Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/mask_evaluate.c')
-rw-r--r--source/blender/blenkernel/intern/mask_evaluate.c863
1 files changed, 863 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/mask_evaluate.c b/source/blender/blenkernel/intern/mask_evaluate.c
new file mode 100644
index 00000000000..4a8601df0b8
--- /dev/null
+++ b/source/blender/blenkernel/intern/mask_evaluate.c
@@ -0,0 +1,863 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2012 Blender Foundation.
+ * All rights reserved.
+ *
+ * Contributor(s): Blender Foundation,
+ * Sergey Sharybin,
+ * Campbell Barton
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/mask_evaluate.c
+ * \ingroup bke
+ *
+ * Functions for evaluating the mask beziers into points for the outline and feather.
+ */
+
+#include <stddef.h>
+#include <string.h>
+
+#include "MEM_guardedalloc.h"
+
+#include "BLI_utildefines.h"
+#include "BLI_path_util.h"
+#include "BLI_string.h"
+#include "BLI_listbase.h"
+#include "BLI_math.h"
+
+#include "DNA_mask_types.h"
+#include "DNA_node_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_object_types.h"
+#include "DNA_screen_types.h"
+#include "DNA_space_types.h"
+#include "DNA_movieclip_types.h"
+#include "DNA_tracking_types.h"
+#include "DNA_sequence_types.h"
+
+#include "BKE_curve.h"
+#include "BKE_global.h"
+#include "BKE_library.h"
+#include "BKE_main.h"
+#include "BKE_mask.h"
+#include "BKE_node.h"
+#include "BKE_sequencer.h"
+#include "BKE_tracking.h"
+#include "BKE_movieclip.h"
+
+
+unsigned int BKE_mask_spline_resolution(MaskSpline *spline, int width, int height)
+{
+ float max_segment = 0.01f;
+ unsigned int i, resol = 1;
+
+ if (width != 0 && height != 0) {
+ max_segment = 1.0f / (float)maxi(width, height);
+ }
+
+ for (i = 0; i < spline->tot_point; i++) {
+ MaskSplinePoint *point = &spline->points[i];
+ BezTriple *bezt_curr, *bezt_next;
+ float a, b, c, len;
+ unsigned int cur_resol;
+
+ bezt_curr = &point->bezt;
+ bezt_next = BKE_mask_spline_point_next_bezt(spline, spline->points, point);
+
+ if (bezt_next == NULL) {
+ break;
+ }
+
+ a = len_v3v3(bezt_curr->vec[1], bezt_curr->vec[2]);
+ b = len_v3v3(bezt_curr->vec[2], bezt_next->vec[0]);
+ c = len_v3v3(bezt_next->vec[0], bezt_next->vec[1]);
+
+ len = a + b + c;
+ cur_resol = len / max_segment;
+
+ resol = MAX2(resol, cur_resol);
+
+ if (resol >= MASK_RESOL_MAX) {
+ break;
+ }
+ }
+
+ return CLAMPIS(resol, 1, MASK_RESOL_MAX);
+}
+
+unsigned int BKE_mask_spline_feather_resolution(MaskSpline *spline, int width, int height)
+{
+ const float max_segment = 0.005;
+ unsigned int resol = BKE_mask_spline_resolution(spline, width, height);
+ float max_jump = 0.0f;
+ int i;
+
+ /* avoid checking the featrher if we already hit the maximum value */
+ if (resol >= MASK_RESOL_MAX) {
+ return MASK_RESOL_MAX;
+ }
+
+ for (i = 0; i < spline->tot_point; i++) {
+ MaskSplinePoint *point = &spline->points[i];
+ float prev_u, prev_w;
+ int j;
+
+ prev_u = 0.0f;
+ prev_w = point->bezt.weight;
+
+ for (j = 0; j < point->tot_uw; j++) {
