Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/mball.c')
-rw-r--r--source/blender/blenkernel/intern/mball.c1935
1 files changed, 8 insertions, 1927 deletions
diff --git a/source/blender/blenkernel/intern/mball.c b/source/blender/blenkernel/intern/mball.c
index ce20636233a..c09cd1aabdc 100644
--- a/source/blender/blenkernel/intern/mball.c
+++ b/source/blender/blenkernel/intern/mball.c
@@ -39,6 +39,7 @@
#include <stdlib.h>
#include <ctype.h>
#include <float.h>
+
#include "MEM_guardedalloc.h"
#include "DNA_material_types.h"
@@ -46,7 +47,6 @@
#include "DNA_meta_types.h"
#include "DNA_scene_types.h"
-
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
@@ -54,7 +54,6 @@
#include "BKE_global.h"
#include "BKE_main.h"
-/* #include "BKE_object.h" */
#include "BKE_animsys.h"
#include "BKE_curve.h"
#include "BKE_depsgraph.h"
@@ -65,119 +64,6 @@
#include "BKE_object.h"
#include "BKE_material.h"
-/* Data types */
-
-typedef struct vertex { /* surface vertex */
- float co[3]; /* position and surface normal */
- float no[3];
-} VERTEX;
-
-typedef struct vertices { /* list of vertices in polygonization */
- int count, max; /* # vertices, max # allowed */
- VERTEX *ptr; /* dynamically allocated */
-} VERTICES;
-
-typedef struct corner { /* corner of a cube */
- int i, j, k; /* (i, j, k) is index within lattice */
- float co[3], value; /* location and function value */
- struct corner *next;
-} CORNER;
-
-typedef struct cube { /* partitioning cell (cube) */
- int i, j, k; /* lattice location of cube */
- CORNER *corners[8]; /* eight corners */
-} CUBE;
-
-typedef struct cubes { /* linked list of cubes acting as stack */
- CUBE cube; /* a single cube */
- struct cubes *next; /* remaining elements */
-} CUBES;
-
-typedef struct centerlist { /* list of cube locations */
- int i, j, k; /* cube location */
- struct centerlist *next; /* remaining elements */
-} CENTERLIST;
-
-typedef struct edgelist { /* list of edges */
- int i1, j1, k1, i2, j2, k2; /* edge corner ids */
- int vid; /* vertex id */
- struct edgelist *next; /* remaining elements */
-} EDGELIST;
-
-typedef struct intlist { /* list of integers */
- int i; /* an integer */
- struct intlist *next; /* remaining elements */
-} INTLIST;
-
-typedef struct intlists { /* list of list of integers */
- INTLIST *list; /* a list of integers */
- struct intlists *next; /* remaining elements */
-} INTLISTS;
-
-/* dividing scene using octal tree makes polygonisation faster */
-typedef struct ml_pointer {
- struct ml_pointer *next, *prev;
- struct MetaElem *ml;
-} ml_pointer;
-
-typedef struct octal_node {
- struct octal_node *nodes[8];/* children of current node */
- struct octal_node *parent; /* parent of current node */
- struct ListBase elems; /* ListBase of MetaElem pointers (ml_pointer) */
- float x_min, y_min, z_min; /* 1st border point */
- float x_max, y_max, z_max; /* 7th border point */
- float x, y, z; /* center of node */
- int pos, neg; /* number of positive and negative MetaElements in the node */
- int count; /* number of MetaElems, which belongs to the node */
-} octal_node;
-
-typedef struct octal_tree {
- struct octal_node *first; /* first node */
- int pos, neg; /* number of positive and negative MetaElements in the scene */
- short depth; /* number of scene subdivision */
-} octal_tree;
-
-struct pgn_elements {
- struct pgn_elements *next, *prev;
- char *data;
-};
-
-typedef struct process { /* parameters, function, storage */
- /* ** old G_mb contents ** */
- float thresh;
- int totelem;
- MetaElem **mainb;
- octal_tree *metaball_tree;
-
- /* ** old process contents ** */
-
- /* what happens here? floats, I think. */
- /* float (*function)(void); */ /* implicit surface function */
- float (*function)(struct process *, float, float, float);
- float size, delta; /* cube size, normal delta */
- int bounds; /* cube range within lattice */
- CUBES *cubes; /* active cubes */
- VERTICES vertices; /* surface vertices */
- CENTERLIST **centers; /* cube center hash table */
- CORNER **corners; /* corner value hash table */
- EDGELIST **edges; /* edge and vertex id hash table */
-
- /* Runtime things */
- int *indices;
- int totindex, curindex;
-
- int pgn_offset;
- struct pgn_elements *pgn_current;
- ListBase pgn_list;
-} PROCESS;
-
-/* Forward declarations */
-static int vertid(PROCESS *process, const CORNER *c1, const CORNER *c2, MetaBall *mb);
-static int setcenter(PROCESS *process, CENTERLIST *table[], const int i, const int j, const int k);
-static CORNER *setcorner(PROCESS *process, int i, int j, int k);
-static void converge(PROCESS *process, const float p1[3], const float p2[3], float v1, float v2,
- float p[3], MetaBall *mb, int f);
-
/* Functions */
void BKE_mball_unlink(MetaBall *mb)
@@ -197,7 +83,7 @@ void BKE_mball_free(MetaBall *mb)
BKE_mball_unlink(mb);
if (mb->adt) {
- BKE_free_animdata((ID *)mb);
+ BKE_animdata_free((ID *)mb);
mb->adt = NULL;
}
if (mb->mat) MEM_freeN(mb->mat);
@@ -558,1817 +444,6 @@ Object *BKE_mball_basis_find(Scene *scene, Object *basis)
return basis;
}
-
-/* ******************** ARITH ************************* */
-
-/* BASED AT CODE (but mostly rewritten) :
- * C code from the article
- * "An Implicit Surface Polygonizer"
- * by Jules Bloomenthal, jbloom@beauty.gmu.edu
- * in "Graphics Gems IV", Academic Press, 1994
- *
- * Authored by Jules Bloomenthal, Xerox PARC.
- * Copyright (c) Xerox Corporation, 1991. All rights reserved.
- * Permission is granted to reproduce, use and distribute this code for
- * any and all purposes, provided that this notice appears in all copies. */
-
-#define RES 12 /* # converge iterations */
-
-#define L 0 /* left direction: -x, -i */
-#define R 1 /* right direction: +x, +i */
-#define B 2 /* bottom direction: -y, -j */
-#define T 3 /* top direction: +y, +j */
-#define N 4 /* near direction: -z, -k */
-#define F 5 /* far direction: +z, +k */
-#define LBN 0 /* left bottom near corner */
-#define LBF 1 /* left bottom far corner */
-#define LTN 2 /* left top near corner */
-#define LTF 3 /* left top far corner */
-#define RBN 4 /* right bottom near corner */
-#define RBF 5 /* right bottom far corner */
-#define RTN 6 /* right top near corner */
-#define RTF 7 /* right top far corner */
-
-/* the LBN corner of cube (i, j, k), corresponds with location
- * (i-0.5)*size, (j-0.5)*size, (k-0.5)*size) */
-
-#define HASHBIT (5)
-#define HASHSIZE (size_t)(1 << (3 * HASHBIT)) /*! < hash table size (32768) */
-
-#define HASH(i, j, k) ((((( (i) & 31) << 5) | ( (j) & 31)) << 5) | ( (k) & 31) )
-
-#define MB_BIT(i, bit) (((i) >> (bit)) & 1)
-#define FLIP(i, bit) ((i) ^ 1 << (bit)) /* flip the given bit of i */
-
-
-/* **************** POLYGONIZATION ************************ */
-
-static void calc_mballco(MetaElem *ml, float vec[3])
-{
- if (ml->mat) {
- mul_m4_v3((float (*)[4])ml->mat, vec);
- }
-}
-
-static float densfunc(MetaElem *ball, float x, float y, float z)
