Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/particle_system.c')
-rw-r--r--source/blender/blenkernel/intern/particle_system.c4371
1 files changed, 4371 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/particle_system.c b/source/blender/blenkernel/intern/particle_system.c
new file mode 100644
index 00000000000..0bcf6be0a4a
--- /dev/null
+++ b/source/blender/blenkernel/intern/particle_system.c
@@ -0,0 +1,4371 @@
+/* particle_system.c
+ *
+ *
+ * $Id: particle_system.c $
+ *
+ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version. The Blender
+ * Foundation also sells licenses for use in proprietary software under
+ * the Blender License. See http://www.blender.org/BL/ for information
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2007 by Janne Karhu.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL/BL DUAL LICENSE BLOCK *****
+ */
+
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+
+#include "MEM_guardedalloc.h"
+
+#include "DNA_particle_types.h"
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_modifier_types.h"
+#include "DNA_object_force.h"
+#include "DNA_object_types.h"
+#include "DNA_material_types.h"
+#include "DNA_ipo_types.h"
+#include "DNA_curve_types.h"
+#include "DNA_group_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_texture_types.h"
+
+#include "BLI_rand.h"
+#include "BLI_jitter.h"
+#include "BLI_arithb.h"
+#include "BLI_blenlib.h"
+#include "BLI_kdtree.h"
+#include "BLI_linklist.h"
+
+#include "BKE_anim.h"
+#include "BKE_bad_level_calls.h"
+#include "BKE_cdderivedmesh.h"
+#include "BKE_displist.h"
+
+#include "BKE_particle.h"
+#include "BKE_global.h"
+#include "BKE_utildefines.h"
+#include "BKE_DerivedMesh.h"
+#include "BKE_object.h"
+#include "BKE_material.h"
+#include "BKE_ipo.h"
+#include "BKE_softbody.h"
+#include "BKE_depsgraph.h"
+#include "BKE_lattice.h"
+#include "BKE_pointcache.h"
+#include "BKE_modifier.h"
+
+#include "BSE_headerbuttons.h"
+
+#include "blendef.h"
+
+#include "RE_shader_ext.h"
+
+/************************************************/
+/* Reacting to system events */
+/************************************************/
+
+static int get_current_display_percentage(ParticleSystem *psys)
+{
+ ParticleSettings *part=psys->part;
+
+ if(G.rendering || (part->child_nbr && part->childtype))
+ return 100;
+
+ if(part->phystype==PART_PHYS_KEYED){
+ if(psys->flag & PSYS_FIRST_KEYED)
+ return psys->part->disp;
+ else
+ return 100;
+ }
+ else
+ return psys->part->disp;
+}
+
+static void alloc_particles(ParticleSystem *psys, int new_totpart)
+{
+ ParticleData *newpars = 0, *pa;
+ int i, totpart, totsaved = 0;
+
+ if(new_totpart<0){
+ if(psys->part->distr==PART_DISTR_GRID){
+ totpart= psys->part->grid_res;
+ totpart*=totpart*totpart;
+ }
+ else
+ totpart=psys->part->totpart;
+ }
+ else
+ totpart=new_totpart;
+
+ if(totpart)
+ newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
+ if(psys->particles){
+ totsaved=MIN2(psys->totpart,totpart);
+ /*save old pars*/
+ if(totsaved)
+ memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
+
+ for(i=totsaved, pa=psys->particles+totsaved; i<psys->totpart; i++, pa++)
+ if(pa->hair) MEM_freeN(pa->hair);
+
+ MEM_freeN(psys->particles);
+ }
+ psys->particles=newpars;
+
+ if(psys->part->child_nbr && psys->part->childtype){
+ if(psys->child)
+ MEM_freeN(psys->child);
+ psys->child = NULL;
+ if(totpart)
+ psys->child= MEM_callocN(totpart*psys->part->child_nbr*sizeof(ChildParticle), "child_particles");
+ psys->totchild=totpart*psys->part->child_nbr;
+ }
+ else if(psys->child){
+ MEM_freeN(psys->child);
+ psys->child=0;
+ psys->totchild=0;
+ }
+
+ psys->totpart=totpart;
+}
+
+/* only run this if from == PART_FROM_FACE */
+static void psys_calc_dmfaces(Object *ob, DerivedMesh *dm, ParticleSystem *psys)
+{
+ /* use for building derived mesh face-origin info,
+ node - the allocated links - total derived mesh face count
+ node_array - is the array of nodes alligned with the base mesh's faces, so each original face can reference its derived faces
+ */
+ Mesh *me= (Mesh*)ob->data;
+ ParticleData *pa= 0;
+ int p;
+
+ /* CACHE LOCATIONS */
+ if(!dm->deformedOnly) {
+ /* Will use later to speed up subsurf/derivedmesh */
+
+ int tot_dm_face = dm->getNumFaces(dm);
+ int totface = me->totface;
+ int *origindex = DM_get_face_data_layer(dm, CD_ORIGINDEX);
+ int i;
+ LinkNode *node, *node_dm_faces, **node_array;
+
+ node_dm_faces = node = MEM_callocN(sizeof(LinkNode)*tot_dm_face, "faceindicies");
+ node_array = MEM_callocN(sizeof(LinkNode *)*totface, "faceindicies array");
+
+ for(i=0; i < tot_dm_face; i++, origindex++, node++) {
+ node->link = (void *)i; // or use the index?
+ if(*origindex != -1) {
+ if(node_array[*origindex]) {
+ /* prepend */
+ node->next = node_array[*origindex];
+ node_array[*origindex] = node;
+ } else {
+ node_array[*origindex] = node;
+ }
+ }
+ }
+
+ /* cache the faces! */
+
+
+ for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
+ //i = pa->num;
+ //if (i<totface) // should never happen
+ i = psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, node_array[pa->num]);
+ pa->num_dmcache = i;
+ }
+
+ //for (i=0; i < totface; i++) {
+ // i = psys_particle_dm_face_lookup(ob, dm, node_array[], fuv, (LinkNode*)NULL);
+ //}
+ MEM_freeN(node_array);
+ MEM_freeN(node_dm_faces);
+
+ } else {
+ /* set the num_dmcache to an invalid value, just incase */
+ /* TODO PARTICLE, make the following line unnecessary, each function should know to use the num or num_dmcache */
+
+ /*
+ for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
+ pa->num_dmcache = pa->num;
+ }
+ */
+ for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
+ pa->num_dmcache = -1;
+ }
+ }
+}
+
+static void distribute_particles_in_grid(DerivedMesh *dm, ParticleSystem *psys)
+{
+ ParticleData *pa=0;
+ float min[3], max[3], delta[3], d;
+ MVert *mv, *mvert = dm->getVertDataArray(dm,0);
+ int totvert=dm->getNumVerts(dm), from=psys->part->from;
+ int i, j, k, p, res=psys->part->grid_res, size[3], axis;
+
+ mv=mvert;
+
+ /* find bounding box of dm */
+ VECCOPY(min,mv->co);
+ VECCOPY(max,mv->co);
+ mv++;
+
+ for(i=1; i<totvert; i++, mv++){
+ min[0]=MIN2(min[0],mv->co[0]);
+ min[1]=MIN2(min[1],mv->co[1]);
+ min[2]=MIN2(min[2],mv->co[2]);
+
+ max[0]=MAX2(max[0],mv->co[0]);
+ max[1]=MAX2(max[1],mv->co[1]);
+ max[2]=MAX2(max[2],mv->co[2]);
+ }
+
+ VECSUB(delta,max,min);
+
+ /* determine major axis */
+ axis = (delta[0]>=delta[1])?0:((delta[1]>=delta[2])?1:2);
+
+ d = delta[axis]/(float)res;
+
+ size[axis]=res;
+ size[(axis+1)%3]=(int)ceil(delta[(axis+1)%3]/d);
+ size[(axis+2)%3]=(int)ceil(delta[(axis+2)%3]/d);
+
+ /* float errors grrr.. */
+ size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
+ size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
+
+ min[0]+=d/2.0f;
+ min[1]+=d/2.0f;
+ min[2]+=d/2.0f;
+
+ for(i=0,p=0,pa=psys->particles; i<res; i++){
+ for(j=0; j<res; j++){
+ for(k=0; k<res; k++,p++,pa++){
+ pa->fuv[0]=min[0]+(float)i*d;
+ pa->fuv[1]=min[1]+(float)j*d;
+ pa->fuv[2]=min[2]+(float)k*d;
+ pa->flag |= PARS_UNEXIST;
+ pa->loop=0; /* abused in volume calculation */
+ }
+ }
+ }
+
+ /* enable particles near verts/edges/faces/inside surface */
+ if(from==PART_FROM_VERT){
+ float vec[3];
+
+ pa=psys->particles;
+
+ min[0]-=d/2.0f;
+ min[1]-=d/2.0f;
+ min[2]-=d/2.0f;
+
+ for(i=0,mv=mvert; i<totvert; i++,mv++){
+ VecSubf(vec,mv->co,min);
+ vec[0]/=delta[0];
+ vec[1]/=delta[1];
+ vec[2]/=delta[2];
+ (pa +((int)(vec[0]*(size[0]-1))*res
+ +(int)(vec[1]*(size[1]-1)))*res
+ +(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST;
+ }
+ }
+ else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){
+ float co1[3], co2[3];
+
+ MFace *mface=0;
+ float v1[3], v2[3], v3[3], v4[4], lambda;
+ int a, a1, a2, a0mul, a1mul, a2mul, totface;
+ int amax= from==PART_FROM_FACE ? 3 : 1;
+
+ totface=dm->getNumFaces(dm);
+ mface=dm->getFaceDataArray(dm,CD_MFACE);
+
+ for(a=0; a<amax; a++){
+ if(a==0){ a0mul=res*res; a1mul=res; a2mul=1; }
+ else if(a==1){ a0mul=res; a1mul=1; a2mul=res*res; }
+ else{ a0mul=1; a1mul=res*res; a2mul=res; }
+
+ for(a1=0; a1<size[(a+1)%3]; a1++){
+ for(a2=0; a2<size[(a+2)%3]; a2++){
+ mface=dm->getFaceDataArray(dm,CD_MFACE);
+
+ pa=psys->particles + a1*a1mul + a2*a2mul;
+ VECCOPY(co1,pa->fuv);
+ co1[a]-=d/2.0f;
+ VECCOPY(co2,co1);
+ co2[a]+=delta[a] + 0.001f*d;
+ co1[a]-=0.001f*d;
+
+ /* lets intersect the faces */
+ for(i=0; i<totface; i++,mface++){
+ VECCOPY(v1,mvert[mface->v1].co);
+ VECCOPY(v2,mvert[mface->v2].co);
+ VECCOPY(v3,mvert[mface->v3].co);
+
+ if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
+ if(from==PART_FROM_FACE)
+ (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ else /* store number of intersections */
+ (pa+(int)(lambda*size[a])*a0mul)->loop++;
+ }
+
+ if(mface->v4){
+ VECCOPY(v4,mvert[mface->v4].co);
+
+ if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
+ if(from==PART_FROM_FACE)
+ (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ else
+ (pa+(int)(lambda*size[a])*a0mul)->loop++;
+ }
+ }
+ }
+
+ if(from==PART_FROM_VOLUME){
+ int in=pa->loop%2;
+ if(in) pa->loop++;
+ for(i=0; i<size[0]; i++){
+ if(in || (pa+i*a0mul)->loop%2)
+ (pa+i*a0mul)->flag &= ~PARS_UNEXIST;
+ /* odd intersections == in->out / out->in */
+ /* even intersections -> in stays same */
+ in=(in + (pa+i*a0mul)->loop) % 2;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if(psys->part->flag & PART_GRID_INVERT){
+ for(i=0,pa=psys->particles; i<size[0]; i++){
+ for(j=0; j<size[1]; j++){
+ pa=psys->particles + res*(i*res + j);
+ for(k=0; k<size[2]; k++, pa++){
+ pa->flag ^= PARS_UNEXIST;
+ }
+ }
+ }
+ }
+}
+
+/* modified copy from effect.c */
+static void init_mv_jit(float *jit, int num, int seed2, float amount)
+{
+ RNG *rng;
+ float *jit2, x, rad1, rad2, rad3;
+ int i, num2;
+
+ if(num==0) return;
+
+ rad1= (float)(1.0/sqrt((float)num));
+ rad2= (float)(1.0/((float)num));
+ rad3= (float)sqrt((float)num)/((float)num);
+
+ rng = rng_new(31415926 + num + seed2);
+ x= 0;
+ num2 = 2 * num;
+ for(i=0; i<num2; i+=2) {
+
+ jit[i]= x + amount*rad1*(0.5f - rng_getFloat(rng));
+ jit[i+1]= i/(2.0f*num) + amount*rad1*(0.5f - rng_getFloat(rng));
+
+ jit[i]-= (float)floor(jit[i]);
+ jit[i+1]-= (float)floor(jit[i+1]);
+
+ x+= rad3;
+ x -= (float)floor(x);
+ }
+
+ jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
+
+ for (i=0 ; i<4 ; i++) {
+ BLI_jitterate1(jit, jit2, num, rad1);
+ BLI_jitterate1(jit, jit2, num, rad1);
+ BLI_jitterate2(jit, jit2, num, rad2);
+ }
+ MEM_freeN(jit2);
+ rng_free(rng);
+}
+
+static void psys_uv_to_w(float u, float v, int quad, float *w)
+{
+ float vert[4][3], co[3];
+
+ if(!quad) {
+ if(u+v > 1.0f)
+ v= 1.0f-v;
+ else
+ u= 1.0f-u;
+ }
+
+ vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f;
+ vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f;
+ vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f;
+
+ co[0]= u;
+ co[1]= v;
+ co[2]= 0.0f;
+
+ if(quad) {
+ vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f;
+ MeanValueWeights(vert, 4, co, w);
+ }
+ else {
+ MeanValueWeights(vert, 3, co, w);
+ w[3]= 0.0f;
+ }
+}
+
+static int binary_search_distribution(float *sum, int n, float value)
+{
+ int mid, low=0, high=n;
+
+ while(low <= high) {
+ mid= (low + high)/2;
+ if(sum[mid] <= value && value <= sum[mid+1])
+ return mid;
+ else if(sum[mid] > value)
+ high= mid - 1;
+ else if(sum[mid] < value)
+ low= mid + 1;
+ else
+ return mid;
+ }
+
+ return low;
+}
+
+/* creates a distribution of coordinates on a DerivedMesh */
+/* */
+/* 1. lets check from what we are emitting */
+/* 2. now we know that we have something to emit from so */
+/* let's calculate some weights */
+/* 2.1 from even distribution */
+/* 2.2 and from vertex groups */
+/* 3. next we determine the indexes of emitting thing that */
+/* the particles will have */
+/* 4. let's do jitter if we need it */
+/* 5. now we're ready to set the indexes & distributions to */
+/* the particles */
+/* 6. and we're done! */
+
+/* This is to denote functionality that does not yet work with mesh - only derived mesh */
+#define ONLY_WORKING_WITH_PA_VERTS 0
+static void distribute_particles_on_dm(DerivedMesh *finaldm, Object *ob, ParticleSystem *psys, int from)
+{
+ Object *tob;
+ ParticleData *pa=0, *tpars=0, *tpa;
+ ParticleSettings *part;
+ ParticleSystem *tpsys;
+ ChildParticle *cpa=0;
+ KDTree *tree=0;