+ const float w_diff = (point->uw[j].w - prev_w);
+ const float u_diff = (point->uw[j].u - prev_u);
+
+ /* avoid divide by zero and very high values,
+ * though these get clamped eventually */
+ if (u_diff > FLT_EPSILON) {
+ float jump = fabsf(w_diff / u_diff);
+
+ max_jump = MAX2(max_jump, jump);
+ }
+
+ prev_u = point->uw[j].u;
+ prev_w = point->uw[j].w;
+ }
+ }
+
+ resol += max_jump / max_segment;
+
+ return CLAMPIS(resol, 1, MASK_RESOL_MAX);
+}
+
+int BKE_mask_spline_differentiate_calc_total(const MaskSpline *spline, const unsigned int resol)
+{
+ if (spline->flag & MASK_SPLINE_CYCLIC) {
+ return spline->tot_point * resol;
+ }
+ else {
+ return ((spline->tot_point - 1) * resol) + 1;
+ }
+}
+
+float (*BKE_mask_spline_differentiate_with_resolution_ex(MaskSpline *spline,
+ int *tot_diff_point,
+ const unsigned int resol
+ ))[2]
+{
+ MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
+
+ MaskSplinePoint *point_curr, *point_prev;
+ float (*diff_points)[2], (*fp)[2];
+ const int tot = BKE_mask_spline_differentiate_calc_total(spline, resol);
+ int a;
+
+ if (spline->tot_point <= 1) {
+ /* nothing to differentiate */
+ *tot_diff_point = 0;
+ return NULL;
+ }
+
+ /* len+1 because of 'forward_diff_bezier' function */
+ *tot_diff_point = tot;
+ diff_points = fp = MEM_mallocN((tot + 1) * sizeof(*diff_points), "mask spline vets");
+
+ a = spline->tot_point - 1;
+ if (spline->flag & MASK_SPLINE_CYCLIC)
+ a++;
+
+ point_prev = points_array;
+ point_curr = point_prev + 1;
+
+ while (a--) {
+ BezTriple *bezt_prev;
+ BezTriple *bezt_curr;
+ int j;
+
+ if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC))
+ point_curr = points_array;
+
+ bezt_prev = &point_prev->bezt;
+ bezt_curr = &point_curr->bezt;
+
+ for (j = 0; j < 2; j++) {
+ BKE_curve_forward_diff_bezier(bezt_prev->vec[1][j], bezt_prev->vec[2][j],
+ bezt_curr->vec[0][j], bezt_curr->vec[1][j],
+ &(*fp)[j], resol, 2 * sizeof(float));
+ }
+
+ fp += resol;
+
+ if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) {
+ copy_v2_v2(*fp, bezt_curr->vec[1]);
+ }
+
+ point_prev = point_curr;
+ point_curr++;
+ }
+
+ return diff_points;
+}
+
+float (*BKE_mask_spline_differentiate_with_resolution(MaskSpline *spline, int width, int height,
+ int *tot_diff_point
+ ))[2]
+{
+ int unsigned resol = BKE_mask_spline_resolution(spline, width, height);
+
+ return BKE_mask_spline_differentiate_with_resolution_ex(spline, tot_diff_point, resol);
+}
+
+float (*BKE_mask_spline_differentiate(MaskSpline *spline, int *tot_diff_point))[2]
+{
+ return BKE_mask_spline_differentiate_with_resolution(spline, 0, 0, tot_diff_point);
+}
+
+/* ** feather points self-intersection collapse routine ** */
+
+typedef struct FeatherEdgesBucket {
+ int tot_segment;
+ int (*segments)[2];
+ int alloc_segment;
+} FeatherEdgesBucket;
+
+static void feather_bucket_add_edge(FeatherEdgesBucket *bucket, int start, int end)
+{
+ const int alloc_delta = 256;
+
+ if (bucket->tot_segment >= bucket->alloc_segment) {
+ if (!bucket->segments) {