-{
- float dist2;
- float dvec[3] = {x, y, z};
-
- mul_m4_v3((float (*)[4])ball->imat, dvec);
-
- switch (ball->type) {
- case MB_BALL:
- /* do nothing */
- break;
- case MB_TUBE:
- if (dvec[0] > ball->expx) dvec[0] -= ball->expx;
- else if (dvec[0] < -ball->expx) dvec[0] += ball->expx;
- else dvec[0] = 0.0;
- break;
- case MB_PLANE:
- if (dvec[0] > ball->expx) dvec[0] -= ball->expx;
- else if (dvec[0] < -ball->expx) dvec[0] += ball->expx;
- else dvec[0] = 0.0;
- if (dvec[1] > ball->expy) dvec[1] -= ball->expy;
- else if (dvec[1] < -ball->expy) dvec[1] += ball->expy;
- else dvec[1] = 0.0;
- break;
- case MB_ELIPSOID:
- dvec[0] /= ball->expx;
- dvec[1] /= ball->expy;
- dvec[2] /= ball->expz;
- break;
- case MB_CUBE:
- if (dvec[0] > ball->expx) dvec[0] -= ball->expx;
- else if (dvec[0] < -ball->expx) dvec[0] += ball->expx;
- else dvec[0] = 0.0;
-
- if (dvec[1] > ball->expy) dvec[1] -= ball->expy;
- else if (dvec[1] < -ball->expy) dvec[1] += ball->expy;
- else dvec[1] = 0.0;
-
- if (dvec[2] > ball->expz) dvec[2] -= ball->expz;
- else if (dvec[2] < -ball->expz) dvec[2] += ball->expz;
- else dvec[2] = 0.0;
- break;
-
- /* *** deprecated, could be removed?, do-versioned at least *** */
- case MB_TUBEX:
- if (dvec[0] > ball->len) dvec[0] -= ball->len;
- else if (dvec[0] < -ball->len) dvec[0] += ball->len;
- else dvec[0] = 0.0;
- break;
- case MB_TUBEY:
- if (dvec[1] > ball->len) dvec[1] -= ball->len;
- else if (dvec[1] < -ball->len) dvec[1] += ball->len;
- else dvec[1] = 0.0;
- break;
- case MB_TUBEZ:
- if (dvec[2] > ball->len) dvec[2] -= ball->len;
- else if (dvec[2] < -ball->len) dvec[2] += ball->len;
- else dvec[2] = 0.0;
- break;
- /* *** end deprecated *** */
- }
-
- dist2 = 1.0f - (len_squared_v3(dvec) / ball->rad2);
-
- if ((ball->flag & MB_NEGATIVE) == 0) {
- return (dist2 < 0.0f) ? -0.5f : (ball->s * dist2 * dist2 * dist2) - 0.5f;
- }
- else {
- return (dist2 < 0.0f) ? 0.5f : 0.5f - (ball->s * dist2 * dist2 * dist2);
- }
-}
-
-static octal_node *find_metaball_octal_node(octal_node *node, float x, float y, float z, short depth)
-{
- if (!depth) return node;
-
- if (z < node->z) {
- if (y < node->y) {
- if (x < node->x) {
- if (node->nodes[0])
- return find_metaball_octal_node(node->nodes[0], x, y, z, depth--);
- else
- return node;
- }
- else {
- if (node->nodes[1])
- return find_metaball_octal_node(node->nodes[1], x, y, z, depth--);
- else
- return node;
- }
- }
- else {
- if (x < node->x) {
- if (node->nodes[3])
- return find_metaball_octal_node(node->nodes[3], x, y, z, depth--);
- else
- return node;
- }
- else {
- if (node->nodes[2])
- return find_metaball_octal_node(node->nodes[2], x, y, z, depth--);
- else
- return node;
- }
- }
- }
- else {
- if (y < node->y) {
- if (x < node->x) {
- if (node->nodes[4])
- return find_metaball_octal_node(node->nodes[4], x, y, z, depth--);
- else
- return node;
- }
- else {
- if (node->nodes[5])
- return find_metaball_octal_node(node->nodes[5], x, y, z, depth--);
- else
- return node;
- }
- }
- else {
- if (x < node->x) {
- if (node->nodes[7])
- return find_metaball_octal_node(node->nodes[7], x, y, z, depth--);
- else
- return node;
- }
- else {
- if (node->nodes[6])
- return find_metaball_octal_node(node->nodes[6], x, y, z, depth--);
- else
- return node;
- }
- }
- }
-
- /* all cases accounted for */
- BLI_assert(0);
-}
-
-static float metaball(PROCESS *process, float x, float y, float z)
-/* float x, y, z; */
-{
- octal_tree *metaball_tree = process->metaball_tree;
- struct octal_node *node;
- struct ml_pointer *ml_p;
- float dens = 0;
- int a;
-
- if (process->totelem > 1) {
- node = find_metaball_octal_node(metaball_tree->first, x, y, z, metaball_tree->depth);
- if (node) {
- for (ml_p = node->elems.first; ml_p; ml_p = ml_p->next) {
- dens += densfunc(ml_p->ml, x, y, z);
- }
-
- dens += -0.5f * (metaball_tree->pos - node->pos);
- dens += 0.5f * (metaball_tree->neg - node->neg);
- }
- else {
- for (a = 0; a < process->totelem; a++) {
- dens += densfunc(process->mainb[a], x, y, z);
- }
- }
- }
- else {
- dens += densfunc(process->mainb[0], x, y, z);
- }
-
- return process->thresh - dens;
-}
-
-/* ******************************************** */
-
-static void accum_mballfaces(PROCESS *process, int i1, int i2, int i3, int i4)
-{
- int *newi, *cur;
- /* static int i = 0; I would like to delete altogether, but I don't dare to, yet */
-
- if (process->totindex == process->curindex) {
- process->totindex += 256;
- newi = MEM_mallocN(4 * sizeof(int) * process->totindex, "vertindex");
-
- if (process->indices) {
- memcpy(newi, process->indices, 4 * sizeof(int) * (process->totindex - 256));
- MEM_freeN(process->indices);
- }
- process->indices = newi;
- }
-
- cur = process->indices + 4 * process->curindex;
-
- /* displists now support array drawing, we treat tri's as fake quad */
-
- cur[0] = i1;
- cur[1] = i2;
- cur[2] = i3;
- if (i4 == 0)
- cur[3] = i3;
- else
- cur[3] = i4;
-
- process->curindex++;
-
-}
-
-/* ******************* MEMORY MANAGEMENT *********************** */
-static void *new_pgn_element(PROCESS *process, int size)
-{
- /* during polygonize 1000s of elements are allocated
- * and never freed in between. Freeing only done at the end.
- */
- int blocksize = 16384;
- void *adr;
-
- if (size > 10000 || size == 0) {
- printf("incorrect use of new_pgn_element\n");
- }
- else if (size == -1) {
- struct pgn_elements *cur = process->pgn_list.first;
- while (cur) {
- MEM_freeN(cur->data);
- cur = cur->next;
- }
- BLI_freelistN(&process->pgn_list);
-
- return NULL;
- }
-
- size = 4 * ( (size + 3) / 4);
-
- if (process->pgn_current) {
- if (size + process->pgn_offset < blocksize) {
- adr = (void *) (process->pgn_current->data + process->pgn_offset);
- process->pgn_offset += size;
- return adr;
- }
- }
-
- process->pgn_current = MEM_callocN(sizeof(struct pgn_elements), "newpgn");
- process->pgn_current->data = MEM_callocN(blocksize, "newpgn");
- BLI_addtail(&process->pgn_list, process->pgn_current);
-
- process->pgn_offset = size;
- return process->pgn_current->data;
-}
-
-static void freepolygonize(PROCESS *process)
-{
- MEM_freeN(process->corners);
- MEM_freeN(process->edges);
- MEM_freeN(process->centers);
-
- new_pgn_element(process, -1);
-
- if (process->vertices.ptr) {
- MEM_freeN(process->vertices.ptr);
- }
-}
-
-/**** Cubical Polygonization (optional) ****/
-
-#define LB 0 /* left bottom edge */
-#define LT 1 /* left top edge */
-#define LN 2 /* left near edge */
-#define LF 3 /* left far edge */
-#define RB 4 /* right bottom edge */
-#define RT 5 /* right top edge */
-#define RN 6 /* right near edge */
-#define RF 7 /* right far edge */
-#define BN 8 /* bottom near edge */
-#define BF 9 /* bottom far edge */
-#define TN 10 /* top near edge */
-#define TF 11 /* top far edge */
-
-static INTLISTS *cubetable[256];
-
-/* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
