Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/particle_distribute.c')
-rw-r--r--source/blender/blenkernel/intern/particle_distribute.c1417
1 files changed, 1417 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/particle_distribute.c b/source/blender/blenkernel/intern/particle_distribute.c
new file mode 100644
index 00000000000..245c2432105
--- /dev/null
+++ b/source/blender/blenkernel/intern/particle_distribute.c
@@ -0,0 +1,1417 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2007 by Janne Karhu.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Raul Fernandez Hernandez (Farsthary),
+ * Stephen Swhitehorn,
+ * Lukas Toenne
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/particle_distribute.c
+ * \ingroup bke
+ */
+
+#include <string.h>
+
+#include "MEM_guardedalloc.h"
+
+#include "BLI_utildefines.h"
+#include "BLI_jitter.h"
+#include "BLI_kdtree.h"
+#include "BLI_math.h"
+#include "BLI_rand.h"
+#include "BLI_sort.h"
+#include "BLI_task.h"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_modifier_types.h"
+#include "DNA_particle_types.h"
+#include "DNA_scene_types.h"
+
+#include "BKE_cdderivedmesh.h"
+#include "BKE_DerivedMesh.h"
+#include "BKE_global.h"
+#include "BKE_mesh.h"
+#include "BKE_object.h"
+#include "BKE_particle.h"
+
+static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot);
+
+static void alloc_child_particles(ParticleSystem *psys, int tot)
+{
+ if (psys->child) {
+ /* only re-allocate if we have to */
+ if (psys->part->childtype && psys->totchild == tot) {
+ memset(psys->child, 0, tot*sizeof(ChildParticle));
+ return;
+ }
+
+ MEM_freeN(psys->child);
+ psys->child=NULL;
+ psys->totchild=0;
+ }
+
+ if (psys->part->childtype) {
+ psys->totchild= tot;
+ if (psys->totchild)
+ psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
+ }
+}
+
+static void distribute_simple_children(Scene *scene, Object *ob, DerivedMesh *finaldm, ParticleSystem *psys)
+{
+ ChildParticle *cpa = NULL;
+ int i, p;
+ int child_nbr= psys_get_child_number(scene, psys);
+ int totpart= psys_get_tot_child(scene, psys);
+
+ alloc_child_particles(psys, totpart);
+
+ cpa = psys->child;
+ for (i=0; i<child_nbr; i++) {
+ for (p=0; p<psys->totpart; p++,cpa++) {
+ float length=2.0;
+ cpa->parent=p;
+
+ /* create even spherical distribution inside unit sphere */
+ while (length>=1.0f) {
+ cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
+ cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
+ cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
+ length=len_v3(cpa->fuv);
+ }
+
+ cpa->num=-1;
+ }
+ }
+ /* dmcache must be updated for parent particles if children from faces is used */
+ psys_calc_dmcache(ob, finaldm, psys);
+}
+static void distribute_grid(DerivedMesh *dm, ParticleSystem *psys)
+{
+ ParticleData *pa=NULL;
+ float min[3], max[3], delta[3], d;
+ MVert *mv, *mvert = dm->getVertDataArray(dm,0);
+ int totvert=dm->getNumVerts(dm), from=psys->part->from;
+ int i, j, k, p, res=psys->part->grid_res, size[3], axis;
+
+ /* find bounding box of dm */
+ if (totvert > 0) {
+ mv=mvert;
+ copy_v3_v3(min, mv->co);
+ copy_v3_v3(max, mv->co);
+ mv++;
+ for (i = 1; i < totvert; i++, mv++) {
+ minmax_v3v3_v3(min, max, mv->co);
+ }
+ }
+ else {
+ zero_v3(min);
+ zero_v3(max);
+ }
+
+ sub_v3_v3v3(delta, max, min);
+
+ /* determine major axis */
+ axis = axis_dominant_v3_single(delta);
+
+ d = delta[axis]/(float)res;
+
+ size[axis] = res;
+ size[(axis+1)%3] = (int)ceil(delta[(axis+1)%3]/d);
+ size[(axis+2)%3] = (int)ceil(delta[(axis+2)%3]/d);
+
+ /* float errors grrr.. */
+ size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
+ size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
+
+ size[0] = MAX2(size[0], 1);
+ size[1] = MAX2(size[1], 1);
+ size[2] = MAX2(size[2], 1);
+
+ /* no full offset for flat/thin objects */
+ min[0]+= d < delta[0] ? d/2.f : delta[0]/2.f;
+ min[1]+= d < delta[1] ? d/2.f : delta[1]/2.f;
+ min[2]+= d < delta[2] ? d/2.f : delta[2]/2.f;
+
+ for (i=0,p=0,pa=psys->particles; i<res; i++) {
+ for (j=0; j<res; j++) {
+ for (k=0; k<res; k++,p++,pa++) {
+ pa->fuv[0] = min[0] + (float)i*d;
+ pa->fuv[1] = min[1] + (float)j*d;
+ pa->fuv[2] = min[2] + (float)k*d;
+ pa->flag |= PARS_UNEXIST;
+ pa->hair_index = 0; /* abused in volume calculation */
+ }
+ }
+ }
+
+ /* enable particles near verts/edges/faces/inside surface */
+ if (from==PART_FROM_VERT) {
+ float vec[3];
+
+ pa=psys->particles;
+
+ min[0] -= d/2.0f;
+ min[1] -= d/2.0f;
+ min[2] -= d/2.0f;
+
+ for (i=0,mv=mvert; i<totvert; i++,mv++) {
+ sub_v3_v3v3(vec,mv->co,min);
+ vec[0]/=delta[0];
+ vec[1]/=delta[1];
+ vec[2]/=delta[2];
+ pa[((int)(vec[0] * (size[0] - 1)) * res +
+ (int)(vec[1] * (size[1] - 1))) * res +