+ ParticleSeam *seams=0;
+ float *jit= NULL;
+ int p=0,i;
+ int no_distr=0, cfrom=0;
+ int tot=0, totpart, *index=0, children=0, totseam=0;
+ //int *vertpart=0;
+ int jitlevel= 1, intersect, distr;
+ float *weight=0,*sum=0,*jitoff=0;
+ float cur, maxweight=0.0,tweight;
+ float *v1, *v2, *v3, *v4, co[3], nor[3], co1[3], co2[3], nor1[3];
+ float cur_d, min_d;
+ DerivedMesh *dm= NULL;
+
+ if(ob==0 || psys==0 || psys->part==0)
+ return;
+
+ part=psys->part;
+ totpart=psys->totpart;
+ if(totpart==0)
+ return;
+
+ if (!finaldm->deformedOnly && !CustomData_has_layer( &finaldm->faceData, CD_ORIGINDEX ) ) {
+ error("Can't paint with the current modifier stack, disable destructive modifiers");
+ return;
+ }
+
+ BLI_srandom(31415926 + psys->seed);
+
+ if(from==PART_FROM_CHILD){
+ distr=PART_DISTR_RAND;
+ cpa=psys->child;
+ if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
+ dm= finaldm;
+ children=1;
+
+ tree=BLI_kdtree_new(totpart);
+
+ for(p=0,pa=psys->particles; p<totpart; p++,pa++){
+ psys_particle_on_dm(ob,dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0);
+ BLI_kdtree_insert(tree, p, co, nor);
+ }
+
+ BLI_kdtree_balance(tree);
+
+ totpart=psys->totchild;
+ cfrom=from=PART_FROM_FACE;
+
+ if(part->flag&PART_CHILD_SEAMS){
+ MEdge *ed, *medge=dm->getEdgeDataArray(dm,CD_MEDGE);
+ MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
+ int totedge=dm->getNumEdges(dm);
+
+ for(p=0, ed=medge; p<totedge; p++,ed++)
+ if(ed->flag&ME_SEAM)
+ totseam++;
+
+ if(totseam){
+ ParticleSeam *cur_seam=seams=MEM_callocN(totseam*sizeof(ParticleSeam),"Child Distribution Seams");
+ float temp[3],temp2[3];
+
+ for(p=0, ed=medge; p<totedge; p++,ed++){
+ if(ed->flag&ME_SEAM){
+ VecCopyf(cur_seam->v0,(mvert+ed->v1)->co);
+ VecCopyf(cur_seam->v1,(mvert+ed->v2)->co);
+
+ VecSubf(cur_seam->dir,cur_seam->v1,cur_seam->v0);
+
+ cur_seam->length2=VecLength(cur_seam->dir);
+ cur_seam->length2*=cur_seam->length2;
+
+ temp[0]=(float)((mvert+ed->v1)->no[0]);
+ temp[1]=(float)((mvert+ed->v1)->no[1]);
+ temp[2]=(float)((mvert+ed->v1)->no[2]);
+ temp2[0]=(float)((mvert+ed->v2)->no[0]);
+ temp2[1]=(float)((mvert+ed->v2)->no[1]);
+ temp2[2]=(float)((mvert+ed->v2)->no[2]);
+
+ VecAddf(cur_seam->nor,temp,temp2);
+ Normalize(cur_seam->nor);
+
+ Crossf(cur_seam->tan,cur_seam->dir,cur_seam->nor);
+
+ Normalize(cur_seam->tan);
+
+ cur_seam++;
+ }
+ }
+ }
+
+ }
+ }
+ else{
+ /* no need to figure out distribution */
+ for(i=0; i<part->child_nbr; i++){
+ for(p=0; p<psys->totpart; p++,cpa++){
+ float length=2.0;
+ cpa->parent=p;
+
+ /* create even spherical distribution inside unit sphere */
+ while(length>=1.0f){
+ cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
+ cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
+ cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
+ length=VecLength(cpa->fuv);
+ }
+
+ cpa->rand[0]=BLI_frand();
+ cpa->rand[1]=BLI_frand();
+ cpa->rand[2]=BLI_frand();
+
+ cpa->num=-1;
+ }
+ }
+
+ return;
+ }
+ }
+ else{
+ dm= CDDM_from_mesh((Mesh*)ob->data, ob);
+
+ /* special handling of grid distribution */
+ if(part->distr==PART_DISTR_GRID){
+ distribute_particles_in_grid(dm,psys);
+ dm->release(dm);
+ return;
+ }
+
+ distr=part->distr;
+ pa=psys->particles;
+ if(from==PART_FROM_VERT){
+ MVert *mv= dm->getVertDataArray(dm,0);
+ int totvert = dm->getNumVerts(dm);
+
+ tree=BLI_kdtree_new(totvert);
+
+ for(p=0; p<totvert; p++,mv++){
+ VECCOPY(co,mv->co);
+ BLI_kdtree_insert(tree,p,co,NULL);
+ }
+
+ BLI_kdtree_balance(tree);
+ }
+ }
+
+ /* 1. */
+ switch(from){
+ case PART_FROM_VERT:
+ tot = dm->getNumVerts(dm);
+ break;
+ case PART_FROM_VOLUME:
+ case PART_FROM_FACE:
+ tot = dm->getNumFaces(dm);
+ break;
+ case PART_FROM_PARTICLE:
+ if(psys->target_ob)
+ tob=psys->target_ob;
+ else
+ tob=ob;
+
+ if((tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1))){
+ tpars=tpsys->particles;
+ tot=tpsys->totpart;
+ }
+ break;
+ }
+
+ if(tot==0){
+ no_distr=1;
+ if(children){
+ fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n");
+ for(p=0,cpa=psys->child; p<totpart; p++,cpa++){
+ cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
+ cpa->foffset= 0.0f;
+ cpa->parent=0;
+ cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
+ cpa->num= -1;
+ }
+ }
+ else {
+ fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
+ for(p=0,pa=psys->particles; p<totpart; p++,pa++){
+ pa->fuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0;
+ pa->foffset= 0.0f;
+ pa->num= -1;
+ }
+ }
+
+ if(dm != finaldm) dm->release(dm);
+ return;
+ }
+
+ /* 2. */
+
+ weight=MEM_callocN(sizeof(float)*tot, "particle_distribution_weights");
+ index=MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
+ sum=MEM_callocN(sizeof(float)*(tot+1), "particle_distribution_sum");
+ jitoff=MEM_callocN(sizeof(float)*tot, "particle_distribution_jitoff");
+
+ /* 2.1 */
+ if((part->flag&PART_EDISTR || children) && ELEM(from,PART_FROM_PARTICLE,PART_FROM_VERT)==0){
+ float totarea=0.0;
+
+ for(i=0; i<tot; i++){
+ MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
+ MVert *mv1=dm->getVertData(dm,mf->v1,CD_MVERT);
+ MVert *mv2=dm->getVertData(dm,mf->v2,CD_MVERT);
+ MVert *mv3=dm->getVertData(dm,mf->v3,CD_MVERT);
+
+ if (mf->v4){
+ MVert *mv4=dm->getVertData(dm,mf->v4,CD_MVERT);
+ cur= AreaQ3Dfl(mv1->co,mv2->co,mv3->co,mv4->co);
+ }
+ else
+ cur= AreaT3Dfl(mv1->co,mv2->co,mv3->co);
+
+ if(cur>maxweight)
+ maxweight=cur;
+
+ weight[i]= cur;
+ totarea+=cur;
+ }
+
+ for(i=0; i<tot; i++)
+ weight[i] /= totarea;
+
+ maxweight /= totarea;
+ }
+ else if(from==PART_FROM_PARTICLE){
+ float val=(float)tot/(float)totpart;
+ for(i=0; i<tot; i++)
+ weight[i]=val;
+ maxweight=val;
+ }
+ else{
+ float min=1.0f/(float)(MIN2(tot,totpart));
+ for(i=0; i<tot; i++)
+ weight[i]=min;
+ maxweight=min;
+ }
+
+ /* 2.2 */
+ if(ELEM3(from,PART_FROM_VERT,PART_FROM_FACE,PART_FROM_VOLUME)){
+ float *vweight= psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
+
+ if(vweight){
+ if(from==PART_FROM_VERT) {
+ for(i=0;i<tot; i++)
+ weight[i]*=vweight[i];
+ }
+ else { /* PART_FROM_FACE / PART_FROM_VOLUME */
+ for(i=0;i<tot; i++){
+ MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
+ tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
+
+ if(mf->v4) {
+ tweight += vweight[mf->v4];
+ tweight /= 4.0;
+ }
+ else {
+ tweight /= 3.0;
+ }
+
+ weight[i]*=tweight;
+ }
+ }
+ MEM_freeN(vweight);
+ }
+ }
+
+ /* 3. */
+ sum[0]= 0.0f;
+ for(i=0;i<tot; i++)
+ sum[i+1]= sum[i]+weight[i];
+
+ if(part->flag&PART_TRAND){
+ float pos;
+
+ for(p=0; p<totpart; p++) {
+ pos= BLI_frand();
+ index[p]= binary_search_distribution(sum, tot, pos);
+ jitoff[index[p]]= pos;
+ }
+ }
+ else {
+ float step, pos;
+
+ step= (totpart <= 1)? 0.5f: 1.0f/(totpart-1);
+ pos= 0.0f;
+ i= 0;
+
+ for(p=0; p<totpart; p++, pos+=step) {
+ while((i < tot) && (pos > sum[i+1]))
+ i++;
+
+ index[p]= MIN2(tot-1, i);
+ jitoff[index[p]]= pos;
+ }
+ }
+
+ /* weights are no longer used except for FROM_PARTICLE, which needs them zeroed for indexing */
+ if(from==PART_FROM_PARTICLE){
+ for(i=0; i<tot; i++)
+ weight[i]=0.0f;
+ }
+
+ /* 4. */
+ if(distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
+ jitlevel= part->userjit;
+
+ if(jitlevel == 0) {
+ jitlevel= totpart/tot;
+ if(part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
+ if(jitlevel<3) jitlevel= 3;
+ //if(jitlevel>100) jitlevel= 100;
+ }
+
+ jit= MEM_callocN(2+ jitlevel*2*sizeof(float), "jit");
+
+ init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
+ BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
+ }
+
+ /* 5. */
+ if(children) from=PART_FROM_CHILD;
+ for(p=0,pa=psys->particles; p<totpart; p++,pa++,cpa++){
+ switch(from){
+ case PART_FROM_VERT:
+ /* TODO_PARTICLE - use original index */
+ pa->num=index[p];
+ pa->fuv[0] = 1.0f;
+ pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
+ //pa->verts[0] = pa->verts[1] = pa->verts[2] = 0;
+
+#if ONLY_WORKING_WITH_PA_VERTS
+ if(tree){
+ KDTreeNearest ptn[3];
+ int w,maxw;
+
+ psys_particle_on_dm(ob,dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0);
+ maxw = BLI_kdtree_find_n_nearest(tree,3,co1,NULL,ptn);
+
+ for(w=0; w<maxw; w++){
+ pa->verts[w]=ptn->num;
+ }
+ }
+#endif
+ break;
+ case PART_FROM_FACE:
+ case PART_FROM_VOLUME:
+ {
+ MFace *mface;
+ pa->num = i = index[p];
+ mface = dm->getFaceData(dm,i,CD_MFACE);
+
+ switch(distr){
+ case PART_DISTR_JIT:
+ jitoff[i] = fmod(jitoff[i],(float)jitlevel);
+ psys_uv_to_w(jit[2*(int)jitoff[i]], jit[2*(int)jitoff[i]+1], mface->v4, pa->fuv);
+ jitoff[i]++;
+ //jitoff[i]=(float)fmod(jitoff[i]+maxweight/weight[i],(float)jitlevel);
+ break;
+ case PART_DISTR_RAND:
+ psys_uv_to_w(BLI_frand(), BLI_frand(), mface->v4, pa->fuv);
+ break;
+ }
+ pa->foffset= 0.0f;
+
+ /*
+ pa->verts[0] = mface->v1;
+ pa->verts[1] = mface->v2;
+ pa->verts[2] = mface->v3;
+ */
+
+ /* experimental */
+ if(from==PART_FROM_VOLUME){
+ MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+ tot=dm->getNumFaces(dm);
+
+ psys_interpolate_face(mvert,mface,0,pa->fuv,co1,nor,0,0);
+
+ Normalize(nor);
+ VecMulf(nor,-100.0);
+
+ VECADD(co2,co1,nor);
+
+ min_d=2.0;
+ intersect=0;
+
+ for(i=0,mface=dm->getFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++){
+ if(i==pa->num) continue;
+
+ v1=mvert[mface->v1].co;
+ v2=mvert[mface->v2].co;
+ v3=mvert[mface->v3].co;
+
+ if(LineIntersectsTriangle(co1, co2, v2, v3, v1, &cur_d, 0)){
+ if(cur_d<min_d){
+ min_d=cur_d;
+ pa->foffset=cur_d*50.0f; /* to the middle of volume */
+ intersect=1;
+ }
+ }
+ if(mface->v4){
+ v4=mvert[mface->v4].co;
+
+ if(LineIntersectsTriangle(co1, co2, v4, v1, v3, &cur_d, 0)){
+ if(cur_d<min_d){
+ min_d=cur_d;
+ pa->foffset=cur_d*50.0f; /* to the middle of volume */
+ intersect=1;
+ }
+ }
+ }
+ }
+ if(intersect==0)
+ pa->foffset=0.0;
+ else switch(distr){
+ case PART_DISTR_JIT:
+ pa->foffset*= jit[2*(int)jitoff[i]];
+ break;
+ case PART_DISTR_RAND:
+ pa->foffset*=BLI_frand();
+ break;
+ }
+ }
+ break;
+ }
+ case PART_FROM_PARTICLE:
+
+ //pa->verts[0]=0; /* not applicable */
+ //pa->verts[1]=0;
+ //pa->verts[2]=0;
+
+ tpa=tpars+index[p];
+ pa->num=index[p];
+ pa->fuv[0]=tpa->fuv[0];
+ pa->fuv[1]=tpa->fuv[1];
+ /* abusing foffset a little for timing in near reaction */
+ pa->foffset=weight[index[p]];
+ weight[index[p]]+=maxweight;
+ break;
+ case PART_FROM_CHILD:
+ if(index[p]>=0){
+ MFace *mf;
+
+ mf=dm->getFaceData(dm,index[p],CD_MFACE);
+
+ //switch(distr){
+ // case PART_DISTR_JIT:
+ // i=index[p];
+ // psys_uv_to_w(jit[2*(int)jitoff[i]], jit[2*(int)jitoff[i]+1], mf->v4, cpa->fuv);
+ // jitoff[i]=(float)fmod(jitoff[i]+maxweight/weight[i],(float)jitlevel);
+ // break;
+ // case PART_DISTR_RAND:
+ psys_uv_to_w(BLI_frand(), BLI_frand(), mf->v4, cpa->fuv);
+ // break;
+ //}
+
+ cpa->rand[0] = BLI_frand();
+ cpa->rand[1] = BLI_frand();
+ cpa->rand[2] = BLI_frand();
+ cpa->num = index[p];
+
+ if(tree){
+ KDTreeNearest ptn[10];
+ int w,maxw, do_seams;
+ float maxd,mind,dd,totw=0.0;
+ int parent[10];
+ float pweight[10];
+
+ do_seams= (part->flag&PART_CHILD_SEAMS && seams);
+
+ psys_particle_on_dm(ob,dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0);
+ maxw = BLI_kdtree_find_n_nearest(tree,(do_seams)?10:4,co1,nor1,ptn);
+
+ maxd=ptn[maxw-1].dist;
+ mind=ptn[0].dist;
+ dd=maxd-mind;
+
+ /* the weights here could be done better */
+ for(w=0; w<maxw; w++){
+ parent[w]=ptn[w].index;
+ pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
+ //totw+=cpa->w[w];
+ }
+ for(;w<10; w++){
+ parent[w]=-1;
+ pweight[w]=0.0f;
+ }
+ if(do_seams){
+ ParticleSeam *seam=seams;
+ float temp[3],temp2[3],tan[3];
+ float inp,cur_len,min_len=10000.0f;
+ int min_seam=0, near_vert=0;
+ /* find closest seam */
+ for(i=0; i<totseam; i++, seam++){
+ VecSubf(temp,co1,seam->v0);
+ inp=Inpf(temp,seam->dir)/seam->length2;
+ if(inp<0.0f){
+ cur_len=VecLenf(co1,seam->v0);
+ }
+ else if(inp>1.0f){
+ cur_len=VecLenf(co1,seam->v1);
+ }
+ else{
+ VecCopyf(temp2,seam->dir);
+ VecMulf(temp2,inp);
+ cur_len=VecLenf(temp,temp2);
+ }
+ if(cur_len<min_len){
+ min_len=cur_len;
+ min_seam=i;
+ if(inp<0.0f) near_vert=-1;
+ else if(inp>1.0f) near_vert=1;
+ else near_vert=0;
+ }
+ }
+ seam=seams+min_seam;
+
+ VecCopyf(temp,seam->v0);
+
+ if(near_vert){
+ if(near_vert==-1)
+ VecSubf(tan,co1,seam->v0);
+ else{
+ VecSubf(tan,co1,seam->v1);
+ VecCopyf(temp,seam->v1);
+ }
+
+ Normalize(tan);
+ }
+ else{
+ VecCopyf(tan,seam->tan);
+ VecSubf(temp2,co1,temp);
