_brushObjectCalculateVelocity(Scene *scene, Object *ob, DynamicPaintBrushSettings *brush, Vec3f *brushVel, float timescale)
+{
+ float prev_obmat[4][4];
+ float cur_loc[3] = {0.0f}, prev_loc[3] = {0.0f};
+
+ float cur_sfra = scene->r.subframe;
+ int cur_fra = scene->r.cfra;
+ float prev_sfra = cur_sfra - timescale;
+ int prev_fra = cur_fra;
+
+ if (prev_sfra < 0.0f) {
+ prev_sfra += 1.0f;
+ prev_fra = cur_fra - 1;
+ }
+
+ /* previous frame dm */
+ scene->r.cfra = prev_fra;
+ scene->r.subframe = prev_sfra;
+ subframe_updateObject(scene, ob, UPDATE_PARENTS, BKE_curframe(scene));
+ copy_m4_m4(prev_obmat, ob->obmat);
+
+ /* current frame dm */
+ scene->r.cfra = cur_fra;
+ scene->r.subframe = cur_sfra;
+ subframe_updateObject(scene, ob, UPDATE_PARENTS, BKE_curframe(scene));
+
+ /* calculate speed */
+ mul_m4_v3(prev_obmat, prev_loc);
+ mul_m4_v3(ob->obmat, cur_loc);
+
+ sub_v3_v3v3(brushVel->v, cur_loc, prev_loc);
+ mul_v3_fl(brushVel->v, 1.0f/timescale);
+}
+
+/*
+* Paint a brush object mesh to the surface
+*/
+static int dynamicPaint_paintMesh(DynamicPaintSurface *surface, DynamicPaintBrushSettings *brush, Object *canvasOb, Object *brushOb, BrushMaterials *bMats, Scene *scene, float timescale)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ DerivedMesh *dm = NULL;
+ Vec3f *brushVelocity = NULL;
+ MVert *mvert = NULL;
+ MFace *mface = NULL;
+
+ if (brush->flags & MOD_DPAINT_USES_VELOCITY)
+ dynamicPaint_brushMeshCalculateVelocity(scene, brushOb, brush, &brushVelocity, timescale);
+
+ if (!brush->dm) return 0;
+ {
+ BVHTreeFromMesh treeData = {0};
+ float avg_brushNor[3] = {0.0f};
+ int numOfVerts;
+ int ii;
+ Bounds3D mesh_bb = {0};
+ VolumeGrid *grid = bData->grid;
+
+ dm = CDDM_copy(brush->dm);
+ mvert = dm->getVertArray(dm);
+ mface = dm->getFaceArray(dm);
+ numOfVerts = dm->getNumVerts(dm);
+
+ /* Transform collider vertices to global space
+ * (Faster than transforming per surface point
+ * coordinates and normals to object space) */
+ for (ii=0; ii<numOfVerts; ii++) {
+ mul_m4_v3(brushOb->obmat, mvert[ii].co);
+ boundInsert(&mesh_bb, mvert[ii].co);
+
+ /* for project brush calculate average normal */
+ if (brush->collision & MOD_DPAINT_COL_DIST && brush->flags & MOD_DPAINT_PROX_PROJECT) {
+ float nor[3];
+ normal_short_to_float_v3(nor, mvert[ii].no);
+ mul_mat3_m4_v3(brushOb->obmat, nor);
+ normalize_v3(nor);
+
+ add_v3_v3(avg_brushNor, nor);
+ }
+ }
+
+ if (brush->collision & MOD_DPAINT_COL_DIST && brush->flags & MOD_DPAINT_PROX_PROJECT) {
+ mul_v3_fl(avg_brushNor, 1.0f/(float)numOfVerts);
+ /* instead of null vector use positive z */
+ if (!(MIN3(avg_brushNor[0],avg_brushNor[1],avg_brushNor[2])))
+ avg_brushNor[2] = 1.0f;
+ else
+ normalize_v3(avg_brushNor);
+ }
+
+ /* check bounding box collision */
+ if(grid && meshBrush_boundsIntersect(&grid->grid_bounds, &mesh_bb, brush))
+ /* Build a bvh tree from transformed vertices */
+ if (bvhtree_from_mesh_faces(&treeData, dm, 0.0f, 4, 8))
+ {
+ int c_index;
+ int total_cells = grid->dim[0]*grid->dim[1]*grid->dim[2];
+
+ /* loop through space partitioning grid */
+ for (c_index=0; c_index<total_cells; c_index++) {
+ int id;
+
+ /* check grid cell bounding box */
+ if (!grid->s_num[c_index] || !meshBrush_boundsIntersect(&grid->bounds[c_index], &mesh_bb, brush))
+ continue;
+
+ /* loop through cell points and process brush */
+ #pragma omp parallel for schedule(static)
+ for (id = 0; id < grid->s_num[c_index]; id++)
+ {
+ int index = grid->t_index[grid->s_pos[c_index] + id];
+ int ss, samples = bData->s_num[index];
+ float total_sample = (float)samples;
+ float brushStrength = 0.0f; /* brush influence factor */
+ float depth = 0.0f; /* brush intersection depth */
+ float velocity_val = 0.0f;
+
+ float paintColor[3] = {0.0f};
+ int numOfHits = 0;
+
+ /* for image sequence anti-aliasing, use gaussian factors */
+ if (samples > 1 && surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ)
+ total_sample = gaussianTotal;
+
+ /* Supersampling */
+ for (ss=0; ss<samples; ss++)
+ {
+
+ float ray_start[3], ray_dir[3];
+ float colorband[4] = {0.0f};
+ float sample_factor;
+ float sampleStrength = 0.0f;
+ BVHTreeRayHit hit;
+ BVHTreeNearest nearest;
+ short hit_found = 0;
+
+ /* hit data */
+ float hitCoord[3];
+ int hitFace = -1;
+ short hitQuad;
+
+ /* Supersampling factor */
+ if (samples > 1 && surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ)
+ sample_factor = gaussianFactors[ss];
+ else
+ sample_factor = 1.0f;
+
+ /* Get current sample position in world coordinates */
+ copy_v3_v3(ray_start, bData->realCoord[bData->s_pos[index]+ss].v);
+ copy_v3_v3(ray_dir, bData->bNormal[index].invNorm);
+
+ /* a simple hack to minimize chance of ray leaks at identical ray <-> edge locations */
+ add_v3_fl(ray_start, 0.001f);
+
+ hit.index = -1;
+ hit.dist = 9999;
+ nearest.index = -1;
+ nearest.dist = brush->paint_distance * brush->paint_distance; /* find_nearest uses squared distance */
+
+ /* Check volume collision */
+ if (brush->collision == MOD_DPAINT_COL_VOLUME || brush->collision == MOD_DPAINT_COL_VOLDIST)
+ if(BLI_bvhtree_ray_cast(treeData.tree, ray_start, ray_dir, 0.0f, &hit, mesh_faces_spherecast_dp, &treeData) != -1)
+ {
+ /* We hit a triangle, now check if collision point normal is facing the point */
+
+ /* For optimization sake, hit point normal isn't calculated in ray cast loop */
+ int v1=mface[hit.index].v1, v2=mface[hit.index].v2, v3=mface[hit.index].v3, quad=(hit.no[0] == 1.0f);
+ float dot;
+
+ if (quad) {v2=mface[hit.index].v3; v3=mface[hit.index].v4;}
+ normal_tri_v3( hit.no, mvert[v1].co, mvert[v2].co, mvert[v3].co);
+ dot = ray_dir[0]*hit.no[0] + ray_dir[1]*hit.no[1] + ray_dir[2]*hit.no[2];
+
+ /* If ray and hit face normal are facing same direction
+ * hit point is inside a closed mesh. */
+ if (dot>=0)
+ {
+ float dist = hit.dist;
+ int f_index = hit.index;
+
+ /* Also cast a ray in opposite direction to make sure
+ * point is at least surrounded by two brush faces */
+ mul_v3_fl(ray_dir, -1.0f);
+ hit.index = -1;
+ hit.dist = 9999;
+
+ BLI_bvhtree_ray_cast(treeData.tree, ray_start, ray_dir, 0.0f, &hit, mesh_faces_spherecast_dp, &treeData);
+
+ if(hit.index != -1) {
+ /* Add factor on supersample filter */
+ sampleStrength += sample_factor;
+ hit_found = HIT_VOLUME;
+
+ /* Mark hit info */
+ madd_v3_v3v3fl(hitCoord, ray_start, ray_dir, hit.dist); /* Calculate final hit coordinates */
+ depth += dist*sample_factor;
+ hitFace = f_index;
+ hitQuad = quad;
+ }
+ }
+ }
+
+ /* Check proximity collision */
+ if ((brush->collision == MOD_DPAINT_COL_DIST || brush->collision == MOD_DPAINT_COL_VOLDIST) &&
+ (!hit_found || (brush->flags & MOD_DPAINT_INVERSE_PROX)))
+ {
+ float proxDist = -1.0f;
+ float hitCo[3];
+ short hQuad;
+ int face;
+
+ /* if inverse prox and no hit found, skip this sample */
+ if (brush->flags & MOD_DPAINT_INVERSE_PROX && !hit_found) continue;
+
+ /* If pure distance proximity, find the nearest point on the mesh */
+ if (brush->collision != MOD_DPAINT_COL_DIST || !(brush->flags & MOD_DPAINT_PROX_PROJECT)) {
+ if (BLI_bvhtree_find_nearest(treeData.tree, ray_start, &nearest, mesh_faces_nearest_point_dp, &treeData) != -1) {
+ proxDist = sqrt(nearest.dist);
+ copy_v3_v3(hitCo, nearest.co);
+ hQuad = (nearest.no[0] == 1.0f);
+ face = nearest.index;
+ }
+ }
+ else { /* else cast a ray in defined projection direction */
+ float proj_ray[3] = {0.0f};
+
+ if (brush->ray_dir == MOD_DPAINT_RAY_CANVAS) {
+ copy_v3_v3(proj_ray, bData->bNormal[index].invNorm);
+ negate_v3(proj_ray);
+ }
+ else if (brush->ray_dir == MOD_DPAINT_RAY_BRUSH_AVG) {
+ copy_v3_v3(proj_ray, avg_brushNor);
+ }
+ else { /* MOD_DPAINT_RAY_ZPLUS */
+ proj_ray[2] = 1.0f;
+ }
+ hit.index = -1;
+ hit.dist = brush->paint_distance;
+
+ /* Do a face normal directional raycast, and use that distance */