+ (int)(vec[2] * (size[2] - 1))].flag &= ~PARS_UNEXIST;
+ }
+ }
+ else if (ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
+ float co1[3], co2[3];
+
+ MFace *mface= NULL, *mface_array;
+ float v1[3], v2[3], v3[3], v4[4], lambda;
+ int a, a1, a2, a0mul, a1mul, a2mul, totface;
+ int amax= from==PART_FROM_FACE ? 3 : 1;
+
+ totface=dm->getNumTessFaces(dm);
+ mface=mface_array=dm->getTessFaceDataArray(dm,CD_MFACE);
+
+ for (a=0; a<amax; a++) {
+ if (a==0) { a0mul=res*res; a1mul=res; a2mul=1; }
+ else if (a==1) { a0mul=res; a1mul=1; a2mul=res*res; }
+ else { a0mul=1; a1mul=res*res; a2mul=res; }
+
+ for (a1=0; a1<size[(a+1)%3]; a1++) {
+ for (a2=0; a2<size[(a+2)%3]; a2++) {
+ mface= mface_array;
+
+ pa = psys->particles + a1*a1mul + a2*a2mul;
+ copy_v3_v3(co1, pa->fuv);
+ co1[a] -= d < delta[a] ? d/2.f : delta[a]/2.f;
+ copy_v3_v3(co2, co1);
+ co2[a] += delta[a] + 0.001f*d;
+ co1[a] -= 0.001f*d;
+
+ /* lets intersect the faces */
+ for (i=0; i<totface; i++,mface++) {
+ copy_v3_v3(v1, mvert[mface->v1].co);
+ copy_v3_v3(v2, mvert[mface->v2].co);
+ copy_v3_v3(v3, mvert[mface->v3].co);
+
+ if (isect_axial_line_tri_v3(a, co1, co2, v2, v3, v1, &lambda)) {
+ if (from==PART_FROM_FACE)
+ (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ else /* store number of intersections */
+ (pa+(int)(lambda*size[a])*a0mul)->hair_index++;
+ }
+ else if (mface->v4) {
+ copy_v3_v3(v4, mvert[mface->v4].co);
+
+ if (isect_axial_line_tri_v3(a, co1, co2, v4, v1, v3, &lambda)) {
+ if (from==PART_FROM_FACE)
+ (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ else
+ (pa+(int)(lambda*size[a])*a0mul)->hair_index++;
+ }
+ }
+ }
+
+ if (from==PART_FROM_VOLUME) {
+ int in=pa->hair_index%2;
+ if (in) pa->hair_index++;
+ for (i=0; i<size[0]; i++) {
+ if (in || (pa+i*a0mul)->hair_index%2)
+ (pa+i*a0mul)->flag &= ~PARS_UNEXIST;
+ /* odd intersections == in->out / out->in */
+ /* even intersections -> in stays same */
+ in=(in + (pa+i*a0mul)->hair_index) % 2;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (psys->part->flag & PART_GRID_HEXAGONAL) {
+ for (i=0,p=0,pa=psys->particles; i<res; i++) {
+ for (j=0; j<res; j++) {
+ for (k=0; k<res; k++,p++,pa++) {
+ if (j%2)
+ pa->fuv[0] += d/2.f;
+
+ if (k%2) {
+ pa->fuv[0] += d/2.f;
+ pa->fuv[1] += d/2.f;
+ }
+ }
+ }
+ }
+ }
+
+ if (psys->part->flag & PART_GRID_INVERT) {
+ for (i=0; i<size[0]; i++) {
+ for (j=0; j<size[1]; j++) {
+ pa=psys->particles + res*(i*res + j);
+ for (k=0; k<size[2]; k++, pa++) {
+ pa->flag ^= PARS_UNEXIST;
+ }
+ }
+ }
+ }
+
+ if (psys->part->grid_rand > 0.f) {
+ float rfac = d * psys->part->grid_rand;
+ for (p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
+ if (pa->flag & PARS_UNEXIST)
+ continue;
+
+ pa->fuv[0] += rfac * (psys_frand(psys, p + 31) - 0.5f);
+ pa->fuv[1] += rfac * (psys_frand(psys, p + 32) - 0.5f);
+ pa->fuv[2] += rfac * (psys_frand(psys, p + 33) - 0.5f);
+ }
+ }
+}
+
+/* modified copy from rayshade.c */
+static void hammersley_create(float *out, int n, int seed, float amount)
+{
+ RNG *rng;
+ double p, t, offs[2];
+ int k, kk;
+
+ rng = BLI_rng_new(31415926 + n + seed);
+ offs[0] = BLI_rng_get_double(rng) + (double)amount;
+ offs[1] = BLI_rng_get_double(rng) + (double)amount;
+ BLI_rng_free(rng);
+
+ for (k = 0; k < n; k++) {
+ t = 0;
+ for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
+ if (kk & 1) /* kk mod 2 = 1 */
+ t += p;
+
+ out[2*k + 0] = fmod((double)k/(double)n + offs[0], 1.0);
+ out[2*k + 1] = fmod(t + offs[1], 1.0);
+ }
+}
+
+/* almost exact copy of BLI_jitter_init */
+static void init_mv_jit(float *jit, int num, int seed2, float amount)
+{
+ RNG *rng;
+ float *jit2, x, rad1, rad2, rad3;
+ int i, num2;
+
+ if (num==0) return;
+
+ rad1= (float)(1.0f/sqrtf((float)num));
+ rad2= (float)(1.0f/((float)num));
+ rad3= (float)sqrtf((float)num)/((float)num);
+
+ rng = BLI_rng_new(31415926 + num + seed2);
+ x= 0;
+ num2 = 2 * num;
+ for (i=0; i<num2; i+=2) {
+
+ jit[i] = x + amount*rad1*(0.5f - BLI_rng_get_float(rng));
+ jit[i+1] = i/(2.0f*num) + amount*rad1*(0.5f - BLI_rng_get_float(rng));
+
+ jit[i]-= (float)floor(jit[i]);
+ jit[i+1]-= (float)floor(jit[i+1]);
+
+ x+= rad3;
+ x -= (float)floor(x);
+ }
+
+ jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
+
+ for (i=0 ; i<4 ; i++) {
+ BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
+ BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
+ BLI_jitterate2((float (*)[2])jit, (float (*)[2])jit2, num, rad2);
+ }
+ MEM_freeN(jit2);
+ BLI_rng_free(rng);
+}
+
+static void psys_uv_to_w(float u, float v, int quad, float *w)
+{
+ float vert[4][3], co[3];
+
+ if (!quad) {
+ if (u+v > 1.0f)
+ v= 1.0f-v;
+ else
+ u= 1.0f-u;
+ }
+
+ vert[0][0] = 0.0f; vert[0][1] = 0.0f; vert[0][2] = 0.0f;