+ if(Inpf(tan,temp2)<0.0f)
+ VecMulf(tan,-1.0f);
+ }
+ for(w=0; w<maxw; w++){
+ VecSubf(temp2,ptn[w].co,temp);
+ if(Inpf(tan,temp2)<0.0f){
+ parent[w]=-1;
+ pweight[w]=0.0f;
+ }
+ }
+
+ }
+
+ for(w=0,i=0; w<maxw && i<4; w++){
+ if(parent[w]>=0){
+ cpa->pa[i]=parent[w];
+ cpa->w[i]=pweight[w];
+ totw+=pweight[w];
+ i++;
+ }
+ }
+ for(;i<4; i++){
+ cpa->pa[i]=-1;
+ cpa->w[i]=0.0f;
+ }
+
+ if(totw>0.0f) for(w=0; w<4; w++)
+ cpa->w[w]/=totw;
+
+ cpa->parent=cpa->pa[0];
+ }
+ }
+ else{
+ cpa->num=0;
+ cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
+ cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
+ cpa->rand[0]=cpa->rand[1]=cpa->rand[2]=0.0f;
+ }
+ break;
+ }
+ }
+
+ /* 6. */
+ if(jit) MEM_freeN(jit);
+ if(sum) MEM_freeN(sum);
+ if(jitoff) MEM_freeN(jitoff);
+ if(weight){
+ MEM_freeN(weight);
+ weight=0;
+ }
+ if(index) MEM_freeN(index);
+ if(seams) MEM_freeN(seams);
+ //if(vertpart) MEM_freeN(vertpart);
+ BLI_kdtree_free(tree);
+
+ if (from == PART_FROM_FACE)
+ psys_calc_dmfaces(ob, finaldm, psys);
+
+ if(dm != finaldm) dm->release(dm);
+}
+
+/* ready for future use, to emit particles without geometry */
+static void distribute_particles_on_shape(Object *ob, ParticleSystem *psys, int from)
+{
+ ParticleData *pa;
+ int totpart=psys->totpart, p;
+
+ fprintf(stderr,"Shape emission not yet possible!\n");
+
+ for(p=0,pa=psys->particles; p<totpart; p++,pa++){
+ pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
+ pa->foffset= 0.0f;
+ pa->num= -1;
+ }
+}
+static void distribute_particles(Object *ob, ParticleSystem *psys, int from)
+{
+ ParticleSystemModifierData *psmd=0;
+ int distr_error=0;
+ psmd=psys_get_modifier(ob,psys);
+
+ if(psmd){
+ if(psmd->dm)
+ distribute_particles_on_dm(psmd->dm,ob,psys,from);
+ else
+ distr_error=1;
+ }
+ else
+ distribute_particles_on_shape(ob,psys,from);
+
+ if(distr_error){
+ ParticleData *pa;
+ int totpart=psys->totpart, p;
+
+ fprintf(stderr,"Particle distribution error!\n");
+
+ for(p=0,pa=psys->particles; p<totpart; p++,pa++){
+ pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
+ pa->foffset= 0.0f;
+ pa->num= -1;
+ }
+ }
+}
+/* set particle parameters that don't change during particle's life */
+void initialize_particle(ParticleData *pa, int p, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
+{
+ ParticleSettings *part;
+ ParticleTexture ptex;
+ Material *ma=0;
+ IpoCurve *icu=0;
+ int totpart;
+ float rand,length;
+
+ part=psys->part;
+
+ totpart=psys->totpart;
+
+ ptex.life=ptex.size=ptex.exist=ptex.length=1.0;
+ ptex.time=(float)p/(float)totpart;
+
+ BLI_srandom(psys->seed+p);
+
+ if(part->from!=PART_FROM_PARTICLE){
+ ma=give_current_material(ob,part->omat);
+
+ /* TODO: needs some work to make most blendtypes generally usefull */
+ psys_get_texture(ob,ma,psmd,psys,pa,&ptex,MAP_PA_INIT);
+ }
+
+ pa->lifetime= part->lifetime*ptex.life;
+
+ if(part->type==PART_HAIR)
+ pa->time=0.0f;
+ else if(part->type==PART_REACTOR && (part->flag&PART_REACT_STA_END)==0)
+ pa->time=MAXFRAMEF;
+ else{
+ //icu=find_ipocurve(psys->part->ipo,PART_EMIT_TIME);
+ //if(icu){
+ // calc_icu(icu,100*ptex.time);
+ // ptex.time=icu->curval;
+ //}
+
+ pa->time= part->sta + (part->end - part->sta)*ptex.time;
+ }
+
+
+ if(part->type==PART_HAIR){
+ pa->lifetime=100.0f;
+ }
+ else{
+ icu=find_ipocurve(psys->part->ipo,PART_EMIT_LIFE);
+ if(icu){
+ calc_icu(icu,100*ptex.time);
+ pa->lifetime*=icu->curval;
+ }
+
+ /* need to get every rand even if we don't use them so that randoms don't affect eachother */
+ rand= BLI_frand();
+ if(part->randlife!=0.0)
+ pa->lifetime*= 1.0f - part->randlife*rand;
+ }
+
+ pa->dietime= pa->time+pa->lifetime;
+
+ pa->sizemul= BLI_frand();
+
+ rand= BLI_frand();
+
+ /* while loops are to have a spherical distribution (avoid cubic distribution) */
+ length=2.0f;
+ while(length>1.0){
+ pa->r_ve[0]=2.0f*(BLI_frand()-0.5f);
+ pa->r_ve[1]=2.0f*(BLI_frand()-0.5f);
+ pa->r_ve[2]=2.0f*(BLI_frand()-0.5f);
+ length=VecLength(pa->r_ve);
+ }
+
+ length=2.0f;
+ while(length>1.0){
+ pa->r_ave[0]=2.0f*(BLI_frand()-0.5f);
+ pa->r_ave[1]=2.0f*(BLI_frand()-0.5f);
+ pa->r_ave[2]=2.0f*(BLI_frand()-0.5f);
+ length=VecLength(pa->r_ave);
+ }
+
+ pa->r_rot[0]=2.0f*(BLI_frand()-0.5f);
+ pa->r_rot[1]=2.0f*(BLI_frand()-0.5f);
+ pa->r_rot[2]=2.0f*(BLI_frand()-0.5f);
+ pa->r_rot[3]=2.0f*(BLI_frand()-0.5f);
+
+ NormalQuat(pa->r_rot);
+
+ if(part->distr!=PART_DISTR_GRID){
+ /* any unique random number will do (r_ave[0]) */
+ if(ptex.exist < 0.5*(1.0+pa->r_ave[0]))
+ pa->flag |= PARS_UNEXIST;
+ else
+ pa->flag &= ~PARS_UNEXIST;
+ }
+
+ pa->loop=0;
+ /* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
+ /* usage other than straight after distribute has to handle this index by itself - jahka*/
+ //pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */
+}
+static void initialize_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
+{
+ IpoCurve *icu=0;
+ ParticleData *pa;
+ int p, totpart=psys->totpart;
+
+ for(p=0, pa=psys->particles; p<totpart; p++, pa++)
+ initialize_particle(pa,p,ob,psys,psmd);
+
+ /* store the derived mesh face index for each particle */
+ //if(psys->part->from==PART_FROM_FACE)
+ // psys_calc_dmfaces(ob, psmd->dm, psys);
+
+ icu=find_ipocurve(psys->part->ipo,PART_EMIT_FREQ);
+ if(icu){
+ float time=psys->part->sta, end=psys->part->end;
+ float v1, v2, a=0.0f, t1,t2, d;
+
+ p=0;
+ pa=psys->particles;
+
+ calc_icu(icu,time);
+ v1=icu->curval;
+ if(v1<0.0f) v1=0.0f;
+
+ calc_icu(icu,time+1.0f);
+ v2=icu->curval;
+ if(v2<0.0f) v2=0.0f;
+
+ for(p=0, pa=psys->particles; p<totpart && time<end; p++, pa++){
+ while(a+0.5f*(v1+v2) < (float)(p+1) && time<end){
+ a+=0.5f*(v1+v2);
+ v1=v2;
+ time++;
+ calc_icu(icu,time+1.0f);
+ v2=icu->curval;
+ }
+ if(time<end){
+ if(v1==v2){
+ pa->time=time+((float)(p+1)-a)/v1;
+ }
+ else{
+ d=(float)sqrt(v1*v1-2.0f*(v2-v1)*(a-(float)(p+1)));
+ t1=(-v1+d)/(v2-v1);
+ t2=(-v1-d)/(v2-v1);
+
+ /* the root between 0-1 is the correct one */
+ if(t1>0.0f && t1<=1.0f)
+ pa->time=time+t1;
+ else
+ pa->time=time+t2;
+ }
+ }
+
+ pa->dietime = pa->time+pa->lifetime;
+ pa->flag &= ~PARS_UNEXIST;
+ }
+ for(; p<totpart; p++, pa++){
+ pa->flag |= PARS_UNEXIST;
+ }
+ }
+}
+/* sets particle to the emitter surface with initial velocity & rotation */
+void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifierData *psmd, Object *ob,
+ float dtime, float cfra, float *vg_vel, float *vg_tan, float *vg_rot)
+{
+ ParticleSettings *part;
+ ParticleTexture ptex;
+ ParticleKey state;
+ IpoCurve *icu=0;
+ float fac, nor[3]={0,0,0},loc[3],tloc[3],vel[3]={0.0,0.0,0.0},rot[4],*q2=0;
+ float r_vel[3],r_ave[3],r_rot[4],p_vel[3]={0.0,0.0,0.0};
+ float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0};
+
+ float q_one[4]={1.0,0.0,0.0,0.0}, q_phase[4];
+ part=psys->part;
+
+ ptex.ivel=1.0;
+
+ if(part->from==PART_FROM_PARTICLE){
+ Object *tob;
+ ParticleSystem *tpsys=0;
+ float speed;
+
+ tob=psys->target_ob;
+ if(tob==0)
+ tob=ob;
+
+ tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
+
+ /*TODO: get precise location of particle at birth*/
+
+ state.time=cfra;
+ psys_get_particle_state(tob,tpsys,pa->num,&state,1);
+ psys_get_from_key(&state,loc,nor,rot,0);
+
+ QuatMulVecf(rot,vtan);
+ QuatMulVecf(rot,utan);
+ VECCOPY(r_vel,pa->r_ve);
+ VECCOPY(r_rot,pa->r_rot);
+ VECCOPY(r_ave,pa->r_ave);
+
+ VECCOPY(p_vel,state.vel);
+ speed=Normalize(p_vel);
+ VecMulf(p_vel,Inpf(pa->r_ve,p_vel));
+ VECSUB(p_vel,pa->r_ve,p_vel);
+ Normalize(p_vel);
+ VecMulf(p_vel,speed);
+ }
+ else{
+ /* get precise emitter matrix if particle is born */
+ if(part->type!=PART_HAIR && pa->time < cfra && pa->time >= psys->cfra)
+ where_is_object_time(ob,pa->time);
+
+ /* get birth location from object */
+ psys_particle_on_emitter(ob,psmd,part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan);
+
+ /* save local coordinates for later */
+ VECCOPY(tloc,loc);
+
+ /* get possible textural influence */
+ psys_get_texture(ob,give_current_material(ob,part->omat),psmd,psys,pa,&ptex,MAP_PA_IVEL);
+
+ if(vg_vel){
+ ptex.ivel*=psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_vel);
+ }
+
+ /* particles live in global space so */
+ /* let's convert: */
+ /* -location */
+ Mat4MulVecfl(ob->obmat,loc);
+
+ /* -normal */
+ VECADD(nor,tloc,nor);
+ Mat4MulVecfl(ob->obmat,nor);
+ VECSUB(nor,nor,loc);
+ Normalize(nor);
+
+ /* -tangent */
+ if(part->tanfac!=0.0){
+ float phase=vg_rot?2.0f*(psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_rot)-0.5f):0.0f;
+ VecMulf(vtan,-(float)cos(M_PI*(part->tanphase+phase)));
+ fac=-(float)sin(M_PI*(part->tanphase+phase));
+ VECADDFAC(vtan,vtan,utan,fac);
+
+ VECADD(vtan,tloc,vtan);
+ Mat4MulVecfl(ob->obmat,vtan);
+ VECSUB(vtan,vtan,loc);
+
+ VECCOPY(utan,nor);
+ VecMulf(utan,Inpf(vtan,nor));
+ VECSUB(vtan,vtan,utan);
+
+ Normalize(vtan);
+ }
+
+
+ /* -velocity */
+ if(part->randfac!=0.0){
+ VECADD(r_vel,tloc,pa->r_ve);
+ Mat4MulVecfl(ob->obmat,r_vel);
+ VECSUB(r_vel,r_vel,loc);
+ Normalize(r_vel);
+ }
+
+ /* -angular velocity */
+ if(part->avemode==PART_AVE_RAND){
+ VECADD(r_ave,tloc,pa->r_ave);
+ Mat4MulVecfl(ob->obmat,r_ave);
+ VECSUB(r_ave,r_ave,loc);
+ Normalize(r_ave);
+ }
+
+ /* -rotation */
+ if(part->rotmode==PART_ROT_RAND){
+ QUATCOPY(r_rot,pa->r_rot);
+ Mat4ToQuat(ob->obmat,rot);
+ QuatMul(r_rot,r_rot,rot);
+ }
+ }
+ /* conversion done so now we apply new: */
+ /* -velocity from: */
+ /* *emitter velocity */
+ if(dtime!=0.0 && part->obfac!=0.0){
+ VECSUB(vel,loc,pa->state.co);
+ VecMulf(vel,part->obfac/dtime);
+ }
+
+ /* *emitter normal */
+ if(part->normfac!=0.0)
+ VECADDFAC(vel,vel,nor,part->normfac);
+
+ /* *emitter tangent */
+ if(part->tanfac!=0.0)
+ VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_tan):1.0f));
+
+ /* *texture */
+ /* TODO */
+
+ /* *random */
+ if(part->randfac!=0.0)
+ VECADDFAC(vel,vel,r_vel,part->randfac);
+
+ /* *particle */
+ if(part->partfac!=0.0)
+ VECADDFAC(vel,vel,p_vel,part->partfac);
+
+ icu=find_ipocurve(psys->part->ipo,PART_EMIT_VEL);
+ if(icu){
+ calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
+ ptex.ivel*=icu->curval;
+ }
+
+ VecMulf(vel,ptex.ivel);
+
+ VECCOPY(pa->state.vel,vel);
+
+ /* -location from emitter */
+ VECCOPY(pa->state.co,loc);
+
+ /* -rotation */
+ pa->state.rot[0]=1.0;
+ pa->state.rot[1]=pa->state.rot[2]=pa->state.rot[3]=0.0;
+
+ if(part->rotmode){
+ switch(part->rotmode){
+ case PART_ROT_NOR:
+ VecMulf(nor,-1.0);
+ q2= vectoquat(nor, OB_POSX, OB_POSZ);
+ VecMulf(nor,-1.0);
+ break;
+ case PART_ROT_VEL:
+ VecMulf(vel,-1.0);
+ q2= vectoquat(vel, OB_POSX, OB_POSZ);
+ VecMulf(vel,-1.0);
+ break;
+ case PART_ROT_RAND:
+ q2= r_rot;
+ break;
+ }
+ /* how much to rotate from rest position */
+ QuatInterpol(rot,q_one,q2,part->rotfac);
+
+ /* phase */
+ VecRotToQuat(x_vec,part->phasefac*(float)M_PI,q_phase);
+
+ /* combine amount & phase */
+ QuatMul(pa->state.rot,rot,q_phase);
+ }
+
+ /* -angular velocity */
+
+ pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0;
+
+ if(part->avemode){
+ switch(part->avemode){
+ case PART_AVE_SPIN:
+ VECCOPY(pa->state.ave,vel);
+ break;
+ case PART_AVE_RAND:
+ VECCOPY(pa->state.ave,r_ave);
+ break;
+ }
+ Normalize(pa->state.ave);
+ VecMulf(pa->state.ave,part->avefac);
+
+ icu=find_ipocurve(psys->part->ipo,PART_EMIT_AVE);
+ if(icu){
+ calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
+ VecMulf(pa->state.ave,icu->curval);
+ }
+ }
+
+ pa->dietime=pa->time+pa->lifetime;
+
+ if(pa->time >= cfra)
+ pa->alive=PARS_UNBORN;
+
+ pa->state.time=cfra;
+
+ pa->stick_ob=0;
+ pa->flag&=~PARS_STICKY;
+}
+static void reset_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float dtime, float cfra, int from)
+{
+ ParticleData *pa;
+ int p, totpart=psys->totpart;
+ float *vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
+ float *vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
+ float *vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
+
+ //if (psys->part->from == PART_FROM_FACE)
+ // psys_calc_dmfaces(ob, psmd->dm, psys);
+
+ for(p=from, pa=psys->particles+from; p<totpart; p++, pa++)
+ reset_particle(pa, psys, psmd, ob, dtime, cfra, vg_vel, vg_tan, vg_rot);
+
+ if(vg_vel)
+ MEM_freeN(vg_vel);
+}
+/************************************************/
+/* Keyed particles */
+/************************************************/
+/* a bit of an unintuitive function :) counts objects in a keyed chain and returns 1 if some of them were selected (used in drawing) */