+ if(BLI_bvhtree_ray_cast(treeData.tree, ray_start, proj_ray, 0.0f, &hit, mesh_faces_spherecast_dp, &treeData) != -1)
+ {
+ proxDist = hit.dist;
+ madd_v3_v3v3fl(hitCo, ray_start, proj_ray, hit.dist); /* Calculate final hit coordinates */
+ hQuad = (hit.no[0] == 1.0f);
+ face = hit.index;
+ }
+ }
+
+ /* If a hit was found, calculate required values */
+ if (proxDist >= 0.0f && proxDist <= brush->paint_distance) {
+ float dist_rate = proxDist / brush->paint_distance;
+ float prox_influence = 0.0f;
+
+ /* in case of inverse prox also undo volume effect */
+ if (brush->flags & MOD_DPAINT_INVERSE_PROX) {
+ sampleStrength -= sample_factor;
+ dist_rate = 1.0f - dist_rate;
+ }
+
+ /* if using proximity color ramp use it's alpha */
+ if (brush->proximity_falloff == MOD_DPAINT_PRFALL_RAMP && do_colorband(brush->paint_ramp, dist_rate, colorband))
+ prox_influence = colorband[3];
+ else if (brush->proximity_falloff == MOD_DPAINT_PRFALL_SMOOTH) {
+ prox_influence = (1.0f - dist_rate) * sample_factor;
+ }
+ else prox_influence = (brush->flags & MOD_DPAINT_INVERSE_PROX) ? 0.0f : 1.0f;
+
+ hit_found = HIT_PROXIMITY;
+ sampleStrength += prox_influence*sample_factor;
+
+ /* if no volume hit, use prox point face info */
+ if (hitFace == -1) {
+ copy_v3_v3(hitCoord, hitCo);
+ hitQuad = hQuad;
+ hitFace = face;
+ }
+ }
+ }
+
+ if (!hit_found) continue;
+
+ /* velocity brush, only do on main sample */
+ if (brush->flags & MOD_DPAINT_USES_VELOCITY && ss==0 && brushVelocity) {
+ int v1,v2,v3;
+ float weights[4];
+ float brushPointVelocity[3];
+ float velocity[3];
+
+ if (!hitQuad) {
+ v1 = mface[hitFace].v1;
+ v2 = mface[hitFace].v2;
+ v3 = mface[hitFace].v3;
+ }
+ else {
+ v1 = mface[hitFace].v2;
+ v2 = mface[hitFace].v3;
+ v3 = mface[hitFace].v4;
+ }
+ /* calculate barycentric weights for hit point */
+ interp_weights_face_v3(weights, mvert[v1].co, mvert[v2].co, mvert[v3].co, NULL, hitCoord);
+
+ /* simple check based on brush surface velocity,
+ * todo: perhaps implement something that handles volume movement as well */
+
+ /* interpolate vertex speed vectors to get hit point velocity */
+ interp_v3_v3v3v3( brushPointVelocity,
+ brushVelocity[v1].v,
+ brushVelocity[v2].v,
+ brushVelocity[v3].v, weights);
+
+ /* substract canvas point velocity */
+ if (bData->velocity) {
+ sub_v3_v3v3(velocity, brushPointVelocity, bData->velocity[index].v);
+ }
+ else {
+ copy_v3_v3(velocity, brushPointVelocity);
+ }
+ velocity_val = len_v3(velocity);
+
+ /* if brush has smudge enabled store brush velocity */
+ if (brush->flags & MOD_DPAINT_DO_SMUDGE && bData->brush_velocity) {
+ copy_v3_v3(&bData->brush_velocity[index*4], velocity);
+ mul_v3_fl(&bData->brush_velocity[index*4], 1.0f/velocity_val);
+ bData->brush_velocity[index*4+3] = velocity_val;
+ }
+ }
+
+ /*
+ * Process hit color and alpha
+ */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT)
+ {
+ float sampleColor[3];
+ float alpha_factor = 1.0f;
+
+ sampleColor[0] = brush->r;
+ sampleColor[1] = brush->g;
+ sampleColor[2] = brush->b;
+
+ /* Get material+textures color on hit point if required */
+ if (brush->flags & MOD_DPAINT_USE_MATERIAL)
+ dynamicPaint_doMaterialTex(bMats, sampleColor, &alpha_factor, brushOb, bData->realCoord[bData->s_pos[index]+ss].v, hitCoord, hitFace, hitQuad, brush->dm);
+
+ /* Sample proximity colorband if required */
+ if ((hit_found == HIT_PROXIMITY) && (brush->proximity_falloff == MOD_DPAINT_PRFALL_RAMP)) {
+ if (!(brush->flags & MOD_DPAINT_RAMP_ALPHA)) {
+ sampleColor[0] = colorband[0];
+ sampleColor[1] = colorband[1];
+ sampleColor[2] = colorband[2];
+ }
+ }
+
+ /* Add AA sample */
+ paintColor[0] += sampleColor[0];
+ paintColor[1] += sampleColor[1];
+ paintColor[2] += sampleColor[2];
+ sampleStrength *= alpha_factor;
+ numOfHits++;
+ }
+
+ /* apply sample strength */
+ brushStrength += sampleStrength;
+ } // end supersampling
+
+
+ /* if any sample was inside paint range */
+ if (brushStrength > 0.0f || depth > 0.0f) {
+
+ /* apply supersampling results */
+ if (samples > 1) {
+ brushStrength /= total_sample;
+ }
+ CLAMP(brushStrength, 0.0f, 1.0f);
+
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ /* Get final pixel color and alpha */
+ paintColor[0] /= numOfHits;
+ paintColor[1] /= numOfHits;
+ paintColor[2] /= numOfHits;
+ }
+ /* get final object space depth */
+ else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
+ surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ depth /= bData->bNormal[index].normal_scale * total_sample;
+ }
+
+ dynamicPaint_updatePointData(surface, index, brush, paintColor, brushStrength, depth, velocity_val, timescale);
+ }
+ }
+ }
+ }
+ /* free bvh tree */
+ free_bvhtree_from_mesh(&treeData);
+ dm->release(dm);
+
+ }
+
+ /* free brush velocity data */
+ if (brushVelocity)
+ MEM_freeN(brushVelocity);
+
+ return 1;
+}
+
+/*
+* Paint a particle system to the surface
+*/
+static int dynamicPaint_paintParticles(DynamicPaintSurface *surface, ParticleSystem *psys, DynamicPaintBrushSettings *brush, Object *canvasOb, float timescale)
+{
+ ParticleSettings *part=psys->part;
+ ParticleData *pa = NULL;
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ VolumeGrid *grid = bData->grid;
+
+ KDTree *tree;
+ int particlesAdded = 0;
+ int invalidParticles = 0;
+ int p = 0;
+
+ float solidradius = (brush->flags & MOD_DPAINT_PART_RAD) ? psys->part->size : brush->particle_radius;
+ float smooth = brush->particle_smooth;
+
+ float range = solidradius + smooth;
+ float particle_timestep = 0.04f * part->timetweak;
+
+ Bounds3D part_bb;
+
+ if (psys->totpart < 1) return 1;
+
+ /*
+ * Build a kd-tree to optimize distance search
+ */
+ tree= BLI_kdtree_new(psys->totpart);
+
+ /* loop through particles and insert valid ones to the tree */
+ for(p=0, pa=psys->particles; p<psys->totpart; p++, pa++) {
+
+ /* Proceed only if particle is active */
+ if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0) continue;
+ else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0) continue;
+ else if(pa->flag & PARS_NO_DISP || pa->flag & PARS_UNEXIST) continue;
+
+ /* for debug purposes check if any NAN particle proceeds
+ * For some reason they get past activity check, this should rule most of them out */
+ if (isnan(pa->state.co[0]) || isnan(pa->state.co[1]) || isnan(pa->state.co[2])) {invalidParticles++;continue;}
+
+ /* make sure particle is close enough to canvas */
+ if (!boundIntersectPoint(&grid->grid_bounds, pa->state.co, range)) continue;
+
+ BLI_kdtree_insert(tree, p, pa->state.co, NULL);
+
+ /* calc particle system bounds */
+ boundInsert(&part_bb, pa->state.co);
+
+ particlesAdded++;
+ }
+ if (invalidParticles)
+ printf("Warning: Invalid particle(s) found!\n");
+
+ /* If no suitable particles were found, exit */
+ if (particlesAdded < 1) {
+ BLI_kdtree_free(tree);
+ return 1;
+ }
+
+ /* begin thread safe malloc */
+ BLI_begin_threaded_malloc();
+
+ /* only continue if particle bb is close enough to canvas bb */
+ if (boundsIntersectDist(&grid->grid_bounds, &part_bb, range))
+ {
+ int c_index;
+ int total_cells = grid->dim[0]*grid->dim[1]*grid->dim[2];
+
+ /* balance tree */
+ BLI_kdtree_balance(tree);
+
+ /* loop through space partitioning grid */
+ for (c_index=0; c_index<total_cells; c_index++) {
+ int id;
+
+ /* check cell bounding box */
+ if (!grid->s_num[c_index] ||
+ !boundsIntersectDist(&grid->bounds[c_index], &part_bb, range))
+ continue;
+
+ /* loop through cell points */
+ #pragma omp parallel for schedule(static)
+ for (id = 0; id < grid->s_num[c_index]; id++)
+ {
+ int index = grid->t_index[grid->s_pos[c_index] + id];
+ float disp_intersect = 0.0f;
+ float radius = 0.0f;
+ float strength = 0.0f;
+ float velocity_val = 0.0f;
+ int part_index;
+
+ /*
+ * With predefined radius, there is no variation between particles.
