Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/particle_child.c')
-rw-r--r--source/blender/blenkernel/intern/particle_child.c732
1 files changed, 732 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/particle_child.c b/source/blender/blenkernel/intern/particle_child.c
new file mode 100644
index 00000000000..7b2e07ea96f
--- /dev/null
+++ b/source/blender/blenkernel/intern/particle_child.c
@@ -0,0 +1,732 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) Blender Foundation
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Lukas Toenne
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/particle_child.c
+ * \ingroup bke
+ */
+
+#include "BLI_math.h"
+#include "BLI_noise.h"
+
+#include "DNA_material_types.h"
+
+#include "BKE_colortools.h"
+#include "BKE_particle.h"
+
+struct Material;
+
+void do_kink(ParticleKey *state, const float par_co[3], const float par_vel[3], const float par_rot[4], float time, float freq, float shape, float amplitude, float flat,
+ short type, short axis, float obmat[4][4], int smooth_start);
+float do_clump(ParticleKey *state, const float par_co[3], float time, const float orco_offset[3], float clumpfac, float clumppow, float pa_clump,
+ bool use_clump_noise, float clump_noise_size, CurveMapping *clumpcurve);
+void do_child_modifiers(ParticleSimulationData *sim,
+ ParticleTexture *ptex, const float par_co[3], const float par_vel[3], const float par_rot[4], const float par_orco[3],
+ ChildParticle *cpa, const float orco[3], float mat[4][4], ParticleKey *state, float t);
+
+static void get_strand_normal(Material *ma, const float surfnor[3], float surfdist, float nor[3])
+{
+ float cross[3], nstrand[3], vnor[3], blend;
+
+ if (!((ma->mode & MA_STR_SURFDIFF) || (ma->strand_surfnor > 0.0f)))
+ return;
+
+ if (ma->mode & MA_STR_SURFDIFF) {
+ cross_v3_v3v3(cross, surfnor, nor);
+ cross_v3_v3v3(nstrand, nor, cross);
+
+ blend = dot_v3v3(nstrand, surfnor);
+ CLAMP(blend, 0.0f, 1.0f);
+
+ interp_v3_v3v3(vnor, nstrand, surfnor, blend);
+ normalize_v3(vnor);
+ }
+ else {
+ copy_v3_v3(vnor, nor);
+ }
+
+ if (ma->strand_surfnor > 0.0f) {
+ if (ma->strand_surfnor > surfdist) {
+ blend = (ma->strand_surfnor - surfdist) / ma->strand_surfnor;
+ interp_v3_v3v3(vnor, vnor, surfnor, blend);
+ normalize_v3(vnor);
+ }
+ }
+
+ copy_v3_v3(nor, vnor);
+}
+
+/* ------------------------------------------------------------------------- */
+
+typedef struct ParticlePathIterator {
+ ParticleCacheKey *key;
+ int index;
+ float time;
+
+ ParticleCacheKey *parent_key;
+ float parent_rotation[4];
+} ParticlePathIterator;
+
+static void psys_path_iter_get(ParticlePathIterator *iter, ParticleCacheKey *keys, int totkeys,
+ ParticleCacheKey *parent, int index)
+{
+ BLI_assert(index >= 0 && index < totkeys);
+
+ iter->key = keys + index;
+ iter->index = index;
+ iter->time = (float)index / (float)(totkeys - 1);
+
+ if (parent) {
+ iter->parent_key = parent + index;
+ if (index > 0)
+ mul_qt_qtqt(iter->parent_rotation, iter->parent_key->rot, parent->rot);
+ else
+ copy_qt_qt(iter->parent_rotation, parent->rot);