+int psys_count_keyed_targets(Object *ob, ParticleSystem *psys)
+{
+ ParticleSystem *kpsys=psys,*tpsys;
+ ParticleSettings *tpart;
+ Object *kob=ob,*tob;
+ int select=ob->flag&SELECT;
+ short totkeyed=0;
+ Base *base;
+
+ ListBase lb;
+ lb.first=lb.last=0;
+
+ tob=psys->keyed_ob;
+ while(tob){
+ if((tpsys=BLI_findlink(&tob->particlesystem,kpsys->keyed_psys-1))){
+ tpart=tpsys->part;
+
+ if(tpart->phystype==PART_PHYS_KEYED){
+ if(lb.first){
+ for(base=lb.first;base;base=base->next){
+ if(tob==base->object){
+ fprintf(stderr,"Error: loop in keyed chain!\n");
+ BLI_freelistN(&lb);
+ return select;
+ }
+ }
+ }
+ base=MEM_callocN(sizeof(Base), "keyed base");
+ base->object=tob;
+ BLI_addtail(&lb,base);
+
+ if(tob->flag&SELECT)
+ select++;
+ kob=tob;
+ kpsys=tpsys;
+ tob=tpsys->keyed_ob;
+ totkeyed++;
+ }
+ else{
+ tob=0;
+ totkeyed++;
+ }
+ }
+ else
+ tob=0;
+ }
+ psys->totkeyed=totkeyed;
+ BLI_freelistN(&lb);
+ return select;
+}
+void set_keyed_keys(Object *ob, ParticleSystem *psys)
+{
+ Object *kob = ob;
+ ParticleSystem *kpsys = psys;
+ ParticleData *pa;
+ ParticleKey state;
+ int totpart = psys->totpart, i, k, totkeys = psys->totkeyed + 1;
+ float prevtime, nexttime, keyedtime;
+
+ /* no proper targets so let's clear and bail out */
+ if(psys->totkeyed==0){
+ free_keyed_keys(psys);
+ psys->flag &= ~PSYS_KEYED;
+ return;
+ }
+
+ if(totpart && psys->particles->totkey != totkeys){
+ free_keyed_keys(psys);
+
+ psys->particles->keys = MEM_callocN(psys->totpart * totkeys * sizeof(ParticleKey),"Keyed keys");
+
+ psys->particles->totkey = totkeys;
+
+ for(i=1, pa=psys->particles+1; i<totpart; i++,pa++){
+ pa->keys = (pa-1)->keys + totkeys;
+ pa->totkey = totkeys;
+ }
+ }
+
+ psys->flag &= ~PSYS_KEYED;
+ state.time=-1.0;
+
+ for(k=0; k<totkeys; k++){
+ for(i=0,pa=psys->particles; i<totpart; i++, pa++){
+ psys_get_particle_state(kob, kpsys, i%kpsys->totpart, pa->keys + k, 1);
+
+ if(k==0)
+ pa->keys->time = pa->time;
+ else if(k==totkeys-1)
+ (pa->keys + k)->time = pa->time + pa->lifetime;
+ else{
+ if(psys->flag & PSYS_KEYED_TIME){
+ prevtime = (pa->keys + k - 1)->time;
+ nexttime = pa->time + pa->lifetime;
+ keyedtime = kpsys->part->keyed_time;
+ (pa->keys + k)->time = (1.0f - keyedtime) * prevtime + keyedtime * nexttime;
+ }
+ else
+ (pa->keys+k)->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
+ }
+ }
+ if(kpsys->keyed_ob){
+ kob = kpsys->keyed_ob;
+ kpsys = BLI_findlink(&kob->particlesystem, kpsys->keyed_psys - 1);
+ }
+ }
+
+ psys->flag |= PSYS_KEYED;
+}
+/************************************************/
+/* Reactors */
+/************************************************/
+static void push_reaction(Object* ob, ParticleSystem *psys, int pa_num, int event, ParticleKey *state)
+{
+ Object *rob;
+ ParticleSystem *rpsys;
+ ParticleSettings *rpart;
+ ParticleData *pa;
+ ListBase *lb=&psys->effectors;
+ ParticleEffectorCache *ec;
+ ParticleReactEvent *re;
+
+ if(lb->first) for(ec = lb->first; ec; ec= ec->next){
+ if(ec->type & PSYS_EC_REACTOR){
+ /* all validity checks already done in add_to_effectors */
+ rob=ec->ob;
+ rpsys=BLI_findlink(&rob->particlesystem,ec->psys_nbr);
+ rpart=rpsys->part;
+ if(rpsys->part->reactevent==event){
+ pa=psys->particles+pa_num;
+ re= MEM_callocN(sizeof(ParticleReactEvent), "react event");
+ re->event=event;
+ re->pa_num = pa_num;
+ re->ob = ob;
+ re->psys = psys;
+ re->size = pa->size;
+ copy_particle_key(&re->state,state,1);
+
+ switch(event){
+ case PART_EVENT_DEATH:
+ re->time=pa->dietime;
+ break;
+ case PART_EVENT_COLLIDE:
+ re->time=state->time;
+ break;
+ case PART_EVENT_NEAR:
+ re->time=state->time;
+ break;
+ }
+
+ BLI_addtail(&rpsys->reactevents, re);
+ }
+ }
+ }
+}
+static void react_to_events(ParticleSystem *psys, int pa_num)
+{
+ ParticleSettings *part=psys->part;
+ ParticleData *pa=psys->particles+pa_num;
+ ParticleReactEvent *re=psys->reactevents.first;
+ int birth=0;
+ float dist=0.0f;
+
+ for(re=psys->reactevents.first; re; re=re->next){
+ birth=0;
+ if(part->from==PART_FROM_PARTICLE){
+ if(pa->num==re->pa_num){
+ if(re->event==PART_EVENT_NEAR){
+ ParticleData *tpa = re->psys->particles+re->pa_num;
+ float pa_time=tpa->time + pa->foffset*tpa->lifetime;
+ if(re->time > pa_time){
+ pa->alive=PARS_ALIVE;
+ pa->time=pa_time;
+ pa->dietime=pa->time+pa->lifetime;
+ }
+ }
+ else{
+ if(pa->alive==PARS_UNBORN){
+ pa->alive=PARS_ALIVE;
+ pa->time=re->time;
+ pa->dietime=pa->time+pa->lifetime;
+ }
+ }
+ }
+ }
+ else{
+ dist=VecLenf(pa->state.co, re->state.co);
+ if(dist <= re->size){
+ if(pa->alive==PARS_UNBORN){
+ pa->alive=PARS_ALIVE;
+ pa->time=re->time;
+ pa->dietime=pa->time+pa->lifetime;
+ birth=1;
+ }
+ if(birth || part->flag&PART_REACT_MULTIPLE){
+ float vec[3];
+ VECSUB(vec,pa->state.co, re->state.co);
+ if(birth==0)
+ VecMulf(vec,(float)pow(1.0f-dist/re->size,part->reactshape));
+ VECADDFAC(pa->state.vel,pa->state.vel,vec,part->reactfac);
+ VECADDFAC(pa->state.vel,pa->state.vel,re->state.vel,part->partfac);
+ }
+ if(birth)
+ VecMulf(pa->state.vel,(float)pow(1.0f-dist/re->size,part->reactshape));
+ }
+ }
+ }
+}
+void psys_get_reactor_target(Object *ob, ParticleSystem *psys, Object **target_ob, ParticleSystem **target_psys)
+{
+ Object *tob;
+
+ tob=psys->target_ob;
+ if(tob==0)
+ tob=ob;
+
+ *target_psys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
+ if(*target_psys)
+ *target_ob=tob;
+ else
+ *target_ob=0;
+}
+/************************************************/
+/* Point Cache */
+/************************************************/
+void clear_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
+{
+ ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
+ int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
+
+ BKE_ptcache_id_clear((ID *)ob, PTCACHE_CLEAR_ALL, cfra, stack_index);
+}
+static void write_particles_to_cache(Object *ob, ParticleSystem *psys, int cfra)
+{
+ FILE *fp = NULL;
+ ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
+ ParticleData *pa;
+ int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
+ int i, totpart = psys->totpart;
+
+ if(totpart == 0) return;
+
+ fp = BKE_ptcache_id_fopen((ID *)ob, 'w', cfra, stack_index);
+ if(!fp) return;
+
+ for(i=0, pa=psys->particles; i<totpart; i++, pa++)
+ fwrite(&pa->state, sizeof(ParticleKey), 1, fp);
+
+ fclose(fp);
+}
+static int get_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
+{
+ FILE *fp = NULL;
+ ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
+ ParticleData *pa;
+ int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
+ int i, totpart = psys->totpart, ret = 1;
+
+ if(totpart == 0) return 0;
+
+ fp = BKE_ptcache_id_fopen((ID *)ob, 'r', cfra, stack_index);
+ if(!fp)
+ ret = 0;
+ else {
+ for(i=0, pa=psys->particles; i<totpart; i++, pa++)
+ if((fread(&pa->state, sizeof(ParticleKey), 1, fp)) != 1) {
+ ret = 0;
+ break;
+ }
+
+ fclose(fp);
+ }
+
+ return ret;
+}
+/************************************************/
+/* Effectors */
+/************************************************/
+static float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
+{
+ float eff_dir[3], temp[3];
+ float falloff=1.0, fac, r_fac;
+
+ VecCopyf(eff_dir,eff_velocity);
+ Normalize(eff_dir);
+
+ if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
+ falloff=0.0f;
+ else switch(pd->falloff){
+ case PFIELD_FALL_SPHERE:
+ fac=VecLength(vec_to_part);
+ if(pd->flag&PFIELD_USEMAX && fac>pd->maxdist){
+ falloff=0.0f;
+ break;
+ }
+
+ if(pd->flag & PFIELD_USEMIN){
+ if(fac>pd->mindist)
+ fac+=1.0f-pd->mindist;
+ else
+ fac=1.0f;
+ }
+ else if(fac<0.001)
+ fac=0.001f;
+
+ falloff=1.0f/(float)pow((double)fac,(double)pd->f_power);
+ break;
+
+ case PFIELD_FALL_TUBE:
+ fac=Inpf(vec_to_part,eff_dir);
+ if(pd->flag&PFIELD_USEMAX && ABS(fac)>pd->maxdist){
+ falloff=0.0f;
+ break;
+ }
+
+ VECADDFAC(temp,vec_to_part,eff_dir,-fac);
+ r_fac=VecLength(temp);
+ if(pd->flag&PFIELD_USEMAXR && r_fac>pd->maxrad){
+ falloff=0.0f;
+ break;
+ }
+
+ fac=ABS(fac);
+
+
+ if(pd->flag & PFIELD_USEMIN){
+ if(fac>pd->mindist)
+ fac+=1.0f-pd->mindist;
+ else
+ fac=1.0f;
+ }
+ else if(fac<0.001)
+ fac=0.001f;
+
+ if(pd->flag & PFIELD_USEMINR){
+ if(r_fac>pd->minrad)
+ r_fac+=1.0f-pd->minrad;
+ else
+ r_fac=1.0f;
+ }
+ else if(r_fac<0.001)
+ r_fac=0.001f;
+
+ falloff=1.0f/((float)pow((double)fac,(double)pd->f_power)*(float)pow((double)r_fac,(double)pd->f_power_r));
+
+ break;
+ case PFIELD_FALL_CONE:
+ fac=Inpf(vec_to_part,eff_dir);
+ if(pd->flag&PFIELD_USEMAX && ABS(fac)>pd->maxdist){
+ falloff=0.0f;
+ break;
+ }
+ r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
+ if(pd->flag&PFIELD_USEMAXR && r_fac>pd->maxrad){
+ falloff=0.0f;
+ break;
+ }
+
+ if(pd->flag & PFIELD_USEMIN){
+ if(fac>pd->mindist)
+ fac+=1.0f-pd->mindist;
+ else
+ fac=1.0f;
+ }
+ else if(fac<0.001)
+ fac=0.001f;
+
+ if(pd->flag & PFIELD_USEMINR){
+ if(r_fac>pd->minrad)
+ r_fac+=1.0f-pd->minrad;
+ else
+ r_fac=1.0f;
+ }
+ else if(r_fac<0.001)
+ r_fac=0.001f;
+
+ falloff=1.0f/((float)pow((double)fac,(double)pd->f_power)*(float)pow((double)r_fac,(double)pd->f_power_r));
+
+ break;
+// case PFIELD_FALL_INSIDE:
+ //for(i=0; i<totface; i++,mface++){
+ // VECCOPY(v1,mvert[mface->v1].co);
+ // VECCOPY(v2,mvert[mface->v2].co);
+ // VECCOPY(v3,mvert[mface->v3].co);
+
+ // if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
+ // if(from==PART_FROM_FACE)
+ // (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ // else /* store number of intersections */
+ // (pa+(int)(lambda*size[a])*a0mul)->loop++;
+ // }
+ //
+ // if(mface->v4){
+ // VECCOPY(v4,mvert[mface->v4].co);
+
+ // if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
+ // if(from==PART_FROM_FACE)
+ // (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ // else
+ // (pa+(int)(lambda*size[a])*a0mul)->loop++;
+ // }
+ // }
+ //}
+
+// break;
+ }
+
+ return falloff;
+}
+static void do_physical_effector(short type, float force_val, float distance, float falloff, float size, float damp,
+ float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar)
+{
+ float mag_vec[3]={0,0,0};
+ float temp[3], temp2[3];
+ float eff_vel[3];
+
+ VecCopyf(eff_vel,eff_velocity);
+ Normalize(eff_vel);
+
+ switch(type){
+ case PFIELD_WIND:
+ VECCOPY(mag_vec,eff_vel);
+
+ VecMulf(mag_vec,force_val*falloff);
+ VecAddf(field,field,mag_vec);
+ break;
+
+ case PFIELD_FORCE:
+ if(planar)
+ Projf(mag_vec,vec_to_part,eff_vel);
+ else
+ VecCopyf(mag_vec,vec_to_part);
+
+ VecMulf(mag_vec,force_val*falloff);
+ VecAddf(field,field,mag_vec);
+ break;
+
+ case PFIELD_VORTEX:
+ Crossf(mag_vec,eff_vel,vec_to_part);
+ Normalize(mag_vec);
+
+ VecMulf(mag_vec,force_val*distance*falloff);
+ VecAddf(field,field,mag_vec);
+
+ break;
+ case PFIELD_MAGNET:
+ if(planar)
+ VecCopyf(temp,eff_vel);
+ else
+ /* magnetic field of a moving charge */
+ Crossf(temp,eff_vel,vec_to_part);
+
+ Crossf(temp2,velocity,temp);
+ VecAddf(mag_vec,mag_vec,temp2);
+
+ VecMulf(mag_vec,force_val*falloff);
+ VecAddf(field,field,mag_vec);
+ break;
+ case PFIELD_HARMONIC:
+ if(planar)
+ Projf(mag_vec,vec_to_part,eff_vel);
+ else
+ VecCopyf(mag_vec,vec_to_part);
+
+ VecMulf(mag_vec,force_val*falloff);
+ VecSubf(field,field,mag_vec);
+
+ VecCopyf(mag_vec,velocity);
+ /* 1.9 is an experimental value to get critical damping at damp=1.0 */
+ VecMulf(mag_vec,damp*1.9f*(float)sqrt(force_val));
+ VecSubf(field,field,mag_vec);
+ break;
+ case PFIELD_NUCLEAR:
+ /*pow here is root of cosine expression below*/
+ //rad=(float)pow(2.0,-1.0/power)*distance/size;
+ //VECCOPY(mag_vec,vec_to_part);
+ //Normalize(mag_vec);
+ //VecMulf(mag_vec,(float)cos(3.0*M_PI/2.0*(1.0-1.0/(pow(rad,power)+1.0)))/(rad+0.2f));
+ //VECADDFAC(field,field,mag_vec,force_val);
+ break;
+ }
+}
+static void do_texture_effector(Tex *tex, short mode, short is_2d, float nabla, short object, float *pa_co, float obmat[4][4], float force_val, float falloff, float *field)
+{
+ TexResult result[4];
+ float tex_co[3], strength, mag_vec[3];
+ int i;
+
+ if(tex==0) return;
+
+ for(i=0; i<4; i++)
+ result[i].nor=0;
+
+ strength= force_val*falloff;///(float)pow((double)distance,(double)power);
+
+ VECCOPY(tex_co,pa_co);
+
+ if(is_2d){
+ float fac=-Inpf(tex_co,obmat[2]);
+ VECADDFAC(tex_co,tex_co,obmat[2],fac);
+ }
+
+ if(object){
+ VecSubf(tex_co,tex_co,obmat[3]);
+ Mat4Mul3Vecfl(obmat,tex_co);
+ }
+
+ multitex_ext(tex, tex_co, NULL,NULL, 1, result);
+