+ * It's enough to just find the nearest one.
+ */
+ {
+ KDTreeNearest nearest;
+ float smooth_range, part_solidradius;
+
+ /* Find nearest particle and get distance to it */
+ BLI_kdtree_find_nearest(tree, bData->realCoord[bData->s_pos[index]].v, NULL, &nearest);
+ /* if outside maximum range, no other particle can influence either */
+ if (nearest.dist > range) continue;
+
+ if (brush->flags & MOD_DPAINT_PART_RAD) {
+ /* use particles individual size */
+ ParticleData *pa = psys->particles + nearest.index;
+ part_solidradius = pa->size;
+ }
+ else {
+ part_solidradius = solidradius;
+ }
+ radius = part_solidradius + smooth;
+ if (nearest.dist < radius) {
+ /* distances inside solid radius has maximum influence -> dist = 0 */
+ smooth_range = (nearest.dist - part_solidradius);
+ if (smooth_range<0.0f) smooth_range=0.0f;
+ /* do smoothness if enabled */
+ if (smooth) smooth_range/=smooth;
+
+ strength = 1.0f - smooth_range;
+ disp_intersect = radius - nearest.dist;
+ part_index = nearest.index;
+ }
+ }
+ /* If using random per particle radius and closest particle didn't give max influence */
+ if (brush->flags & MOD_DPAINT_PART_RAD && strength < 1.0f && psys->part->randsize > 0.0f) {
+ /*
+ * If we use per particle radius, we have to sample all particles
+ * within max radius range
+ */
+ KDTreeNearest *nearest;
+
+ int n, particles = 0;
+ float smooth_range = smooth * (1.0f-strength), dist;
+ /* calculate max range that can have particles with higher influence than the nearest one */
+ float max_range = smooth - strength*smooth + solidradius;
+
+ particles = BLI_kdtree_range_search(tree, max_range, bData->realCoord[bData->s_pos[index]].v, NULL, &nearest);
+
+ /* Find particle that produces highest influence */
+ for(n=0; n<particles; n++) {
+ ParticleData *pa = psys->particles + nearest[n].index;
+ float s_range;
+
+ /* skip if out of range */
+ if (nearest[n].dist > (pa->size + smooth))
+ continue;
+
+ /* update hit data */
+ s_range = nearest[n].dist - pa->size;
+ /* skip if higher influence is already found */
+ if (smooth_range < s_range)
+ continue;
+
+ /* update hit data */
+ smooth_range = s_range;
+ dist = nearest[n].dist;
+ part_index = nearest[n].index;
+
+ /* If inside solid range and no disp depth required, no need to seek further */
+ if (s_range < 0.0f)
+ if (surface->type != MOD_DPAINT_SURFACE_T_DISPLACE &&
+ surface->type != MOD_DPAINT_SURFACE_T_WAVE)
+ break;
+ }
+
+ if (nearest) MEM_freeN(nearest);
+
+ /* now calculate influence for this particle */
+ {
+ float rad = radius + smooth, str;
+ if ((rad-dist) > disp_intersect) {
+ disp_intersect = radius - dist;
+ radius = rad;
+ }
+
+ /* do smoothness if enabled */
+ if (smooth_range<0.0f) smooth_range=0.0f;
+ if (smooth) smooth_range/=smooth;
+ str = 1.0f - smooth_range;
+ /* if influence is greater, use this one */
+ if (str > strength) strength = str;
+ }
+ }
+
+ if (strength > 0.001f)
+ {
+ float paintColor[4] = {0.0f};
+ float depth = 0.0f;
+
+ /* apply velocity */
+ if (brush->flags & MOD_DPAINT_USES_VELOCITY) {
+ float velocity[3];
+ ParticleData *pa = psys->particles + part_index;
+ mul_v3_v3fl(velocity, pa->state.vel, particle_timestep);
+
+ /* substract canvas point velocity */
+ if (bData->velocity) {
+ sub_v3_v3(velocity, bData->velocity[index].v);
+ }
+ velocity_val = len_v3(velocity);
+
+ /* store brush velocity for smudge */
+ if (brush->flags & MOD_DPAINT_DO_SMUDGE && bData->brush_velocity) {
+ copy_v3_v3(&bData->brush_velocity[index*4], velocity);
+ mul_v3_fl(&bData->brush_velocity[index*4], 1.0f/velocity_val);
+ bData->brush_velocity[index*4+3] = velocity_val;
+ }
+ }
+
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ paintColor[0] = brush->r;
+ paintColor[1] = brush->g;
+ paintColor[2] = brush->b;
+ }
+ else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
+ surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ /* get displace depth */
+ disp_intersect = (1.0f - sqrt(disp_intersect / radius)) * radius;
+ depth = (radius - disp_intersect) / bData->bNormal[index].normal_scale;
+ if (depth<0.0f) depth = 0.0f;
+ }
+
+ dynamicPaint_updatePointData(surface, index, brush, paintColor, strength, depth, velocity_val, timescale);
+ }
+ }
+ }
+ }
+ BLI_end_threaded_malloc();
+ BLI_kdtree_free(tree);
+
+ return 1;
+}
+
+/* paint a single point of defined proximity radius to the surface */
+static int dynamicPaint_paintSinglePoint(DynamicPaintSurface *surface, float *pointCoord, DynamicPaintBrushSettings *brush,
+ Object *canvasOb, Object *brushOb, BrushMaterials *bMats, Scene *scene, float timescale)
+{
+ int index;
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ Vec3f brushVel;
+
+ if (brush->flags & MOD_DPAINT_USES_VELOCITY)
+ dynamicPaint_brushObjectCalculateVelocity(scene, brushOb, brush, &brushVel, timescale);
+
+ /*
+ * Loop through every surface point
+ */
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ float distance = len_v3v3(pointCoord, bData->realCoord[bData->s_pos[index]].v);
+ float colorband[4] = {0.0f};
+ float strength;
+
+ if (distance>brush->paint_distance) continue;
+
+ /* Smooth range or color ramp */
+ if (brush->proximity_falloff == MOD_DPAINT_PRFALL_SMOOTH ||
+ brush->proximity_falloff == MOD_DPAINT_PRFALL_RAMP) {
+
+ strength = 1.0f - distance / brush->paint_distance;
+ CLAMP(strength, 0.0f, 1.0f);
+ }
+ else strength = 1.0f;
+
+ if (strength >= 0.001f) {
+ float paintColor[3] = {0.0f};
+ float depth = 0.0f;
+ float velocity_val = 0.0f;
+
+ /* material */
+ if (brush->flags & MOD_DPAINT_USE_MATERIAL) {
+ float alpha_factor = 1.0f;
+ float hit_coord[3];
+ MVert *mvert = brush->dm->getVertArray(brush->dm);
+ /* use dummy coord of first vertex */
+ copy_v3_v3(hit_coord, mvert[0].co);
+ mul_m4_v3(brushOb->obmat, hit_coord);
+
+ dynamicPaint_doMaterialTex(bMats, paintColor, &alpha_factor, brushOb, bData->realCoord[bData->s_pos[index]].v, hit_coord, 0, 0, brush->dm);
+ }
+
+ /* color ramp */
+ if (brush->proximity_falloff == MOD_DPAINT_PRFALL_RAMP && do_colorband(brush->paint_ramp, (1.0f-strength), colorband))
+ strength = colorband[3];
+
+ if (brush->flags & MOD_DPAINT_USES_VELOCITY) {
+ float velocity[3];
+
+ /* substract canvas point velocity */
+ if (bData->velocity) {
+ sub_v3_v3v3(velocity, brushVel.v, bData->velocity[index].v);
+ }
+ else {
+ copy_v3_v3(velocity, brushVel.v);
+ }
+ velocity_val = len_v3(velocity);
+
+ /* store brush velocity for smudge */
+ if (brush->flags & MOD_DPAINT_DO_SMUDGE && bData->brush_velocity) {
+ copy_v3_v3(&bData->brush_velocity[index*4], velocity);
+ mul_v3_fl(&bData->brush_velocity[index*4], 1.0f/velocity_val);
+ bData->brush_velocity[index*4+3] = velocity_val;
+ }
+ }
+
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ if (brush->proximity_falloff == MOD_DPAINT_PRFALL_RAMP &&
+ !(brush->flags & MOD_DPAINT_RAMP_ALPHA)) {
+ paintColor[0] = colorband[0];
+ paintColor[1] = colorband[1];
+ paintColor[2] = colorband[2];
+ }
+ else {
+ if (!(brush->flags & MOD_DPAINT_USE_MATERIAL)) {
+ paintColor[0] = brush->r;
+ paintColor[1] = brush->g;
+ paintColor[2] = brush->b;
+ }
+ }
+ }
+ else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
+ surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ /* get displace depth */
+ float disp_intersect = (1.0f - sqrt((brush->paint_distance-distance) / brush->paint_distance)) * brush->paint_distance;
+ depth = (brush->paint_distance - disp_intersect) / bData->bNormal[index].normal_scale;
+ if (depth<0.0f) depth = 0.0f;
+ }
+ dynamicPaint_updatePointData(surface, index, brush, paintColor, strength, depth, velocity_val, timescale);
+ }
+ }
+
+ return 1;
+}
+
+
+/***************************** Dynamic Paint Step / Baking ******************************/
+
+/*
+* Calculate current frame neighbouring point distances
+* and direction vectors
+*/
+static void dynamicPaint_prepareNeighbourData(DynamicPaintSurface *surface, int force_init)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ BakeNeighPoint *bNeighs;
+ PaintAdjData *adj_data = sData->adj_data;
+ Vec3f *realCoord = bData->realCoord;
+ int index;
+
+ if ((!surface_usesAdjDistance(surface) && !force_init) || !sData->adj_data) return;
+
+ if (bData->bNeighs) MEM_freeN(bData->bNeighs);
+ bNeighs = bData->bNeighs = MEM_mallocN(sData->adj_data->total_targets*sizeof(struct BakeNeighPoint),"PaintEffectBake");
+ if (!bNeighs) return;
+
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ int i;
+ int numOfNeighs = adj_data->n_num[index];
+
+ for (i=0; i<numOfNeighs; i++) {
+ int n_index = adj_data->n_index[index]+i;
+ int t_index = adj_data->n_target[n_index];
+
+ /* dir vec */
+ sub_v3_v3v3(bNeighs[n_index].dir, realCoord[bData->s_pos[t_index]].v, realCoord[bData->s_pos[index]].v);
+ /* dist */
+ bNeighs[n_index].dist = len_v3(bNeighs[n_index].dir);
+ /* normalize dir */
+ if (bNeighs[n_index].dist) mul_v3_fl(bNeighs[n_index].dir, 1.0f/bNeighs[n_index].dist);
+ }
+ }
+
+ /* calculate average values (single thread) */
+ bData->average_dist = 0.0f;
+ for (index = 0; index < sData->total_points; index++)
+ {
+ int i;
+ int numOfNeighs = adj_data->n_num[index];
+
+ for (i=0; i<numOfNeighs; i++) {
+ bData->average_dist += bNeighs[adj_data->n_index[index]+i].dist;
+ }
+ }
+ bData->average_dist /= adj_data->total_targets;
+}
+
+/* find two adjacency points (closest_id) and influence (closest_d) to move paint towards when affected by a force */
+void surface_determineForceTargetPoints(PaintSurfaceData *sData, int index, float force[3], float closest_d[2], int closest_id[2])
+{
+ BakeNeighPoint *bNeighs = sData->bData->bNeighs;
+ int numOfNeighs = sData->adj_data->n_num[index];
+ int i;
+
+ closest_id[0]=closest_id[1]= -1;
+ closest_d[0]=closest_d[1]= -1.0f;
+
+ /* find closest neigh */
+ for (i=0; i<numOfNeighs; i++) {
+ int n_index = sData->adj_data->n_index[index]+i;
+ float dir_dot = dot_v3v3(bNeighs[n_index].dir, force);
+
+ if (dir_dot>closest_d[0] && dir_dot>0.0f) {closest_d[0]=dir_dot; closest_id[0]=n_index;}
+ }
+
+ if (closest_d[0] < 0.0f) return;
+
+ /* find second closest neigh */
+ for (i=0; i<numOfNeighs; i++) {
+ int n_index = sData->adj_data->n_index[index]+i;
+ float dir_dot = dot_v3v3(bNeighs[n_index].dir, force);
+ float closest_dot = dot_v3v3(bNeighs[n_index].dir, bNeighs[closest_id[0]].dir);
+
+ if (n_index == closest_id[0]) continue;
+
+ /* only accept neighbour at "other side" of the first one in relation to force dir
+ * so make sure angle between this and closest neigh is greater than first angle */
+ if (dir_dot>closest_d[1] && closest_dot<closest_d[0] && dir_dot>0.0f) {closest_d[1]=dir_dot; closest_id[1]=n_index;}
+ }
+
+ /* if two valid neighs found, calculate how force effect is divided
+ * evenly between them (so that d[0]+d[1] = 1.0)*/
+ if (closest_id[1] != -1) {
+ float force_proj[3];
+ float tangent[3];
+ float neigh_diff = acos(dot_v3v3(bNeighs[closest_id[0]].dir, bNeighs[closest_id[1]].dir));
+ float force_intersect;
+ float temp;
+
+ /* project force vector on the plane determined by these two neightbour points
+ * and calculate relative force angle from it*/
+ cross_v3_v3v3(tangent, bNeighs[closest_id[0]].dir, bNeighs[closest_id[1]].dir);
+ normalize_v3(tangent);
+ force_intersect = dot_v3v3(force, tangent);
+ madd_v3_v3v3fl(force_proj, force, tangent, (-1.0f)*force_intersect);
+ normalize_v3(force_proj);
+
+ /* get drip factor based on force dir in relation to angle between those neighbours */
+ temp = dot_v3v3(bNeighs[closest_id[0]].dir, force_proj);
+ CLAMP(temp, -1.0f, 1.0f); /* float precision might cause values > 1.0f that return infinite */
+ closest_d[1] = acos(temp)/neigh_diff;
+ closest_d[0] = 1.0f - closest_d[1];
+
+ /* and multiply depending on how deeply force intersects surface */
+ temp = fabs(force_intersect);
+ CLAMP(temp, 0.0f, 1.0f);
+ closest_d[0] *= acos(temp)/1.57079633f;
+ closest_d[1] *= acos(temp)/1.57079633f;
+ }
+ else {
+ /* if only single neighbour, still linearize force intersection effect */
+ closest_d[0] = 1.0f - acos(closest_d[0])/1.57079633f;
+ }
+}
+
+static void dynamicPaint_doSmudge(DynamicPaintSurface *surface, DynamicPaintBrushSettings *brush, float timescale)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ BakeNeighPoint *bNeighs = sData->bData->bNeighs;
+ int index, steps, step;
+ float eff_scale, max_velocity = 0.0f;
+
+ if (!sData->adj_data) return;
+
+ /* find max velocity */
+ for (index = 0; index < sData->total_points; index++) {
+ float vel = bData->brush_velocity[index*4+3];
+ if (vel > max_velocity) max_velocity = vel;
+ }
+
+ steps = (int)ceil(max_velocity / bData->average_dist * timescale);
+ CLAMP(steps, 0, 12);
+ eff_scale = brush->smudge_strength/(float)steps*timescale;
+
+ for (step=0; step<steps; step++) {
+
+ for (index = 0; index < sData->total_points; index++) {
+ int i;
+ PaintPoint *pPoint = &((PaintPoint*)sData->type_data)[index];
+ float smudge_str = bData->brush_velocity[index*4+3];
+
+ /* force targets */
+ int closest_id[2];
+ float closest_d[2];
+
+ if (!smudge_str) continue;
+
+ /* get force affect points */
+ surface_determineForceTargetPoints(sData, index, &bData->brush_velocity[index*4], closest_d, closest_id);
+
+ /* Apply movement towards those two points */
+ for (i=0; i<2; i++) {
+ int n_index = closest_id[i];
+ if (n_index != -1 && closest_d[i]>0.0f) {
+ float dir_dot = closest_d[i], dir_factor;
+ float speed_scale = eff_scale*smudge_str/bNeighs[n_index].dist;
+ float mix;
+ PaintPoint *ePoint = &((PaintPoint*)sData->type_data)[sData->adj_data->n_target[n_index]];
+
+ /* just skip if angle is too extreme */
+ if (dir_dot <= 0.0f) continue;
+
+ dir_factor = dir_dot * speed_scale;
+ if (dir_factor > brush->smudge_strength) dir_factor = brush->smudge_strength;
+
+ /* mix new color and alpha */
+ mix = dir_factor*pPoint->alpha;
+ if (mix) mixColors(ePoint->color, ePoint->alpha, pPoint->color, mix);
+ ePoint->alpha = ePoint->alpha*(1.0f-dir_factor) + pPoint->alpha*dir_factor;
+
+ /* smudge "wet layer" */
+ mix = dir_factor*pPoint->e_alpha;
+ if (mix) mixColors(ePoint->e_color, ePoint->e_alpha, pPoint->e_color, mix);
+ ePoint->e_alpha = ePoint->e_alpha*(1.0f-dir_factor) + pPoint->e_alpha*dir_factor;
+ pPoint->wetness *= (1.0f-dir_factor);
+ }
+ }
+ }
+ }
+}
+
+/*
+* Prepare data required by effects for current frame.