+ }
+ else {
+ iter->parent_key = NULL;
+ unit_qt(iter->parent_rotation);
+ }
+}
+
+typedef struct ParticlePathModifier {
+ struct ParticlePathModifier *next, *prev;
+
+ void (*apply)(ParticleCacheKey *keys, int totkeys, ParticleCacheKey *parent_keys);
+} ParticlePathModifier;
+
+/* ------------------------------------------------------------------------- */
+
+static void do_kink_spiral_deform(ParticleKey *state, const float dir[3], const float kink[3],
+ float time, float freq, float shape, float amplitude,
+ const float spiral_start[3])
+{
+ float result[3];
+
+ CLAMP(time, 0.f, 1.f);
+
+ copy_v3_v3(result, state->co);
+
+ {
+ /* Creates a logarithmic spiral:
+ * r(theta) = a * exp(b * theta)
+ *
+ * The "density" parameter b is defined by the shape parameter
+ * and goes up to the Golden Spiral for 1.0
+ * http://en.wikipedia.org/wiki/Golden_spiral
+ */
+ const float b = shape * (1.0f + sqrtf(5.0f)) / (float)M_PI * 0.25f;
+ /* angle of the spiral against the curve (rotated opposite to make a smooth transition) */
+ const float start_angle = ((b != 0.0f) ? atanf(1.0f / b) :
+ (float)-M_PI_2) + (b > 0.0f ? -(float)M_PI_2 : (float)M_PI_2);
+
+ float spiral_axis[3], rot[3][3];
+ float vec[3];
+
+ float theta = freq * time * 2.0f * (float)M_PI;
+ float radius = amplitude * expf(b * theta);
+
+ /* a bit more intuitive than using negative frequency for this */
+ if (amplitude < 0.0f)
+ theta = -theta;
+
+ cross_v3_v3v3(spiral_axis, dir, kink);
+ normalize_v3(spiral_axis);
+
+ mul_v3_v3fl(vec, kink, -radius);
+
+ axis_angle_normalized_to_mat3(rot, spiral_axis, theta);
+ mul_m3_v3(rot, vec);
+
+ madd_v3_v3fl(vec, kink, amplitude);
+
+ axis_angle_normalized_to_mat3(rot, spiral_axis, -start_angle);
+ mul_m3_v3(rot, vec);
+
+ add_v3_v3v3(result, spiral_start, vec);
+ }
+
+ copy_v3_v3(state->co, result);
+}
+
+static void do_kink_spiral(ParticleThreadContext *ctx, ParticleTexture *ptex, const float parent_orco[3],
+ ChildParticle *cpa, const float orco[3], float hairmat[4][4],
+ ParticleCacheKey *keys, ParticleCacheKey *parent_keys, int *r_totkeys, float *r_max_length)
+{
+ struct ParticleSettings *part = ctx->sim.psys->part;
+ const int seed = ctx->sim.psys->child_seed + (int)(cpa - ctx->sim.psys->child);
+ const int totkeys = ctx->segments + 1;
+ const int extrakeys = ctx->extra_segments;
+
+ float kink_amp_random = part->kink_amp_random;
+ float kink_amp = part->kink_amp * (1.0f - kink_amp_random * psys_frand(ctx->sim.psys, 93541 + seed));
+ float kink_freq = part->kink_freq;
+ float kink_shape = part->kink_shape;
+ float kink_axis_random = part->kink_axis_random;
+ float rough1 = part->rough1;
+ float rough2 = part->rough2;
+ float rough_end = part->rough_end;
+
+ ParticlePathIterator iter;
+ ParticleCacheKey *key;
+ int k;
+
+ float dir[3];
+ float spiral_start[3] = {0.0f, 0.0f, 0.0f};
+ float spiral_start_time = 0.0f;
+ float spiral_par_co[3] = {0.0f, 0.0f, 0.0f};
+ float spiral_par_vel[3] = {0.0f, 0.0f, 0.0f};
+ float spiral_par_rot[4] = {1.0f, 0.0f, 0.0f, 0.0f};
+ float totlen;