+ if(mode==PFIELD_TEX_RGB){
+ mag_vec[0]= (0.5f-result->tr)*strength;
+ mag_vec[1]= (0.5f-result->tg)*strength;
+ mag_vec[2]= (0.5f-result->tb)*strength;
+ }
+ else{
+ strength/=nabla;
+
+ tex_co[0]+= nabla;
+ multitex_ext(tex, tex_co, NULL,NULL, 1, result+1);
+
+ tex_co[0]-= nabla;
+ tex_co[1]+= nabla;
+ multitex_ext(tex, tex_co, NULL,NULL, 1, result+2);
+
+ tex_co[1]-= nabla;
+ tex_co[2]+= nabla;
+ multitex_ext(tex, tex_co, NULL,NULL, 1, result+3);
+
+ if(mode==PFIELD_TEX_GRAD){
+ mag_vec[0]= (result[0].tin-result[1].tin)*strength;
+ mag_vec[1]= (result[0].tin-result[2].tin)*strength;
+ mag_vec[2]= (result[0].tin-result[3].tin)*strength;
+ }
+ else{ /*PFIELD_TEX_CURL*/
+ float dbdy,dgdz,drdz,dbdx,dgdx,drdy;
+
+ dbdy= result[2].tb-result[0].tb;
+ dgdz= result[3].tg-result[0].tg;
+ drdz= result[3].tr-result[0].tr;
+ dbdx= result[1].tb-result[0].tb;
+ dgdx= result[1].tg-result[0].tg;
+ drdy= result[2].tr-result[0].tr;
+
+ mag_vec[0]=(dbdy-dgdz)*strength;
+ mag_vec[1]=(drdz-dbdx)*strength;
+ mag_vec[2]=(dgdx-drdy)*strength;
+ }
+ }
+
+ if(is_2d){
+ float fac=-Inpf(mag_vec,obmat[2]);
+ VECADDFAC(mag_vec,mag_vec,obmat[2],fac);
+ }
+
+ VecAddf(field,field,mag_vec);
+}
+static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSystem *psys)
+{
+ ParticleEffectorCache *ec;
+ PartDeflect *pd= ob->pd;
+ short type=0,i;
+
+ if(pd && ob != obsrc){
+ if(pd->forcefield == PFIELD_GUIDE) {
+ if(ob->type==OB_CURVE) {
+ Curve *cu= ob->data;
+ if(cu->flag & CU_PATH) {
+ if(cu->path==NULL || cu->path->data==NULL)
+ makeDispListCurveTypes(ob, 0);
+ if(cu->path && cu->path->data) {
+ type |= PSYS_EC_EFFECTOR;
+ }
+ }
+ }
+ }
+ else if(pd->forcefield)
+ type |= PSYS_EC_EFFECTOR;
+ }
+
+ if(pd && pd->deflect)
+ type |= PSYS_EC_DEFLECT;
+
+ if(type){
+ ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
+ ec->ob= ob;
+ ec->type=type;
+ ec->distances=0;
+ ec->locations=0;
+ BLI_addtail(lb, ec);
+ }
+
+ type=0;
+
+ /* add particles as different effectors */
+ if(ob->particlesystem.first){
+ ParticleSystem *epsys=ob->particlesystem.first;
+ ParticleSettings *epart=0;
+ Object *tob;
+
+ for(i=0; epsys; epsys=epsys->next,i++){
+ type=0;
+ if(epsys!=psys){
+ epart=epsys->part;
+
+ if(epsys->part->pd && epsys->part->pd->forcefield)
+ type=PSYS_EC_PARTICLE;
+
+ if(epart->type==PART_REACTOR) {
+ tob=epsys->target_ob;
+ if(tob==0)
+ tob=ob;
+ if(BLI_findlink(&tob->particlesystem,epsys->target_psys-1)==psys)
+ type|=PSYS_EC_REACTOR;
+ }
+
+ if(type){
+ ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
+ ec->ob= ob;
+ ec->type=type;
+ ec->psys_nbr=i;
+ BLI_addtail(lb, ec);
+ }
+ }
+ }
+
+ }
+}
+void psys_init_effectors(Object *obsrc, Group *group, ParticleSystem *psys)
+{
+ ListBase *listb=&psys->effectors;
+ Base *base;
+ unsigned int layer= obsrc->lay;
+
+ listb->first=listb->last=0;
+
+ if(group) {
+ GroupObject *go;
+
+ for(go= group->gobject.first; go; go= go->next) {
+ if( (go->ob->lay & layer) && (go->ob->pd || go->ob->particlesystem.first)) {
+ add_to_effectors(listb, go->ob, obsrc, psys);
+ }
+ }
+ }
+ else {
+ for(base = G.scene->base.first; base; base= base->next) {
+ if( (base->lay & layer) && (base->object->pd || base->object->particlesystem.first)) {
+ add_to_effectors(listb, base->object, obsrc, psys);
+ }
+ }
+ }
+}
+
+void psys_end_effectors(ParticleSystem *psys)
+{
+ ListBase *lb=&psys->effectors;
+ if(lb->first) {
+ ParticleEffectorCache *ec;
+ for(ec= lb->first; ec; ec= ec->next){
+ if(ec->distances)
+ MEM_freeN(ec->distances);
+
+ if(ec->locations)
+ MEM_freeN(ec->locations);
+
+ if(ec->face_minmax)
+ MEM_freeN(ec->face_minmax);
+
+ if(ec->vert_cos)
+ MEM_freeN(ec->vert_cos);
+
+ if(ec->tree)
+ BLI_kdtree_free(ec->tree);
+ }
+
+ BLI_freelistN(lb);
+ }
+}
+
+static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
+{
+ ListBase *lb=&psys->effectors;
+ ParticleEffectorCache *ec;
+ ParticleSettings *part=psys->part;
+ ParticleData *pa;
+ float vec2[3],loc[3],*co=0;
+ int p,totpart,totvert;
+
+ for(ec= lb->first; ec; ec= ec->next) {
+ PartDeflect *pd= ec->ob->pd;
+
+ if(ec->type==PSYS_EC_EFFECTOR && pd->forcefield==PFIELD_GUIDE && ec->ob->type==OB_CURVE
+ && part->phystype!=PART_PHYS_BOIDS) {
+ float vec[4];
+
+ where_on_path(ec->ob, 0.0, vec, vec2);
+
+ Mat4MulVecfl(ec->ob->obmat,vec);
+ Mat4Mul3Vecfl(ec->ob->obmat,vec2);
+
+ QUATCOPY(ec->firstloc,vec);
+ VECCOPY(ec->firstdir,vec2);
+
+ totpart=psys->totpart;
+
+ if(totpart){
+ ec->distances=MEM_callocN(totpart*sizeof(float),"particle distances");
+ ec->locations=MEM_callocN(totpart*3*sizeof(float),"particle locations");
+
+ for(p=0,pa=psys->particles; p<totpart; p++, pa++){
+ psys_particle_on_emitter(ob,psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0);
+ Mat4MulVecfl(ob->obmat,loc);
+ ec->distances[p]=VecLenf(loc,vec);
+ VECSUB(loc,loc,vec);
+ VECCOPY(ec->locations+3*p,loc);
+ }
+ }
+ }
+ else if(ec->type==PSYS_EC_DEFLECT){
+ DerivedMesh *dm;
+ MFace *mface=0;
+ MVert *mvert=0;
+ int i, totface;
+ float v1[3],v2[3],v3[3],v4[4], *min, *max;
+
+ if(ob==ec->ob)
+ dm=psmd->dm;
+ else{
+ psys_disable_all(ec->ob);
+
+ dm=mesh_get_derived_final(ec->ob,0);
+
+ psys_enable_all(ec->ob);
+ }
+
+ if(dm){
+ totvert=dm->getNumVerts(dm);
+ totface=dm->getNumFaces(dm);
+ mface=dm->getFaceDataArray(dm,CD_MFACE);
+ mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+ /* Decide which is faster to calculate by the amount of*/
+ /* matrice multiplications needed to convert spaces. */
+ /* With size deflect we have to convert allways because */
+ /* the object can be scaled nonuniformly (sphere->ellipsoid). */
+ if(totvert<2*psys->totpart || part->flag & PART_SIZE_DEFL){
+ co=ec->vert_cos=MEM_callocN(sizeof(float)*3*totvert,"Particle deflection vert cos");
+ /* convert vert coordinates to global (particle) coordinates */
+ for(i=0; i<totvert; i++, co+=3){
+ VECCOPY(co,mvert[i].co);
+ Mat4MulVecfl(ec->ob->obmat,co);
+ }
+ co=ec->vert_cos;
+ }
+ else
+ ec->vert_cos=0;
+
+ INIT_MINMAX(ec->ob_minmax,ec->ob_minmax+3);
+
+ min=ec->face_minmax=MEM_callocN(sizeof(float)*6*totface,"Particle deflection face minmax");
+ max=min+3;
+
+ for(i=0; i<totface; i++,mface++,min+=6,max+=6){
+ if(co){
+ VECCOPY(v1,co+3*mface->v1);
+ VECCOPY(v2,co+3*mface->v2);
+ VECCOPY(v3,co+3*mface->v3);
+ }
+ else{
+ VECCOPY(v1,mvert[mface->v1].co);
+ VECCOPY(v2,mvert[mface->v2].co);
+ VECCOPY(v3,mvert[mface->v3].co);
+ }
+ INIT_MINMAX(min,max);
+ DO_MINMAX(v1,min,max);
+ DO_MINMAX(v2,min,max);
+ DO_MINMAX(v3,min,max);
+
+ if(mface->v4){
+ if(co){
+ VECCOPY(v4,co+3*mface->v4);
+ }
+ else{
+ VECCOPY(v4,mvert[mface->v4].co);
+ }
+ DO_MINMAX(v4,min,max);
+ }
+
+ DO_MINMAX(min,ec->ob_minmax,ec->ob_minmax+3);
+ DO_MINMAX(max,ec->ob_minmax,ec->ob_minmax+3);
+ }
+ }
+ else
+ ec->face_minmax=0;
+ }
+ else if(ec->type==PSYS_EC_PARTICLE){
+ if(psys->part->phystype==PART_PHYS_BOIDS){
+ Object *eob = ec->ob;
+ ParticleSystem *epsys;
+ ParticleSettings *epart;
+ ParticleData *epa;
+ ParticleKey state;
+ PartDeflect *pd;
+ int totepart, p;
+ epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
+ epart= epsys->part;
+ pd= epart->pd;
+ totepart= epsys->totpart;
+ if(pd->forcefield==PFIELD_FORCE && totepart){
+ KDTree *tree;
+
+ tree=BLI_kdtree_new(totepart);
+ ec->tree=tree;
+
+ for(p=0, epa=epsys->particles; p<totepart; p++,epa++)
+ if(epa->alive==PARS_ALIVE && psys_get_particle_state(eob,epsys,p,&state,0))
+ BLI_kdtree_insert(tree, p, state.co, NULL);
+
+ BLI_kdtree_balance(tree);
+ }
+ }
+ }
+ }
+}
+
+
+/* calculate forces that all effectors apply to a particle*/
+static void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, ParticleSystem *psys, float *force_field, float *vel,float framestep, float cfra)
+{
+ Object *eob;
+ ParticleSystem *epsys;
+ ParticleSettings *epart;
+ ParticleData *epa;
+ ParticleKey estate;
+ PartDeflect *pd;
+ ListBase *lb=&psys->effectors;
+ ParticleEffectorCache *ec;
+ float distance, vec_to_part[3];
+ float falloff;
+ int p;
+
+ /* check all effector objects for interaction */
+ if(lb->first){
+ for(ec = lb->first; ec; ec= ec->next){
+ eob= ec->ob;
+ if(ec->type & PSYS_EC_EFFECTOR){
+ pd=eob->pd;
+ if(psys->part->type!=PART_HAIR && psys->part->integrator)
+ where_is_object_time(eob,cfra);
+ /* Get IPO force strength and fall off values here */
+ //if (has_ipo_code(eob->ipo, OB_PD_FSTR))
+ // force_val = IPO_GetFloatValue(eob->ipo, OB_PD_FSTR, cfra);
+ //else
+ // force_val = pd->f_strength;
+
+ //if (has_ipo_code(eob->ipo, OB_PD_FFALL))
+ // ffall_val = IPO_GetFloatValue(eob->ipo, OB_PD_FFALL, cfra);
+ //else
+ // ffall_val = pd->f_power;
+
+ //if (has_ipo_code(eob->ipo, OB_PD_FMAXD))
+ // maxdist = IPO_GetFloatValue(eob->ipo, OB_PD_FMAXD, cfra);
+ //else
+ // maxdist = pd->maxdist;
+
+ /* use center of object for distance calculus */
+ //obloc= eob->obmat[3];
+ VecSubf(vec_to_part, state->co, eob->obmat[3]);
+ distance = VecLength(vec_to_part);
+
+ falloff=effector_falloff(pd,eob->obmat[2],vec_to_part);
+
+ if(falloff<=0.0f)
+ ; /* don't do anything */
+ else if(pd->forcefield==PFIELD_TEXTURE)
+ do_texture_effector(pd->tex, pd->tex_mode, pd->flag&PFIELD_TEX_2D, pd->tex_nabla,
+ pd->flag & PFIELD_TEX_OBJECT, state->co, eob->obmat,
+ pd->f_strength, falloff, force_field);
+ else
+ do_physical_effector(pd->forcefield,pd->f_strength,distance,
+ falloff,pd->f_dist,pd->f_damp,eob->obmat[2],vec_to_part,
+ pa->state.vel,force_field,pd->flag&PFIELD_PLANAR);
+ }
+ if(ec->type & PSYS_EC_PARTICLE){
+ int totepart;
+ epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
+ epart= epsys->part;
+ pd= epart->pd;
+ totepart= epsys->totpart;
+
+ if(pd->forcefield==PFIELD_HARMONIC){
+ /* every particle is mapped to only one harmonic effector particle */
+ p= pa_no%epsys->totpart;
+ totepart= p+1;
+ }
+ else{
+ p=0;
+ }
+
+ epsys->lattice=psys_get_lattice(ob,psys);
+
+ for(; p<totepart; p++){
+ epa = epsys->particles + p;
+ estate.time=-1.0;
+ if(psys_get_particle_state(eob,epsys,p,&estate,0)){
+ VECSUB(vec_to_part, state->co, estate.co);
+ distance = VecLength(vec_to_part);
+
+ //if(pd->forcefield==PFIELD_HARMONIC){
+ // //if(cfra < epa->time + radius){ /* radius is fade-in in ui */
+ // // eforce*=(cfra-epa->time)/radius;
+ // //}
+ //}
+ //else{
+ // /* Limit minimum distance to effector particle so that */
+ // /* the force is not too big */
+ // if (distance < 0.001) distance = 0.001f;
+ //}
+
+ falloff=effector_falloff(pd,estate.vel,vec_to_part);
+
+ if(falloff<=0.0f)
+ ; /* don't do anything */
+ else
+ do_physical_effector(pd->forcefield,pd->f_strength,distance,
+ falloff,epart->size,pd->f_damp,estate.vel,vec_to_part,
+ state->vel,force_field,0);
+ }
+ else if(pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
+ /* first step after key release */
+ psys_get_particle_state(eob,epsys,p,&estate,1);
+ VECADD(vel,vel,estate.vel);
+ /* TODO: add rotation handling here too */
+ }
+ }
+
+ if(epsys->lattice){
+ end_latt_deform();
+ epsys->lattice=0;
+ }
+ }
+ }
+ }
+}
+
+/************************************************/
+/* Newtonian physics */
+/************************************************/
+/* gathers all forces that effect particles and calculates a new state for the particle */
+static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, float timestep, float dfra, float cfra, ParticleKey *state)
+{
+ ParticleKey states[5], tkey;
+ float force[3],tvel[3],dx[4][3],dv[4][3];
+ float dtime=dfra*timestep, time, pa_mass=part->mass, fac, fra=psys->cfra;
+ int i, steps=1;
+
+ /* maintain angular velocity */
+ VECCOPY(state->ave,pa->state.ave);
+
+ if(part->flag & PART_SIZEMASS)
+ pa_mass*=pa->size;
+
+ switch(part->integrator){
+ case PART_INT_EULER:
+ steps=1;
+ break;
+ case PART_INT_MIDPOINT:
+ steps=2;
+ break;
+ case PART_INT_RK4:
+ steps=4;
+ break;
+ }
+
+ copy_particle_key(states,&pa->state,1);
+
+ for(i=0; i<steps; i++){
+ force[0]=force[1]=force[2]=0.0;
+ tvel[0]=tvel[1]=tvel[2]=0.0;
+ /* add effectors */
+ do_effectors(pa_no,pa,states+i,ob,psys,force,tvel,dfra,fra);
+
+ /* calculate air-particle interaction */
+ if(part->dragfac!=0.0f){
+ fac=-part->dragfac*pa->size*pa->size*VecLength(states[i].vel);
+ VECADDFAC(force,force,states[i].vel,fac);
+ }
+
+ /* brownian force */
+ if(part->brownfac!=0.0){
+ force[0]+=(BLI_frand()-0.5f)*part->brownfac;
+ force[1]+=(BLI_frand()-0.5f)*part->brownfac;
+ force[2]+=(BLI_frand()-0.5f)*part->brownfac;
+ }
+
