Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/particle_system.c')
-rw-r--r--source/blender/blenkernel/intern/particle_system.c419
1 files changed, 352 insertions, 67 deletions
diff --git a/source/blender/blenkernel/intern/particle_system.c b/source/blender/blenkernel/intern/particle_system.c
index 90889d7c09e..090082b333d 100644
--- a/source/blender/blenkernel/intern/particle_system.c
+++ b/source/blender/blenkernel/intern/particle_system.c
@@ -23,7 +23,8 @@
* Contributor(s): Raul Fernandez Hernandez (Farsthary), Stephen Swhitehorn.
*
* Adaptive time step
- * Copyright 2011 AutoCRC
+ * Classical SPH
+ * Copyright 2011-2012 AutoCRC
*
* ***** END GPL LICENSE BLOCK *****
*/
@@ -1889,7 +1890,6 @@ void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime,
bpa->data.acc[0]=bpa->data.acc[1]=bpa->data.acc[2]=0.0f;
}
-
if (part->type == PART_HAIR) {
pa->lifetime = 100.0f;
}
@@ -2390,33 +2390,36 @@ typedef struct SPHRangeData {
SPHNeighbor neighbors[SPH_NEIGHBORS];
int tot_neighbors;
- float density, near_density;
- float h;
+ float* data;
ParticleSystem *npsys;
ParticleData *pa;
+ float h;
float massfac;
int use_size;
} SPHRangeData;
-typedef struct SPHData {
- ParticleSystem *psys[10];
- ParticleData *pa;
- float mass;
- EdgeHash *eh;
- float *gravity;
- /* Average distance to neighbors (other particles in the support domain),
- * for calculating the Courant number (adaptive time step). */
- int pass;
- float element_size;
- float flow[3];
-
- /* Integrator callbacks. This allows different SPH implementations. */
- void (*force_cb) (void *sphdata_v, ParticleKey *state, float *force, float *impulse);
- void (*density_cb) (void *rangedata_v, int index, float squared_dist);
-} SPHData;
+static void sph_evaluate_func(BVHTree *tree, ParticleSystem **psys, float co[3], SPHRangeData *pfr, float interaction_radius, BVHTree_RangeQuery callback)
+{
+ int i;
+
+ pfr->tot_neighbors = 0;
+
+ for (i=0; i < 10 && psys[i]; i++) {
+ pfr->npsys = psys[i];
+ pfr->massfac = psys[i]->part->mass;
+ pfr->use_size = psys[i]->part->flag & PART_SIZEMASS;
+ if (tree) {
+ BLI_bvhtree_range_query(tree, co, interaction_radius, callback, pfr);
+ break;
+ }
+ else {
+ BLI_bvhtree_range_query(psys[i]->bvhtree, co, interaction_radius, callback, pfr);
+ }
+ }
+}
static void sph_density_accum_cb(void *userdata, int index, float squared_dist)
{
SPHRangeData *pfr = (SPHRangeData *)userdata;
@@ -2446,8 +2449,8 @@ static void sph_density_accum_cb(void *userdata, int index, float squared_dist)
if (pfr->use_size)
q *= npa->size;
- pfr->density += q*q;
- pfr->near_density += q*q*q;
+ pfr->data[0] += q*q;
+ pfr->data[1] += q*q*q;
}
/*
@@ -2500,8 +2503,10 @@ static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, floa
float inv_mass = 1.0f/mass;
float spring_constant = fluid->spring_k;
-
- float h = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.f*pa->size : 1.f); /* 4.0 seems to be a pretty good value */
+
+ /* 4.0 seems to be a pretty good value */
+ float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
+ float h = interaction_radius * sphdata->hfac;
float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.f); /* 4.77 is an experimentally determined density factor */
float rest_length = fluid->rest_length * (fluid->flag & SPH_FAC_REST_LENGTH ? 2.588f * pa->size : 1.f);
@@ -2512,24 +2517,23 @@ static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, floa
float vec[3];
float vel[3];
float co[3];
+ float data[2];
+ float density, near_density;
int i, spring_index, index = pa - psys[0]->particles;
- pfr.tot_neighbors = 0;
- pfr.density = pfr.near_density = 0.f;
+ data[0] = data[1] = 0;
+ pfr.data = data;
pfr.h = h;
pfr.pa = pa;
- for (i=0; i<10 && psys[i]; i++) {