+ float cut_time;
+ int start_index = 0, end_index = 0;
+ float kink_base[3];
+
+ if (ptex) {
+ kink_amp *= ptex->kink_amp;
+ kink_freq *= ptex->kink_freq;
+ rough1 *= ptex->rough1;
+ rough2 *= ptex->rough2;
+ rough_end *= ptex->roughe;
+ }
+
+ cut_time = (totkeys - 1) * ptex->length;
+ zero_v3(spiral_start);
+
+ for (k = 0, key = keys; k < totkeys-1; k++, key++) {
+ if ((float)(k + 1) >= cut_time) {
+ float fac = cut_time - (float)k;
+ ParticleCacheKey *par = parent_keys + k;
+
+ start_index = k + 1;
+ end_index = start_index + extrakeys;
+
+ spiral_start_time = ((float)k + fac) / (float)(totkeys - 1);
+ interp_v3_v3v3(spiral_start, key->co, (key+1)->co, fac);
+
+ interp_v3_v3v3(spiral_par_co, par->co, (par+1)->co, fac);
+ interp_v3_v3v3(spiral_par_vel, par->vel, (par+1)->vel, fac);
+ interp_qt_qtqt(spiral_par_rot, par->rot, (par+1)->rot, fac);
+
+ break;
+ }
+ }
+
+ zero_v3(dir);
+
+ zero_v3(kink_base);
+ kink_base[part->kink_axis] = 1.0f;
+ mul_mat3_m4_v3(ctx->sim.ob->obmat, kink_base);
+
+ for (k = 0, key = keys; k < end_index; k++, key++) {
+ float par_time;
+ float *par_co, *par_vel, *par_rot;
+
+ psys_path_iter_get(&iter, keys, end_index, NULL, k);
+ if (k < start_index) {
+ sub_v3_v3v3(dir, (key+1)->co, key->co);
+ normalize_v3(dir);
+
+ par_time = (float)k / (float)(totkeys - 1);
+ par_co = parent_keys[k].co;
+ par_vel = parent_keys[k].vel;
+ par_rot = parent_keys[k].rot;
+ }
+ else {
+ float spiral_time = (float)(k - start_index) / (float)(extrakeys-1);
+ float kink[3], tmp[3];
+
+ /* use same time value for every point on the spiral */
+ par_time = spiral_start_time;
+ par_co = spiral_par_co;
+ par_vel = spiral_par_vel;
+ par_rot = spiral_par_rot;
+
+ project_v3_v3v3(tmp, kink_base, dir);
+ sub_v3_v3v3(kink, kink_base, tmp);
+ normalize_v3(kink);
+
+ if (kink_axis_random > 0.0f) {
+ float a = kink_axis_random * (psys_frand(ctx->sim.psys, 7112 + seed) * 2.0f - 1.0f) * (float)M_PI;
+ float rot[3][3];
+
+ axis_angle_normalized_to_mat3(rot, dir, a);
+ mul_m3_v3(rot, kink);
+ }
+
+ do_kink_spiral_deform((ParticleKey *)key, dir, kink, spiral_time, kink_freq, kink_shape, kink_amp, spiral_start);
+ }
+
+ /* apply different deformations to the child path */
+ do_child_modifiers(&ctx->sim, ptex, par_co, par_vel, par_rot, parent_orco, cpa, orco, hairmat, (ParticleKey *)key, par_time);
+ }
+
+ totlen = 0.0f;
+ for (k = 0, key = keys; k < end_index-1; k++, key++)
+ totlen += len_v3v3((key+1)->co, key->co);
+
+ *r_totkeys = end_index;
+ *r_max_length = totlen;
+}
+
+/* ------------------------------------------------------------------------- */
+
+static bool check_path_length(int k, ParticleCacheKey *keys, ParticleCacheKey *key, float max_length, float step_length, float *cur_length, float dvec[3])
+{
+ if (*cur_length + step_length > max_length) {
+ sub_v3_v3v3(dvec, key->co, (key-1)->co);
+ mul_v3_fl(dvec, (max_length - *cur_length) / step_length);
+ add_v3_v3v3(key->co, (key-1)->co, dvec);
+ keys->segments = k;
+ /* something over the maximum step value */
+ return false;
+ }
+ else {