+ /* force to acceleration*/
+ VecMulf(force,1.0f/pa_mass);
+
+ /* add global acceleration (gravitation) */
+ VECADD(force,force,part->acc);
+
+ //VecMulf(force,dtime);
+
+ /* calculate next state */
+ VECADD(states[i].vel,states[i].vel,tvel);
+
+ //VecMulf(force,0.5f*dt);
+ switch(part->integrator){
+ case PART_INT_EULER:
+ VECADDFAC(state->co,states->co,states->vel,dtime);
+ VECADDFAC(state->vel,states->vel,force,dtime);
+ break;
+ case PART_INT_MIDPOINT:
+ if(i==0){
+ VECADDFAC(states[1].co,states->co,states->vel,dtime*0.5f);
+ VECADDFAC(states[1].vel,states->vel,force,dtime*0.5f);
+ fra=psys->cfra+0.5f*dfra;
+ }
+ else{
+ VECADDFAC(state->co,states->co,states[1].vel,dtime);
+ VECADDFAC(state->vel,states->vel,force,dtime);
+ }
+ break;
+ case PART_INT_RK4:
+ switch(i){
+ case 0:
+ VECCOPY(dx[0],states->vel);
+ VecMulf(dx[0],dtime);
+ VECCOPY(dv[0],force);
+ VecMulf(dv[0],dtime);
+
+ VECADDFAC(states[1].co,states->co,dx[0],0.5f);
+ VECADDFAC(states[1].vel,states->vel,dv[0],0.5f);
+ fra=psys->cfra+0.5f*dfra;
+ break;
+ case 1:
+ VECADDFAC(dx[1],states->vel,dv[0],0.5f);
+ VecMulf(dx[1],dtime);
+ VECCOPY(dv[1],force);
+ VecMulf(dv[1],dtime);
+
+ VECADDFAC(states[2].co,states->co,dx[1],0.5f);
+ VECADDFAC(states[2].vel,states->vel,dv[1],0.5f);
+ break;
+ case 2:
+ VECADDFAC(dx[2],states->vel,dv[1],0.5f);
+ VecMulf(dx[2],dtime);
+ VECCOPY(dv[2],force);
+ VecMulf(dv[2],dtime);
+
+ VECADD(states[3].co,states->co,dx[2]);
+ VECADD(states[3].vel,states->vel,dv[2]);
+ fra=cfra;
+ break;
+ case 3:
+ VECADD(dx[3],states->vel,dv[2]);
+ VecMulf(dx[3],dtime);
+ VECCOPY(dv[3],force);
+ VecMulf(dv[3],dtime);
+
+ VECADDFAC(state->co,states->co,dx[0],1.0f/6.0f);
+ VECADDFAC(state->co,state->co,dx[1],1.0f/3.0f);
+ VECADDFAC(state->co,state->co,dx[2],1.0f/3.0f);
+ VECADDFAC(state->co,state->co,dx[3],1.0f/6.0f);
+
+ VECADDFAC(state->vel,states->vel,dv[0],1.0f/6.0f);
+ VECADDFAC(state->vel,state->vel,dv[1],1.0f/3.0f);
+ VECADDFAC(state->vel,state->vel,dv[2],1.0f/3.0f);
+ VECADDFAC(state->vel,state->vel,dv[3],1.0f/6.0f);
+ }
+ break;
+ }
+ //VECADD(states[i+1].co,states[i+1].co,force);
+ }
+
+ /* damp affects final velocity */
+ if(part->dampfac!=0.0)
+ VecMulf(state->vel,1.0f-part->dampfac);
+
+ /* finally we do guides */
+ time=(cfra-pa->time)/pa->lifetime;
+ CLAMP(time,0.0,1.0);
+
+ VECCOPY(tkey.co,state->co);
+ VECCOPY(tkey.vel,state->vel);
+ tkey.time=state->time;
+ if(do_guide(&tkey,pa_no,time,&psys->effectors)){
+ VECCOPY(state->co,tkey.co);
+ /* guides don't produce valid velocity */
+ VECSUB(state->vel,tkey.co,pa->state.co);
+ VecMulf(state->vel,1.0f/dtime);
+ state->time=tkey.time;
+ }
+}
+static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep, ParticleKey *state)
+{
+ float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep;
+
+ if((part->flag & PART_ROT_DYN)==0){
+ if(ELEM(part->avemode,PART_AVE_SPIN,PART_AVE_VEL)){
+ float angle;
+ float len1 = VecLength(pa->state.vel);
+ float len2 = VecLength(state->vel);
+
+ if(len1==0.0f || len2==0.0f)
+ state->ave[0]=state->ave[1]=state->ave[2]=0.0f;
+ else{
+ Crossf(state->ave,pa->state.vel,state->vel);
+ Normalize(state->ave);
+ angle=Inpf(pa->state.vel,state->vel)/(len1*len2);
+ VecMulf(state->ave,saacos(angle)/dtime);
+ }
+ }
+
+ if(part->avemode == PART_AVE_SPIN)
+ VecRotToQuat(state->vel,dtime*part->avefac,rot2);
+ }
+
+ rotfac=VecLength(state->ave);
+ if(rotfac==0.0){ /* QuatOne (in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */
+ rot1[0]=1.0;
+ rot1[1]=rot1[2]=rot1[3]=0;
+ }
+ else{
+ VecRotToQuat(state->ave,rotfac*dtime,rot1);
+ }
+ QuatMul(state->rot,rot1,pa->state.rot);
+ QuatMul(state->rot,rot2,state->rot);
+
+ /* keep rotation quat in good health */
+ NormalQuat(state->rot);
+}
+
+/* convert from triangle barycentric weights to quad mean value weights */
+static void intersect_dm_quad_weights(float *v1, float *v2, float *v3, float *v4, float *w)
+{
+ float co[3], vert[4][3];
+
+ VECCOPY(vert[0], v1);
+ VECCOPY(vert[1], v2);
+ VECCOPY(vert[2], v3);
+ VECCOPY(vert[3], v4);
+
+ co[0]= v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3];
+ co[1]= v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3];
+ co[2]= v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3];
+
+ MeanValueWeights(vert, 4, co, w);
+}
+
+/* check intersection with a derivedmesh */
+int psys_intersect_dm(Object *ob, DerivedMesh *dm, float *vert_cos, float *co1, float* co2, float *min_d, int *min_face, float *min_w,
+ float *face_minmax, float *pa_minmax, float radius, float *ipoint)
+{
+ MFace *mface=0;
+ MVert *mvert=0;
+ int i, totface, intersect=0;
+ float cur_d, cur_uv[2], v1[3], v2[3], v3[3], v4[3], min[3], max[3], p_min[3],p_max[3];
+ float cur_ipoint[3];
+
+ if(dm==0){
+ psys_disable_all(ob);
+
+ dm=mesh_get_derived_final(ob,0);
+ if(dm==0)
+ mesh_get_derived_deform(ob,0);
+
+ psys_enable_all(ob);
+
+ if(dm==0)
+ return 0;
+ }
+
+
+
+ if(pa_minmax==0){
+ INIT_MINMAX(p_min,p_max);
+ DO_MINMAX(co1,p_min,p_max);
+ DO_MINMAX(co2,p_min,p_max);
+ }
+ else{
+ VECCOPY(p_min,pa_minmax);
+ VECCOPY(p_max,pa_minmax+3);
+ }
+
+ totface=dm->getNumFaces(dm);
+ mface=dm->getFaceDataArray(dm,CD_MFACE);
+ mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+ /* lets intersect the faces */
+ for(i=0; i<totface; i++,mface++){
+ if(vert_cos){
+ VECCOPY(v1,vert_cos+3*mface->v1);
+ VECCOPY(v2,vert_cos+3*mface->v2);
+ VECCOPY(v3,vert_cos+3*mface->v3);
+ if(mface->v4)
+ VECCOPY(v4,vert_cos+3*mface->v4)
+ }
+ else{
+ VECCOPY(v1,mvert[mface->v1].co);
+ VECCOPY(v2,mvert[mface->v2].co);
+ VECCOPY(v3,mvert[mface->v3].co);
+ if(mface->v4)
+ VECCOPY(v4,mvert[mface->v4].co)
+ }
+
+ if(face_minmax==0){
+ INIT_MINMAX(min,max);
+ DO_MINMAX(v1,min,max);
+ DO_MINMAX(v2,min,max);
+ DO_MINMAX(v3,min,max);
+ if(mface->v4)
+ DO_MINMAX(v4,min,max)
+ if(AabbIntersectAabb(min,max,p_min,p_max)==0)
+ continue;
+ }
+ else{
+ VECCOPY(min, face_minmax+6*i);
+ VECCOPY(max, face_minmax+6*i+3);
+ if(AabbIntersectAabb(min,max,p_min,p_max)==0)
+ continue;
+ }
+
+ if(radius>0.0f){
+ if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v2, v3, v1, &cur_d, cur_ipoint)){
+ if(cur_d<*min_d){
+ *min_d=cur_d;
+ VECCOPY(ipoint,cur_ipoint);
+ *min_face=i;
+ intersect=1;
+ }
+ }
+ if(mface->v4){
+ if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v4, v1, v3, &cur_d, cur_ipoint)){
+ if(cur_d<*min_d){
+ *min_d=cur_d;
+ VECCOPY(ipoint,cur_ipoint);
+ *min_face=i;
+ intersect=1;
+ }
+ }
+ }
+ }
+ else{
+ if(LineIntersectsTriangle(co1, co2, v1, v2, v3, &cur_d, cur_uv)){
+ if(cur_d<*min_d){
+ *min_d=cur_d;
+ min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
+ min_w[1]= cur_uv[0];
+ min_w[2]= cur_uv[1];
+ min_w[3]= 0.0f;
+ if(mface->v4)
+ intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
+ *min_face=i;
+ intersect=1;
+ }
+ }
+ if(mface->v4){
+ if(LineIntersectsTriangle(co1, co2, v1, v3, v4, &cur_d, cur_uv)){
+ if(cur_d<*min_d){
+ *min_d=cur_d;
+ min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
+ min_w[1]= 0.0f;
+ min_w[2]= cur_uv[0];
+ min_w[3]= cur_uv[1];
+ intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
+ *min_face=i;
+ intersect=1;
+ }
+ }
+ }
+ }
+ }
+ return intersect;
+}
+/* particle - mesh collision code */
+/* in addition to basic point to surface collisions handles friction & damping,*/
+/* angular momentum <-> linear momentum and swept sphere - mesh collisions */
+/* 1. check for all possible deflectors for closest intersection on particle path */
+/* 2. if deflection was found kill the particle or calculate new coordinates */
+static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float dfra, float cfra, ParticleKey *state, int *pa_die){
+ Object *ob, *min_ob;
+ MFace *mface;
+ MVert *mvert;
+ DerivedMesh *dm;
+ ListBase *lb=&psys->effectors;
+ ParticleEffectorCache *ec;
+ ParticleKey cstate;
+ float imat[4][4];
+ float co1[3],co2[3],def_loc[3],def_nor[3],unit_nor[3],def_tan[3],dvec[3],def_vel[3],dave[3],dvel[3];
+ float pa_minmax[6];
+ float min_w[4], zerovec[3]={0.0,0.0,0.0}, ipoint[3];
+ float min_d,dotprod,damp,frict,o_len,d_len,radius=-1.0f;
+ int min_face=0, intersect=1, through=0;
+ short deflections=0, global=0;
+
+ VECCOPY(def_loc,pa->state.co);
+ VECCOPY(def_vel,pa->state.vel);
+
+ /* 10 iterations to catch multiple deflections */
+ if(lb->first) while(deflections<10){
+ intersect=0;
+ global=0;
+ min_d=20000.0;
+ min_ob=NULL;
+ /* 1. */
+ for(ec=lb->first; ec; ec=ec->next){
+ if(ec->type & PSYS_EC_DEFLECT){
+ ob= ec->ob;
+
+ if(part->type!=PART_HAIR)
+ where_is_object_time(ob,cfra);
+
+ if(ob==pob){
+ dm=psmd->dm;
+ /* particles should not collide with emitter at birth */
+ if(pa->time < cfra && pa->time >= psys->cfra)
+ continue;
+ }
+ else
+ dm=0;
+
+ VECCOPY(co1,def_loc);
+ VECCOPY(co2,state->co);
+
+ if(ec->vert_cos==0){
+ /* convert particle coordinates to object coordinates */
+ Mat4Invert(imat,ob->obmat);
+
+ Mat4MulVecfl(imat,co1);
+ Mat4MulVecfl(imat,co2);
+ }
+
+ INIT_MINMAX(pa_minmax,pa_minmax+3);
+ DO_MINMAX(co1,pa_minmax,pa_minmax+3);
+ DO_MINMAX(co2,pa_minmax,pa_minmax+3);
+ if(part->flag&PART_SIZE_DEFL){
+ pa_minmax[0]-=pa->size;
+ pa_minmax[1]-=pa->size;
+ pa_minmax[2]-=pa->size;
+ pa_minmax[3]+=pa->size;
+ pa_minmax[4]+=pa->size;
+ pa_minmax[5]+=pa->size;
+
+ radius=pa->size;
+ }
+
+ if(ec->face_minmax==0 || AabbIntersectAabb(pa_minmax,pa_minmax+3,ec->ob_minmax,ec->ob_minmax+3))
+ if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,
+ ec->face_minmax,pa_minmax,radius,ipoint)){
+ min_ob=ob;
+ if(ec->vert_cos)
+ global=1;
+ else
+ global=0;
+ }
+ }
+ }
+
+ /* 2. */
+ if(min_ob){
+ BLI_srandom((int)cfra+p);
+ ob=min_ob;
+
+ if(ob==pob){
+ dm=psmd->dm;
+ }
+ else{
+ psys_disable_all(ob);
+
+ dm=mesh_get_derived_final(ob,0);
+
+ psys_enable_all(ob);
+ }
+
+ mface=dm->getFaceDataArray(dm,CD_MFACE);
+ mface+=min_face;
+ mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+
+ /* permeability check */
+ if(BLI_frand()<ob->pd->pdef_perm)
+ through=1;
+ else
+ through=0;
+
+ if(through==0 && (part->flag & PART_DIE_ON_COL || ob->pd->flag & PDEFLE_KILL_PART)){
+ pa->dietime = cfra-(1.0f-min_d)*dfra;
+ VecLerpf(def_loc,co1,co2,min_d);
+
+ if(global==0)
+ Mat4MulVecfl(ob->obmat,def_loc);
+
+ VECCOPY(state->co,def_loc);
+ VecLerpf(state->vel,pa->state.vel,state->vel,min_d);
+ QuatInterpol(state->rot,pa->state.rot,state->rot,min_d);
+ VecLerpf(state->ave,pa->state.ave,state->ave,min_d);
+
+ *pa_die=1;
+
+ /* particle is dead so we don't need to calculate further */
+ deflections=10;
+
+ /* store for reactors */
+ copy_particle_key(&cstate,state,0);
+
+ if(part->flag & PART_STICKY){
+ pa->stick_ob=ob;
+ pa->flag |= PARS_STICKY;
+ //stick_particle_to_object(ob,pa,state);
+ }
+ }
+ else{
+ VecLerpf(def_loc,co1,co2,min_d);
+
+ if(radius>0.0f){
+ VECSUB(unit_nor,def_loc,ipoint);
+ }
+ else{
+ /* get deflection point & normal */
+ psys_interpolate_face(mvert,mface,0,min_w,ipoint,unit_nor,0,0);
+ if(global){
+ Mat4Mul3Vecfl(ob->obmat,unit_nor);
+ Mat4MulVecfl(ob->obmat,ipoint);
+ }
+ }
+
+ Normalize(unit_nor);
+
+ VECSUB(dvec,co1,co2);
+ /* scale to remaining length after deflection */
+ VecMulf(dvec,1.0f-min_d);
+
+ /* flip normal to face particle */
+ if(Inpf(unit_nor,dvec)<0.0f)
+ VecMulf(unit_nor,-1.0f);
+
+ /* store for easy velocity calculation */
+ o_len=VecLength(dvec);
+
+ /* project particle movement to normal & create tangent */
+ dotprod=Inpf(dvec,unit_nor);
+ VECCOPY(def_nor,unit_nor);
+ VecMulf(def_nor,dotprod);
+ VECSUB(def_tan,def_nor,dvec);
+
+ damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
+
+ /* create location after deflection */
+ VECCOPY(dvec,def_nor);
+ damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
+ CLAMP(damp,0.0,1.0);
+ VecMulf(dvec,1.0f-damp);
+ if(through)
+ VecMulf(dvec,-1.0);
+
+ frict=ob->pd->pdef_frict+ob->pd->pdef_rfrict*2.0f*(BLI_frand()-0.5f);
+ CLAMP(frict,0.0,1.0);
+ VECADDFAC(dvec,dvec,def_tan,1.0f-frict);
+
+ /* store for easy velocity calculation */
+ d_len=VecLength(dvec);
+
+ /* just to be sure we don't hit the current face again */
+ if(through){
+ VECADDFAC(ipoint,ipoint,unit_nor,-0.0001f);
+ VECADDFAC(def_loc,def_loc,unit_nor,-0.0001f);
+
+ if(part->flag & PART_ROT_DYN){
+ VECADDFAC(def_tan,def_tan,unit_nor,-0.0001f);
+ VECADDFAC(def_nor,def_nor,unit_nor,-0.0001f);
+ }
+ }
+ else{
+ VECADDFAC(ipoint,ipoint,unit_nor,0.0001f);
+ VECADDFAC(def_loc,def_loc,unit_nor,0.0001f);
+
+ if(part->flag & PART_ROT_DYN){