+ vert[1][0] = 1.0f; vert[1][1] = 0.0f; vert[1][2] = 0.0f;
+ vert[2][0] = 1.0f; vert[2][1] = 1.0f; vert[2][2] = 0.0f;
+
+ co[0] = u;
+ co[1] = v;
+ co[2] = 0.0f;
+
+ if (quad) {
+ vert[3][0] = 0.0f; vert[3][1] = 1.0f; vert[3][2] = 0.0f;
+ interp_weights_poly_v3( w,vert, 4, co);
+ }
+ else {
+ interp_weights_poly_v3( w,vert, 3, co);
+ w[3] = 0.0f;
+ }
+}
+
+/* Find the index in "sum" array before "value" is crossed. */
+static int distribute_binary_search(float *sum, int n, float value)
+{
+ int mid, low=0, high=n;
+
+ if (value == 0.f)
+ return 0;
+
+ while (low <= high) {
+ mid= (low + high)/2;
+
+ if (sum[mid] < value && value <= sum[mid+1])
+ return mid;
+
+ if (sum[mid] >= value)
+ high= mid - 1;
+ else if (sum[mid] < value)
+ low= mid + 1;
+ else
+ return mid;
+ }
+
+ return low;
+}
+
+/* the max number if calls to rng_* funcs within psys_thread_distribute_particle
+ * be sure to keep up to date if this changes */
+#define PSYS_RND_DIST_SKIP 2
+
+/* note: this function must be thread safe, for from == PART_FROM_CHILD */
+#define ONLY_WORKING_WITH_PA_VERTS 0
+static void distribute_from_verts_exec(ParticleTask *thread, ParticleData *pa, int p)
+{
+ ParticleThreadContext *ctx= thread->ctx;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ /* TODO_PARTICLE - use original index */
+ pa->num= ctx->index[p];
+ pa->fuv[0] = 1.0f;
+ pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
+
+#if ONLY_WORKING_WITH_PA_VERTS
+ if (ctx->tree) {
+ KDTreeNearest ptn[3];
+ int w, maxw;
+
+ psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
+ maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
+
+ for (w=0; w<maxw; w++) {
+ pa->verts[w]=ptn->num;
+ }
+ }
+#endif
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void distribute_from_faces_exec(ParticleTask *thread, ParticleData *pa, int p) {
+ ParticleThreadContext *ctx= thread->ctx;
+ DerivedMesh *dm= ctx->dm;
+ float randu, randv;
+ int distr= ctx->distr;
+ int i;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ MFace *mface;
+
+ pa->num = i = ctx->index[p];
+ mface = dm->getTessFaceData(dm,i,CD_MFACE);
+
+ switch (distr) {
+ case PART_DISTR_JIT:
+ if (ctx->jitlevel == 1) {
+ if (mface->v4)
+ psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
+ else
+ psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
+ }
+ else {
+ float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
+ if (!isnan(offset)) {
+ psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
+ }
+ }
+ break;
+ case PART_DISTR_RAND:
+ randu= BLI_rng_get_float(thread->rng);
+ randv= BLI_rng_get_float(thread->rng);
+ rng_skip_tot -= 2;
+
+ psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
+ break;
+ }
+ pa->foffset= 0.0f;
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void distribute_from_volume_exec(ParticleTask *thread, ParticleData *pa, int p) {
+ ParticleThreadContext *ctx= thread->ctx;
+ DerivedMesh *dm= ctx->dm;
+ float *v1, *v2, *v3, *v4, nor[3], co1[3], co2[3];
+ float cur_d, min_d, randu, randv;
+ int distr= ctx->distr;
+ int i, intersect, tot;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ MFace *mface;
+ MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+ pa->num = i = ctx->index[p];
+ mface = dm->getTessFaceData(dm,i,CD_MFACE);
+
+ switch (distr) {
+ case PART_DISTR_JIT:
+ if (ctx->jitlevel == 1) {
+ if (mface->v4)
+ psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
+ else
+ psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
+ }
+ else {
+ float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
+ if (!isnan(offset)) {
+ psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
+ }
+ }
+ break;
+ case PART_DISTR_RAND:
+ randu= BLI_rng_get_float(thread->rng);
+ randv= BLI_rng_get_float(thread->rng);
+ rng_skip_tot -= 2;
+
+ psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
+ break;
+ }
+ pa->foffset= 0.0f;
+
+ /* experimental */
+ tot=dm->getNumTessFaces(dm);
+
+ psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0);
+
+ normalize_v3(nor);
+ mul_v3_fl(nor,-100.0);
+
+ add_v3_v3v3(co2,co1,nor);
+
+ min_d=2.0;
+ intersect=0;
+
+ for (i=0,mface=dm->getTessFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++) {
+ if (i==pa->num) continue;
+
+ v1=mvert[mface->v1].co;
+ v2=mvert[mface->v2].co;
+ v3=mvert[mface->v3].co;
+
+ if (isect_line_tri_v3(co1, co2, v2, v3, v1, &cur_d, 0)) {
+ if (cur_d<min_d) {
+ min_d=cur_d;
+ pa->foffset=cur_d*50.0f; /* to the middle of volume */
+ intersect=1;
+ }
+ }
+ if (mface->v4) {
+ v4=mvert[mface->v4].co;
+
+ if (isect_line_tri_v3(co1, co2, v4, v1, v3, &cur_d, 0)) {
+ if (cur_d<min_d) {
+ min_d=cur_d;
+ pa->foffset=cur_d*50.0f; /* to the middle of volume */
+ intersect=1;
+ }
+ }
+ }
+ }
+ if (intersect==0)