+ *cur_length += step_length;
+ return true;
+ }
+}
+
+void psys_apply_child_modifiers(ParticleThreadContext *ctx, struct ListBase *modifiers,
+ ChildParticle *cpa, ParticleTexture *ptex, const float orco[3], const float ornor[3], float hairmat[4][4],
+ ParticleCacheKey *keys, ParticleCacheKey *parent_keys, const float parent_orco[3])
+{
+ struct ParticleSettings *part = ctx->sim.psys->part;
+ struct Material *ma = ctx->ma;
+ const bool draw_col_ma = (part->draw_col == PART_DRAW_COL_MAT);
+ const bool use_length_check = !ELEM(part->kink, PART_KINK_SPIRAL);
+
+ ParticlePathModifier *mod;
+ ParticleCacheKey *key;
+ int totkeys, k;
+ float max_length;
+
+#if 0 /* TODO for the future: use true particle modifiers that work on the whole curve */
+ for (mod = modifiers->first; mod; mod = mod->next) {
+ mod->apply(keys, totkeys, parent_keys);
+ }
+#else
+ (void)modifiers;
+ (void)mod;
+
+ if (part->kink == PART_KINK_SPIRAL) {
+ do_kink_spiral(ctx, ptex, parent_orco, cpa, orco, hairmat, keys, parent_keys, &totkeys, &max_length);
+ keys->segments = totkeys - 1;
+ }
+ else {
+ ParticlePathIterator iter;
+
+ totkeys = ctx->segments + 1;
+ max_length = ptex->length;
+
+ for (k = 0, key = keys; k < totkeys; k++, key++) {
+ ParticleKey *par;
+
+ psys_path_iter_get(&iter, keys, totkeys, parent_keys, k);
+ par = (ParticleKey *)iter.parent_key;
+
+ /* apply different deformations to the child path */
+ do_child_modifiers(&ctx->sim, ptex, par->co, par->vel, iter.parent_rotation, parent_orco, cpa, orco, hairmat, (ParticleKey *)key, iter.time);
+ }
+ }
+
+ {
+ const float step_length = 1.0f / (float)(totkeys - 1);
+
+ float cur_length = 0.0f;
+
+ /* we have to correct velocity because of kink & clump */
+ for (k = 0, key = keys; k < totkeys; ++k, ++key) {
+ if (k >= 2) {
+ sub_v3_v3v3((key-1)->vel, key->co, (key-2)->co);
+ mul_v3_fl((key-1)->vel, 0.5);
+
+ if (ma && draw_col_ma)
+ get_strand_normal(ma, ornor, cur_length, (key-1)->vel);
+ }
+
+ if (use_length_check && k > 1) {
+ float dvec[3];
+ /* check if path needs to be cut before actual end of data points */
+ if (!check_path_length(k, keys, key, max_length, step_length, &cur_length, dvec)) {
+ /* last key */
+ sub_v3_v3v3(key->vel, key->co, (key-1)->co);
+ if (ma && draw_col_ma) {
+ copy_v3_v3(key->col, &ma->r);
+ }
+ break;
+ }
+ }
+ if (k == totkeys-1) {
+ /* last key */
+ sub_v3_v3v3(key->vel, key->co, (key-1)->co);
+ }
+
+ if (ma && draw_col_ma) {
+ copy_v3_v3(key->col, &ma->r);
+ get_strand_normal(ma, ornor, cur_length, key->vel);
+ }
+ }
+ }
+#endif
+}
+
+/* ------------------------------------------------------------------------- */
+
+void do_kink(ParticleKey *state, const float par_co[3], const float par_vel[3], const float par_rot[4], float time, float freq, float shape,
+ float amplitude, float flat, short type, short axis, float obmat[4][4], int smooth_start)
+{
+ float kink[3] = {1.f, 0.f, 0.f}, par_vec[3], q1[4] = {1.f, 0.f, 0.f, 0.f};
+ float t, dt = 1.f, result[3];
+
+ if (ELEM(type, PART_KINK_NO, PART_KINK_SPIRAL))
+ return;
+
+ CLAMP(time, 0.f, 1.f);
+