+ bucket->segments = MEM_callocN(alloc_delta * sizeof(*bucket->segments), "feather bucket segments");
+ }
+ else {
+ bucket->segments = MEM_reallocN(bucket->segments,
+ (alloc_delta + bucket->tot_segment) * sizeof(*bucket->segments));
+ }
+
+ bucket->alloc_segment += alloc_delta;
+ }
+
+ bucket->segments[bucket->tot_segment][0] = start;
+ bucket->segments[bucket->tot_segment][1] = end;
+
+ bucket->tot_segment++;
+}
+
+static void feather_bucket_check_intersect(float (*feather_points)[2], int tot_feather_point, FeatherEdgesBucket *bucket,
+ int cur_a, int cur_b)
+{
+ int i;
+
+ float *v1 = (float *) feather_points[cur_a];
+ float *v2 = (float *) feather_points[cur_b];
+
+ for (i = 0; i < bucket->tot_segment; i++) {
+ int check_a = bucket->segments[i][0];
+ int check_b = bucket->segments[i][1];
+
+ float *v3 = (float *) feather_points[check_a];
+ float *v4 = (float *) feather_points[check_b];
+
+ if (check_a >= cur_a - 1 || cur_b == check_a)
+ continue;
+
+ if (isect_seg_seg_v2(v1, v2, v3, v4)) {
+ int k;
+ float p[2];
+ float min_a[2], max_a[2];
+ float min_b[2], max_b[2];
+
+ isect_seg_seg_v2_point(v1, v2, v3, v4, p);
+
+ INIT_MINMAX2(min_a, max_a);
+ INIT_MINMAX2(min_b, max_b);
+
+ /* collapse loop with smaller AABB */
+ for (k = 0; k < tot_feather_point; k++) {
+ if (k >= check_b && k <= cur_a) {
+ DO_MINMAX2(feather_points[k], min_a, max_a);
+ }
+ else {
+ DO_MINMAX2(feather_points[k], min_b, max_b);
+ }
+ }
+
+ if (max_a[0] - min_a[0] < max_b[0] - min_b[0] ||
+ max_a[1] - min_a[1] < max_b[1] - min_b[1])
+ {
+ for (k = check_b; k <= cur_a; k++) {
+ copy_v2_v2(feather_points[k], p);
+ }
+ }
+ else {
+ for (k = 0; k <= check_a; k++) {
+ copy_v2_v2(feather_points[k], p);
+ }
+
+ if (cur_b != 0) {
+ for (k = cur_b; k < tot_feather_point; k++) {
+ copy_v2_v2(feather_points[k], p);
+ }
+ }
+ }
+ }
+ }
+}
+
+static int feather_bucket_index_from_coord(float co[2], const float min[2], const float bucket_scale[2],
+ const int buckets_per_side)
+{
+ int x = (int) ((co[0] - min[0]) * bucket_scale[0]);
+ int y = (int) ((co[1] - min[1]) * bucket_scale[1]);
+
+ if (x == buckets_per_side)
+ x--;
+
+ if (y == buckets_per_side)
+ y--;
+
+ return y * buckets_per_side + x;
+}
+
+static void feather_bucket_get_diagonal(FeatherEdgesBucket *buckets, int start_bucket_index, int end_bucket_index,
+ int buckets_per_side, FeatherEdgesBucket **diagonal_bucket_a_r,
+ FeatherEdgesBucket **diagonal_bucket_b_r)
+{
+ int start_bucket_x = start_bucket_index % buckets_per_side;
+ int start_bucket_y = start_bucket_index / buckets_per_side;
+
+ int end_bucket_x = end_bucket_index % buckets_per_side;
+ int end_bucket_y = end_bucket_index / buckets_per_side;
+
+ int diagonal_bucket_a_index = start_bucket_y * buckets_per_side + end_bucket_x;
+ int diagonal_bucket_b_index = end_bucket_y * buckets_per_side + start_bucket_x;
+
+ *diagonal_bucket_a_r = &buckets[diagonal_bucket_a_index];
+ *diagonal_bucket_b_r = &buckets[diagonal_bucket_b_index];
+}
+
+void BKE_mask_spline_feather_collapse_inner_loops(MaskSpline *spline, float (*feather_points)[2], const int tot_feather_point)