+* Returns number of steps required
+*/
+static int dynamicPaint_prepareEffectStep(DynamicPaintSurface *surface, Scene *scene, Object *ob, float **force, float timescale)
+{
+ double average_force = 0.0f;
+ float shrink_speed=0.0f, spread_speed=0.0f;
+ float fastest_effect;
+ int steps;
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ Vec3f *realCoord = bData->realCoord;
+ int index;
+
+ /* Init force data if required */
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_DRIP) {
+ float vel[3] = {0};
+ ListBase *effectors = pdInitEffectors(scene, ob, NULL, surface->effector_weights);
+
+ /* allocate memory for force data (dir vector + strength) */
+ *force = MEM_mallocN(sData->total_points*4*sizeof(float), "PaintEffectForces");
+
+ if (*force) {
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ float forc[3] = {0};
+
+ /* apply force fields */
+ if (effectors) {
+ EffectedPoint epoint;
+ pd_point_from_loc(scene, realCoord[bData->s_pos[index]].v, vel, index, &epoint);
+ epoint.vel_to_sec = 1.0f;
+ pdDoEffectors(effectors, NULL, surface->effector_weights, &epoint, forc, NULL);
+ }
+
+ /* if global gravity is enabled, add it too */
+ if (scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY)
+ /* also divide by 10 to about match default grav
+ * with default force strength (1.0) */
+ madd_v3_v3fl(forc, scene->physics_settings.gravity,
+ surface->effector_weights->global_gravity*surface->effector_weights->weight[0] / 10.f);
+
+ /* add surface point velocity and acceleration if enabled */
+ if (bData->velocity) {
+ if (surface->drip_vel)
+ madd_v3_v3fl(forc, bData->velocity[index].v, surface->drip_vel*(-1.0f));
+
+ /* acceleration */
+ if (bData->prev_velocity && surface->drip_acc) {
+ float acc[3];
+ copy_v3_v3(acc, bData->velocity[index].v);
+ sub_v3_v3(acc, bData->prev_velocity[index].v);
+ madd_v3_v3fl(forc, acc, surface->drip_acc*(-1.0f));
+ }
+ }
+
+ /* force strength */
+ (*force)[index*4+3] = len_v3(forc);
+ /* normalize and copy */
+ if ((*force)[index*4+3]) mul_v3_fl(forc, 1.0f/(*force)[index*4+3]);
+ copy_v3_v3(&((*force)[index*4]), forc);
+ }
+
+ /* calculate average values (single thread) */
+ for (index = 0; index < sData->total_points; index++)
+ {
+ average_force += (*force)[index*4+3];
+ }
+ average_force /= sData->total_points;
+ }
+ pdEndEffectors(&effectors);
+ }
+
+ /* Get number of required steps using averate point distance
+ * so that just a few ultra close pixels wont up substeps to max */
+
+ /* adjust number of required substep by fastest active effect */
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_SPREAD)
+ spread_speed = surface->spread_speed;
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_SHRINK)
+ shrink_speed = surface->shrink_speed;
+
+ fastest_effect = MAX3(spread_speed, shrink_speed, average_force);
+
+ steps = (int)ceil(1.5f*EFF_MOVEMENT_PER_FRAME*fastest_effect/bData->average_dist*timescale);
+ CLAMP(steps, 1, 14);
+
+ return steps;
+}
+
+/*
+* Processes active effect step.
+*/
+static void dynamicPaint_doEffectStep(DynamicPaintSurface *surface, float *force, PaintPoint *prevPoint, float timescale, float steps)
+{
+ PaintSurfaceData *sData = surface->data;
+ BakeNeighPoint *bNeighs = sData->bData->bNeighs;
+ int index;
+ timescale /= steps;
+
+ if (!sData->adj_data) return;
+
+ /*
+ * Spread Effect
+ */
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_SPREAD) {
+ float eff_scale = EFF_MOVEMENT_PER_FRAME*surface->spread_speed*timescale;
+
+ /* Copy current surface to the previous points array to read unmodified values */
+ memcpy(prevPoint, sData->type_data, sData->total_points*sizeof(struct PaintPoint));
+
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ int i;
+ int numOfNeighs = sData->adj_data->n_num[index];
+ float totalAlpha = 0.0f;
+ PaintPoint *pPoint = &((PaintPoint*)sData->type_data)[index];
+
+ /* Only reads values from the surface copy (prevPoint[]),
+ * so this one is thread safe */
+
+ /* Loop through neighbouring points */
+ for (i=0; i<numOfNeighs; i++) {
+ int n_index = sData->adj_data->n_index[index]+i;
+ float w_factor, alphaAdd = 0.0f;
+ PaintPoint *ePoint = &prevPoint[sData->adj_data->n_target[n_index]];
+ float speed_scale = (bNeighs[n_index].dist<eff_scale) ? 1.0f : eff_scale/bNeighs[n_index].dist;
+ float color_mix = (MIN2(ePoint->wetness, pPoint->wetness))*0.25f*surface->color_spread_speed;
+
+ totalAlpha += ePoint->e_alpha;
+
+ /* do color mixing */
+ if (color_mix) mixColors(pPoint->e_color, pPoint->e_alpha, ePoint->e_color, color_mix);
+
+ /* Check if neighbouring point has higher wetness,
+ * if so, add it's wetness to this point as well*/
+ if (ePoint->wetness <= pPoint->wetness) continue;
+ w_factor = ePoint->wetness/numOfNeighs * (ePoint->wetness - pPoint->wetness) * speed_scale;
+ if (w_factor <= 0.0f) continue;
+
+ if (ePoint->e_alpha > pPoint->e_alpha) {
+ alphaAdd = ePoint->e_alpha/numOfNeighs * (ePoint->wetness*ePoint->e_alpha - pPoint->wetness*pPoint->e_alpha) * speed_scale;
+ }
+
+ /* mix new color */
+ mixColors(pPoint->e_color, pPoint->e_alpha, ePoint->e_color, w_factor);
+
+ pPoint->e_alpha += alphaAdd;
+ pPoint->wetness += w_factor;
+
+ if (pPoint->e_alpha > 1.0f) pPoint->e_alpha = 1.0f;
+ }
+
+ /* For antialiasing sake, don't let alpha go much higher than average alpha of neighbours */
+ if (pPoint->e_alpha > (totalAlpha/numOfNeighs+0.25f)) {
+ pPoint->e_alpha = (totalAlpha/numOfNeighs+0.25f);
+ if (pPoint->e_alpha>1.0f) pPoint->e_alpha = 1.0f;
+ }
+ }
+ }
+
+ /*
+ * Shrink Effect
+ */
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_SHRINK) {
+ float eff_scale = EFF_MOVEMENT_PER_FRAME*surface->shrink_speed*timescale;
+
+ /* Copy current surface to the previous points array to read unmodified values */
+ memcpy(prevPoint, sData->type_data, sData->total_points*sizeof(struct PaintPoint));
+
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ int i;
+ int numOfNeighs = sData->adj_data->n_num[index];
+ float totalAlpha = 0.0f;
+ PaintPoint *pPoint = &((PaintPoint*)sData->type_data)[index];
+
+ for (i=0; i<numOfNeighs; i++) {
+ int n_index = sData->adj_data->n_index[index]+i;
+ float speed_scale = (bNeighs[n_index].dist<eff_scale) ? 1.0f : eff_scale/bNeighs[n_index].dist;
+ PaintPoint *ePoint = &prevPoint[sData->adj_data->n_target[n_index]];
+ float a_factor, ea_factor, w_factor;
+
+ totalAlpha += ePoint->e_alpha;
+
+ /* Check if neighbouring point has lower alpha,
+ * if so, decrease this point's alpha as well*/
+ if (pPoint->alpha <= 0.0f && pPoint->e_alpha <= 0.0f && pPoint->wetness <= 0.0f) continue;
+
+ /* decrease factor for dry paint alpha */
+ a_factor = (1.0f - ePoint->alpha)/numOfNeighs * (pPoint->alpha - ePoint->alpha) * speed_scale;
+ if (a_factor < 0.0f) a_factor = 0.0f;
+ /* decrease factor for wet paint alpha */
+ ea_factor = (1.0f - ePoint->e_alpha)/8 * (pPoint->e_alpha - ePoint->e_alpha) * speed_scale;
+ if (ea_factor < 0.0f) ea_factor = 0.0f;
+ /* decrease factor for paint wetness */
+ w_factor = (1.0f - ePoint->wetness)/8 * (pPoint->wetness - ePoint->wetness) * speed_scale;
+ if (w_factor < 0.0f) w_factor = 0.0f;
+
+ pPoint->alpha -= a_factor;
+ if (pPoint->alpha < 0.0f) pPoint->alpha = 0.0f;
+ pPoint->e_alpha -= ea_factor;
+ if (pPoint->e_alpha < 0.0f) pPoint->e_alpha = 0.0f;
+ pPoint->wetness -= w_factor;
+ if (pPoint->wetness < 0.0f) pPoint->wetness = 0.0f;
+ }
+ }
+ }
+
+ /*
+ * Drip Effect
+ */
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_DRIP && force)
+ {
+ float eff_scale = EFF_MOVEMENT_PER_FRAME*timescale/2.0f;
+ /* Copy current surface to the previous points array to read unmodified values */
+ memcpy(prevPoint, sData->type_data, sData->total_points*sizeof(struct PaintPoint));
+
+ for (index = 0; index < sData->total_points; index++) {
+ int i;
+ PaintPoint *pPoint = &((PaintPoint*)sData->type_data)[index];
+ PaintPoint *pPoint_prev = &prevPoint[index];
+
+ int closest_id[2];
+ float closest_d[2];
+
+ /* adjust drip speed depending on wetness */
+ float w_factor = pPoint_prev->wetness*0.5 - 0.025f;
+ if (w_factor <= 0) continue;
+
+ /* get force affect points */
+ surface_determineForceTargetPoints(sData, index, &force[index*4], closest_d, closest_id);
+
+ /* Apply movement towards those two points */