+ pa->foffset=0.0;
+ else {
+ switch (distr) {
+ case PART_DISTR_JIT:
+ pa->foffset *= ctx->jit[p % (2 * ctx->jitlevel)];
+ break;
+ case PART_DISTR_RAND:
+ pa->foffset *= BLI_frand();
+ break;
+ }
+ }
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void distribute_children_exec(ParticleTask *thread, ChildParticle *cpa, int p) {
+ ParticleThreadContext *ctx= thread->ctx;
+ Object *ob= ctx->sim.ob;
+ DerivedMesh *dm= ctx->dm;
+ float orco1[3], co1[3], nor1[3];
+ float randu, randv;
+ int cfrom= ctx->cfrom;
+ int i;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ MFace *mf;
+
+ if (ctx->index[p] < 0) {
+ cpa->num=0;
+ cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
+ cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
+ return;
+ }
+
+ mf= dm->getTessFaceData(dm, ctx->index[p], CD_MFACE);
+
+ randu= BLI_rng_get_float(thread->rng);
+ randv= BLI_rng_get_float(thread->rng);
+ rng_skip_tot -= 2;
+
+ psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
+
+ cpa->num = ctx->index[p];
+
+ if (ctx->tree) {
+ KDTreeNearest ptn[10];
+ int w,maxw;//, do_seams;
+ float maxd /*, mind,dd */, totw= 0.0f;
+ int parent[10];
+ float pweight[10];
+
+ psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,NULL,NULL,orco1,NULL);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
+ maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
+
+ maxd=ptn[maxw-1].dist;
+ /* mind=ptn[0].dist; */ /* UNUSED */
+
+ /* the weights here could be done better */
+ for (w=0; w<maxw; w++) {
+ parent[w]=ptn[w].index;
+ pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
+ }
+ for (;w<10; w++) {
+ parent[w]=-1;
+ pweight[w]=0.0f;
+ }
+
+ for (w=0,i=0; w<maxw && i<4; w++) {
+ if (parent[w]>=0) {
+ cpa->pa[i]=parent[w];
+ cpa->w[i]=pweight[w];
+ totw+=pweight[w];
+ i++;
+ }
+ }
+ for (;i<4; i++) {
+ cpa->pa[i]=-1;
+ cpa->w[i]=0.0f;
+ }
+
+ if (totw > 0.0f) {
+ for (w = 0; w < 4; w++) {
+ cpa->w[w] /= totw;
+ }
+ }
+
+ cpa->parent=cpa->pa[0];
+ }
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void exec_distribute_parent(TaskPool *UNUSED(pool), void *taskdata, int UNUSED(threadid))
+{
+ ParticleTask *task = taskdata;
+ ParticleSystem *psys= task->ctx->sim.psys;
+ ParticleData *pa;
+ int p;
+
+ pa= psys->particles + task->begin;
+ switch (psys->part->from) {
+ case PART_FROM_FACE:
+ for (p = task->begin; p < task->end; ++p, ++pa)
+ distribute_from_faces_exec(task, pa, p);
+ break;
+ case PART_FROM_VOLUME:
+ for (p = task->begin; p < task->end; ++p, ++pa)
+ distribute_from_volume_exec(task, pa, p);
+ break;
+ case PART_FROM_VERT:
+ for (p = task->begin; p < task->end; ++p, ++pa)
+ distribute_from_verts_exec(task, pa, p);
+ break;
+ }
+}
+
+static void exec_distribute_child(TaskPool *UNUSED(pool), void *taskdata, int UNUSED(threadid))
+{
+ ParticleTask *task = taskdata;
+ ParticleSystem *psys = task->ctx->sim.psys;
+ ChildParticle *cpa;
+ int p;
+
+ /* RNG skipping at the beginning */
+ cpa = psys->child;
+ for (p = 0; p < task->begin; ++p, ++cpa) {
+ if (task->ctx->skip) /* simplification skip */
+ BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
+
+ BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP);
+ }
+
+ for (; p < task->end; ++p, ++cpa) {
+ if (task->ctx->skip) /* simplification skip */
+ BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
+
+ distribute_children_exec(task, cpa, p);
+ }
+}
+
+static int distribute_compare_orig_index(const void *p1, const void *p2, void *user_data)
+{
+ int *orig_index = (int *) user_data;
+ int index1 = orig_index[*(const int *)p1];
+ int index2 = orig_index[*(const int *)p2];
+
+ if (index1 < index2)
+ return -1;
+ else if (index1 == index2) {
+ /* this pointer comparison appears to make qsort stable for glibc,
+ * and apparently on solaris too, makes the renders reproducible */
+ if (p1 < p2)
+ return -1;
+ else if (p1 == p2)
+ return 0;
+ else
+ return 1;
+ }
+ else
+ return 1;
+}
+
+static void distribute_invalid(Scene *scene, ParticleSystem *psys, int from)
+{
+ if (from == PART_FROM_CHILD) {
+ ChildParticle *cpa;
+ int p, totchild = psys_get_tot_child(scene, psys);
+
+ if (psys->child && totchild) {
+ for (p=0,cpa=psys->child; p<totchild; p++,cpa++) {
+ cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3] = 0.0;
+ cpa->foffset= 0.0f;
+ cpa->parent=0;
+ cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
+ cpa->num= -1;
+ }
+ }
+ }
+ else {
+ PARTICLE_P;
+ LOOP_PARTICLES {
+ pa->fuv[0] = pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
+ pa->foffset= 0.0f;
+ pa->num= -1;
+ }
+ }
+}
+
+/* Creates a distribution of coordinates on a DerivedMesh */
+/* This is to denote functionality that does not yet work with mesh - only derived mesh */