+{
+#define BUCKET_INDEX(co) \
+ feather_bucket_index_from_coord(co, min, bucket_scale, buckets_per_side)
+
+ int buckets_per_side, tot_bucket;
+ float bucket_size, bucket_scale[2];
+
+ FeatherEdgesBucket *buckets;
+
+ int i;
+ float min[2], max[2];
+ float max_delta_x = -1.0f, max_delta_y = -1.0f, max_delta;
+
+ if (tot_feather_point < 4) {
+ /* self-intersection works only for quads at least,
+ * in other cases polygon can't be self-intersecting anyway
+ */
+
+ return;
+ }
+
+ /* find min/max corners of mask to build buckets in that space */
+ INIT_MINMAX2(min, max);
+
+ for (i = 0; i < tot_feather_point; i++) {
+ int next = i + 1;
+ float delta;
+
+ DO_MINMAX2(feather_points[i], min, max);
+
+ if (next == tot_feather_point) {
+ if (spline->flag & MASK_SPLINE_CYCLIC)
+ next = 0;
+ else
+ break;
+ }
+
+ delta = fabsf(feather_points[i][0] - feather_points[next][0]);
+ if (delta > max_delta_x)
+ max_delta_x = delta;
+
+ delta = fabsf(feather_points[i][1] - feather_points[next][1]);
+ if (delta > max_delta_y)
+ max_delta_y = delta;
+ }
+
+ /* prevent divisionsby zero by ensuring bounding box is not collapsed */
+ if (max[0] - min[0] < FLT_EPSILON) {
+ max[0] += 0.01f;
+ min[0] -= 0.01f;
+ }
+
+ if (max[1] - min[1] < FLT_EPSILON) {
+ max[1] += 0.01f;
+ min[1] -= 0.01f;
+ }
+
+ /* use dynamically calculated buckets per side, so we likely wouldn't
+ * run into a situation when segment doesn't fit two buckets which is
+ * pain collecting candidates for intersection
+ */
+
+ max_delta_x /= max[0] - min[0];
+ max_delta_y /= max[1] - min[1];
+
+ max_delta = MAX2(max_delta_x, max_delta_y);
+
+ buckets_per_side = MIN2(512, 0.9f / max_delta);
+
+ if (buckets_per_side == 0) {
+ /* happens when some segment fills the whole bounding box across some of dimension */
+
+ buckets_per_side = 1;
+ }
+
+ tot_bucket = buckets_per_side * buckets_per_side;
+ bucket_size = 1.0f / buckets_per_side;
+
+ /* pre-compute multipliers, to save mathematical operations in loops */
+ bucket_scale[0] = 1.0f / ((max[0] - min[0]) * bucket_size);
+ bucket_scale[1] = 1.0f / ((max[1] - min[1]) * bucket_size);
+
+ /* fill in buckets' edges */
+ buckets = MEM_callocN(sizeof(FeatherEdgesBucket) * tot_bucket, "feather buckets");
+
+ for (i = 0; i < tot_feather_point; i++) {
+ int start = i, end = i + 1;
+ int start_bucket_index, end_bucket_index;
+
+ if (end == tot_feather_point) {
+ if (spline->flag & MASK_SPLINE_CYCLIC)
+ end = 0;
+ else
+ break;
+ }
+
+ start_bucket_index = BUCKET_INDEX(feather_points[start]);
+ end_bucket_index = BUCKET_INDEX(feather_points[end]);
+
+ feather_bucket_add_edge(&buckets[start_bucket_index], start, end);
+
+ if (start_bucket_index != end_bucket_index) {
+ FeatherEdgesBucket *end_bucket = &buckets[end_bucket_index];
+ FeatherEdgesBucket *diagonal_bucket_a, *diagonal_bucket_b;
+
+ feather_bucket_get_diagonal(buckets, start_bucket_index, end_bucket_index, buckets_per_side,
+ &diagonal_bucket_a, &diagonal_bucket_b);
+