- pfr.npsys = psys[i];
- pfr.massfac = psys[i]->part->mass*inv_mass;
- pfr.use_size = psys[i]->part->flag & PART_SIZEMASS;
+ sph_evaluate_func( NULL, psys, state->co, &pfr, interaction_radius, sph_density_accum_cb);
- BLI_bvhtree_range_query(psys[i]->bvhtree, state->co, h, sphdata->density_cb, &pfr);
- }
+ density = data[0];
+ near_density = data[1];
- pressure = stiffness * (pfr.density - rest_density);
- near_pressure = stiffness_near_fac * pfr.near_density;
+ pressure = stiffness * (density - rest_density);
+ near_pressure = stiffness_near_fac * near_density;
pfn = pfr.neighbors;
for (i=0; i<pfr.tot_neighbors; i++, pfn++) {
@@ -2593,14 +2597,207 @@ static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, floa
/* Artificial buoyancy force in negative gravity direction */
if (fluid->buoyancy > 0.f && gravity)
- madd_v3_v3fl(force, gravity, fluid->buoyancy * (pfr.density-rest_density));
+ madd_v3_v3fl(force, gravity, fluid->buoyancy * (density-rest_density));
if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF)
sph_particle_courant(sphdata, &pfr);
sphdata->pass++;
}
-static void sph_solver_init(ParticleSimulationData *sim, SPHData *sphdata)
+/* powf is really slow for raising to integer powers. */
+MINLINE float pow2(float x)
+{
+ return x * x;
+}
+MINLINE float pow3(float x)
+{
+ return pow2(x) * x;
+}
+MINLINE float pow4(float x)
+{
+ return pow2(pow2(x));
+}
+MINLINE float pow7(float x)
+{
+ return pow2(pow3(x)) * x;
+}
+
+static void sphclassical_density_accum_cb(void *userdata, int index, float UNUSED(squared_dist))
+{
+ SPHRangeData *pfr = (SPHRangeData *)userdata;
+ ParticleData *npa = pfr->npsys->particles + index;
+ float q;
+ float qfac = 21.0f / (256.f * (float)M_PI);
+ float rij, rij_h;
+ float vec[3];
+
+ /* Exclude particles that are more than 2h away. Can't use squared_dist here
+ * because it is not accurate enough. Use current state, i.e. the output of
+ * basic_integrate() - z0r */
+ sub_v3_v3v3(vec, npa->state.co, pfr->pa->state.co);
+ rij = len_v3(vec);
+ rij_h = rij / pfr->h;
+ if (rij_h > 2.0f)
+ return;
+
+ /* Smoothing factor. Utilise the Wendland kernel. gnuplot:
+ * q1(x) = (2.0 - x)**4 * ( 1.0 + 2.0 * x)
+ * plot [0:2] q1(x) */
+ q = qfac / pow3(pfr->h) * pow4(2.0f - rij_h) * ( 1.0f + 2.0f * rij_h);
+ q *= pfr->massfac;
+
+ if (pfr->use_size)
+ q *= pfr->pa->size;
+
+ pfr->data[0] += q;
+ pfr->data[1] += q / npa->sphdensity;
+}
+
+static void sphclassical_neighbour_accum_cb(void *userdata, int index, float UNUSED(squared_dist))
+{
+ SPHRangeData *pfr = (SPHRangeData *)userdata;
+ ParticleData *npa = pfr->npsys->particles + index;
+ float rij, rij_h;
+ float vec[3];
+
+ if (pfr->tot_neighbors >= SPH_NEIGHBORS)
+ return;
+
+ /* Exclude particles that are more than 2h away. Can't use squared_dist here
+ * because it is not accurate enough. Use current state, i.e. the output of
+ * basic_integrate() - z0r */
+ sub_v3_v3v3(vec, npa->state.co, pfr->pa->state.co);
+ rij = len_v3(vec);
+ rij_h = rij / pfr->h;
+ if (rij_h > 2.0f)
+ return;
+
+ pfr->neighbors[pfr->tot_neighbors].index = index;
+ pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
+ pfr->tot_neighbors++;
+}
+static void sphclassical_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
+{
+ SPHData *sphdata = (SPHData *)sphdata_v;
+ ParticleSystem **psys = sphdata->psys;
+ ParticleData *pa = sphdata->pa;
+ SPHFluidSettings *fluid = psys[0]->part->fluid;
+ SPHRangeData pfr;
+ SPHNeighbor *pfn;
+ float *gravity = sphdata->gravity;
+
+ float dq, u, rij, dv[3];
+ float pressure, npressure;
+
+ float visc = fluid->viscosity_omega;
+
+ float interaction_radius;
+ float h, hinv;
+ /* 4.77 is an experimentally determined density factor */