-static int corner1[12] = {
- LBN, LTN, LBN, LBF, RBN, RTN, RBN, RBF, LBN, LBF, LTN, LTF
-};
-static int corner2[12] = {
- LBF, LTF, LTN, LTF, RBF, RTF, RTN, RTF, RBN, RBF, RTN, RTF
-};
-static int leftface[12] = {
- B, L, L, F, R, T, N, R, N, B, T, F
-};
-/* face on left when going corner1 to corner2 */
-static int rightface[12] = {
- L, T, N, L, B, R, R, F, B, F, N, T
-};
-/* face on right when going corner1 to corner2 */
-
-
-/* docube: triangulate the cube directly, without decomposition */
-
-static void docube(PROCESS *process, CUBE *cube, MetaBall *mb)
-{
- INTLISTS *polys;
- CORNER *c1, *c2;
- int i, index = 0, count, indexar[8];
-
- for (i = 0; i < 8; i++) {
- if (cube->corners[i]->value > 0.0f) {
- index += (1 << i);
- }
- }
-
- for (polys = cubetable[index]; polys; polys = polys->next) {
- INTLIST *edges;
-
- count = 0;
-
- for (edges = polys->list; edges; edges = edges->next) {
- c1 = cube->corners[corner1[edges->i]];
- c2 = cube->corners[corner2[edges->i]];
-
- indexar[count] = vertid(process, c1, c2, mb);
- count++;
- }
- if (count > 2) {
- switch (count) {
- case 3:
- accum_mballfaces(process, indexar[2], indexar[1], indexar[0], 0);
- break;
- case 4:
- if (indexar[0] == 0) accum_mballfaces(process, indexar[0], indexar[3], indexar[2], indexar[1]);
- else accum_mballfaces(process, indexar[3], indexar[2], indexar[1], indexar[0]);
- break;
- case 5:
- if (indexar[0] == 0) accum_mballfaces(process, indexar[0], indexar[3], indexar[2], indexar[1]);
- else accum_mballfaces(process, indexar[3], indexar[2], indexar[1], indexar[0]);
-
- accum_mballfaces(process, indexar[4], indexar[3], indexar[0], 0);
- break;
- case 6:
- if (indexar[0] == 0) {
- accum_mballfaces(process, indexar[0], indexar[3], indexar[2], indexar[1]);
- accum_mballfaces(process, indexar[0], indexar[5], indexar[4], indexar[3]);
- }
- else {
- accum_mballfaces(process, indexar[3], indexar[2], indexar[1], indexar[0]);
- accum_mballfaces(process, indexar[5], indexar[4], indexar[3], indexar[0]);
- }
- break;
- case 7:
- if (indexar[0] == 0) {
- accum_mballfaces(process, indexar[0], indexar[3], indexar[2], indexar[1]);
- accum_mballfaces(process, indexar[0], indexar[5], indexar[4], indexar[3]);
- }
- else {
- accum_mballfaces(process, indexar[3], indexar[2], indexar[1], indexar[0]);
- accum_mballfaces(process, indexar[5], indexar[4], indexar[3], indexar[0]);
- }
-
- accum_mballfaces(process, indexar[6], indexar[5], indexar[0], 0);
-
- break;
- }
- }
- }
-}
-
-
-/* testface: given cube at lattice (i, j, k), and four corners of face,
- * if surface crosses face, compute other four corners of adjacent cube
- * and add new cube to cube stack */
-
-static void testface(PROCESS *process, int i, int j, int k, CUBE *old, int bit, int c1, int c2, int c3, int c4)
-{
- CUBE newc;
- CUBES *oldcubes = process->cubes;
- CORNER *corn1, *corn2, *corn3, *corn4;
- int n, pos;
-
- corn1 = old->corners[c1];
- corn2 = old->corners[c2];
- corn3 = old->corners[c3];
- corn4 = old->corners[c4];
-
- pos = corn1->value > 0.0f ? 1 : 0;
-
- /* test if no surface crossing */
- if ( (corn2->value > 0) == pos && (corn3->value > 0) == pos && (corn4->value > 0) == pos) return;
- /* test if cube out of bounds */
- /*if ( abs(i) > p->bounds || abs(j) > p->bounds || abs(k) > p->bounds) return;*/
- /* test if already visited (always as last) */
- if (setcenter(process, process->centers, i, j, k)) {
- return;
- }
-
- /* create new cube and add cube to top of stack: */
- process->cubes = (CUBES *) new_pgn_element(process, sizeof(CUBES));
- process->cubes->next = oldcubes;
-
- newc.i = i;
- newc.j = j;
- newc.k = k;
- for (n = 0; n < 8; n++) newc.corners[n] = NULL;
-
- newc.corners[FLIP(c1, bit)] = corn1;
- newc.corners[FLIP(c2, bit)] = corn2;
- newc.corners[FLIP(c3, bit)] = corn3;
- newc.corners[FLIP(c4, bit)] = corn4;
-
- if (newc.corners[0] == NULL) newc.corners[0] = setcorner(process, i, j, k);
- if (newc.corners[1] == NULL) newc.corners[1] = setcorner(process, i, j, k + 1);
- if (newc.corners[2] == NULL) newc.corners[2] = setcorner(process, i, j + 1, k);
- if (newc.corners[3] == NULL) newc.corners[3] = setcorner(process, i, j + 1, k + 1);
- if (newc.corners[4] == NULL) newc.corners[4] = setcorner(process, i + 1, j, k);
- if (newc.corners[5] == NULL) newc.corners[5] = setcorner(process, i + 1, j, k + 1);
- if (newc.corners[6] == NULL) newc.corners[6] = setcorner(process, i + 1, j + 1, k);
- if (newc.corners[7] == NULL) newc.corners[7] = setcorner(process, i + 1, j + 1, k + 1);
-
- process->cubes->cube = newc;
-}
-
-/* setcorner: return corner with the given lattice location
- * set (and cache) its function value */
-
-static CORNER *setcorner(PROCESS *process, int i, int j, int k)
-{
- /* for speed, do corner value caching here */
- CORNER *c;
- int index;
-
- /* does corner exist? */
- index = HASH(i, j, k);
- c = process->corners[index];
-
- for (; c != NULL; c = c->next) {
- if (c->i == i && c->j == j && c->k == k) {
- return c;
- }
- }
-
- c = (CORNER *) new_pgn_element(process, sizeof(CORNER));
-
- c->i = i;
- c->co[0] = ((float)i - 0.5f) * process->size;
- c->j = j;
- c->co[1] = ((float)j - 0.5f) * process->size;
- c->k = k;
- c->co[2] = ((float)k - 0.5f) * process->size;
- c->value = process->function(process, c->co[0], c->co[1], c->co[2]);
-
- c->next = process->corners[index];
- process->corners[index] = c;
-
- return c;
-}
-
-
-/* nextcwedge: return next clockwise edge from given edge around given face */
-
-static int nextcwedge(int edge, int face)
-{
- switch (edge) {
- case LB:
- return (face == L) ? LF : BN;
- case LT:
- return (face == L) ? LN : TF;
- case LN:
- return (face == L) ? LB : TN;
- case LF:
- return (face == L) ? LT : BF;
- case RB:
- return (face == R) ? RN : BF;
- case RT:
- return (face == R) ? RF : TN;
- case RN:
- return (face == R) ? RT : BN;
- case RF:
- return (face == R) ? RB : TF;
- case BN:
- return (face == B) ? RB : LN;
- case BF:
- return (face == B) ? LB : RF;
- case TN:
- return (face == T) ? LT : RN;
- case TF:
- return (face == T) ? RT : LF;
- }
- return 0;
-}
-
-
-/* otherface: return face adjoining edge that is not the given face */
-
-static int otherface(int edge, int face)
-{
- int other = leftface[edge];
- return face == other ? rightface[edge] : other;
-}
-
-
-/* makecubetable: create the 256 entry table for cubical polygonization */
-
-static void makecubetable(void)
-{
- static bool is_done = false;
- int i, e, c, done[12], pos[8];
-
- if (is_done) return;
- is_done = true;
-
- for (i = 0; i < 256; i++) {
- for (e = 0; e < 12; e++) done[e] = 0;
- for (c = 0; c < 8; c++) pos[c] = MB_BIT(i, c);
- for (e = 0; e < 12; e++)
- if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
- INTLIST *ints = NULL;
- INTLISTS *lists = (INTLISTS *) MEM_callocN(sizeof(INTLISTS), "mball_intlist");
- int start = e, edge = e;
-