+ feather_bucket_add_edge(end_bucket, start, end);
+ feather_bucket_add_edge(diagonal_bucket_a, start, end);
+ feather_bucket_add_edge(diagonal_bucket_a, start, end);
+ }
+ }
+
+ /* check all edges for intersection with edges from their buckets */
+ for (i = 0; i < tot_feather_point; i++) {
+ int cur_a = i, cur_b = i + 1;
+ int start_bucket_index, end_bucket_index;
+
+ FeatherEdgesBucket *start_bucket;
+
+ if (cur_b == tot_feather_point)
+ cur_b = 0;
+
+ start_bucket_index = BUCKET_INDEX(feather_points[cur_a]);
+ end_bucket_index = BUCKET_INDEX(feather_points[cur_b]);
+
+ start_bucket = &buckets[start_bucket_index];
+
+ feather_bucket_check_intersect(feather_points, tot_feather_point, start_bucket, cur_a, cur_b);
+
+ if (start_bucket_index != end_bucket_index) {
+ FeatherEdgesBucket *end_bucket = &buckets[end_bucket_index];
+ FeatherEdgesBucket *diagonal_bucket_a, *diagonal_bucket_b;
+
+ feather_bucket_get_diagonal(buckets, start_bucket_index, end_bucket_index, buckets_per_side,
+ &diagonal_bucket_a, &diagonal_bucket_b);
+
+ feather_bucket_check_intersect(feather_points, tot_feather_point, end_bucket, cur_a, cur_b);
+ feather_bucket_check_intersect(feather_points, tot_feather_point, diagonal_bucket_a, cur_a, cur_b);
+ feather_bucket_check_intersect(feather_points, tot_feather_point, diagonal_bucket_b, cur_a, cur_b);
+ }
+ }
+
+ /* free buckets */
+ for (i = 0; i < tot_bucket; i++) {
+ if (buckets[i].segments)
+ MEM_freeN(buckets[i].segments);
+ }
+
+ MEM_freeN(buckets);
+
+#undef BUCKET_INDEX
+}
+
+/** only called from #BKE_mask_spline_feather_differentiated_points_with_resolution_ex() ! */
+static float (*mask_spline_feather_differentiated_points_with_resolution_ex__even(MaskSpline *spline,
+ int *tot_feather_point,
+ const unsigned int resol,
+ const int do_feather_isect
+ ))[2]
+{
+ MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
+ MaskSplinePoint *point_curr, *point_prev;
+ float (*feather)[2], (*fp)[2];
+
+ const int tot = BKE_mask_spline_differentiate_calc_total(spline, resol);
+ int a;
+
+ /* tot+1 because of 'forward_diff_bezier' function */
+ feather = fp = MEM_mallocN((tot + 1) * sizeof(*feather), "mask spline feather diff points");
+
+ a = spline->tot_point - 1;
+ if (spline->flag & MASK_SPLINE_CYCLIC)
+ a++;
+
+ point_prev = points_array;
+ point_curr = point_prev + 1;
+
+ while (a--) {
+ /* BezTriple *bezt_prev; */ /* UNUSED */
+ /* BezTriple *bezt_curr; */ /* UNUSED */
+ int j;
+
+ if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC))
+ point_curr = points_array;
+
+
+ /* bezt_prev = &point_prev->bezt; */
+ /* bezt_curr = &point_curr->bezt; */
+
+ for (j = 0; j < resol; j++, fp++) {
+ float u = (float) j / resol, weight;
+ float co[2], n[2];
+
+ /* TODO - these calls all calculate similar things
+ * could be unified for some speed */
+ BKE_mask_point_segment_co(spline, point_prev, u, co);
+ BKE_mask_point_normal(spline, point_prev, u, n);
+ weight = BKE_mask_point_weight(spline, point_prev, u);
+
+ madd_v2_v2v2fl(*fp, co, n, weight);
+ }