+static int psys_thread_context_init_distribute(ParticleThreadContext *ctx, ParticleSimulationData *sim, int from)
+{
+ Scene *scene = sim->scene;
+ DerivedMesh *finaldm = sim->psmd->dm;
+ Object *ob = sim->ob;
+ ParticleSystem *psys= sim->psys;
+ ParticleData *pa=0, *tpars= 0;
+ ParticleSettings *part;
+ ParticleSeam *seams= 0;
+ KDTree *tree=0;
+ DerivedMesh *dm= NULL;
+ float *jit= NULL;
+ int i, p=0;
+ int cfrom=0;
+ int totelem=0, totpart, *particle_element=0, children=0, totseam=0;
+ int jitlevel= 1, distr;
+ float *element_weight=NULL,*element_sum=NULL,*jitter_offset=NULL, *vweight=NULL;
+ float cur, maxweight=0.0, tweight, totweight, inv_totweight, co[3], nor[3], orco[3];
+
+ if (ELEM(NULL, ob, psys, psys->part))
+ return 0;
+
+ part=psys->part;
+ totpart=psys->totpart;
+ if (totpart==0)
+ return 0;
+
+ if (!finaldm->deformedOnly && !finaldm->getTessFaceDataArray(finaldm, CD_ORIGINDEX)) {
+ printf("Can't create particles with the current modifier stack, disable destructive modifiers\n");
+// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
+ return 0;
+ }
+
+ psys_thread_context_init(ctx, sim);
+
+ /* First handle special cases */
+ if (from == PART_FROM_CHILD) {
+ /* Simple children */
+ if (part->childtype != PART_CHILD_FACES) {
+ BLI_srandom(31415926 + psys->seed + psys->child_seed);
+ distribute_simple_children(scene, ob, finaldm, psys);
+ return 0;
+ }
+ }
+ else {
+ /* Grid distribution */
+ if (part->distr==PART_DISTR_GRID && from != PART_FROM_VERT) {
+ BLI_srandom(31415926 + psys->seed);
+ dm= CDDM_from_mesh((Mesh*)ob->data);
+ DM_ensure_tessface(dm);
+ distribute_grid(dm,psys);
+ dm->release(dm);
+ return 0;
+ }
+ }
+
+ /* Create trees and original coordinates if needed */
+ if (from == PART_FROM_CHILD) {
+ distr=PART_DISTR_RAND;
+ BLI_srandom(31415926 + psys->seed + psys->child_seed);
+ dm= finaldm;
+
+ /* BMESH ONLY */
+ DM_ensure_tessface(dm);
+
+ children=1;
+
+ tree=BLI_kdtree_new(totpart);
+
+ for (p=0,pa=psys->particles; p<totpart; p++,pa++) {
+ psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,NULL);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco, 1, 1);
+ BLI_kdtree_insert(tree, p, orco);
+ }
+
+ BLI_kdtree_balance(tree);
+
+ totpart = psys_get_tot_child(scene, psys);
+ cfrom = from = PART_FROM_FACE;
+ }
+ else {
+ distr = part->distr;
+ BLI_srandom(31415926 + psys->seed);
+
+ if (psys->part->use_modifier_stack)
+ dm = finaldm;
+ else
+ dm= CDDM_from_mesh((Mesh*)ob->data);
+
+ /* BMESH ONLY, for verts we don't care about tessfaces */
+ if (from != PART_FROM_VERT) {
+ DM_ensure_tessface(dm);
+ }
+
+ /* we need orco for consistent distributions */
+ if (!CustomData_has_layer(&dm->vertData, CD_ORCO))
+ DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, BKE_mesh_orco_verts_get(ob));
+
+ if (from == PART_FROM_VERT) {
+ MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
+ float (*orcodata)[3] = dm->getVertDataArray(dm, CD_ORCO);
+ int totvert = dm->getNumVerts(dm);
+
+ tree=BLI_kdtree_new(totvert);
+
+ for (p=0; p<totvert; p++) {
+ if (orcodata) {
+ copy_v3_v3(co,orcodata[p]);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co, 1, 1);
+ }
+ else
+ copy_v3_v3(co,mv[p].co);
+ BLI_kdtree_insert(tree, p, co);
+ }
+
+ BLI_kdtree_balance(tree);
+ }
+ }
+
+ /* Get total number of emission elements and allocate needed arrays */
+ totelem = (from == PART_FROM_VERT) ? dm->getNumVerts(dm) : dm->getNumTessFaces(dm);
+
+ if (totelem == 0) {
+ distribute_invalid(scene, psys, children ? PART_FROM_CHILD : 0);
+
+ if (G.debug & G_DEBUG)
+ fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
+
+ if (dm != finaldm) dm->release(dm);
+
+ BLI_kdtree_free(tree);
+
+ return 0;
+ }
+
+ element_weight = MEM_callocN(sizeof(float)*totelem, "particle_distribution_weights");
+ particle_element= MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
+ element_sum = MEM_callocN(sizeof(float)*(totelem+1), "particle_distribution_sum");
+ jitter_offset = MEM_callocN(sizeof(float)*totelem, "particle_distribution_jitoff");
+
+ /* Calculate weights from face areas */
+ if ((part->flag&PART_EDISTR || children) && from != PART_FROM_VERT) {
+ MVert *v1, *v2, *v3, *v4;
+ float totarea=0.f, co1[3], co2[3], co3[3], co4[3];
+ float (*orcodata)[3];
+
+ orcodata= dm->getVertDataArray(dm, CD_ORCO);
+
+ for (i=0; i<totelem; i++) {
+ MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
+
+ if (orcodata) {
+ copy_v3_v3(co1, orcodata[mf->v1]);
+ copy_v3_v3(co2, orcodata[mf->v2]);
+ copy_v3_v3(co3, orcodata[mf->v3]);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co1, 1, 1);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co2, 1, 1);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co3, 1, 1);
+ if (mf->v4) {