- /* get face that is to right of edge from pos to neg corner: */
- int face = pos[corner1[e]] ? rightface[e] : leftface[e];
-
- while (1) {
- edge = nextcwedge(edge, face);
- done[edge] = 1;
- if (pos[corner1[edge]] != pos[corner2[edge]]) {
- INTLIST *tmp = ints;
-
- ints = (INTLIST *) MEM_callocN(sizeof(INTLIST), "mball_intlist");
- ints->i = edge;
- ints->next = tmp; /* add edge to head of list */
-
- if (edge == start) break;
- face = otherface(edge, face);
- }
- }
- lists->list = ints; /* add ints to head of table entry */
- lists->next = cubetable[i];
- cubetable[i] = lists;
- }
- }
-}
-
-void BKE_mball_cubeTable_free(void)
-{
- int i;
- INTLISTS *lists, *nlists;
- INTLIST *ints, *nints;
-
- for (i = 0; i < 256; i++) {
- lists = cubetable[i];
- while (lists) {
- nlists = lists->next;
-
- ints = lists->list;
- while (ints) {
- nints = ints->next;
- MEM_freeN(ints);
- ints = nints;
- }
-
- MEM_freeN(lists);
- lists = nlists;
- }
- cubetable[i] = NULL;
- }
-}
-
-/**** Storage ****/
-
-/* setcenter: set (i, j, k) entry of table[]
- * return 1 if already set; otherwise, set and return 0 */
-
-static int setcenter(PROCESS *process, CENTERLIST *table[], const int i, const int j, const int k)
-{
- int index;
- CENTERLIST *newc, *l, *q;
-
- index = HASH(i, j, k);
- q = table[index];
-
- for (l = q; l != NULL; l = l->next) {
- if (l->i == i && l->j == j && l->k == k) return 1;
- }
-
- newc = (CENTERLIST *) new_pgn_element(process, sizeof(CENTERLIST));
- newc->i = i;
- newc->j = j;
- newc->k = k;
- newc->next = q;
- table[index] = newc;
-
- return 0;
-}
-
-
-/* setedge: set vertex id for edge */
-
-static void setedge(PROCESS *process,
- EDGELIST *table[],
- int i1, int j1,
- int k1, int i2,
- int j2, int k2,
- int vid)
-{
- unsigned int index;
- EDGELIST *newe;
-
- if (i1 > i2 || (i1 == i2 && (j1 > j2 || (j1 == j2 && k1 > k2)))) {
- int t = i1;
- i1 = i2;
- i2 = t;
- t = j1;
- j1 = j2;
- j2 = t;
- t = k1;
- k1 = k2;
- k2 = t;
- }
- index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
- newe = (EDGELIST *) new_pgn_element(process, sizeof(EDGELIST));
- newe->i1 = i1;
- newe->j1 = j1;
- newe->k1 = k1;
- newe->i2 = i2;
- newe->j2 = j2;
- newe->k2 = k2;
- newe->vid = vid;
- newe->next = table[index];
- table[index] = newe;
-}
-
-
-/* getedge: return vertex id for edge; return -1 if not set */
-
-static int getedge(EDGELIST *table[],
- int i1, int j1, int k1,
- int i2, int j2, int k2)
-{
- EDGELIST *q;
-
- if (i1 > i2 || (i1 == i2 && (j1 > j2 || (j1 == j2 && k1 > k2)))) {
- int t = i1;
- i1 = i2;
- i2 = t;
- t = j1;
- j1 = j2;
- j2 = t;
- t = k1;
- k1 = k2;
- k2 = t;
- }
- q = table[HASH(i1, j1, k1) + HASH(i2, j2, k2)];
- for (; q != NULL; q = q->next) {
- if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
- q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
- {
- return q->vid;
- }
- }
- return -1;
-}
-
-
-/**** Vertices ****/
-
-#undef R
-
-
-
-/* vertid: return index for vertex on edge:
- * c1->value and c2->value are presumed of different sign
- * return saved index if any; else compute vertex and save */
-
-/* addtovertices: add v to sequence of vertices */
-
-static void addtovertices(VERTICES *vertices, VERTEX v)
-{
- if (vertices->count == vertices->max) {
- int i;
- VERTEX *newv;
- vertices->max = vertices->count == 0 ? 10 : 2 * vertices->count;
- newv = (VERTEX *) MEM_callocN(vertices->max * sizeof(VERTEX), "addtovertices");
-
- for (i = 0; i < vertices->count; i++) newv[i] = vertices->ptr[i];
-
- if (vertices->ptr != NULL) MEM_freeN(vertices->ptr);
- vertices->ptr = newv;
- }
- vertices->ptr[vertices->count++] = v;
-}
-
-/* vnormal: compute unit length surface normal at point */
-
-static void vnormal(PROCESS *process, const float point[3], float r_no[3])
-{
- const float delta = 0.2f * process->delta;
- const float f = process->function(process, point[0], point[1], point[2]);
-
- r_no[0] = process->function(process, point[0] + delta, point[1], point[2]) - f;
- r_no[1] = process->function(process, point[0], point[1] + delta, point[2]) - f;
- r_no[2] = process->function(process, point[0], point[1], point[2] + delta) - f;
-
-#if 1
- normalize_v3(r_no);
-#else
- f = normalize_v3(r_no);
-
- if (0) {
- float tvec[3];
-
- delta *= 2.0f;
-
- f = process->function(process, point[0], point[1], point[2]);
-
- tvec[0] = process->function(process, point[0] + delta, point[1], point[2]) - f;
- tvec[1] = process->function(process, point[0], point[1] + delta, point[2]) - f;
- tvec[2] = process->function(process, point[0], point[1], point[2] + delta) - f;
-
- if (normalize_v3(tvec) != 0.0f) {
- add_v3_v3(r_no, tvec);
- normalize_v3(r_no);
- }
- }
-#endif
-}
-
-
-static int vertid(PROCESS *process, const CORNER *c1, const CORNER *c2, MetaBall *mb)
-{
- VERTEX v;
- int vid = getedge(process->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
-
- if (vid != -1) {
- return vid; /* previously computed */
- }
-
- converge(process, c1->co, c2->co, c1->value, c2->value, v.co, mb, 1); /* position */
- vnormal(process, v.co, v.no);
-
- addtovertices(&process->vertices, v); /* save vertex */
- vid = process->vertices.count - 1;
- setedge(process, process->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
-
- return vid;
-}
-
-
-/* converge: from two points of differing sign, converge to zero crossing */
-/* watch it: p1 and p2 are used to calculate */
-static void converge(PROCESS *process, const float p1[3], const float p2[3], float v1, float v2,
- float p[3], MetaBall *mb, int f)
-{
- int i = 0;
- float pos[3], neg[3];
- float positive = 0.0f, negative = 0.0f;
- float dvec[3];
-
- if (v1 < 0) {
- copy_v3_v3(pos, p2);
- copy_v3_v3(neg, p1);
- positive = v2;
- negative = v1;
- }
- else {
- copy_v3_v3(pos, p1);
- copy_v3_v3(neg, p2);
- positive = v1;
- negative = v2;
- }
-
- sub_v3_v3v3(dvec, pos, neg);
-
-/* Approximation by linear interpolation is faster then binary subdivision,
- * but it results sometimes (mb->thresh < 0.2) into the strange results */
- if ((mb->thresh > 0.2f) && (f == 1)) {
- if ((dvec[1] == 0.0f) && (dvec[2] == 0.0f)) {
- p[0] = neg[0] - negative * dvec[0] / (positive - negative);
- p[1] = neg[1];
- p[2] = neg[2];
- return;
- }
- if ((dvec[0] == 0.0f) && (dvec[2] == 0.0f)) {
- p[0] = neg[0];
- p[1] = neg[1] - negative * dvec[1] / (positive - negative);
- p[2] = neg[2];
- return;
- }
- if ((dvec[0] == 0.0f) && (dvec[1] == 0.0f)) {
- p[0] = neg[0];
- p[1] = neg[1];
- p[2] = neg[2] - negative * dvec[2] / (positive - negative);
- return;
- }
- }
-
- if ((dvec[1] == 0.0f) && (dvec[2] == 0.0f)) {
- p[1] = neg[1];
- p[2] = neg[2];
- while (1) {
- if (i++ == RES) return;
- p[0] = 0.5f * (pos[0] + neg[0]);
- if ((process->function(process, p[0], p[1], p[2])) > 0.0f) pos[0] = p[0];
- else neg[0] = p[0];
- }
- }
-
- if ((dvec[0] == 0.0f) && (dvec[2] == 0.0f)) {
- p[0] = neg[0];
- p[2] = neg[2];
- while (1) {
- if (i++ == RES) return;
- p[1] = 0.5f * (pos[1] + neg[1]);