+ if (shape != 0.0f && !ELEM(type, PART_KINK_BRAID)) {
+ if (shape < 0.0f)
+ time = (float)pow(time, 1.f + shape);
+ else
+ time = (float)pow(time, 1.f / (1.f - shape));
+ }
+
+ t = time * freq * (float)M_PI;
+
+ if (smooth_start) {
+ dt = fabsf(t);
+ /* smooth the beginning of kink */
+ CLAMP(dt, 0.f, (float)M_PI);
+ dt = sinf(dt / 2.f);
+ }
+
+ if (!ELEM(type, PART_KINK_RADIAL)) {
+ float temp[3];
+
+ kink[axis] = 1.f;
+
+ if (obmat)
+ mul_mat3_m4_v3(obmat, kink);
+
+ mul_qt_v3(par_rot, kink);
+
+ /* make sure kink is normal to strand */
+ project_v3_v3v3(temp, kink, par_vel);
+ sub_v3_v3(kink, temp);
+ normalize_v3(kink);
+ }
+
+ copy_v3_v3(result, state->co);
+ sub_v3_v3v3(par_vec, par_co, state->co);
+
+ switch (type) {
+ case PART_KINK_CURL:
+ {
+ float curl_offset[3];
+
+ /* rotate kink vector around strand tangent */
+ mul_v3_v3fl(curl_offset, kink, amplitude);
+ axis_angle_to_quat(q1, par_vel, t);
+ mul_qt_v3(q1, curl_offset);
+
+ interp_v3_v3v3(par_vec, state->co, par_co, flat);
+ add_v3_v3v3(result, par_vec, curl_offset);
+ break;
+ }
+ case PART_KINK_RADIAL:
+ {
+ if (flat > 0.f) {
+ float proj[3];
+ /* flatten along strand */
+ project_v3_v3v3(proj, par_vec, par_vel);
+ madd_v3_v3fl(result, proj, flat);
+ }
+
+ madd_v3_v3fl(result, par_vec, -amplitude * sinf(t));
+ break;
+ }
+ case PART_KINK_WAVE:
+ {
+ madd_v3_v3fl(result, kink, amplitude * sinf(t));
+
+ if (flat > 0.f) {
+ float proj[3];
+ /* flatten along wave */
+ project_v3_v3v3(proj, par_vec, kink);
+ madd_v3_v3fl(result, proj, flat);
+
+ /* flatten along strand */
+ project_v3_v3v3(proj, par_vec, par_vel);
+ madd_v3_v3fl(result, proj, flat);
+ }
+ break;
+ }
+ case PART_KINK_BRAID:
+ {
+ float y_vec[3] = {0.f, 1.f, 0.f};
+ float z_vec[3] = {0.f, 0.f, 1.f};
+ float vec_one[3], state_co[3];
+ float inp_y, inp_z, length;
+
+ if (par_rot) {
+ mul_qt_v3(par_rot, y_vec);
+ mul_qt_v3(par_rot, z_vec);
+ }
+
+ negate_v3(par_vec);
+ normalize_v3_v3(vec_one, par_vec);
+
+ inp_y = dot_v3v3(y_vec, vec_one);
+ inp_z = dot_v3v3(z_vec, vec_one);
+
+ if (inp_y > 0.5f) {
+ copy_v3_v3(state_co, y_vec);
+
+ mul_v3_fl(y_vec, amplitude * cosf(t));
+ mul_v3_fl(z_vec, amplitude / 2.f * sinf(2.f * t));
+ }
+ else if (inp_z > 0.0f) {
+ mul_v3_v3fl(state_co, z_vec, sinf((float)M_PI / 3.f));
+ madd_v3_v3fl(state_co, y_vec, -0.5f);
+
+ mul_v3_fl(y_vec, -amplitude * cosf(t + (float)M_PI / 3.f));
+ mul_v3_fl(z_vec, amplitude / 2.f * cosf(2.f * t + (float)M_PI / 6.f));
+ }
+ else {
+ mul_v3_v3fl(state_co, z_vec, -sinf((float)M_PI / 3.f));
+ madd_v3_v3fl(state_co, y_vec, -0.5f);
+
+ mul_v3_fl(y_vec, amplitude * -sinf(t + (float)M_PI / 6.f));
+ mul_v3_fl(z_vec, amplitude / 2.f * -sinf(2.f * t + (float)M_PI / 3.f));
+ }
+
+ mul_v3_fl(state_co, amplitude);
+ add_v3_v3(state_co, par_co);
+ sub_v3_v3v3(par_vec, state->co, state_co);
+
+ length = normalize_v3(par_vec);
+ mul_v3_fl(par_vec, MIN2(length, amplitude / 2.f));
+
+ add_v3_v3v3(state_co, par_co, y_vec);
+ add_v3_v3(state_co, z_vec);
+ add_v3_v3(state_co, par_vec);
+
+ shape = 2.f * (float)M_PI * (1.f + shape);