+ copy_v3_v3(co4, orcodata[mf->v4]);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co4, 1, 1);
+ }
+ }
+ else {
+ v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
+ v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
+ v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
+ copy_v3_v3(co1, v1->co);
+ copy_v3_v3(co2, v2->co);
+ copy_v3_v3(co3, v3->co);
+ if (mf->v4) {
+ v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
+ copy_v3_v3(co4, v4->co);
+ }
+ }
+
+ cur = mf->v4 ? area_quad_v3(co1, co2, co3, co4) : area_tri_v3(co1, co2, co3);
+
+ if (cur > maxweight)
+ maxweight = cur;
+
+ element_weight[i] = cur;
+ totarea += cur;
+ }
+
+ for (i=0; i<totelem; i++)
+ element_weight[i] /= totarea;
+
+ maxweight /= totarea;
+ }
+ else {
+ float min=1.0f/(float)(MIN2(totelem,totpart));
+ for (i=0; i<totelem; i++)
+ element_weight[i]=min;
+ maxweight=min;
+ }
+
+ /* Calculate weights from vgroup */
+ vweight = psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
+
+ if (vweight) {
+ if (from==PART_FROM_VERT) {
+ for (i=0;i<totelem; i++)
+ element_weight[i]*=vweight[i];
+ }
+ else { /* PART_FROM_FACE / PART_FROM_VOLUME */
+ for (i=0;i<totelem; i++) {
+ MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
+ tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
+
+ if (mf->v4) {
+ tweight += vweight[mf->v4];
+ tweight /= 4.0f;
+ }
+ else {
+ tweight /= 3.0f;
+ }
+
+ element_weight[i]*=tweight;
+ }
+ }
+ MEM_freeN(vweight);
+ }
+
+ /* Calculate total weight of all elements */
+ totweight= 0.0f;
+ for (i=0;i<totelem; i++)
+ totweight += element_weight[i];
+
+ inv_totweight = (totweight > 0.f ? 1.f/totweight : 0.f);
+
+ /* Calculate cumulative weights */
+ element_sum[0] = 0.0f;
+ for (i=0; i<totelem; i++)
+ element_sum[i+1] = element_sum[i] + element_weight[i] * inv_totweight;
+
+ /* Finally assign elements to particles */
+ if ((part->flag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) {
+ float pos;
+
+ for (p=0; p<totpart; p++) {
+ /* In theory element_sum[totelem] should be 1.0, but due to float errors this is not necessarily always true, so scale pos accordingly. */
+ pos= BLI_frand() * element_sum[totelem];
+ particle_element[p] = distribute_binary_search(element_sum, totelem, pos);
+ particle_element[p] = MIN2(totelem-1, particle_element[p]);
+ jitter_offset[particle_element[p]] = pos;
+ }
+ }
+ else {
+ double step, pos;
+
+ step= (totpart < 2) ? 0.5 : 1.0/(double)totpart;
+ pos= 1e-6; /* tiny offset to avoid zero weight face */
+ i= 0;
+
+ for (p=0; p<totpart; p++, pos+=step) {
+ while ((i < totelem) && (pos > (double)element_sum[i + 1]))
+ i++;
+
+ particle_element[p] = MIN2(totelem-1, i);
+
+ /* avoid zero weight face */
+ if (p == totpart-1 && element_weight[particle_element[p]] == 0.0f)
+ particle_element[p] = particle_element[p-1];
+
+ jitter_offset[particle_element[p]] = pos;
+ }
+ }
+
+ MEM_freeN(element_sum);
+
+ /* For hair, sort by origindex (allows optimization's in rendering), */
+ /* however with virtual parents the children need to be in random order. */
+ if (part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0f)) {
+ int *orig_index = NULL;
+
+ if (from == PART_FROM_VERT) {
+ if (dm->numVertData)
+ orig_index = dm->getVertDataArray(dm, CD_ORIGINDEX);
+ }
+ else {
+ if (dm->numTessFaceData)
+ orig_index = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
+ }
+
+ if (orig_index) {
+ BLI_qsort_r(particle_element, totpart, sizeof(int), distribute_compare_orig_index, orig_index);
+ }
+ }
+
+ /* Create jittering if needed */
+ if (distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
+ jitlevel= part->userjit;
+
+ if (jitlevel == 0) {
+ jitlevel= totpart/totelem;
+ if (part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
+ if (jitlevel<3) jitlevel= 3;
+ }
+
+ jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
+
+ /* for small amounts of particles we use regular jitter since it looks
+ * a bit better, for larger amounts we switch to hammersley sequence
+ * because it is much faster */
+ if (jitlevel < 25)
+ init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
+ else
+ hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
+ BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
+ }
+
+ /* Setup things for threaded distribution */
+ ctx->tree= tree;
+ ctx->seams= seams;
+ ctx->totseam= totseam;
+ ctx->sim.psys= psys;
+ ctx->index= particle_element;
+ ctx->jit= jit;
+ ctx->jitlevel= jitlevel;
+ ctx->jitoff= jitter_offset;
+ ctx->weight= element_weight;
+ ctx->maxweight= maxweight;
+ ctx->cfrom= cfrom;
+ ctx->distr= distr;
+ ctx->dm= dm;
+ ctx->tpars= tpars;
+
+ if (children) {
+ totpart= psys_render_simplify_distribution(ctx, totpart);
+ alloc_child_particles(psys, totpart);