+ float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.0f);
+
+ float stiffness = fluid->stiffness_k;
+
+ ParticleData *npa;
+ float vec[3];
+ float co[3];
+ float pressureTerm;
+
+ int i;
+
+ float qfac2 = 42.0f / (256.0f * (float)M_PI);
+ float rij_h;
+
+ /* 4.0 here is to be consistent with previous formulation/interface */
+ interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
+ h = interaction_radius * sphdata->hfac;
+ hinv = 1.0f / h;
+
+ pfr.h = h;
+ pfr.pa = pa;
+
+ sph_evaluate_func(NULL, psys, state->co, &pfr, interaction_radius, sphclassical_neighbour_accum_cb);
+ pressure = stiffness * (pow7(pa->sphdensity / rest_density) - 1.0f);
+
+ /* multiply by mass so that we return a force, not accel */
+ qfac2 *= sphdata->mass / pow3(pfr.h);
+
+ pfn = pfr.neighbors;
+ for (i = 0; i < pfr.tot_neighbors; i++, pfn++) {
+ npa = pfn->psys->particles + pfn->index;
+ if (npa == pa) {
+ /* we do not contribute to ourselves */
+ continue;
+ }
+
+ /* Find vector to neighbour. Exclude particles that are more than 2h
+ * away. Can't use current state here because it may have changed on
+ * another thread - so do own mini integration. Unlike basic_integrate,
+ * SPH integration depends on neighbouring particles. - z0r */
+ madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
+ sub_v3_v3v3(vec, co, state->co);
+ rij = normalize_v3(vec);
+ rij_h = rij / pfr.h;
+ if (rij_h > 2.0f)
+ continue;
+
+ npressure = stiffness * (pow7(npa->sphdensity / rest_density) - 1.0f);
+
+ /* First derivative of smoothing factor. Utilise the Wendland kernel.
+ * gnuplot:
+ * q2(x) = 2.0 * (2.0 - x)**4 - 4.0 * (2.0 - x)**3 * (1.0 + 2.0 * x)
+ * plot [0:2] q2(x)
+ * Particles > 2h away are excluded above. */
+ dq = qfac2 * (2.0f * pow4(2.0f - rij_h) - 4.0f * pow3(2.0f - rij_h) * (1.0f + 2.0f * rij_h) );
+
+ if (pfn->psys->part->flag & PART_SIZEMASS)
+ dq *= npa->size;
+
+ pressureTerm = pressure / pow2(pa->sphdensity) + npressure / pow2(npa->sphdensity);
+
+ /* Note that 'minus' is removed, because vec = vecBA, not vecAB.
+ * This applies to the viscosity calculation below, too. */
+ madd_v3_v3fl(force, vec, pressureTerm * dq);
+
+ /* Viscosity */
+ if (visc > 0.0f) {
+ sub_v3_v3v3(dv, npa->prev_state.vel, pa->prev_state.vel);
+ u = dot_v3v3(vec, dv);
+ /* Apply parameters */
+ u *= -dq * hinv * visc / (0.5f * npa->sphdensity + 0.5f * pa->sphdensity);
+ madd_v3_v3fl(force, vec, u);
+ }
+ }
+
+ /* Artificial buoyancy force in negative gravity direction */
+ if (fluid->buoyancy > 0.f && gravity)
+ madd_v3_v3fl(force, gravity, fluid->buoyancy * (pa->sphdensity - rest_density));
+
+ if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF)
+ sph_particle_courant(sphdata, &pfr);
+ sphdata->pass++;
+}
+
+static void sphclassical_calc_dens(ParticleData *pa, float UNUSED(dfra), SPHData *sphdata)
+{
+ ParticleSystem **psys = sphdata->psys;
+ SPHFluidSettings *fluid = psys[0]->part->fluid;
+ /* 4.0 seems to be a pretty good value */
+ float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
+ SPHRangeData pfr;
+ float data[2];
+
+ data[0] = 0;
+ data[1] = 0;
+ pfr.data = data;
+ pfr.h = interaction_radius * sphdata->hfac;
+ pfr.pa = pa;
+
+ sph_evaluate_func( NULL, psys, pa->state.co, &pfr, interaction_radius, sphclassical_density_accum_cb);
+ pa->sphdensity = MIN2(MAX2(data[0], fluid->rest_density * 0.9f), fluid->rest_density * 1.1f);
+}
+
+void psys_sph_init(ParticleSimulationData *sim, SPHData *sphdata)
{
ParticleTarget *pt;
int i;
@@ -2621,17 +2818,46 @@ static void sph_solver_init(ParticleSimulationData *sim, SPHData *sphdata)
sphdata->pa = NULL;
sphdata->mass = 1.0f;
- sphdata->force_cb = sph_force_cb;
- sphdata->density_cb = sph_density_accum_cb;