+ for (i=0; i<2; i++) {
+ int n_index = closest_id[i];
+ if (n_index != -1 && closest_d[i]>0.0f) {
+ float dir_dot = closest_d[i], dir_factor;
+ float speed_scale = eff_scale*force[index*4+3]/bNeighs[n_index].dist;
+ PaintPoint *ePoint = &((PaintPoint*)sData->type_data)[sData->adj_data->n_target[n_index]];
+
+ /* just skip if angle is too extreme */
+ if (dir_dot <= 0.0f) continue;
+
+ dir_factor = dir_dot * speed_scale * w_factor;
+ if (dir_factor > (0.5f/steps)) dir_factor = (0.5f/steps);
+
+ /* mix new color */
+ if (dir_factor) mixColors(ePoint->e_color, ePoint->e_alpha, pPoint->e_color, dir_factor);
+
+ ePoint->e_alpha += dir_factor;
+ ePoint->wetness += dir_factor;
+ if (ePoint->e_alpha > 1.0f) ePoint->e_alpha = 1.0f;
+
+ /* and decrease paint wetness on current point */
+ pPoint->wetness -= dir_factor;
+ }
+ }
+ }
+
+ /* Keep values within acceptable range */
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++)
+ {
+ PaintPoint *cPoint = &((PaintPoint*)sData->type_data)[index];
+
+ if (cPoint->e_alpha > 1.0f) cPoint->e_alpha=1.0f;
+ if (cPoint->wetness > 2.0f) cPoint->wetness=2.0f;
+
+ if (cPoint->e_alpha < 0.0f) cPoint->e_alpha=0.0f;
+ if (cPoint->wetness < 0.0f) cPoint->wetness=0.0f;
+ }
+ }
+}
+
+void dynamicPaint_doWaveStep(DynamicPaintSurface *surface, float timescale)
+{
+ PaintSurfaceData *sData = surface->data;
+ BakeNeighPoint *bNeighs = sData->bData->bNeighs;
+ int index;
+ int steps, ss;
+ float dt, min_dist, damp_factor;
+ float wave_speed = surface->wave_speed;
+ double average_dist = 0.0f;
+
+ /* allocate memory */
+ PaintWavePoint *prevPoint = MEM_mallocN(sData->total_points*sizeof(PaintWavePoint), "Temp previous points for wave simulation");
+ if (!prevPoint) return;
+
+ /* calculate average neigh distance (single thread) */
+ for (index = 0; index < sData->total_points; index++)
+ {
+ int i;
+ int numOfNeighs = sData->adj_data->n_num[index];
+
+ for (i=0; i<numOfNeighs; i++) {
+ average_dist += bNeighs[sData->adj_data->n_index[index]+i].dist;
+ }
+ }
+ average_dist /= sData->adj_data->total_targets;
+
+ /* determine number of required steps */
+ steps = ceil((WAVE_TIME_FAC*timescale*surface->wave_timescale) / (average_dist/wave_speed/3));
+ CLAMP(steps, 1, 15);
+ timescale /= steps;
+
+ /* apply simulation values for final timescale */
+ dt = WAVE_TIME_FAC*timescale*surface->wave_timescale;
+ min_dist = wave_speed*dt*1.5f;
+ damp_factor = pow((1.0f-surface->wave_damping), timescale*surface->wave_timescale);
+
+ for (ss=0; ss<steps; ss++) {
+
+ /* copy previous frame data */
+ memcpy(prevPoint, sData->type_data, sData->total_points*sizeof(PaintWavePoint));
+
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++) {
+ PaintWavePoint *wPoint = &((PaintWavePoint*)sData->type_data)[index];
+ int numOfNeighs = sData->adj_data->n_num[index];
+ float force = 0.0f, avg_dist = 0.0f, avg_height = 0.0f;
+ int numOfN = 0, numOfRN = 0;
+ int i;
+
+ if (wPoint->state) continue;
+
+ /* calculate force from surrounding points */
+ for (i=0; i<numOfNeighs; i++) {
+ int n_index = sData->adj_data->n_index[index]+i;
+ float dist = bNeighs[n_index].dist;
+ PaintWavePoint *tPoint = &prevPoint[sData->adj_data->n_target[n_index]];
+
+ if (!dist || tPoint->state>0) continue;
+ if (dist<min_dist) dist=min_dist;
+ avg_dist += dist;
+ numOfN++;
+
+ /* count average height for edge points for open borders */
+ if (!(sData->adj_data->flags[sData->adj_data->n_target[n_index]] & ADJ_ON_MESH_EDGE)) {
+ avg_height += tPoint->height;
+ numOfRN++;
+ }
+
+ force += (tPoint->height - wPoint->height) / (dist*dist);
+ }
+ avg_dist = (numOfN) ? avg_dist/numOfN : 0.0f;
+
+ if (surface->flags & MOD_DPAINT_WAVE_OPEN_BORDERS &&
+ sData->adj_data->flags[index] & ADJ_ON_MESH_EDGE) {
+ /* if open borders, apply a fake height to keep waves going on */
+ avg_height = (numOfRN) ? avg_height/numOfRN : 0.0f;
+ wPoint->height = (dt*wave_speed*avg_height + wPoint->height*avg_dist) / (avg_dist + dt*wave_speed);
+ }
+ /* else do wave eq */
+ else {
+ /* add force towards zero height based on average dist */
+ if (avg_dist)
+ force += (0.0f - wPoint->height) * surface->wave_spring / (avg_dist*avg_dist) / 2.0f;
+
+ /* change point velocity */
+ wPoint->velocity += force*dt * wave_speed*wave_speed;
+ /* damping */
+ wPoint->velocity *= damp_factor;
+ /* and new height */
+ wPoint->height += wPoint->velocity*dt;
+ }
+ }
+ }
+
+ /* reset state */
+ #pragma omp parallel for schedule(static)
+ for (index = 0; index < sData->total_points; index++) {
+ PaintWavePoint *wPoint = &((PaintWavePoint*)sData->type_data)[index];
+ wPoint->state = DPAINT_WAVE_NONE;
+ }
+
+ MEM_freeN(prevPoint);
+}
+
+/* Do dissolve and fading effects */
+static void dynamicPaint_surfacePreStep(DynamicPaintSurface *surface, float timescale)
+{
+ PaintSurfaceData *sData = surface->data;
+ int index;
+
+ #pragma omp parallel for schedule(static)
+ for (index=0; index<sData->total_points; index++)
+ {
+ /* Do drying dissolve effects */
+ if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
+ PaintPoint *pPoint = &((PaintPoint*)sData->type_data)[index];
+ /* drying */
+ if (pPoint->wetness >= MIN_WETNESS) {
+ int i;
+ float dry_ratio, f_color[4];
+ float p_wetness = pPoint->wetness;
+ VALUE_DISSOLVE(pPoint->wetness, surface->dry_speed, timescale, (surface->flags & MOD_DPAINT_DRY_LOG));
+ if (pPoint->wetness<0.0f) pPoint->wetness=0.0f;
+ dry_ratio = pPoint->wetness/p_wetness;
+
+ /*
+ * Slowly "shift" paint from wet layer to dry layer as it drys:
+ */
+ /* make sure alpha values are within proper range */
+ CLAMP(pPoint->alpha, 0.0f, 1.0f);
+ CLAMP(pPoint->e_alpha, 0.0f, 1.0f);
+
+ /* get current final blended color of these layers */
+ blendColors(pPoint->color, pPoint->alpha, pPoint->e_color, pPoint->e_alpha, f_color);
+ /* reduce wet layer alpha by dry factor */
+ pPoint->e_alpha *= dry_ratio;
+
+ /* now calculate new alpha for dry layer that keeps final blended color unchanged */
+ pPoint->alpha = (f_color[3] - pPoint->e_alpha)/(1.0f-pPoint->e_alpha);
+ /* for each rgb component, calculate a new dry layer color that keeps the final blend color
+ * with these new alpha values. (wet layer color doesnt change)*/
+ if (pPoint->alpha) {
+ for (i=0; i<3; i++) {
+ pPoint->color[i] = (f_color[i]*f_color[3] - pPoint->e_color[i]*pPoint->e_alpha)/(pPoint->alpha*(1.0f-pPoint->e_alpha));
+ }
+ }
+
+ pPoint->state = DPAINT_PAINT_WET;
+ }
+ /* in case of just dryed paint, just mix it to the dry layer and mark it empty */
+ else if (pPoint->state > 0) {
+ float f_color[4];
+ blendColors(pPoint->color, pPoint->alpha, pPoint->e_color, pPoint->e_alpha, f_color);
+ copy_v3_v3(pPoint->color, f_color);
+ pPoint->alpha = f_color[3];
+ /* clear wet layer */
+ pPoint->wetness = 0.0f;
+ pPoint->e_alpha = 0.0f;
+ pPoint->state = DPAINT_PAINT_DRY;
+ }
+
+ if (surface->flags & MOD_DPAINT_DISSOLVE) {
+ VALUE_DISSOLVE(pPoint->alpha, surface->diss_speed, timescale, (surface->flags & MOD_DPAINT_DISSOLVE_LOG));
+ if (pPoint->alpha < 0.0f) pPoint->alpha = 0.0f;
+
+ VALUE_DISSOLVE(pPoint->e_alpha, surface->diss_speed, timescale, (surface->flags & MOD_DPAINT_DISSOLVE_LOG));
+ if (pPoint->e_alpha < 0.0f) pPoint->e_alpha = 0.0f;
+ }
+ }
+ /* dissolve for float types */
+ else if (surface->flags & MOD_DPAINT_DISSOLVE &&
+ (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
+ surface->type == MOD_DPAINT_SURFACE_T_WEIGHT)) {
+
+ float *point = &((float*)sData->type_data)[index];
+ /* log or linear */
+ VALUE_DISSOLVE(*point, surface->diss_speed, timescale, (surface->flags & MOD_DPAINT_DISSOLVE_LOG));
+ if (*point < 0.0f) *point = 0.0f;
+ }
+ }
+}
+
+static int dynamicPaint_surfaceHasMoved(DynamicPaintSurface *surface, Object *ob)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ DerivedMesh *dm = surface->canvas->dm;
+ MVert *mvert = dm->getVertArray(dm);
+
+ int numOfVerts = dm->getNumVerts(dm);
+ int i;
+ int ret = 0;
+
+ if (!bData->prev_verts) return 1;
+
+ /* matrix comparison */
+ for (i=0; i<4; i++) {
+ int j;
+ for (j=0; j<4; j++)
+ if (bData->prev_obmat[i][j] != ob->obmat[i][j]) return 1;
+ }
+
+ /* vertices */
+ #pragma omp parallel for schedule(static)
+ for (i=0; i<numOfVerts; i++) {
+ int j;
+ for (j=0; j<3; j++)