+
+ if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) {
+ float u = 1.0f, weight;
+ float co[2], n[2];
+
+ BKE_mask_point_segment_co(spline, point_prev, u, co);
+ BKE_mask_point_normal(spline, point_prev, u, n);
+ weight = BKE_mask_point_weight(spline, point_prev, u);
+
+ madd_v2_v2v2fl(*fp, co, n, weight);
+ }
+
+ point_prev = point_curr;
+ point_curr++;
+ }
+
+ *tot_feather_point = tot;
+
+ if ((spline->flag & MASK_SPLINE_NOINTERSECT) && do_feather_isect) {
+ BKE_mask_spline_feather_collapse_inner_loops(spline, feather, tot);
+ }
+
+ return feather;
+}
+
+/** only called from #BKE_mask_spline_feather_differentiated_points_with_resolution_ex() ! */
+static float (*mask_spline_feather_differentiated_points_with_resolution_ex__double(MaskSpline *spline,
+ int *tot_feather_point,
+ const unsigned int resol,
+ const int do_feather_isect
+ ))[2]
+{
+ MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
+
+ MaskSplinePoint *point_curr, *point_prev;
+ float (*feather)[2], (*fp)[2];
+ const int tot = BKE_mask_spline_differentiate_calc_total(spline, resol);
+ int a;
+
+ if (spline->tot_point <= 1) {
+ /* nothing to differentiate */
+ *tot_feather_point = 0;
+ return NULL;
+ }
+
+ /* len+1 because of 'forward_diff_bezier' function */
+ *tot_feather_point = tot;
+ feather = fp = MEM_mallocN((tot + 1) * sizeof(*feather), "mask spline vets");
+
+ a = spline->tot_point - 1;
+ if (spline->flag & MASK_SPLINE_CYCLIC)
+ a++;
+
+ point_prev = points_array;
+ point_curr = point_prev + 1;
+
+ while (a--) {
+ BezTriple local_prevbezt;
+ BezTriple local_bezt;
+ float point_prev_n[2], point_curr_n[2], tvec[2];
+ float weight_prev, weight_curr;
+ float len_base, len_feather, len_scalar;
+
+ BezTriple *bezt_prev;
+ BezTriple *bezt_curr;
+ int j;
+
+ if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC))
+ point_curr = points_array;
+
+ bezt_prev = &point_prev->bezt;
+ bezt_curr = &point_curr->bezt;
+
+ /* modified copy for feather */
+ local_prevbezt = *bezt_prev;
+ local_bezt = *bezt_curr;
+
+ bezt_prev = &local_prevbezt;
+ bezt_curr = &local_bezt;
+
+ /* calc the normals */
+ sub_v2_v2v2(tvec, bezt_prev->vec[1], bezt_prev->vec[0]);
+ normalize_v2(tvec);
+ point_prev_n[0] = -tvec[1];
+ point_prev_n[1] = tvec[0];
+
+ sub_v2_v2v2(tvec, bezt_curr->vec[1], bezt_curr->vec[0]);
+ normalize_v2(tvec);
+ point_curr_n[0] = -tvec[1];
+ point_curr_n[1] = tvec[0];
+
+ weight_prev = bezt_prev->weight;
+ weight_curr = bezt_curr->weight;
+
+ mul_v2_fl(point_prev_n, weight_prev);
+ mul_v2_fl(point_curr_n, weight_curr);
+
+ /* before we transform verts */
+ len_base = len_v2v2(bezt_prev->vec[1], bezt_curr->vec[1]);
+
+ // add_v2_v2(bezt_prev->vec[0], point_prev_n); // not needed
+ add_v2_v2(bezt_prev->vec[1], point_prev_n);
+ add_v2_v2(bezt_prev->vec[2], point_prev_n);
+
+ add_v2_v2(bezt_curr->vec[0], point_curr_n);
+ add_v2_v2(bezt_curr->vec[1], point_curr_n);
+ // add_v2_v2(bezt_curr->vec[2], point_curr_n); // not needed
+
+ len_feather = len_v2v2(bezt_prev->vec[1], bezt_curr->vec[1]);
+