+ }
+
+ return 1;
+}
+
+static void psys_task_init_distribute(ParticleTask *task, ParticleSimulationData *sim)
+{
+ /* init random number generator */
+ int seed = 31415926 + sim->psys->seed;
+
+ task->rng = BLI_rng_new(seed);
+}
+
+static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
+{
+ TaskScheduler *task_scheduler;
+ TaskPool *task_pool;
+ ParticleThreadContext ctx;
+ ParticleTask *tasks;
+ DerivedMesh *finaldm = sim->psmd->dm;
+ int i, totpart, numtasks;
+
+ /* create a task pool for distribution tasks */
+ if (!psys_thread_context_init_distribute(&ctx, sim, from))
+ return;
+
+ task_scheduler = BLI_task_scheduler_get();
+ task_pool = BLI_task_pool_create(task_scheduler, &ctx);
+
+ totpart = (from == PART_FROM_CHILD ? sim->psys->totchild : sim->psys->totpart);
+ psys_tasks_create(&ctx, totpart, &tasks, &numtasks);
+ for (i = 0; i < numtasks; ++i) {
+ ParticleTask *task = &tasks[i];
+
+ psys_task_init_distribute(task, sim);
+ if (from == PART_FROM_CHILD)
+ BLI_task_pool_push(task_pool, exec_distribute_child, task, false, TASK_PRIORITY_LOW);
+ else
+ BLI_task_pool_push(task_pool, exec_distribute_parent, task, false, TASK_PRIORITY_LOW);
+ }
+ BLI_task_pool_work_and_wait(task_pool);
+
+ BLI_task_pool_free(task_pool);
+
+ psys_calc_dmcache(sim->ob, finaldm, sim->psys);
+
+ if (ctx.dm != finaldm)
+ ctx.dm->release(ctx.dm);
+
+ psys_tasks_free(tasks, numtasks);
+
+ psys_thread_context_free(&ctx);
+}
+
+/* ready for future use, to emit particles without geometry */
+static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
+{
+ distribute_invalid(sim->scene, sim->psys, 0);
+
+ fprintf(stderr,"Shape emission not yet possible!\n");
+}
+
+void distribute_particles(ParticleSimulationData *sim, int from)
+{
+ PARTICLE_PSMD;
+ int distr_error=0;
+
+ if (psmd) {
+ if (psmd->dm)
+ distribute_particles_on_dm(sim, from);
+ else
+ distr_error=1;
+ }
+ else
+ distribute_particles_on_shape(sim, from);
+
+ if (distr_error) {
+ distribute_invalid(sim->scene, sim->psys, from);
+
+ fprintf(stderr,"Particle distribution error!\n");
+ }
+}
+
+/* ======== Simplify ======== */
+
+static float psys_render_viewport_falloff(double rate, float dist, float width)
+{
+ return pow(rate, dist / width);
+}
+
+static float psys_render_projected_area(ParticleSystem *psys, const float center[3], float area, double vprate, float *viewport)
+{
+ ParticleRenderData *data = psys->renderdata;
+ float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius;
+
+ /* transform to view space */
+ copy_v3_v3(co, center);
+ co[3] = 1.0f;
+ mul_m4_v4(data->viewmat, co);
+
+ /* compute two vectors orthogonal to view vector */
+ normalize_v3_v3(view, co);
+ ortho_basis_v3v3_v3(ortho1, ortho2, view);
+
+ /* compute on screen minification */
+ w = co[2] * data->winmat[2][3] + data->winmat[3][3];
+ dx = data->winx * ortho2[0] * data->winmat[0][0];
+ dy = data->winy * ortho2[1] * data->winmat[1][1];
+ w = sqrtf(dx * dx + dy * dy) / w;
+
+ /* w squared because we are working with area */
+ area = area * w * w;
+
+ /* viewport of the screen test */
+
+ /* project point on screen */
+ mul_m4_v4(data->winmat, co);
+ if (co[3] != 0.0f) {
+ co[0] = 0.5f * data->winx * (1.0f + co[0] / co[3]);
+ co[1] = 0.5f * data->winy * (1.0f + co[1] / co[3]);
+ }
+
+ /* screen space radius */
+ radius = sqrtf(area / (float)M_PI);
+
+ /* make smaller using fallof once over screen edge */
+ *viewport = 1.0f;
+
+ if (co[0] + radius < 0.0f)
+ *viewport *= psys_render_viewport_falloff(vprate, -(co[0] + radius), data->winx);
+ else if (co[0] - radius > data->winx)
+ *viewport *= psys_render_viewport_falloff(vprate, (co[0] - radius) - data->winx, data->winx);
+
+ if (co[1] + radius < 0.0f)
+ *viewport *= psys_render_viewport_falloff(vprate, -(co[1] + radius), data->winy);
+ else if (co[1] - radius > data->winy)
+ *viewport *= psys_render_viewport_falloff(vprate, (co[1] - radius) - data->winy, data->winy);
+
+ return area;
+}
+
+/* BMESH_TODO, for orig face data, we need to use MPoly */
+static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot)
+{
+ DerivedMesh *dm = ctx->dm;
+ Mesh *me = (Mesh *)(ctx->sim.ob->data);
+ MFace *mf, *mface;
+ MVert *mvert;
+ ParticleRenderData *data;
+ ParticleRenderElem *elems, *elem;
+ ParticleSettings *part = ctx->sim.psys->part;
+ float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp;
+ float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport;
+ double vprate;
+ int *facetotvert;
+ int a, b, totorigface, totface, newtot, skipped;
+
+ /* double lookup */
+ const int *index_mf_to_mpoly;
+ const int *index_mp_to_orig;
+
+ if (part->ren_as != PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND))
+ return tot;