+
+ if (t < shape) {
+ shape = t / shape;
+ shape = (float)sqrt((double)shape);
+ interp_v3_v3v3(result, result, state_co, shape);
+ }
+ else {
+ copy_v3_v3(result, state_co);
+ }
+ break;
+ }
+ }
+
+ /* blend the start of the kink */
+ if (dt < 1.f)
+ interp_v3_v3v3(state->co, state->co, result, dt);
+ else
+ copy_v3_v3(state->co, result);
+}
+
+static float do_clump_level(float result[3], const float co[3], const float par_co[3], float time,
+ float clumpfac, float clumppow, float pa_clump, CurveMapping *clumpcurve)
+{
+ float clump = 0.0f;
+
+ if (clumpcurve) {
+ clump = pa_clump * (1.0f - CLAMPIS(curvemapping_evaluateF(clumpcurve, 0, time), 0.0f, 1.0f));
+
+ interp_v3_v3v3(result, co, par_co, clump);
+ }
+ else if (clumpfac != 0.0f) {
+ float cpow;
+
+ if (clumppow < 0.0f)
+ cpow = 1.0f + clumppow;
+ else
+ cpow = 1.0f + 9.0f * clumppow;
+
+ if (clumpfac < 0.0f) /* clump roots instead of tips */
+ clump = -clumpfac * pa_clump * (float)pow(1.0 - (double)time, (double)cpow);
+ else
+ clump = clumpfac * pa_clump * (float)pow((double)time, (double)cpow);
+
+ interp_v3_v3v3(result, co, par_co, clump);
+ }
+
+ return clump;
+}
+
+float do_clump(ParticleKey *state, const float par_co[3], float time, const float orco_offset[3], float clumpfac, float clumppow, float pa_clump,
+ bool use_clump_noise, float clump_noise_size, CurveMapping *clumpcurve)
+{
+ float clump;
+
+ if (use_clump_noise && clump_noise_size != 0.0f) {
+ float center[3], noisevec[3];
+ float da[4], pa[12];
+
+ mul_v3_v3fl(noisevec, orco_offset, 1.0f / clump_noise_size);
+ voronoi(noisevec[0], noisevec[1], noisevec[2], da, pa, 1.0f, 0);
+ mul_v3_fl(&pa[0], clump_noise_size);
+ add_v3_v3v3(center, par_co, &pa[0]);
+
+ do_clump_level(state->co, state->co, center, time, clumpfac, clumppow, pa_clump, clumpcurve);
+ }
+
+ clump = do_clump_level(state->co, state->co, par_co, time, clumpfac, clumppow, pa_clump, clumpcurve);
+
+ return clump;
+}
+
+static void do_rough(const float loc[3], float mat[4][4], float t, float fac, float size, float thres, ParticleKey *state)
+{
+ float rough[3];
+ float rco[3];
+
+ if (thres != 0.0f) {
+ if (fabsf((float)(-1.5f + loc[0] + loc[1] + loc[2])) < 1.5f * thres) {
+ return;
+ }
+ }
+
+ copy_v3_v3(rco, loc);
+ mul_v3_fl(rco, t);
+ rough[0] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2, 0, 2);
+ rough[1] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2, 0, 2);
+ rough[2] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2, 0, 2);
+
+ madd_v3_v3fl(state->co, mat[0], fac * rough[0]);
+ madd_v3_v3fl(state->co, mat[1], fac * rough[1]);
+ madd_v3_v3fl(state->co, mat[2], fac * rough[2]);
+}
+
+static void do_rough_end(const float loc[3], float mat[4][4], float t, float fac, float shape, ParticleKey *state)
+{
+ float rough[2];
+ float roughfac;
+
+ roughfac = fac * (float)pow((double)t, shape);
+ copy_v2_v2(rough, loc);
+ rough[0] = -1.0f + 2.0f * rough[0];
+ rough[1] = -1.0f + 2.0f * rough[1];
+ mul_v2_fl(rough, roughfac);
+
+ madd_v3_v3fl(state->co, mat[0], rough[0]);
+ madd_v3_v3fl(state->co, mat[1], rough[1]);