- if ((process->function(process, p[0], p[1], p[2])) > 0.0f) pos[1] = p[1];
- else neg[1] = p[1];
- }
- }
-
- if ((dvec[0] == 0.0f) && (dvec[1] == 0.0f)) {
- p[0] = neg[0];
- p[1] = neg[1];
- while (1) {
- if (i++ == RES) return;
- p[2] = 0.5f * (pos[2] + neg[2]);
- if ((process->function(process, p[0], p[1], p[2])) > 0.0f) pos[2] = p[2];
- else neg[2] = p[2];
- }
- }
-
- /* This is necessary to find start point */
- while (1) {
- mid_v3_v3v3(&p[0], pos, neg);
-
- if (i++ == RES) {
- return;
- }
-
- if ((process->function(process, p[0], p[1], p[2])) > 0.0f) {
- copy_v3_v3(pos, &p[0]);
- }
- else {
- copy_v3_v3(neg, &p[0]);
- }
- }
-}
-
-/* ************************************** */
-static void add_cube(PROCESS *process, int i, int j, int k, int count)
-{
- CUBES *ncube;
- int n;
- int a, b, c;
-
- /* hmmm, not only one, but eight cube will be added on the stack
- * ... */
- for (a = i - 1; a < i + count; a++)
- for (b = j - 1; b < j + count; b++)
- for (c = k - 1; c < k + count; c++) {
- /* test if cube has been found before */
- if (setcenter(process, process->centers, a, b, c) == 0) {
- /* push cube on stack: */
- ncube = (CUBES *) new_pgn_element(process, sizeof(CUBES));
- ncube->next = process->cubes;
- process->cubes = ncube;
-
- ncube->cube.i = a;
- ncube->cube.j = b;
- ncube->cube.k = c;
-
- /* set corners of initial cube: */
- for (n = 0; n < 8; n++)
- ncube->cube.corners[n] = setcorner(process, a + MB_BIT(n, 2), b + MB_BIT(n, 1), c + MB_BIT(n, 0));
- }
- }
-}
-
-
-static void find_first_points(PROCESS *process, MetaBall *mb, int a)
-{
- MetaElem *ml;
- float f;
-
- ml = process->mainb[a];
- f = 1.0f - (mb->thresh / ml->s);
-
- /* Skip, when Stiffness of MetaElement is too small ... MetaElement can't be
- * visible alone ... but still can influence others MetaElements :-) */
- if (f > 0.0f) {
- float IN[3] = {0.0f}, OUT[3] = {0.0f}, in[3] = {0.0f}, out[3];
- int i, j, k, c_i, c_j, c_k;
- int index[3] = {1, 0, -1};
- float in_v /*, out_v*/;
- float workp[3];
- float dvec[3];
- float tmp_v, workp_v, max_len_sq, nx, ny, nz, max_dim;
-
- calc_mballco(ml, in);
- in_v = process->function(process, in[0], in[1], in[2]);
-
- for (i = 0; i < 3; i++) {
- switch (ml->type) {
- case MB_BALL:
- OUT[0] = out[0] = IN[0] + index[i] * ml->rad;
- break;
- case MB_TUBE:
- case MB_PLANE:
- case MB_ELIPSOID:
- case MB_CUBE:
- OUT[0] = out[0] = IN[0] + index[i] * (ml->expx + ml->rad);
- break;
- }
-
- for (j = 0; j < 3; j++) {
- switch (ml->type) {
- case MB_BALL:
- OUT[1] = out[1] = IN[1] + index[j] * ml->rad;
- break;
- case MB_TUBE:
- case MB_PLANE:
- case MB_ELIPSOID:
- case MB_CUBE:
- OUT[1] = out[1] = IN[1] + index[j] * (ml->expy + ml->rad);
- break;
- }
-
- for (k = 0; k < 3; k++) {
- out[0] = OUT[0];
- out[1] = OUT[1];
- switch (ml->type) {
- case MB_BALL:
- case MB_TUBE:
- case MB_PLANE:
- out[2] = IN[2] + index[k] * ml->rad;
- break;
- case MB_ELIPSOID:
- case MB_CUBE:
- out[2] = IN[2] + index[k] * (ml->expz + ml->rad);
- break;
- }
-
- calc_mballco(ml, out);
-
- /*out_v = process->function(out[0], out[1], out[2]);*/ /*UNUSED*/
-
- /* find "first points" on Implicit Surface of MetaElemnt ml */
- copy_v3_v3(workp, in);
- workp_v = in_v;
- max_len_sq = len_squared_v3v3(out, in);
-
- nx = fabsf((out[0] - in[0]) / process->size);
- ny = fabsf((out[1] - in[1]) / process->size);
- nz = fabsf((out[2] - in[2]) / process->size);
-
- max_dim = max_fff(nx, ny, nz);
- if (max_dim != 0.0f) {
- float len_sq = 0.0f;
-
- dvec[0] = (out[0] - in[0]) / max_dim;
- dvec[1] = (out[1] - in[1]) / max_dim;
- dvec[2] = (out[2] - in[2]) / max_dim;
-
- while (len_sq <= max_len_sq) {
- add_v3_v3(workp, dvec);
-
- /* compute value of implicite function */
- tmp_v = process->function(process, workp[0], workp[1], workp[2]);
- /* add cube to the stack, when value of implicite function crosses zero value */
- if ((tmp_v < 0.0f && workp_v >= 0.0f) || (tmp_v > 0.0f && workp_v <= 0.0f)) {
-
- /* indexes of CUBE, which includes "first point" */
- c_i = (int)floor(workp[0] / process->size);
- c_j = (int)floor(workp[1] / process->size);
- c_k = (int)floor(workp[2] / process->size);
-
- /* add CUBE (with indexes c_i, c_j, c_k) to the stack,
- * this cube includes found point of Implicit Surface */
- if ((ml->flag & MB_NEGATIVE) == 0) {
- add_cube(process, c_i, c_j, c_k, 1);
- }
- else {
- add_cube(process, c_i, c_j, c_k, 2);
- }
- }
- len_sq = len_squared_v3v3(workp, in);
- workp_v = tmp_v;
-
- }
- }
- }
- }
- }
- }
-}
-
-static void polygonize(PROCESS *process, MetaBall *mb)
-{
- CUBE c;
- int a;
-
- process->vertices.count = process->vertices.max = 0;
- process->vertices.ptr = NULL;
-
- /* allocate hash tables and build cube polygon table: */
- process->centers = MEM_callocN(HASHSIZE * sizeof(CENTERLIST *), "mbproc->centers");
- process->corners = MEM_callocN(HASHSIZE * sizeof(CORNER *), "mbproc->corners");
- process->edges = MEM_callocN(2 * HASHSIZE * sizeof(EDGELIST *), "mbproc->edges");
- makecubetable();
-
- for (a = 0; a < process->totelem; a++) {
-
- /* try to find 8 points on the surface for each MetaElem */
- find_first_points(process, mb, a);
- }
-
- /* polygonize all MetaElems of current MetaBall */
- while (process->cubes != NULL) { /* process active cubes till none left */
- c = process->cubes->cube;
-
- /* polygonize the cube directly: */
- docube(process, &c, mb);
-
- /* pop current cube from stack */
- process->cubes = process->cubes->next;
-
- /* test six face directions, maybe add to stack: */
- testface(process, c.i - 1, c.j, c.k, &c, 2, LBN, LBF, LTN, LTF);
- testface(process, c.i + 1, c.j, c.k, &c, 2, RBN, RBF, RTN, RTF);
- testface(process, c.i, c.j - 1, c.k, &c, 1, LBN, LBF, RBN, RBF);
- testface(process, c.i, c.j + 1, c.k, &c, 1, LTN, LTF, RTN, RTF);
- testface(process, c.i, c.j, c.k - 1, &c, 0, LBN, LTN, RBN, RTN);
- testface(process, c.i, c.j, c.k + 1, &c, 0, LBF, LTF, RBF, RTF);
- }
-}
-
-static float init_meta(EvaluationContext *eval_ctx, PROCESS *process, Scene *scene, Object *ob) /* return totsize */
-{
- Scene *sce_iter = scene;
- Base *base;
- Object *bob;
- MetaBall *mb;
- MetaElem *ml;
- float size, totsize, obinv[4][4], obmat[4][4], vec[3];
- //float max = 0.0f;
- int a, obnr, zero_size = 0;
- char obname[MAX_ID_NAME];
- SceneBaseIter iter;
-
- copy_m4_m4(obmat, ob->obmat); /* to cope with duplicators from BKE_scene_base_iter_next */
- invert_m4_m4(obinv, ob->obmat);
- a = 0;
-
- BLI_split_name_num(obname, &obnr, ob->id.name + 2, '.');
-
- /* make main array */
- BKE_scene_base_iter_next(eval_ctx, &iter, &sce_iter, 0, NULL, NULL);
- while (BKE_scene_base_iter_next(eval_ctx, &iter, &sce_iter, 1, &base, &bob)) {
-
- if (bob->type == OB_MBALL) {
- zero_size = 0;
- ml = NULL;
-
- if (bob == ob && (base->flag & OB_FROMDUPLI) == 0) {
- mb = ob->data;
-
- if (mb->editelems) ml = mb->editelems->first;
- else ml = mb->elems.first;
- }
- else {