+ if (!ctx->sim.psys->renderdata)
+ return tot;
+
+ data = ctx->sim.psys->renderdata;
+ if (data->timeoffset)
+ return 0;
+ if (!(part->simplify_flag & PART_SIMPLIFY_ENABLE))
+ return tot;
+
+ mvert = dm->getVertArray(dm);
+ mface = dm->getTessFaceArray(dm);
+ totface = dm->getNumTessFaces(dm);
+ totorigface = me->totpoly;
+
+ if (totface == 0 || totorigface == 0)
+ return tot;
+
+ index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
+ index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
+ if (index_mf_to_mpoly == NULL) {
+ index_mp_to_orig = NULL;
+ }
+
+ facearea = MEM_callocN(sizeof(float) * totorigface, "SimplifyFaceArea");
+ facecenter = MEM_callocN(sizeof(float[3]) * totorigface, "SimplifyFaceCenter");
+ facetotvert = MEM_callocN(sizeof(int) * totorigface, "SimplifyFaceArea");
+ elems = MEM_callocN(sizeof(ParticleRenderElem) * totorigface, "SimplifyFaceElem");
+
+ if (data->elems)
+ MEM_freeN(data->elems);
+
+ data->do_simplify = true;
+ data->elems = elems;
+ data->index_mf_to_mpoly = index_mf_to_mpoly;
+ data->index_mp_to_orig = index_mp_to_orig;
+
+ /* compute number of children per original face */
+ for (a = 0; a < tot; a++) {
+ b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
+ if (b != ORIGINDEX_NONE) {
+ elems[b].totchild++;
+ }
+ }
+
+ /* compute areas and centers of original faces */
+ for (mf = mface, a = 0; a < totface; a++, mf++) {
+ b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
+
+ if (b != ORIGINDEX_NONE) {
+ copy_v3_v3(co1, mvert[mf->v1].co);
+ copy_v3_v3(co2, mvert[mf->v2].co);
+ copy_v3_v3(co3, mvert[mf->v3].co);
+
+ add_v3_v3(facecenter[b], co1);
+ add_v3_v3(facecenter[b], co2);
+ add_v3_v3(facecenter[b], co3);
+
+ if (mf->v4) {
+ copy_v3_v3(co4, mvert[mf->v4].co);
+ add_v3_v3(facecenter[b], co4);
+ facearea[b] += area_quad_v3(co1, co2, co3, co4);
+ facetotvert[b] += 4;
+ }
+ else {
+ facearea[b] += area_tri_v3(co1, co2, co3);
+ facetotvert[b] += 3;
+ }
+ }
+ }
+
+ for (a = 0; a < totorigface; a++)
+ if (facetotvert[a] > 0)
+ mul_v3_fl(facecenter[a], 1.0f / facetotvert[a]);
+
+ /* for conversion from BU area / pixel area to reference screen size */
+ BKE_mesh_texspace_get(me, 0, 0, size);
+ fac = ((size[0] + size[1] + size[2]) / 3.0f) / part->simplify_refsize;
+ fac = fac * fac;
+
+ powrate = log(0.5f) / log(part->simplify_rate * 0.5f);
+ if (part->simplify_flag & PART_SIMPLIFY_VIEWPORT)
+ vprate = pow(1.0f - part->simplify_viewport, 5.0);
+ else
+ vprate = 1.0;
+
+ /* set simplification parameters per original face */
+ for (a = 0, elem = elems; a < totorigface; a++, elem++) {
+ area = psys_render_projected_area(ctx->sim.psys, facecenter[a], facearea[a], vprate, &viewport);
+ arearatio = fac * area / facearea[a];
+
+ if ((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) {
+ /* lambda is percentage of elements to keep */
+ lambda = (arearatio < 1.0f) ? powf(arearatio, powrate) : 1.0f;
+ lambda *= viewport;
+
+ lambda = MAX2(lambda, 1.0f / elem->totchild);
+
+ /* compute transition region */
+ t = part->simplify_transition;
+ elem->t = (lambda - t < 0.0f) ? lambda : (lambda + t > 1.0f) ? 1.0f - lambda : t;
+ elem->reduce = 1;
+
+ /* scale at end and beginning of the transition region */
+ elem->scalemax = (lambda + t < 1.0f) ? 1.0f / lambda : 1.0f / (1.0f - elem->t * elem->t / t);
+ elem->scalemin = (lambda + t < 1.0f) ? 0.0f : elem->scalemax * (1.0f - elem->t / t);
+
+ elem->scalemin = sqrtf(elem->scalemin);
+ elem->scalemax = sqrtf(elem->scalemax);
+
+ /* clamp scaling */
+ scaleclamp = (float)min_ii(elem->totchild, 10);
+ elem->scalemin = MIN2(scaleclamp, elem->scalemin);
+ elem->scalemax = MIN2(scaleclamp, elem->scalemax);
+
+ /* extend lambda to include transition */
+ lambda = lambda + elem->t;
+ if (lambda > 1.0f)
+ lambda = 1.0f;
+ }
+ else {
+ lambda = arearatio;
+
+ elem->scalemax = 1.0f; //sqrt(lambda);
+ elem->scalemin = 1.0f; //sqrt(lambda);
+ elem->reduce = 0;
+ }
+
+ elem->lambda = lambda;
+ elem->scalemin = sqrtf(elem->scalemin);
+ elem->scalemax = sqrtf(elem->scalemax);
+ elem->curchild = 0;
+ }
+
+ MEM_freeN(facearea);
+ MEM_freeN(facecenter);
+ MEM_freeN(facetotvert);
+
+ /* move indices and set random number skipping */
+ ctx->skip = MEM_callocN(sizeof(int) * tot, "SimplificationSkip");
+
+ skipped = 0;
+ for (a = 0, newtot = 0; a < tot; a++) {
+ b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
+
+ if (b != ORIGINDEX_NONE) {
+ if (elems[b].curchild++ < ceil(elems[b].lambda * elems[b].totchild)) {
+ ctx->index[newtot] = ctx->index[a];
+ ctx->skip[newtot] = skipped;
+ skipped = 0;
+ newtot++;
+ }
+ else skipped++;
+ }
+ else skipped++;
+ }
+
+ for (a = 0, elem = elems; a < totorigface; a++, elem++)
+ elem->curchild = 0;
+
+ return newtot;
+}