+ if (bData->prev_verts[i].co[j] != mvert[i].co[j]) {
+ ret = 1;
+ break;
+ }
+ }
+
+ return ret;
+}
+
+static int surface_needsVelocityData(DynamicPaintSurface *surface, Scene *scene, Object *ob)
+{
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_DRIP)
+ return 1;
+
+ if (surface_getBrushFlags(surface, scene, ob) & BRUSH_USES_VELOCITY)
+ return 1;
+
+ return 0;
+}
+
+static int surface_needsAccelerationData(DynamicPaintSurface *surface)
+{
+ if (surface->effect & MOD_DPAINT_EFFECT_DO_DRIP)
+ return 1;
+
+ return 0;
+}
+
+/* Prepare for surface step by creating PaintBakeNormal data */
+static int dynamicPaint_generateBakeData(DynamicPaintSurface *surface, Scene *scene, Object *ob)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintAdjData *adj_data = sData->adj_data;
+ PaintBakeData *bData = sData->bData;
+ DerivedMesh *dm = surface->canvas->dm;
+ int index, new_bdata = 0;
+ int do_velocity_data = surface_needsVelocityData(surface, scene, ob);
+ int do_accel_data = surface_needsAccelerationData(surface);
+
+ int canvasNumOfVerts = dm->getNumVerts(dm);
+ MVert *mvert = dm->getVertArray(dm);
+ Vec3f *canvas_verts;
+
+ if (bData) {
+ int surface_moved = dynamicPaint_surfaceHasMoved(surface, ob);
+
+ /* get previous speed for accelertaion */
+ if (do_accel_data && bData->prev_velocity && bData->velocity)
+ memcpy(bData->prev_velocity, bData->velocity, sData->total_points*sizeof(Vec3f));
+
+ /* reset speed vectors */
+ if (do_velocity_data && bData->velocity && (bData->clear || !surface_moved))
+ memset(bData->velocity, 0, sData->total_points*sizeof(Vec3f));
+
+ /* if previous data exists and mesh hasn't moved, no need to recalc */
+ if (!surface_moved)
+ return 1;
+ }
+
+ canvas_verts = (struct Vec3f *) MEM_mallocN(canvasNumOfVerts*sizeof(struct Vec3f), "Dynamic Paint transformed canvas verts");
+ if (!canvas_verts) return 0;
+
+ /* allocate memory if required */
+ if (!bData) {
+ sData->bData = bData = (struct PaintBakeData *) MEM_callocN(sizeof(struct PaintBakeData), "Dynamic Paint bake data");
+ if (!bData) {
+ if (canvas_verts) MEM_freeN(canvas_verts);
+ return 0;
+ }
+
+ /* Init bdata */
+ bData->bNormal = (struct PaintBakeNormal *) MEM_mallocN(sData->total_points*sizeof(struct PaintBakeNormal), "Dynamic Paint step data");
+ bData->s_pos = MEM_mallocN(sData->total_points*sizeof(unsigned int), "Dynamic Paint bData s_pos");
+ bData->s_num = MEM_mallocN(sData->total_points*sizeof(unsigned int), "Dynamic Paint bData s_num");
+ bData->realCoord = (struct Vec3f *) MEM_mallocN(surface_totalSamples(surface)*sizeof(Vec3f), "Dynamic Paint point coords");
+ bData->prev_verts = MEM_mallocN(canvasNumOfVerts*sizeof(MVert), "Dynamic Paint bData prev_verts");
+
+ /* if any allocation failed, free everything */
+ if (!bData->bNormal || !bData->s_pos || !bData->s_num || !bData->realCoord || !canvas_verts) {
+ if (bData->bNormal) MEM_freeN(bData->bNormal);
+ if (bData->s_pos) MEM_freeN(bData->s_pos);
+ if (bData->s_num) MEM_freeN(bData->s_num);
+ if (bData->realCoord) MEM_freeN(bData->realCoord);
+ if (canvas_verts) MEM_freeN(canvas_verts);
+
+ return setError(surface->canvas, "Not enough free memory.");
+ }
+
+ new_bdata = 1;
+ }
+
+ if (do_velocity_data && !bData->velocity) {
+ bData->velocity = (struct Vec3f *) MEM_callocN(sData->total_points*sizeof(Vec3f), "Dynamic Paint velocity");
+ }
+ if (do_accel_data && !bData->prev_velocity) {
+ bData->prev_velocity = (struct Vec3f *) MEM_mallocN(sData->total_points*sizeof(Vec3f), "Dynamic Paint prev velocity");
+ /* copy previous vel */
+ if (bData->prev_velocity && bData->velocity)
+ memcpy(bData->prev_velocity, bData->velocity, sData->total_points*sizeof(Vec3f));
+ }
+
+ /*
+ * Make a transformed copy of canvas derived mesh vertices to avoid recalculation.
+ */
+ #pragma omp parallel for schedule(static)
+ for (index=0; index<canvasNumOfVerts; index++) {
+ copy_v3_v3(canvas_verts[index].v, mvert[index].co);
+ mul_m4_v3(ob->obmat, canvas_verts[index].v);
+ }
+
+ /*
+ * Prepare each surface point for a new step
+ */
+ #pragma omp parallel for schedule(static)
+ for (index=0; index<sData->total_points; index++)
+ {
+ float prev_point[3];
+ if (do_velocity_data && !new_bdata) {
+ copy_v3_v3(prev_point, bData->realCoord[bData->s_pos[index]].v);
+ }
+ /*
+ * Calculate current 3D-position and normal of each surface point
+ */
+ if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
+ float n1[3], n2[3], n3[3];
+ ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
+ PaintUVPoint *tPoint = &((PaintUVPoint*)f_data->uv_p)[index];
+ int ss;
+
+ bData->s_num[index] = (surface->flags & MOD_DPAINT_ANTIALIAS) ? 5 : 1;
+ bData->s_pos[index] = index * bData->s_num[index];
+
+ /* per sample coordinates */
+ for (ss=0; ss<bData->s_num[index]; ss++) {
+ interp_v3_v3v3v3( bData->realCoord[bData->s_pos[index]+ss].v,
+ canvas_verts[tPoint->v1].v,
+ canvas_verts[tPoint->v2].v,
+ canvas_verts[tPoint->v3].v, f_data->barycentricWeights[index*bData->s_num[index]+ss].v);
+ }
+
+ /* Calculate current pixel surface normal */
+ normal_short_to_float_v3(n1, mvert[tPoint->v1].no);
+ normal_short_to_float_v3(n2, mvert[tPoint->v2].no);
+ normal_short_to_float_v3(n3, mvert[tPoint->v3].no);
+
+ interp_v3_v3v3v3( bData->bNormal[index].invNorm,
+ n1, n2, n3, f_data->barycentricWeights[index*bData->s_num[index]].v);
+ mul_mat3_m4_v3(ob->obmat, bData->bNormal[index].invNorm);
+ normalize_v3(bData->bNormal[index].invNorm);
+ negate_v3(bData->bNormal[index].invNorm);
+ }
+ else if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ int ss;
+ if (surface->flags & MOD_DPAINT_ANTIALIAS && adj_data) {
+ bData->s_num[index] = adj_data->n_num[index]+1;
+ bData->s_pos[index] = adj_data->n_index[index]+index;
+ }
+ else {
+ bData->s_num[index] = 1;
+ bData->s_pos[index] = index;
+ }
+
+ /* calculate position for each sample */
+ for (ss=0; ss<bData->s_num[index]; ss++) {
+ /* first sample is always point center */
+ copy_v3_v3(bData->realCoord[bData->s_pos[index]+ss].v, canvas_verts[index].v);
+ if (ss > 0) {
+ int t_index = adj_data->n_index[index]+(ss-1);
+ /* get vertex position at 1/3 of each neigh edge */
+ mul_v3_fl(bData->realCoord[bData->s_pos[index]+ss].v, 2.0f/3.0f);
+ madd_v3_v3fl(bData->realCoord[bData->s_pos[index]+ss].v, canvas_verts[adj_data->n_target[t_index]].v, 1.0f/3.0f);
+ }
+ }
+
+ /* normal */
+ normal_short_to_float_v3(bData->bNormal[index].invNorm, mvert[index].no);
+ mul_mat3_m4_v3(ob->obmat, bData->bNormal[index].invNorm);
+ normalize_v3(bData->bNormal[index].invNorm);
+ negate_v3(bData->bNormal[index].invNorm);
+ }
+
+ /* Prepare surface normal directional scale to easily convert
+ * brush intersection amount between global and local space */
+ if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
+ surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ float temp_nor[3];
+ if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
+ normal_short_to_float_v3(temp_nor, mvert[index].no);
+ normalize_v3(temp_nor);
+ }
+ else {
+ float n1[3], n2[3], n3[3];
+ ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
+ PaintUVPoint *tPoint = &((PaintUVPoint*)f_data->uv_p)[index];
+
+ normal_short_to_float_v3(n1, mvert[tPoint->v1].no);
+ normal_short_to_float_v3(n2, mvert[tPoint->v2].no);
+ normal_short_to_float_v3(n3, mvert[tPoint->v3].no);
+ interp_v3_v3v3v3(temp_nor,
+ n1, n2, n3, f_data->barycentricWeights[index*bData->s_num[index]].v);
+ }
+
+ mul_v3_v3(temp_nor, ob->size);
+ bData->bNormal[index].normal_scale = len_v3(temp_nor);
+ }
+
+ /* calculate speed vector */
+ if (do_velocity_data && !new_bdata && !bData->clear) {
+ sub_v3_v3v3(bData->velocity[index].v, bData->realCoord[bData->s_pos[index]].v, prev_point);
+ }
+ }
+
+ MEM_freeN(canvas_verts);
+
+ /* generate surface space partitioning grid */
+ surfaceGenerateGrid(surface);
+ /* calculate current frame neighbouring point distances and global dirs */
+ dynamicPaint_prepareNeighbourData(surface, 0);
+
+ /* Copy current frame vertices to check against in next frame */
+ copy_m4_m4(bData->prev_obmat, ob->obmat);
+ memcpy(bData->prev_verts, mvert, canvasNumOfVerts*sizeof(MVert));
+
+ bData->clear = 0;
+
+ return 1;
+}
+
+/*
+* Do Dynamic Paint step. Paints scene brush objects of current state/frame to the surface.