- char name[MAX_ID_NAME];
- int nr;
-
- BLI_split_name_num(name, &nr, bob->id.name + 2, '.');
- if (STREQ(obname, name)) {
- mb = bob->data;
-
- if (mb->editelems) ml = mb->editelems->first;
- else ml = mb->elems.first;
- }
- }
-
- /* when metaball object has zero scale, then MetaElem to this MetaBall
- * will not be put to mainb array */
- if (has_zero_axis_m4(bob->obmat)) {
- zero_size = 1;
- }
- else if (bob->parent) {
- struct Object *pob = bob->parent;
- while (pob) {
- if (has_zero_axis_m4(pob->obmat)) {
- zero_size = 1;
- break;
- }
- pob = pob->parent;
- }
- }
-
- if (zero_size) {
- unsigned int ml_count = 0;
- while (ml) {
- ml_count++;
- ml = ml->next;
- }
- process->totelem -= ml_count;
- }
- else {
- while (ml) {
- if (!(ml->flag & MB_HIDE)) {
- int i;
- float temp1[4][4], temp2[4][4], temp3[4][4];
- float (*mat)[4] = NULL, (*imat)[4] = NULL;
- float max_x, max_y, max_z, min_x, min_y, min_z;
- float expx, expy, expz;
-
- max_x = max_y = max_z = -3.4e38;
- min_x = min_y = min_z = 3.4e38;
-
- /* too big stiffness seems only ugly due to linear interpolation
- * no need to have possibility for too big stiffness */
- if (ml->s > 10.0f) ml->s = 10.0f;
-
- /* Rotation of MetaElem is stored in quat */
- quat_to_mat4(temp3, ml->quat);
-
- /* Translation of MetaElem */
- unit_m4(temp2);
- temp2[3][0] = ml->x;
- temp2[3][1] = ml->y;
- temp2[3][2] = ml->z;
-
- mul_m4_m4m4(temp1, temp2, temp3);
-
- /* make a copy because of duplicates */
- process->mainb[a] = new_pgn_element(process, sizeof(MetaElem));
- *(process->mainb[a]) = *ml;
- process->mainb[a]->bb = new_pgn_element(process, sizeof(BoundBox));
-
- mat = new_pgn_element(process, 4 * 4 * sizeof(float));
- imat = new_pgn_element(process, 4 * 4 * sizeof(float));
-
- /* mat is the matrix to transform from mball into the basis-mball */
- invert_m4_m4(obinv, obmat);
- mul_m4_m4m4(temp2, obinv, bob->obmat);
- /* MetaBall transformation */
- mul_m4_m4m4(mat, temp2, temp1);
-
- invert_m4_m4(imat, mat);
-
- process->mainb[a]->rad2 = ml->rad * ml->rad;
-
- process->mainb[a]->mat = (float *) mat;
- process->mainb[a]->imat = (float *) imat;
-
- if (!MB_TYPE_SIZE_SQUARED(ml->type)) {
- expx = ml->expx;
- expy = ml->expy;
- expz = ml->expz;
- }
- else {
- expx = ml->expx * ml->expx;
- expy = ml->expy * ml->expy;
- expz = ml->expz * ml->expz;
- }
-
- /* untransformed Bounding Box of MetaElem */
- /* TODO, its possible the elem type has been changed and the exp* values can use a fallback */
- copy_v3_fl3(process->mainb[a]->bb->vec[0], -expx, -expy, -expz); /* 0 */
- copy_v3_fl3(process->mainb[a]->bb->vec[1], +expx, -expy, -expz); /* 1 */
- copy_v3_fl3(process->mainb[a]->bb->vec[2], +expx, +expy, -expz); /* 2 */
- copy_v3_fl3(process->mainb[a]->bb->vec[3], -expx, +expy, -expz); /* 3 */
- copy_v3_fl3(process->mainb[a]->bb->vec[4], -expx, -expy, +expz); /* 4 */
- copy_v3_fl3(process->mainb[a]->bb->vec[5], +expx, -expy, +expz); /* 5 */
- copy_v3_fl3(process->mainb[a]->bb->vec[6], +expx, +expy, +expz); /* 6 */
- copy_v3_fl3(process->mainb[a]->bb->vec[7], -expx, +expy, +expz); /* 7 */
-
- /* transformation of Metalem bb */
- for (i = 0; i < 8; i++)
- mul_m4_v3((float (*)[4])mat, process->mainb[a]->bb->vec[i]);
-
- /* find max and min of transformed bb */
- for (i = 0; i < 8; i++) {
- /* find maximums */
- if (process->mainb[a]->bb->vec[i][0] > max_x) max_x = process->mainb[a]->bb->vec[i][0];
- if (process->mainb[a]->bb->vec[i][1] > max_y) max_y = process->mainb[a]->bb->vec[i][1];
- if (process->mainb[a]->bb->vec[i][2] > max_z) max_z = process->mainb[a]->bb->vec[i][2];
- /* find minimums */
- if (process->mainb[a]->bb->vec[i][0] < min_x) min_x = process->mainb[a]->bb->vec[i][0];
- if (process->mainb[a]->bb->vec[i][1] < min_y) min_y = process->mainb[a]->bb->vec[i][1];
- if (process->mainb[a]->bb->vec[i][2] < min_z) min_z = process->mainb[a]->bb->vec[i][2];
- }
-
- /* create "new" bb, only point 0 and 6, which are
- * necessary for octal tree filling */
- process->mainb[a]->bb->vec[0][0] = min_x - ml->rad;
- process->mainb[a]->bb->vec[0][1] = min_y - ml->rad;
- process->mainb[a]->bb->vec[0][2] = min_z - ml->rad;
-
- process->mainb[a]->bb->vec[6][0] = max_x + ml->rad;
- process->mainb[a]->bb->vec[6][1] = max_y + ml->rad;
- process->mainb[a]->bb->vec[6][2] = max_z + ml->rad;
-
- a++;
- }
- ml = ml->next;
- }
- }
- }
- }
-
-
- /* totsize (= 'manhattan' radius) */
- totsize = 0.0;
- for (a = 0; a < process->totelem; a++) {
-
- vec[0] = process->mainb[a]->x + process->mainb[a]->rad + process->mainb[a]->expx;
- vec[1] = process->mainb[a]->y + process->mainb[a]->rad + process->mainb[a]->expy;
- vec[2] = process->mainb[a]->z + process->mainb[a]->rad + process->mainb[a]->expz;
-
- calc_mballco(process->mainb[a], vec);
-
- size = fabsf(vec[0]);
- if (size > totsize) totsize = size;
- size = fabsf(vec[1]);
- if (size > totsize) totsize = size;
- size = fabsf(vec[2]);
- if (size > totsize) totsize = size;
-
- vec[0] = process->mainb[a]->x - process->mainb[a]->rad;
- vec[1] = process->mainb[a]->y - process->mainb[a]->rad;
- vec[2] = process->mainb[a]->z - process->mainb[a]->rad;
-
- calc_mballco(process->mainb[a], vec);
-
- size = fabsf(vec[0]);
- if (size > totsize) totsize = size;
- size = fabsf(vec[1]);
- if (size > totsize) totsize = size;
- size = fabsf(vec[2]);
- if (size > totsize) totsize = size;
- }
-
- for (a = 0; a < process->totelem; a++) {
- process->thresh += densfunc(process->mainb[a], 2.0f * totsize, 2.0f * totsize, 2.0f * totsize);
- }
-
- return totsize;
-}
-
-/* if MetaElem lies in node, then node includes MetaElem pointer (ml_p)
- * pointing at MetaElem (ml)
- */
-static void fill_metaball_octal_node(octal_node *node, MetaElem *ml, short i)
-{
- ml_pointer *ml_p;
-
- ml_p = MEM_mallocN(sizeof(ml_pointer), "ml_pointer");
- ml_p->ml = ml;
- BLI_addtail(&(node->nodes[i]->elems), ml_p);
- node->count++;
-
- if ((ml->flag & MB_NEGATIVE) == 0) {
- node->nodes[i]->pos++;
- }
- else {
- node->nodes[i]->neg++;
- }
-}
-
-/* Node is subdivided as is illustrated on the following figure:
- *
- * +------+------+
- * / / /|
- * +------+------+ |
- * / / /| +
- * +------+------+ |/|
- * | | | + |
- * | | |/| +
- * +------+------+ |/
- * | | | +
- * | | |/
- * +------+------+
- *
- */
-static void subdivide_metaball_octal_node(octal_node *node, float size_x, float size_y, float size_z, short depth)
-{
- MetaElem *ml;
- ml_pointer *ml_p;
- float x, y, z;
- int a, i;
-
- /* create new nodes */
- for (a = 0; a < 8; a++) {
- node->nodes[a] = MEM_mallocN(sizeof(octal_node), "octal_node");
- for (i = 0; i < 8; i++)
- node->nodes[a]->nodes[i] = NULL;
- node->nodes[a]->parent = node;
- BLI_listbase_clear(&node->nodes[a]->elems);
- node->nodes[a]->count = 0;
- node->nodes[a]->neg = 0;
- node->nodes[a]->pos = 0;
- }
-
- size_x /= 2;
- size_y /= 2;
- size_z /= 2;
-
- /* center of node */
- node->x = x = node->x_min + size_x;