+ /* scale by chane in length */
+ len_scalar = len_feather / len_base;
+ dist_ensure_v2_v2fl(bezt_prev->vec[2], bezt_prev->vec[1], len_scalar * len_v2v2(bezt_prev->vec[2], bezt_prev->vec[1]));
+ dist_ensure_v2_v2fl(bezt_curr->vec[0], bezt_curr->vec[1], len_scalar * len_v2v2(bezt_curr->vec[0], bezt_curr->vec[1]));
+
+
+ for (j = 0; j < 2; j++) {
+ BKE_curve_forward_diff_bezier(bezt_prev->vec[1][j], bezt_prev->vec[2][j],
+ bezt_curr->vec[0][j], bezt_curr->vec[1][j],
+ &(*fp)[j], resol, 2 * sizeof(float));
+ }
+
+
+ /* scale by the uw's */
+ if (point_prev->tot_uw) {
+ for (j = 0; j < resol; j++, fp++) {
+ float u = (float) j / resol;
+ float weight_uw, weight_scalar;
+ float co[2];
+
+ /* TODO - these calls all calculate similar things
+ * could be unified for some speed */
+ BKE_mask_point_segment_co(spline, point_prev, u, co);
+
+ weight_uw = BKE_mask_point_weight(spline, point_prev, u);
+ weight_scalar = BKE_mask_point_weight_scalar(spline, point_prev, u);
+
+ dist_ensure_v2_v2fl(*fp, co, len_v2v2(*fp, co) * (weight_uw / weight_scalar));
+ }
+ }
+ else {
+ fp += resol;
+ }
+
+ if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) {
+ copy_v2_v2(*fp, bezt_curr->vec[1]);
+ }
+
+ point_prev = point_curr;
+ point_curr++;
+ }
+
+ if ((spline->flag & MASK_SPLINE_NOINTERSECT) && do_feather_isect) {
+ BKE_mask_spline_feather_collapse_inner_loops(spline, feather, tot);
+ }
+
+ return feather;
+}
+
+/**
+ * values align with #BKE_mask_spline_differentiate_with_resolution_ex
+ * when \a resol arguments match.
+ */
+float (*BKE_mask_spline_feather_differentiated_points_with_resolution_ex(MaskSpline *spline,
+ int *tot_feather_point,
+ const unsigned int resol,
+ const int do_feather_isect
+ ))[2]
+{
+ switch (spline->offset_mode) {
+ case MASK_SPLINE_OFFSET_EVEN:
+ return mask_spline_feather_differentiated_points_with_resolution_ex__even(spline, tot_feather_point, resol, do_feather_isect);
+ break;
+ case MASK_SPLINE_OFFSET_SMOOTH:
+ default:
+ return mask_spline_feather_differentiated_points_with_resolution_ex__double(spline, tot_feather_point, resol, do_feather_isect);
+ break;
+ }
+}
+
+float (*BKE_mask_spline_feather_differentiated_points_with_resolution(MaskSpline *spline, int width, int height,
+ int *tot_feather_point, const int do_feather_isect))[2]
+{
+ unsigned int resol = BKE_mask_spline_feather_resolution(spline, width, height);
+
+ return BKE_mask_spline_feather_differentiated_points_with_resolution_ex(spline, tot_feather_point, resol, do_feather_isect);
+}
+
+float (*BKE_mask_spline_feather_differentiated_points(MaskSpline *spline, int *tot_feather_point))[2]
+{
+ return BKE_mask_spline_feather_differentiated_points_with_resolution(spline, 0, 0, tot_feather_point, TRUE);
+}
+
+float (*BKE_mask_spline_feather_points(MaskSpline *spline, int *tot_feather_point))[2]
+{
+ MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
+
+ int i, tot = 0;
+ float (*feather)[2], (*fp)[2];
+
+ /* count */
+ for (i = 0; i < spline->tot_point; i++) {
+ MaskSplinePoint *point = &points_array[i];