+*/
+static int dynamicPaint_doStep(Scene *scene, Object *ob, DynamicPaintSurface *surface, float timescale, float subframe)
+{
+ PaintSurfaceData *sData = surface->data;
+ PaintBakeData *bData = sData->bData;
+ DynamicPaintCanvasSettings *canvas = surface->canvas;
+ int ret = 1;
+ if (!sData || sData->total_points < 1) return 0;
+
+ dynamicPaint_surfacePreStep(surface, timescale);
+ /*
+ * Loop through surface's target paint objects and do painting
+ */
+ {
+ Base *base = NULL;
+ GroupObject *go = NULL;
+ Object *brushObj = NULL;
+ ModifierData *md = NULL;
+
+ /* backup current scene frame */
+ int scene_frame = scene->r.cfra;
+ float scene_subframe = scene->r.subframe;
+
+ /* either from group or from all objects */
+ if(surface->brush_group)
+ go = surface->brush_group->gobject.first;
+ else
+ base = scene->base.first;
+
+ while (base || go)
+ {
+ brushObj = NULL;
+ /* select object */
+ if(surface->brush_group) {
+ if(go->ob) brushObj = go->ob;
+ }
+ else
+ brushObj = base->object;
+
+ if(!brushObj) {
+ /* skip item */
+ if(surface->brush_group) go = go->next;
+ else base= base->next;
+ continue;
+ }
+
+ /* next item */
+ if(surface->brush_group)
+ go = go->next;
+ else
+ base= base->next;
+
+ /* check if target has an active dp modifier */
+ md = modifiers_findByType(brushObj, eModifierType_DynamicPaint);
+ if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
+ {
+ DynamicPaintModifierData *pmd2 = (DynamicPaintModifierData *)md;
+ /* make sure we're dealing with a brush */
+ if (pmd2->brush)
+ {
+ DynamicPaintBrushSettings *brush = pmd2->brush;
+ BrushMaterials bMats = {0};
+
+ /* calculate brush speed vectors if required */
+ if (brush->flags & MOD_DPAINT_DO_SMUDGE) {
+ bData->brush_velocity = MEM_callocN(sData->total_points*sizeof(float)*4, "Dynamic Paint brush velocity");
+ /* init adjacency data if not already */
+ if (!sData->adj_data)
+ dynamicPaint_initAdjacencyData(surface, 1);
+ if (!bData->bNeighs)
+ dynamicPaint_prepareNeighbourData(surface, 1);
+ }
+
+ /* update object data on this subframe */
+ if (subframe) {
+ scene_setSubframe(scene, subframe);
+ subframe_updateObject(scene, brushObj, UPDATE_EVERYTHING, BKE_curframe(scene));
+ }
+ /* Prepare materials if required */
+ if (brush->flags & MOD_DPAINT_USE_MATERIAL)
+ dynamicPaint_updateBrushMaterials(brushObj, brush->mat, scene, &bMats);
+
+ /* Apply brush on the surface depending on it's collision type */
+ /* Particle brush: */
+ if (brush->collision == MOD_DPAINT_COL_PSYS) {
+ if (brush && brush->psys && brush->psys->part && brush->psys->part->type==PART_EMITTER &&
+ psys_check_enabled(brushObj, brush->psys)) {
+
+ /* Paint a particle system */
+ BKE_animsys_evaluate_animdata(scene, &brush->psys->part->id, brush->psys->part->adt, BKE_curframe(scene), ADT_RECALC_ANIM);
+ dynamicPaint_paintParticles(surface, brush->psys, brush, ob, timescale);
+ }
+ }
+ /* Object center distance: */
+ else if (brush->collision == MOD_DPAINT_COL_POINT && brushObj != ob) {
+ dynamicPaint_paintSinglePoint(surface, brushObj->loc, brush, ob, brushObj, &bMats, scene, timescale);
+ }
+ /* Mesh volume/proximity: */
+ else if (brushObj != ob) {
+ dynamicPaint_paintMesh(surface, brush, ob, brushObj, &bMats, scene, timescale);
+ }
+
+ /* free temp material data */
+ if (brush->flags & MOD_DPAINT_USE_MATERIAL)
+ dynamicPaint_freeBrushMaterials(&bMats);
+ /* reset object to it's original state */
+ if (subframe) {
+ scene->r.cfra = scene_frame;
+ scene->r.subframe = scene_subframe;
+ subframe_updateObject(scene, brushObj, UPDATE_EVERYTHING, BKE_curframe(scene));
+ }
+
+ /* process special brush effects, like smudge */
+ if (bData->brush_velocity) {
+ if (brush->flags & MOD_DPAINT_DO_SMUDGE)
+ dynamicPaint_doSmudge(surface, brush, timescale);
+ MEM_freeN(bData->brush_velocity);
+ bData->brush_velocity = NULL;
+ }
+ }
+ }
+ }
+ }
+
+ /* surfaces operations that use adjacency data */
+ if (sData->adj_data && bData->bNeighs)
+ {
+ /* wave type surface simulation step */
+ if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
+ dynamicPaint_doWaveStep(surface, timescale);
+ }
+
+ /* paint surface effects */
+ if (surface->effect && surface->type == MOD_DPAINT_SURFACE_T_PAINT)
+ {
+ int steps = 1, s;
+ PaintPoint *prevPoint;
+ float *force = NULL;
+
+ /* Allocate memory for surface previous points to read unchanged values from */
+ prevPoint = MEM_mallocN(sData->total_points*sizeof(struct PaintPoint), "PaintSurfaceDataCopy");
+ if (!prevPoint)
+ return setError(canvas, "Not enough free memory.");
+
+ /* Prepare effects and get number of required steps */
+ steps = dynamicPaint_prepareEffectStep(surface, scene, ob, &force, timescale);
+ for (s = 0; s < steps; s++) {
+ dynamicPaint_doEffectStep(surface, force, prevPoint, timescale, (float)steps);
+ }
+
+ /* Free temporary effect data */
+ if (prevPoint) MEM_freeN(prevPoint);
+ if (force) MEM_freeN(force);
+ }
+ }
+
+ return ret;
+}
+
+/*
+* Calculate a single frame and included subframes for surface
+*/
+int dynamicPaint_calculateFrame(DynamicPaintSurface *surface, Scene *scene, Object *cObject, int frame)
+{
+ float timescale = 1.0f;
+
+ /* apply previous displace on derivedmesh if incremental surface */
+ if (surface->flags & MOD_DPAINT_DISP_INCREMENTAL)
+ dynamicPaint_applySurfaceDisplace(surface, surface->canvas->dm, 0);
+
+ /* update bake data */
+ dynamicPaint_generateBakeData(surface, scene, cObject);
+
+ /* dont do substeps for first frame */
+ if (surface->substeps && (frame != surface->start_frame)) {
+ int st;
+ timescale = 1.0f / (surface->substeps+1);
+
+ for (st = 1; st <= surface->substeps; st++) {
+ float subframe = ((float) st) / (surface->substeps+1);
+ if (!dynamicPaint_doStep(scene, cObject, surface, timescale, subframe)) return 0;
+ }
+ }
+
+ return dynamicPaint_doStep(scene, cObject, surface, timescale, 0.0f);
+} \ No newline at end of file