- node->y = y = node->y_min + size_y;
- node->z = z = node->z_min + size_z;
-
- /* setting up of border points of new nodes */
- node->nodes[0]->x_min = node->x_min;
- node->nodes[0]->y_min = node->y_min;
- node->nodes[0]->z_min = node->z_min;
- node->nodes[0]->x = node->nodes[0]->x_min + size_x / 2;
- node->nodes[0]->y = node->nodes[0]->y_min + size_y / 2;
- node->nodes[0]->z = node->nodes[0]->z_min + size_z / 2;
-
- node->nodes[1]->x_min = x;
- node->nodes[1]->y_min = node->y_min;
- node->nodes[1]->z_min = node->z_min;
- node->nodes[1]->x = node->nodes[1]->x_min + size_x / 2;
- node->nodes[1]->y = node->nodes[1]->y_min + size_y / 2;
- node->nodes[1]->z = node->nodes[1]->z_min + size_z / 2;
-
- node->nodes[2]->x_min = x;
- node->nodes[2]->y_min = y;
- node->nodes[2]->z_min = node->z_min;
- node->nodes[2]->x = node->nodes[2]->x_min + size_x / 2;
- node->nodes[2]->y = node->nodes[2]->y_min + size_y / 2;
- node->nodes[2]->z = node->nodes[2]->z_min + size_z / 2;
-
- node->nodes[3]->x_min = node->x_min;
- node->nodes[3]->y_min = y;
- node->nodes[3]->z_min = node->z_min;
- node->nodes[3]->x = node->nodes[3]->x_min + size_x / 2;
- node->nodes[3]->y = node->nodes[3]->y_min + size_y / 2;
- node->nodes[3]->z = node->nodes[3]->z_min + size_z / 2;
-
- node->nodes[4]->x_min = node->x_min;
- node->nodes[4]->y_min = node->y_min;
- node->nodes[4]->z_min = z;
- node->nodes[4]->x = node->nodes[4]->x_min + size_x / 2;
- node->nodes[4]->y = node->nodes[4]->y_min + size_y / 2;
- node->nodes[4]->z = node->nodes[4]->z_min + size_z / 2;
-
- node->nodes[5]->x_min = x;
- node->nodes[5]->y_min = node->y_min;
- node->nodes[5]->z_min = z;
- node->nodes[5]->x = node->nodes[5]->x_min + size_x / 2;
- node->nodes[5]->y = node->nodes[5]->y_min + size_y / 2;
- node->nodes[5]->z = node->nodes[5]->z_min + size_z / 2;
-
- node->nodes[6]->x_min = x;
- node->nodes[6]->y_min = y;
- node->nodes[6]->z_min = z;
- node->nodes[6]->x = node->nodes[6]->x_min + size_x / 2;
- node->nodes[6]->y = node->nodes[6]->y_min + size_y / 2;
- node->nodes[6]->z = node->nodes[6]->z_min + size_z / 2;
-
- node->nodes[7]->x_min = node->x_min;
- node->nodes[7]->y_min = y;
- node->nodes[7]->z_min = z;
- node->nodes[7]->x = node->nodes[7]->x_min + size_x / 2;
- node->nodes[7]->y = node->nodes[7]->y_min + size_y / 2;
- node->nodes[7]->z = node->nodes[7]->z_min + size_z / 2;
-
- ml_p = node->elems.first;
-
- /* setting up references of MetaElems for new nodes */
- while (ml_p) {
- ml = ml_p->ml;
- if (ml->bb->vec[0][2] < z) {
- if (ml->bb->vec[0][1] < y) {
- /* vec[0][0] lies in first octant */
- if (ml->bb->vec[0][0] < x) {
- /* ml belongs to the (0)1st node */
- fill_metaball_octal_node(node, ml, 0);
-
- /* ml belongs to the (3)4th node */
- if (ml->bb->vec[6][1] >= y) {
- fill_metaball_octal_node(node, ml, 3);
-
- /* ml belongs to the (7)8th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 7);
- }
- }
-
- /* ml belongs to the (1)2nd node */
- if (ml->bb->vec[6][0] >= x) {
- fill_metaball_octal_node(node, ml, 1);
-
- /* ml belongs to the (5)6th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 5);
- }
- }
-
- /* ml belongs to the (2)3th node */
- if ((ml->bb->vec[6][0] >= x) && (ml->bb->vec[6][1] >= y)) {
- fill_metaball_octal_node(node, ml, 2);
-
- /* ml belong to the (6)7th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 6);
- }
-
- }
-
- /* ml belongs to the (4)5th node too */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 4);
- }
-
-
-
- }
- /* vec[0][0] is in the (1)second octant */
- else {
- /* ml belong to the (1)2nd node */
- fill_metaball_octal_node(node, ml, 1);
-
- /* ml belongs to the (2)3th node */
- if (ml->bb->vec[6][1] >= y) {
- fill_metaball_octal_node(node, ml, 2);
-
- /* ml belongs to the (6)7th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 6);
- }
-
- }
-
- /* ml belongs to the (5)6th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 5);
- }
- }
- }
- else {
- /* vec[0][0] is in the (3)4th octant */
- if (ml->bb->vec[0][0] < x) {
- /* ml belongs to the (3)4nd node */
- fill_metaball_octal_node(node, ml, 3);
-
- /* ml belongs to the (7)8th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 7);
- }
-
-
- /* ml belongs to the (2)3th node */
- if (ml->bb->vec[6][0] >= x) {
- fill_metaball_octal_node(node, ml, 2);
-
- /* ml belongs to the (6)7th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 6);
- }
- }
- }
-
- }
-
- /* vec[0][0] is in the (2)3th octant */
- if ((ml->bb->vec[0][0] >= x) && (ml->bb->vec[0][1] >= y)) {
- /* ml belongs to the (2)3th node */
- fill_metaball_octal_node(node, ml, 2);
-
- /* ml belongs to the (6)7th node */
- if (ml->bb->vec[6][2] >= z) {
- fill_metaball_octal_node(node, ml, 6);
- }
- }
- }
- else {
- if (ml->bb->vec[0][1] < y) {
- /* vec[0][0] lies in (4)5th octant */
- if (ml->bb->vec[0][0] < x) {
- /* ml belongs to the (4)5th node */
- fill_metaball_octal_node(node, ml, 4);
-
- if (ml->bb->vec[6][0] >= x) {
- fill_metaball_octal_node(node, ml, 5);
- }
-
- if (ml->bb->vec[6][1] >= y) {
- fill_metaball_octal_node(node, ml, 7);
- }
-
- if ((ml->bb->vec[6][0] >= x) && (ml->bb->vec[6][1] >= y)) {
- fill_metaball_octal_node(node, ml, 6);
- }
- }
- /* vec[0][0] lies in (5)6th octant */
- else {
- fill_metaball_octal_node(node, ml, 5);
-
- if (ml->bb->vec[6][1] >= y) {
- fill_metaball_octal_node(node, ml, 6);
- }
- }
- }
- else {
- /* vec[0][0] lies in (7)8th octant */
- if (ml->bb->vec[0][0] < x) {
- fill_metaball_octal_node(node, ml, 7);
-
- if (ml->bb->vec[6][0] >= x) {
- fill_metaball_octal_node(node, ml, 6);
- }
- }
-
- }
-
- /* vec[0][0] lies in (6)7th octant */
- if ((ml->bb->vec[0][0] >= x) && (ml->bb->vec[0][1] >= y)) {
- fill_metaball_octal_node(node, ml, 6);
- }
- }
- ml_p = ml_p->next;
- }
-
- /* free references of MetaElems for curent node (it is not needed anymore) */
- BLI_freelistN(&node->elems);
-
- depth--;
-
- if (depth > 0) {
- for (a = 0; a < 8; a++) {
- if (node->nodes[a]->count > 0) /* if node is not empty, then it is subdivided */
- subdivide_metaball_octal_node(node->nodes[a], size_x, size_y, size_z, depth);
- }
- }
-}
-
-/* free all octal nodes recursively */
-static void free_metaball_octal_node(octal_node *node)
-{
- int a;
- for (a = 0; a < 8; a++) {
- if (node->nodes[a] != NULL) free_metaball_octal_node(node->nodes[a]);
- }
- BLI_freelistN(&node->elems);
- MEM_freeN(node);
-}
-
-/* If scene include more than one MetaElem, then octree is used */
-static void init_metaball_octal_tree(PROCESS *process, int depth)
-{
- struct octal_node *node;
- ml_pointer *ml_p;
- float size[3];
- int a;
-
- process->metaball_tree = MEM_mallocN(sizeof(octal_tree), "metaball_octal_tree");
- process->metaball_tree->first = node = MEM_mallocN(sizeof(octal_node), "metaball_octal_node");
- /* maximal depth of octree */
- process->metaball_tree->depth = depth;
-
- process->metaball_tree->neg = node->neg = 0;