+}
+
+static void do_rough_curve(const float loc[3], float mat[4][4], float time, float fac, float size, CurveMapping *roughcurve, ParticleKey *state)
+{
+ float rough[3];
+ float rco[3];
+
+ if (!roughcurve)
+ return;
+
+ fac *= CLAMPIS(curvemapping_evaluateF(roughcurve, 0, time), 0.0f, 1.0f);
+
+ copy_v3_v3(rco, loc);
+ mul_v3_fl(rco, time);
+ rough[0] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2, 0, 2);
+ rough[1] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2, 0, 2);
+ rough[2] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2, 0, 2);
+
+ madd_v3_v3fl(state->co, mat[0], fac * rough[0]);
+ madd_v3_v3fl(state->co, mat[1], fac * rough[1]);
+ madd_v3_v3fl(state->co, mat[2], fac * rough[2]);
+}
+
+void do_child_modifiers(ParticleSimulationData *sim, ParticleTexture *ptex, const float par_co[3], const float par_vel[3], const float par_rot[4], const float par_orco[3],
+ ChildParticle *cpa, const float orco[3], float mat[4][4], ParticleKey *state, float t)
+{
+ ParticleSettings *part = sim->psys->part;
+ CurveMapping *clumpcurve = (part->child_flag & PART_CHILD_USE_CLUMP_CURVE) ? part->clumpcurve : NULL;
+ CurveMapping *roughcurve = (part->child_flag & PART_CHILD_USE_ROUGH_CURVE) ? part->roughcurve : NULL;
+ int i = cpa - sim->psys->child;
+ int guided = 0;
+
+ float kink_amp = part->kink_amp;
+ float kink_amp_clump = part->kink_amp_clump;
+ float kink_freq = part->kink_freq;
+ float rough1 = part->rough1;
+ float rough2 = part->rough2;
+ float rough_end = part->rough_end;
+ const bool smooth_start = (sim->psys->part->childtype == PART_CHILD_FACES);
+
+ if (ptex) {
+ kink_amp *= ptex->kink_amp;
+ kink_freq *= ptex->kink_freq;
+ rough1 *= ptex->rough1;
+ rough2 *= ptex->rough2;
+ rough_end *= ptex->roughe;
+ }
+
+ if (part->flag & PART_CHILD_EFFECT)
+ /* state is safe to cast, since only co and vel are used */
+ guided = do_guides(sim->psys->part, sim->psys->effectors, (ParticleKey *)state, cpa->parent, t);
+
+ if (guided == 0) {
+ float orco_offset[3];
+ float clump;
+
+ sub_v3_v3v3(orco_offset, orco, par_orco);
+ clump = do_clump(state, par_co, t, orco_offset, part->clumpfac, part->clumppow, ptex ? ptex->clump : 1.f,
+ part->child_flag & PART_CHILD_USE_CLUMP_NOISE, part->clump_noise_size, clumpcurve);
+
+ if (kink_freq != 0.f) {
+ kink_amp *= (1.f - kink_amp_clump * clump);
+
+ do_kink(state, par_co, par_vel, par_rot, t, kink_freq, part->kink_shape,
+ kink_amp, part->kink_flat, part->kink, part->kink_axis,
+ sim->ob->obmat, smooth_start);
+ }
+ }
+
+ if (roughcurve) {
+ do_rough_curve(orco, mat, t, rough1, part->rough1_size, roughcurve, state);
+ }
+ else {
+ if (rough1 > 0.f)
+ do_rough(orco, mat, t, rough1, part->rough1_size, 0.0, state);
+
+ if (rough2 > 0.f) {
+ float vec[3];
+ psys_frand_vec(sim->psys, i + 27, vec);
+ do_rough(vec, mat, t, rough2, part->rough2_size, part->rough2_thres, state);
+ }
+
+ if (rough_end > 0.f) {
+ float vec[3];
+ psys_frand_vec(sim->psys, i + 27, vec);
+ do_rough_end(vec, mat, t, rough_end, part->rough_end_shape, state);
+ }
+ }
+}