+ if (sim->psys->part->fluid->solver == SPH_SOLVER_DDR) {
+ sphdata->force_cb = sph_force_cb;
+ sphdata->density_cb = sph_density_accum_cb;
+ sphdata->hfac = 1.0f;
+ }
+ else {
+ /* SPH_SOLVER_CLASSICAL */
+ sphdata->force_cb = sphclassical_force_cb;
+ sphdata->density_cb = sphclassical_density_accum_cb;
+ sphdata->hfac = 0.5f;
+ }
+
}
-static void sph_solver_finalise(SPHData *sphdata)
+void psys_sph_finalise(SPHData *sphdata)
{
if (sphdata->eh) {
BLI_edgehash_free(sphdata->eh, NULL);
sphdata->eh = NULL;
}
}
+/* Sample the density field at a point in space. */
+void psys_sph_density(BVHTree *tree, SPHData *sphdata, float co[3], float vars[2])
+{
+ ParticleSystem **psys = sphdata->psys;
+ SPHFluidSettings *fluid = psys[0]->part->fluid;
+ /* 4.0 seems to be a pretty good value */
+ float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
+ SPHRangeData pfr;
+ float density[2];
+
+ density[0] = density[1] = 0.0f;
+ pfr.data = density;
+ pfr.h = interaction_radius*sphdata->hfac;
+
+ sph_evaluate_func(tree, psys, co, &pfr, interaction_radius, sphdata->density_cb);
+
+ vars[0] = pfr.data[0];
+ vars[1] = pfr.data[1];
+}
static void sph_integrate(ParticleSimulationData *sim, ParticleData *pa, float dfra, SPHData *sphdata)
{
@@ -3781,18 +4007,19 @@ static void save_hair(ParticleSimulationData *sim, float UNUSED(cfra))
/* Code for an adaptive time step based on the Courant-Friedrichs-Lewy
* condition. */
-#define MIN_TIMESTEP 1.0f / 101.0f
+static const float MIN_TIMESTEP = 1.0f / 101.0f;
/* Tolerance of 1.5 means the last subframe neither favors growing nor
* shrinking (e.g if it were 1.3, the last subframe would tend to be too
* small). */
-#define TIMESTEP_EXPANSION_TOLERANCE 1.5f
+static const float TIMESTEP_EXPANSION_FACTOR = 0.1f;
+static const float TIMESTEP_EXPANSION_TOLERANCE = 1.5f;
/* Calculate the speed of the particle relative to the local scale of the
* simulation. This should be called once per particle during a simulation
* step, after the velocity has been updated. element_size defines the scale of
* the simulation, and is typically the distance to neighboring particles. */
static void update_courant_num(ParticleSimulationData *sim, ParticleData *pa,
- float dtime, SPHData *sphdata)
+ float dtime, SPHData *sphdata)
{
float relative_vel[3];
float speed;
@@ -3802,14 +4029,31 @@ static void update_courant_num(ParticleSimulationData *sim, ParticleData *pa,
if (sim->courant_num < speed * dtime / sphdata->element_size)
sim->courant_num = speed * dtime / sphdata->element_size;
}
+static float get_base_time_step(ParticleSettings *part)
+{
+ return 1.0f / (float) (part->subframes + 1);
+}
/* Update time step size to suit current conditions. */
static float update_timestep(ParticleSystem *psys, ParticleSimulationData *sim, float t_frac)
{
+ float dt_target;
if (sim->courant_num == 0.0f)
- psys->dt_frac = 1.0f;
+ dt_target = 1.0f;
+ else
+ dt_target = psys->dt_frac * (psys->part->courant_target / sim->courant_num);
+
+ /* Make sure the time step is reasonable. For some reason, the CLAMP macro
+ * doesn't work here. The time step becomes too large. - z0r */
+ if (dt_target < MIN_TIMESTEP)
+ dt_target = MIN_TIMESTEP;
+ else if (dt_target > get_base_time_step(psys->part))
+ dt_target = get_base_time_step(psys->part);
+
+ /* Decrease time step instantly, but increase slowly. */
+ if (dt_target > psys->dt_frac)
+ psys->dt_frac = interpf(dt_target, psys->dt_frac, TIMESTEP_EXPANSION_FACTOR);
else
- psys->dt_frac *= (psys->part->courant_target / sim->courant_num);
- CLAMP(psys->dt_frac, MIN_TIMESTEP, 1.0f);
+ psys->dt_frac = dt_target;
/* Sync with frame end if it's close. */
if (t_frac == 1.0f)