+
+ tot += point->tot_uw + 1;
+ }
+
+ /* create data */
+ feather = fp = MEM_mallocN(tot * sizeof(*feather), "mask spline feather points");
+
+ for (i = 0; i < spline->tot_point; i++) {
+ MaskSplinePoint *point = &points_array[i];
+ BezTriple *bezt = &point->bezt;
+ float weight, n[2];
+ int j;
+
+ BKE_mask_point_normal(spline, point, 0.0f, n);
+ weight = BKE_mask_point_weight(spline, point, 0.0f);
+
+ madd_v2_v2v2fl(*fp, bezt->vec[1], n, weight);
+ fp++;
+
+ for (j = 0; j < point->tot_uw; j++) {
+ float u = point->uw[j].u;
+ float co[2];
+
+ BKE_mask_point_segment_co(spline, point, u, co);
+ BKE_mask_point_normal(spline, point, u, n);
+ weight = BKE_mask_point_weight(spline, point, u);
+
+ madd_v2_v2v2fl(*fp, co, n, weight);
+ fp++;
+ }
+ }
+
+ *tot_feather_point = tot;
+
+ return feather;
+}
+
+/* *** mask point functions which involve evaluation *** */
+float *BKE_mask_point_segment_feather_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point,
+ int width, int height,
+ unsigned int *tot_feather_point)
+{
+ float *feather, *fp;
+ unsigned int resol = BKE_mask_spline_feather_resolution(spline, width, height);
+ unsigned int i;
+
+ feather = fp = MEM_callocN(2 * resol * sizeof(float), "mask point spline feather diff points");
+
+ for (i = 0; i < resol; i++, fp += 2) {
+ float u = (float)(i % resol) / resol, weight;
+ float co[2], n[2];
+
+ BKE_mask_point_segment_co(spline, point, u, co);
+ BKE_mask_point_normal(spline, point, u, n);
+ weight = BKE_mask_point_weight(spline, point, u);
+
+ fp[0] = co[0] + n[0] * weight;
+ fp[1] = co[1] + n[1] * weight;
+ }
+
+ *tot_feather_point = resol;
+
+ return feather;
+}
+
+float *BKE_mask_point_segment_feather_diff(MaskSpline *spline, MaskSplinePoint *point, unsigned int *tot_feather_point)
+{
+ return BKE_mask_point_segment_feather_diff_with_resolution(spline, point, 0, 0, tot_feather_point);
+}
+
+float *BKE_mask_point_segment_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point,
+ int width, int height, unsigned int *tot_diff_point)
+{
+ MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
+
+ BezTriple *bezt, *bezt_next;
+ float *diff_points, *fp;
+ int j, resol = BKE_mask_spline_resolution(spline, width, height);
+
+ bezt = &point->bezt;
+ bezt_next = BKE_mask_spline_point_next_bezt(spline, points_array, point);
+
+ if (!bezt_next)
+ return NULL;
+
+ /* resol+1 because of 'forward_diff_bezier' function */
+ *tot_diff_point = resol + 1;
+ diff_points = fp = MEM_callocN((resol + 1) * 2 * sizeof(float), "mask segment vets");
+
+ for (j = 0; j < 2; j++) {
+ BKE_curve_forward_diff_bezier(bezt->vec[1][j], bezt->vec[2][j],
+ bezt_next->vec[0][j], bezt_next->vec[1][j],
+ fp + j, resol, 2 * sizeof(float));
+ }
+
+ copy_v2_v2(fp + 2 * resol, bezt_next->vec[1]);
+
+ return diff_points;
+}
+
+float *BKE_mask_point_segment_diff(MaskSpline *spline, MaskSplinePoint *point, unsigned int *tot_diff_point)
+{
+ return BKE_mask_point_segment_diff_with_resolution(spline, point, 0, 0, tot_diff_point);
+}