- process->metaball_tree->pos = node->pos = 0;
-
- BLI_listbase_clear(&node->elems);
- node->count = 0;
-
- for (a = 0; a < 8; a++)
- node->nodes[a] = NULL;
-
- node->x_min = node->y_min = node->z_min = FLT_MAX;
- node->x_max = node->y_max = node->z_max = -FLT_MAX;
-
- /* size of octal tree scene */
- for (a = 0; a < process->totelem; a++) {
- if (process->mainb[a]->bb->vec[0][0] < node->x_min) node->x_min = process->mainb[a]->bb->vec[0][0];
- if (process->mainb[a]->bb->vec[0][1] < node->y_min) node->y_min = process->mainb[a]->bb->vec[0][1];
- if (process->mainb[a]->bb->vec[0][2] < node->z_min) node->z_min = process->mainb[a]->bb->vec[0][2];
-
- if (process->mainb[a]->bb->vec[6][0] > node->x_max) node->x_max = process->mainb[a]->bb->vec[6][0];
- if (process->mainb[a]->bb->vec[6][1] > node->y_max) node->y_max = process->mainb[a]->bb->vec[6][1];
- if (process->mainb[a]->bb->vec[6][2] > node->z_max) node->z_max = process->mainb[a]->bb->vec[6][2];
-
- ml_p = MEM_mallocN(sizeof(ml_pointer), "ml_pointer");
- ml_p->ml = process->mainb[a];
- BLI_addtail(&node->elems, ml_p);
-
- if ((process->mainb[a]->flag & MB_NEGATIVE) == 0) {
- /* number of positive MetaElem in scene */
- process->metaball_tree->pos++;
- }
- else {
- /* number of negative MetaElem in scene */
- process->metaball_tree->neg++;
- }
- }
-
- /* size of first node */
- size[0] = node->x_max - node->x_min;
- size[1] = node->y_max - node->y_min;
- size[2] = node->z_max - node->z_min;
-
- /* first node is subdivided recursively */
- subdivide_metaball_octal_node(node, size[0], size[1], size[2], process->metaball_tree->depth);
-}
-
-static void mball_count(EvaluationContext *eval_ctx, PROCESS *process, Scene *scene, Object *basis)
-{
- Scene *sce_iter = scene;
- Base *base;
- Object *ob, *bob = basis;
- MetaElem *ml = NULL;
- int basisnr, obnr;
- char basisname[MAX_ID_NAME], obname[MAX_ID_NAME];
- SceneBaseIter iter;
-
- BLI_split_name_num(basisname, &basisnr, basis->id.name + 2, '.');
- process->totelem = 0;
-
- BKE_scene_base_iter_next(eval_ctx, &iter, &sce_iter, 0, NULL, NULL);
- while (BKE_scene_base_iter_next(eval_ctx, &iter, &sce_iter, 1, &base, &ob)) {
- if (ob->type == OB_MBALL) {
- if (ob == bob) {
- MetaBall *mb = ob->data;
-
- /* if bob object is in edit mode, then dynamic list of all MetaElems
- * is stored in editelems */
- if (mb->editelems) ml = mb->editelems->first;
- /* if bob object is in object mode */
- else ml = mb->elems.first;
- }
- else {
- BLI_split_name_num(obname, &obnr, ob->id.name + 2, '.');
-
- /* object ob has to be in same "group" ... it means, that it has to have
- * same base of its name */
- if (STREQ(obname, basisname)) {
- MetaBall *mb = ob->data;
-
- /* if object is in edit mode, then dynamic list of all MetaElems
- * is stored in editelems */
- if (mb->editelems) ml = mb->editelems->first;
- /* if bob object is in object mode */
- else ml = mb->elems.first;
- }
- }
-
- for ( ; ml; ml = ml->next) {
- if (!(ml->flag & MB_HIDE)) {
- process->totelem++;
- }
- }
- }
- }
-}
-
-void BKE_mball_polygonize(EvaluationContext *eval_ctx, Scene *scene, Object *ob, ListBase *dispbase)
-{
- MetaBall *mb;
- DispList *dl;
- int a, nr_cubes;
- float *co, *no, totsize, width;
- PROCESS process = {0};
-
- mb = ob->data;
-
- mball_count(eval_ctx, &process, scene, ob);
-
- if (process.totelem == 0) return;
- if ((eval_ctx->mode != DAG_EVAL_RENDER) && (mb->flag == MB_UPDATE_NEVER)) return;
- if ((G.moving & (G_TRANSFORM_OBJ | G_TRANSFORM_EDIT)) && mb->flag == MB_UPDATE_FAST) return;
-
- process.thresh = mb->thresh;
-
- /* total number of MetaElems (totelem) is precomputed in find_basis_mball() function */
- process.mainb = MEM_mallocN(sizeof(void *) * process.totelem, "mainb");
-
- /* initialize all mainb (MetaElems) */
- totsize = init_meta(eval_ctx, &process, scene, ob);
-
- /* if scene includes more than one MetaElem, then octal tree optimization is used */
- if ((process.totelem > 1) && (process.totelem <= 64)) init_metaball_octal_tree(&process, 1);
- if ((process.totelem > 64) && (process.totelem <= 128)) init_metaball_octal_tree(&process, 2);
- if ((process.totelem > 128) && (process.totelem <= 512)) init_metaball_octal_tree(&process, 3);
- if ((process.totelem > 512) && (process.totelem <= 1024)) init_metaball_octal_tree(&process, 4);
- if (process.totelem > 1024) init_metaball_octal_tree(&process, 5);
-
- /* don't polygonize metaballs with too high resolution (base mball to small)
- * note: Eps was 0.0001f but this was giving problems for blood animation for durian, using 0.00001f */
- if (process.metaball_tree) {
- if (ob->size[0] <= 0.00001f * (process.metaball_tree->first->x_max - process.metaball_tree->first->x_min) ||
- ob->size[1] <= 0.00001f * (process.metaball_tree->first->y_max - process.metaball_tree->first->y_min) ||
- ob->size[2] <= 0.00001f * (process.metaball_tree->first->z_max - process.metaball_tree->first->z_min))
- {
- new_pgn_element(&process, -1); /* free values created by init_meta */
-
- MEM_freeN(process.mainb);
-
- /* free tree */
- free_metaball_octal_node(process.metaball_tree->first);
- MEM_freeN(process.metaball_tree);
-
- return;
- }
- }
-
- /* width is size per polygonize cube */
- if (eval_ctx->mode == DAG_EVAL_RENDER) {
- width = mb->rendersize;
- }
- else {
- width = mb->wiresize;
- if ((G.moving & (G_TRANSFORM_OBJ | G_TRANSFORM_EDIT)) && mb->flag == MB_UPDATE_HALFRES) {
- width *= 2;
- }
- }
- /* nr_cubes is just for safety, minimum is totsize */
- nr_cubes = (int)(0.5f + totsize / width);
-
- /* init process */
- process.function = metaball;
- process.size = width;
- process.bounds = nr_cubes;
- process.cubes = NULL;
- process.delta = width / (float)(RES * RES);
-
- polygonize(&process, mb);
-
- MEM_freeN(process.mainb);
-
- /* free octal tree */
- if (process.totelem > 1) {
- free_metaball_octal_node(process.metaball_tree->first);
- MEM_freeN(process.metaball_tree);
- process.metaball_tree = NULL;
- }
-
- if (process.curindex) {
- VERTEX *ptr = process.vertices.ptr;
-
- dl = MEM_callocN(sizeof(DispList), "mbaldisp");
- BLI_addtail(dispbase, dl);
- dl->type = DL_INDEX4;
- dl->nr = process.vertices.count;
- dl->parts = process.curindex;
-
- dl->index = process.indices;
- process.indices = NULL;
-
- a = process.vertices.count;
- dl->verts = co = MEM_mallocN(sizeof(float[3]) * a, "mballverts");
- dl->nors = no = MEM_mallocN(sizeof(float[3]) * a, "mballnors");
-
- for (a = 0; a < process.vertices.count; ptr++, a++, no += 3, co += 3) {
- copy_v3_v3(co, ptr->co);
- copy_v3_v3(no, ptr->no);
- }
- }
-
- freepolygonize(&process);
-}
-
bool BKE_mball_minmax_ex(MetaBall *mb, float min[3], float max[3],
float obmat[4][4], const short flag)
{
@@ -2511,3 +586,9 @@ void BKE_mball_select_swap(struct MetaBall *mb)
}
}
+/* **** Depsgraph evaluation **** */
+
+void BKE_mball_eval_geometry(EvaluationContext *UNUSED(eval_ctx),
+ MetaBall *UNUSED(mball))
+{
+}