@@ -3973,31 +4217,72 @@ static void dynamics_step(ParticleSimulationData *sim, float cfra)
case PART_PHYS_FLUID:
{
SPHData sphdata;
- sph_solver_init(sim, &sphdata);
+ ParticleSettings *part = sim->psys->part;
+ psys_sph_init(sim, &sphdata);
- #pragma omp parallel for firstprivate (sphdata) private (pa) schedule(dynamic,5)
- LOOP_DYNAMIC_PARTICLES {
- /* do global forces & effectors */
- basic_integrate(sim, p, pa->state.time, cfra);
+ if (part->fluid->flag & SPH_SOLVER_DDR) {
+ /* Apply SPH forces using double-density relaxation algorithm
+ * (Clavat et. al.) */
+ #pragma omp parallel for firstprivate (sphdata) private (pa) schedule(dynamic,5)
+ LOOP_DYNAMIC_PARTICLES {
+ /* do global forces & effectors */
+ basic_integrate(sim, p, pa->state.time, cfra);
- /* actual fluids calculations */
- sph_integrate(sim, pa, pa->state.time, &sphdata);
+ /* actual fluids calculations */
+ sph_integrate(sim, pa, pa->state.time, &sphdata);
- if (sim->colliders)
- collision_check(sim, p, pa->state.time, cfra);
-
- /* SPH particles are not physical particles, just interpolation
- * particles, thus rotation has not a direct sense for them */
- basic_rotate(part, pa, pa->state.time, timestep);
+ if (sim->colliders)
+ collision_check(sim, p, pa->state.time, cfra);
+
+ /* SPH particles are not physical particles, just interpolation
+ * particles, thus rotation has not a direct sense for them */
+ basic_rotate(part, pa, pa->state.time, timestep);
+
+ #pragma omp critical
+ if (part->time_flag & PART_TIME_AUTOSF)
+ update_courant_num(sim, pa, dtime, &sphdata);
+ }
+
+ sph_springs_modify(psys, timestep);
- #pragma omp critical
- if (part->time_flag & PART_TIME_AUTOSF)
- update_courant_num(sim, pa, dtime, &sphdata);
}
+ else {
+ /* SPH_SOLVER_CLASSICAL */
+ /* Apply SPH forces using classical algorithm (due to Gingold
+ * and Monaghan). Note that, unlike double-density relaxation,
+ * this algorthim is separated into distinct loops. */
+
+ #pragma omp parallel for firstprivate (sphdata) private (pa) schedule(dynamic,5)
+ LOOP_DYNAMIC_PARTICLES {
+ basic_integrate(sim, p, pa->state.time, cfra);
+ }
+
+ /* calculate summation density */
+ #pragma omp parallel for firstprivate (sphdata) private (pa) schedule(dynamic,5)
+ LOOP_DYNAMIC_PARTICLES {
+ sphclassical_calc_dens(pa, pa->state.time, &sphdata);
+ }
+
+ /* do global forces & effectors */
+ #pragma omp parallel for firstprivate (sphdata) private (pa) schedule(dynamic,5)
+ LOOP_DYNAMIC_PARTICLES {
+ /* actual fluids calculations */
+ sph_integrate(sim, pa, pa->state.time, &sphdata);
+
+ if (sim->colliders)
+ collision_check(sim, p, pa->state.time, cfra);
+
+ /* SPH particles are not physical particles, just interpolation
+ * particles, thus rotation has not a direct sense for them */
+ basic_rotate(part, pa, pa->state.time, timestep);
- sph_springs_modify(psys, timestep);
+ #pragma omp critical
+ if (part->time_flag & PART_TIME_AUTOSF)
+ update_courant_num(sim, pa, dtime, &sphdata);
+ }
+ }
- sph_solver_finalise(&sphdata);
+ psys_sph_finalise(&sphdata);
break;
}
}
@@ -4309,14 +4594,14 @@ static void system_step(ParticleSimulationData *sim, float cfra)
if (!(part->time_flag & PART_TIME_AUTOSF)) {
/* Constant time step */
- psys->dt_frac = 1.0f / (float) (part->subframes + 1);
+ psys->dt_frac = get_base_time_step(part);
}
else if ((int)cfra == startframe) {
- /* Variable time step; use a very conservative value at the start.
- * If it doesn't need to be so small, it will quickly grow. */
- psys->dt_frac = 1.0;
+ /* Variable time step; initialise to subframes */
+ psys->dt_frac = get_base_time_step(part);
}
else if (psys->dt_frac < MIN_TIMESTEP) {
+ /* Variable time step; subsequent frames */
psys->dt_frac = MIN_TIMESTEP;
}