+ VECADDFAC(def_tan,def_tan,unit_nor,0.0001f);
+ VECADDFAC(def_nor,def_nor,unit_nor,0.0001f);
+ }
+ }
+
+ /* lets get back to global space */
+ if(global==0){
+ Mat4Mul3Vecfl(ob->obmat,dvec);
+ Mat4MulVecfl(ob->obmat,ipoint);
+ Mat4MulVecfl(ob->obmat,def_loc);/* def_loc remains as intersection point for next iteration */
+ }
+
+ /* store for reactors */
+ VECCOPY(cstate.co,ipoint);
+ VecLerpf(cstate.vel,pa->state.vel,state->vel,min_d);
+ QuatInterpol(cstate.rot,pa->state.rot,state->rot,min_d);
+
+ /* slightly unphysical but looks nice enough */
+ if(part->flag & PART_ROT_DYN){
+ if(global==0){
+ Mat4Mul3Vecfl(ob->obmat,def_nor);
+ Mat4Mul3Vecfl(ob->obmat,def_tan);
+ }
+
+ Normalize(def_tan);
+ Normalize(def_nor);
+ VECCOPY(unit_nor,def_nor);
+
+ /* create normal velocity */
+ VecMulf(def_nor,Inpf(pa->state.vel,def_nor));
+
+ /* create tangential velocity */
+ VecMulf(def_tan,Inpf(pa->state.vel,def_tan));
+
+ /* angular velocity change due to tangential velocity */
+ Crossf(dave,unit_nor,def_tan);
+ VecMulf(dave,1.0f/pa->size);
+
+ /* linear velocity change due to angular velocity */
+ VecMulf(unit_nor,pa->size); /* point of impact from particle center */
+ Crossf(dvel,pa->state.ave,unit_nor);
+
+ if(through)
+ VecMulf(def_nor,-1.0);
+
+ VecMulf(def_nor,1.0f-damp);
+ VECSUB(dvel,dvel,def_nor);
+
+ VecMulf(dvel,1.0f-frict);
+ VecMulf(dave,1.0f-frict);
+ }
+
+ if(d_len<0.001 && VecLength(pa->state.vel)<0.001){
+ /* kill speed to stop slipping */
+ VECCOPY(state->vel,zerovec);
+ VECCOPY(state->co,def_loc);
+ if(part->flag & PART_ROT_DYN)
+ VECCOPY(state->ave,zerovec);
+ deflections=10;
+ }
+ else{
+
+ /* apply new coordinates */
+ VECADD(state->co,def_loc,dvec);
+
+ Normalize(dvec);
+
+ /* we have to use original velocity because otherwise we get slipping */
+ /* when forces like gravity balance out damping & friction */
+ VecMulf(dvec,VecLength(pa->state.vel)*(d_len/o_len));
+ VECCOPY(state->vel,dvec);
+
+ if(part->flag & PART_ROT_DYN){
+ VECADD(state->vel,state->vel,dvel);
+ VecMulf(state->vel,0.5);
+ VECADD(state->ave,state->ave,dave);
+ VecMulf(state->ave,0.5);
+ }
+ }
+ }
+ deflections++;
+
+ cstate.time=cfra-(1.0f-min_d)*dfra;
+ //particle_react_to_collision(min_ob,pob,psys,pa,p,&cstate);
+ push_reaction(pob,psys,p,PART_EVENT_COLLIDE,&cstate);
+ }
+ else
+ return;
+ }
+}
+/************************************************/
+/* Boid physics */
+/************************************************/
+static int boid_see_mesh(ListBase *lb, Object *pob, ParticleSystem *psys, float *vec1, float *vec2, float *loc, float *nor, float cfra)
+{
+ Object *ob, *min_ob;
+ DerivedMesh *dm;
+ MFace *mface;
+ MVert *mvert;
+ ParticleEffectorCache *ec;
+ ParticleSystemModifierData *psmd=psys_get_modifier(pob,psys);
+ float imat[4][4];
+ float co1[3], co2[3], min_w[4], min_d;
+ int min_face=0, intersect=0;
+
+ if(lb->first){
+ intersect=0;
+ min_d=20000.0;
+ min_ob=NULL;
+ for(ec=lb->first; ec; ec=ec->next){
+ if(ec->type & PSYS_EC_DEFLECT){
+ ob= ec->ob;
+
+ if(psys->part->type!=PART_HAIR)
+ where_is_object_time(ob,cfra);
+
+ if(ob==pob)
+ dm=psmd->dm;
+ else
+ dm=0;
+
+ VECCOPY(co1,vec1);
+ VECCOPY(co2,vec2);
+
+ if(ec->vert_cos==0){
+ /* convert particle coordinates to object coordinates */
+ Mat4Invert(imat,ob->obmat);
+
+ Mat4MulVecfl(imat,co1);
+ Mat4MulVecfl(imat,co2);
+ }
+
+ if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,ec->face_minmax,0,0,0))
+ min_ob=ob;
+ }
+ }
+ if(min_ob){
+ ob=min_ob;
+
+ if(ob==pob){
+ dm=psmd->dm;
+ }
+ else{
+ psys_disable_all(ob);
+
+ dm=mesh_get_derived_deform(ob,0);
+
+ psys_enable_all(ob);
+ }
+
+ mface=dm->getFaceDataArray(dm,CD_MFACE);
+ mface+=min_face;
+ mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+ /* get deflection point & normal */
+ psys_interpolate_face(mvert,mface,0,min_w,loc,nor,0,0);
+
+ VECADD(nor,nor,loc);
+ Mat4MulVecfl(ob->obmat,loc);
+ Mat4MulVecfl(ob->obmat,nor);
+ VECSUB(nor,nor,loc);
+ return 1;
+ }
+ }
+ return 0;
+}
+/* vector calculus functions in 2d vs. 3d */
+static void set_boid_vec_func(BoidVecFunc *bvf, int is_2d)
+{
+ if(is_2d){
+ bvf->Addf = Vec2Addf;
+ bvf->Subf = Vec2Subf;
+ bvf->Mulf = Vec2Mulf;
+ bvf->Length = Vec2Length;
+ bvf->Normalize = Normalize2;
+ bvf->Inpf = Inp2f;
+ bvf->Copyf = Vec2Copyf;
+ }
+ else{
+ bvf->Addf = VecAddf;
+ bvf->Subf = VecSubf;
+ bvf->Mulf = VecMulf;
+ bvf->Length = VecLength;
+ bvf->Normalize = Normalize;
+ bvf->Inpf = Inpf;
+ bvf->Copyf = VecCopyf;
+ }
+}
+/* boids have limited processing capability so once there's too much information (acceleration) no more is processed */
+static int add_boid_acc(BoidVecFunc *bvf, float lat_max, float tan_max, float *lat_accu, float *tan_accu, float *acc, float *dvec, float *vel)
+{
+ static float tangent[3];
+ static float tan_length;
+
+ if(vel){
+ bvf->Copyf(tangent,vel);
+ tan_length=bvf->Normalize(tangent);
+ return 1;
+ }
+ else{
+ float cur_tan, cur_lat;
+ float tan_acc[3], lat_acc[3];
+ int ret=0;
+
+ bvf->Copyf(tan_acc,tangent);
+
+ if(tan_length>0.0){
+ bvf->Mulf(tan_acc,Inpf(tangent,dvec));
+
+ bvf->Subf(lat_acc,dvec,tan_acc);
+ }
+ else{
+ bvf->Copyf(tan_acc,dvec);
+ lat_acc[0]=lat_acc[1]=lat_acc[2]=0.0f;
+ *lat_accu=lat_max;
+ }
+
+ cur_tan=bvf->Length(tan_acc);
+ cur_lat=bvf->Length(lat_acc);
+
+ /* add tangential acceleration */
+ if(*lat_accu+cur_lat<=lat_max){
+ bvf->Addf(acc,acc,lat_acc);
+ *lat_accu+=cur_lat;
+ ret=1;
+ }
+ else{
+ bvf->Mulf(lat_acc,(lat_max-*lat_accu)/cur_lat);
+ bvf->Addf(acc,acc,lat_acc);
+ *lat_accu=lat_max;
+ }
+
+ /* add lateral acceleration */
+ if(*tan_accu+cur_tan<=tan_max){
+ bvf->Addf(acc,acc,tan_acc);
+ *tan_accu+=cur_tan;
+ ret=1;
+ }
+ else{
+ bvf->Mulf(tan_acc,(tan_max-*tan_accu)/cur_tan);
+ bvf->Addf(acc,acc,tan_acc);
+ *tan_accu=tan_max;
+ }
+
+ return ret;
+ }
+}
+/* determines the acceleration that the boid tries to acchieve */
+static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc, int *pa_die)
+{
+ ParticleData *pars=psys->particles;
+ KDTreeNearest ptn[MAX_BOIDNEIGHBOURS+1];
+ ParticleEffectorCache *ec=0;
+ float dvec[3]={0.0,0.0,0.0}, ob_co[3], ob_nor[3];
+ float avoid[3]={0.0,0.0,0.0}, velocity[3]={0.0,0.0,0.0}, center[3]={0.0,0.0,0.0};
+ float cubedist[MAX_BOIDNEIGHBOURS+1];
+ int i, n, neighbours=0, near, not_finished=1;
+
+ float cur_vel;
+ float lat_accu=0.0f, max_lat_acc=part->max_vel*part->max_lat_acc;
+ float tan_accu=0.0f, max_tan_acc=part->max_vel*part->max_tan_acc;
+ float avg_vel=part->average_vel*part->max_vel;
+
+ acc[0]=acc[1]=acc[2]=0.0f;
+ /* the +1 neighbour is because boid itself is in the tree */
+ neighbours=BLI_kdtree_find_n_nearest(tree,part->boidneighbours+1,pa->state.co,NULL,ptn);
+
+ for(n=1; n<neighbours; n++){
+ cubedist[n]=(float)pow((double)(ptn[n].dist/pa->size),3.0);
+ cubedist[n]=1.0f/MAX2(cubedist[n],1.0f);
+ }
+
+ /* initialize tangent */
+ add_boid_acc(bvf,0.0,0.0,0,0,0,0,pa->state.vel);
+
+ for(i=0; i<BOID_TOT_RULES && not_finished; i++){
+ switch(part->boidrule[i]){
+ case BOID_COLLIDE:
+ /* collision avoidance */
+ bvf->Copyf(dvec,pa->state.vel);
+ bvf->Mulf(dvec,5.0f);
+ bvf->Addf(dvec,dvec,pa->state.co);
+ if(boid_see_mesh(&psys->effectors,ob,psys,pa->state.co,dvec,ob_co,ob_nor,cfra)){
+ float probelen = bvf->Length(dvec);
+ float proj;
+ float oblen;
+
+ Normalize(ob_nor);
+ proj = bvf->Inpf(ob_nor,pa->state.vel);
+
+ bvf->Subf(dvec,pa->state.co,ob_co);
+ oblen=bvf->Length(dvec);
+
+ bvf->Copyf(dvec,ob_nor);
+ bvf->Mulf(dvec,-proj);
+ bvf->Mulf(dvec,((probelen/oblen)-1.0f)*100.0f*part->boidfac[BOID_COLLIDE]);
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ break;
+ case BOID_AVOID:
+ /* predator avoidance */
+ if(psys->effectors.first){
+ for(ec=psys->effectors.first; ec; ec=ec->next){
+ if(ec->type & PSYS_EC_EFFECTOR){
+ Object *eob = ec->ob;
+ PartDeflect *pd = eob->pd;
+
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
+ float distance;
+ VECSUB(dvec,eob->obmat[3],pa->state.co);
+
+ distance=Normalize(dvec);
+
+ if(part->flag & PART_DIE_ON_COL && distance < pd->mindist){
+ *pa_die=1;
+ pa->dietime=cfra;
+ i=BOID_TOT_RULES;
+ break;
+ }
+
+ if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
+ ;
+ else{
+ bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ }
+ }
+ else if(ec->type & PSYS_EC_PARTICLE){
+ Object *eob = ec->ob;
+ ParticleSystem *epsys;
+ ParticleSettings *epart;
+ ParticleKey state;
+ PartDeflect *pd;
+ KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
+ int totepart, p, count;
+ float distance;
+ epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
+ epart= epsys->part;
+ pd= epart->pd;
+ totepart= epsys->totpart;
+
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
+ count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
+ for(p=0; p<count; p++){
+ state.time=-1.0;
+ if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
+ VECSUB(dvec, state.co, pa->state.co);
+
+ distance = Normalize(dvec);
+
+ if(part->flag & PART_DIE_ON_COL && distance < (epsys->particles+ptn2[p].index)->size){
+ *pa_die=1;
+ pa->dietime=cfra;
+ i=BOID_TOT_RULES;
+ break;
+ }
+
+ if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
+ ;
+ else{
+ bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ break;
+ case BOID_CROWD:
+ /* crowd avoidance */
+ near=0;
+ for(n=1; n<neighbours; n++){
+ if(ptn[n].dist<2.0f*pa->size){
+ bvf->Subf(dvec,pa->state.co,pars[ptn[n].index].state.co);
+ bvf->Mulf(dvec,(2.0f*pa->size-ptn[n].dist)/ptn[n].dist);
+ bvf->Addf(avoid,avoid,dvec);
+ near++;
+ }
+ /* ptn[] is distance ordered so no need to check others */
+ else break;
+ }
+ if(near){
+ bvf->Mulf(avoid,part->boidfac[BOID_CROWD]*2.0f/timestep);
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,avoid,0);
+ }
+ break;
+ case BOID_CENTER:
+ /* flock centering */
+ if(neighbours>1){
+ for(n=1; n<neighbours; n++){
+ bvf->Addf(center,center,pars[ptn[n].index].state.co);
+ }
+ bvf->Mulf(center,1.0f/((float)neighbours-1.0f));
+
+ bvf->Subf(dvec,center,pa->state.co);
+
+ bvf->Mulf(dvec,part->boidfac[BOID_CENTER]*2.0f);
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ break;
+ case BOID_AV_VEL:
+ /* average velocity */
+ cur_vel=bvf->Length(pa->state.vel);
+ if(cur_vel>0.0){
+ bvf->Copyf(dvec,pa->state.vel);
+ bvf->Mulf(dvec,part->boidfac[BOID_AV_VEL]*(avg_vel-cur_vel)/cur_vel);
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ break;
+ case BOID_VEL_MATCH:
+ /* velocity matching */
+ if(neighbours>1){
+ for(n=1; n<neighbours; n++){
+ bvf->Copyf(dvec,pars[ptn[n].index].state.vel);
+ bvf->Mulf(dvec,cubedist[n]);
+ bvf->Addf(velocity,velocity,dvec);
+ }
+ bvf->Mulf(velocity,1.0f/((float)neighbours-1.0f));
+
+ bvf->Subf(dvec,velocity,pa->state.vel);
+
+ bvf->Mulf(dvec,part->boidfac[BOID_VEL_MATCH]);
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ break;
+ case BOID_GOAL:
+ /* goal seeking */
+ if(psys->effectors.first){
+ for(ec=psys->effectors.first; ec; ec=ec->next){
+ if(ec->type & PSYS_EC_EFFECTOR){
+ Object *eob = ec->ob;
+ PartDeflect *pd = eob->pd;
+ float temp[4];
+
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
+ float distance;
+ VECSUB(dvec,eob->obmat[3],pa->state.co);
+
+ distance=Normalize(dvec);
+
+ if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
+ ;
+ else{
+ VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ }
+ else if(pd->forcefield==PFIELD_GUIDE){
+ float distance;
+
+ where_on_path(eob, (cfra-pa->time)/pa->lifetime, temp, dvec);
+
+ VECSUB(dvec,temp,pa->state.co);
+
+ distance=Normalize(dvec);
+
+ if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
+ ;
+ else{
+ VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ }
+ }
+ else if(ec->type & PSYS_EC_PARTICLE){
+ Object *eob = ec->ob;
+ ParticleSystem *epsys;
+ ParticleSettings *epart;
+ ParticleKey state;
+ PartDeflect *pd;
+ KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
+ int totepart, p, count;
+ float distance;
+ epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
+ epart= epsys->part;
+ pd= epart->pd;
+ totepart= epsys->totpart;
+
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
+ count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
+ for(p=0; p<count; p++){
+ state.time=-1.0;
+ if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
+ VECSUB(dvec, state.co, pa->state.co);
+
+ distance = Normalize(dvec);
+
+ if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
+ ;
+ else{
+ bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
+
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ break;
+ case BOID_LEVEL:
+ /* level flight */
+ if((part->flag & PART_BOIDS_2D)==0){
+ dvec[0]=dvec[1]=0.0;
+ dvec[2]=-pa->state.vel[2];
+
+ VecMulf(dvec,part->boidfac[BOID_LEVEL]);
+ not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
+ }
+ break;
+ }
+ }
+}
+/* tries to realize the wanted acceleration */
+static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys, ParticleSettings *part, float timestep, float *acc, ParticleKey *state)
+{
+ float dvec[3], bvec[3], length, max_vel=part->max_vel;
+ float *q2, q[4];
+ float g=9.81f, pa_mass=part->mass;
+ float yvec[3]={0.0,1.0,0.0}, zvec[3]={0.0,0.0,-1.0}, bank;
+
+ /* apply new velocity, location & rotation */
+ copy_particle_key(state,&pa->state,0);
+
+ if(part->flag & PART_SIZEMASS)
+ pa_mass*=pa->size;
+
+ /* by regarding the acceleration as a force at this stage we*/
+ /* can get better controll allthough it's a bit unphysical */
+ bvf->Mulf(acc,1.0f/pa_mass);
+
+ bvf->Copyf(dvec,acc);
+ bvf->Mulf(dvec,timestep*timestep*0.5f);
+
+ bvf->Copyf(bvec,state->vel);
+ bvf->Mulf(bvec,timestep);
+ bvf->Addf(dvec,dvec,bvec);
+ bvf->Addf(state->co,state->co,dvec);
+
+ /* air speed from wind effectors */
+ if(psys->effectors.first){
+ ParticleEffectorCache *ec;
+ for(ec=psys->effectors.first; ec; ec=ec->next){
+ if(ec->type & PSYS_EC_EFFECTOR){
+ Object *eob = ec->ob;
+ PartDeflect *pd = eob->pd;
+
+ if(pd->forcefield==PFIELD_WIND && pd->f_strength!=0.0){
+ float distance, wind[3];
+ VecCopyf(wind,eob->obmat[2]);
+ distance=VecLenf(state->co,eob->obmat[3]);
+
+ if (distance < 0.001) distance = 0.001f;
+
+ if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
+ ;
+ else{
+ Normalize(wind);
+ VecMulf(wind,pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
+ bvf->Addf(state->co,state->co,wind);
+ }
+ }
+ }
+ }
+ }
+
+
+ if((part->flag & PART_BOIDS_2D)==0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0){
+ Crossf(yvec,state->vel,zvec);
+
+ Normalize(yvec);
+
+ bank=Inpf(yvec,acc);
+
+ bank=-(float)atan((double)(bank/g));
+
+ bank*=part->banking;
+
+ bank-=pa->bank;
+ if(bank>M_PI*part->max_bank){
+ bank=pa->bank+(float)M_PI*part->max_bank;
+ }
+ else if(bank<-M_PI*part->max_bank){
+ bank=pa->bank-(float)M_PI*part->max_bank;
+ }
+ else
+ bank+=pa->bank;
+
+ pa->bank=bank;
+ }
+ else{
+ bank=0.0;
+ }
+
+
+ VecRotToQuat(state->vel,bank,q);
+
+ VECCOPY(dvec,state->vel);
+ VecMulf(dvec,-1.0f);
+ q2= vectoquat(dvec, OB_POSX, OB_POSZ);
+
+ QuatMul(state->rot,q,q2);
+
+ bvf->Mulf(acc,timestep);
+ bvf->Addf(state->vel,state->vel,acc);
+
+ if(part->flag & PART_BOIDS_2D){
+ state->vel[2]=0.0;
+ state->co[2]=part->groundz;
+
+ if(psys->keyed_ob){
+ Object *zob=psys->keyed_ob;
+ int min_face;
+ float co1[3],co2[3],min_d=2.0,min_w[4],imat[4][4];
+ VECCOPY(co1,state->co);
+ VECCOPY(co2,state->co);
+
+ co1[2]=1000.0f;
+ co2[2]=-1000.0f;
+
+ Mat4Invert(imat,zob->obmat);
+ Mat4MulVecfl(imat,co1);
+ Mat4MulVecfl(imat,co2);
+
+ if(psys_intersect_dm(zob,0,0,co1,co2,&min_d,&min_face,min_w,0,0,0,0)){
+ DerivedMesh *dm;
+ MFace *mface;
+ MVert *mvert;
+ float loc[3],nor[3],q1[4];
+
+ psys_disable_all(zob);
+ dm=mesh_get_derived_final(zob,0);
+ psys_enable_all(zob);
+
+ mface=dm->getFaceDataArray(dm,CD_MFACE);
+ mface+=min_face;
+ mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+ /* get deflection point & normal */
+ psys_interpolate_face(mvert,mface,0,min_w,loc,nor,0,0);
+
+ Mat4MulVecfl(zob->obmat,loc);
+ Mat4Mul3Vecfl(zob->obmat,nor);
+
+ Normalize(nor);
+
+ VECCOPY(state->co,loc);
+
+ zvec[2]=1.0;
+
+ Crossf(loc,zvec,nor);
+
+ bank=VecLength(loc);
+ if(bank>0.0){
+ bank=saasin(bank);
+
+ VecRotToQuat(loc,bank,q);
+
+ QUATCOPY(q1,state->rot);
+
+ QuatMul(state->rot,q,q1);
+ }
+ }
+ }
+ }
+
+ length=bvf->Length(state->vel);
+ if(length > max_vel)
+ bvf->Mulf(state->vel,max_vel/length);
+}
+/************************************************/
+/* Hair */
+/************************************************/
+void save_hair(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra){
+ ParticleData *pa;
+ HairKey *key;
+ int totpart;
+ int i;
+
+ Mat4Invert(ob->imat,ob->obmat);
+
+ psys->lattice=psys_get_lattice(ob,psys);
+
+ if(psys->totpart==0) return;
+
+ totpart=psys->totpart;
+
+ /* save new keys for elements if needed */
+ for(i=0,pa=psys->particles; i<totpart; i++,pa++) {
+ /* first time alloc */
+ if(pa->totkey==0 || pa->hair==NULL) {
+ pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
+ pa->totkey = 0;
+ }
+
+ key = pa->hair + pa->totkey;
+
+ /* convert from global to geometry space */
+ VecCopyf(key->co, pa->state.co);
+ Mat4MulVecfl(ob->imat, key->co);
+
+ if(pa->totkey) {
+ VECSUB(key->co, key->co, pa->hair->co);
+ psys_vec_rot_to_face(psmd->dm, pa, key->co);
+ }
+
+ key->time = pa->state.time;
+
+ key->weight = 1.0f - key->time / 100.0f;
+
+ pa->totkey++;
+
+ /* root is always in the origin of hair space so we set it to be so after the last key is saved*/
+ if(pa->totkey == psys->part->hair_step + 1)
+ pa->hair->co[0] = pa->hair->co[1] = pa->hair->co[2] = 0.0f;
+ }
+}
+/************************************************/
+/* System Core */
+/************************************************/
+/* unbaked particles are calculated dynamically */
+static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra,
+ float *vg_vel, float *vg_tan, float *vg_rot, float *vg_size)
+{
+ ParticleData *pa;
+ ParticleKey *outstate, *key;
+ ParticleSettings *part=psys->part;
+ KDTree *tree=0;
+ BoidVecFunc bvf;
+ IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
+ Material *ma=give_current_material(ob,part->omat);
+ float timestep;
+ int p, totpart, pa_die;
+ /* current time */
+ float ctime, ipotime;
+ /* frame & time changes */
+ float dfra, dtime, pa_dtime, pa_dfra=0.0;
+ float birthtime, dietime;
+
+ /* where have we gone in time since last time */
+ dfra= cfra - psys->cfra;
+
+ totpart=psys->totpart;
+
+ timestep=psys_get_timestep(part);
+ dtime= dfra*timestep;
+ ctime= cfra*timestep;
+ ipotime= cfra;
+
+ if(part->flag&PART_ABS_TIME && part->ipo){
+ calc_ipo(part->ipo, cfra);
+ execute_ipo((ID *)part, part->ipo);
+ }
+
+ if(dfra<0.0){
+ float *vg_size=0;
+ if(part->type==PART_REACTOR)
+ vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
+
+ for(p=0, pa=psys->particles; p<totpart; p++,pa++){
+ if(pa->flag & (PARS_NO_DISP+PARS_UNEXIST)) continue;
+
+ /* set correct ipo timing */
+ if((part->flag&PART_ABS_TIME)==0 && part->ipo){
+ ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
+ calc_ipo(part->ipo, ipotime);
+ execute_ipo((ID *)part, part->ipo);
+ }
+ pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
+
+ if(part->type==PART_REACTOR)
+ initialize_particle(pa,p,ob,psys,psmd);
+
+ reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
+
+ if(cfra>pa->time && part->flag & PART_LOOP && (part->flag & PART_LOOP_INSTANT)==0){
+ pa->loop=(short)((cfra-pa->time)/pa->lifetime)+1;
+ pa->alive=PARS_UNBORN;
+ }
+ else{
+ pa->loop=0;
+ if(cfra<=pa->time)
+ pa->alive=PARS_UNBORN;
+ /* without dynamics the state is allways known so no need to kill */
+ else if(ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)==0)
+ pa->alive=PARS_KILLED;
+ }
+ }
+
+ if(vg_size)
+ MEM_freeN(vg_size);
+
+ //if(part->phystype==PART_PHYS_SOLID)
+ // reset_to_first_fragment(psys);
+ }
+ else{
+ BLI_srandom(31415926 + (int)cfra + psys->seed);
+
+ /* outstate is used so that particles are updated in parallel */
+ outstate=MEM_callocN(totpart*sizeof(ParticleKey),"Particle Outstates");
+
+ /* update effectors */
+ if(psys->effectors.first)
+ psys_end_effectors(psys);
+
+ psys_init_effectors(ob,part->eff_group,psys);
+
+ if(psys->effectors.first)
+ precalc_effectors(ob,psys,psmd);
+
+ if(part->phystype==PART_PHYS_BOIDS){
+ /* create particle tree for fast inter-particle comparisons */
+ KDTree *tree=BLI_kdtree_new(totpart);
+ for(p=0, pa=psys->particles; p<totpart; p++,pa++){
+ if(pa->flag & (PARS_NO_DISP+PARS_UNEXIST) || pa->alive!=PARS_ALIVE)
+ continue;
+
+ BLI_kdtree_insert(tree, p, pa->state.co, NULL);
+ }
+ BLI_kdtree_balance(tree);
+ set_boid_vec_func(&bvf,part->flag&PART_BOIDS_2D);
+ }
+
+ /* main loop: calculate physics for all particles */
+ for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++){
+ if(pa->flag & (PARS_NO_DISP|PARS_UNEXIST)) continue;
+
+ copy_particle_key(key,&pa->state,1);
+
+ /* set correct ipo timing */
+ if((part->flag&PART_ABS_TIME)==0 && part->ipo){
+ ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
+ calc_ipo(part->ipo, ipotime);
+ execute_ipo((ID *)part, part->ipo);
+ }
+ pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
+
+ pa_die=0;
+
+ if(pa->alive==PARS_UNBORN || pa->alive==PARS_KILLED || ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)){
+ /* allways reset particles to emitter before birth */
+ reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
+ copy_particle_key(key,&pa->state,1);
+ }
+
+ if(dfra>0.0 || psys->recalc){
+
+ if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0)
+ react_to_events(psys,p);
+
+ pa_dfra= dfra;
+ pa_dtime= dtime;
+
+ if(pa->flag & PART_LOOP && pa->flag & PART_LOOP_INSTANT)
+ birthtime=pa->dietime;
+ else
+ birthtime=pa->time+pa->loop*pa->lifetime;
+
+ dietime=birthtime+pa->lifetime;
+
+ if(birthtime < cfra && birthtime >= psys->cfra){
+ /* particle is born some time between this and last step*/
+ pa->alive=PARS_ALIVE;
+ pa_dfra= cfra - birthtime;
+ pa_dtime= pa_dfra*timestep;
+ }
+ else if(dietime <= cfra && psys->cfra < dietime){
+ /* particle dies some time between this and last step */
+ pa_dfra= dietime - psys->cfra;
+ pa_dtime= pa_dfra*timestep;
+ pa_die=1;
+ }
+ else if(dietime < cfra){
+ /* TODO: figure out if there's something to be done when particle is dead */
+ }
+
+ copy_particle_key(key,&pa->state,1);
+
+ if(dfra>0.0 && pa->alive==PARS_ALIVE){
+ switch(part->phystype){
+ case PART_PHYS_NEWTON:
+ /* do global forces & effectors */
+ apply_particle_forces(p,pa,ob,psys,part,timestep,pa_dfra,cfra,key);
+
+ /* deflection */
+ deflect_particle(ob,psmd,psys,part,pa,p,pa_dfra,cfra,key,&pa_die);
+
+ /* rotations */
+ rotate_particle(part,pa,pa_dfra,timestep,key);
+
+ break;
+ case PART_PHYS_BOIDS:
+ {
+ float acc[3];
+ boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc,&pa_die);
+ if(pa_die==0)
+ boid_body(&bvf,pa,psys,part,timestep,acc,key);
+ break;
+ }
+ }
+
+ push_reaction(ob,psys,p,PART_EVENT_NEAR,key);
+
+ if(pa_die){
+ push_reaction(ob,psys,p,PART_EVENT_DEATH,key);
+
+ if(part->flag & PART_LOOP){
+ pa->loop++;
+
+ if(part->flag & PART_LOOP_INSTANT){
+ reset_particle(pa,psys,psmd,ob,0.0,cfra,vg_vel,vg_tan,vg_rot);
+ pa->alive=PARS_ALIVE;
+ copy_particle_key(key,&pa->state,1);
+ }
+ else
+ pa->alive=PARS_UNBORN;
+ }
+ else{
+ pa->alive=PARS_DEAD;
+ key->time=pa->dietime;
+
+ if(pa->flag&PARS_STICKY)
+ psys_key_to_object(pa->stick_ob,key,0);
+ }
+ }
+ else
+ key->time=cfra;
+ }
+ }
+ }
+ /* apply outstates to particles */
+ for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++)
+ copy_particle_key(&pa->state,key,1);
+
+ MEM_freeN(outstate);
+ }
+ if(psys->reactevents.first)
+ BLI_freelistN(&psys->reactevents);
+
+ if(tree)
+ BLI_kdtree_free(tree);
+}
+
+/* check if path cache or children need updating and do it if needed */
+static void psys_update_path_cache(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
+{
+ ParticleSettings *part=psys->part;
+ ParticleEditSettings *pset=&G.scene->toolsettings->particle;
+ int distr=0,alloc=0;
+
+ if((psys->part->childtype && psys->totchild != psys->totpart*part->child_nbr) || psys->recalc&PSYS_ALLOC)
+ alloc=1;
+
+ if(alloc || psys->recalc&PSYS_DISTR || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT)))
+ distr=1;
+
+ if(distr){
+ if(alloc)
+ alloc_particles(psys,psys->totpart);
+
+ if(psys->totchild && part->childtype){
+ distribute_particles(ob,psys,PART_FROM_CHILD);
+
+ if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES && part->parents!=0.0)
+ psys_find_parents(ob,psmd,psys);
+ }
+ }
+
+ if((part->type==PART_HAIR || psys->flag&PSYS_KEYED) && (psys_in_edit_mode(psys)
+ || part->draw_as==PART_DRAW_PATH || part->draw&PART_DRAW_KEYS)){
+ psys_cache_paths(ob, psys, cfra, 0);
+
+ if(part->childtype){
+ if((G.rendering || (part->flag&PART_CHILD_RENDER)==0)
+ || (psys_in_edit_mode(psys) && (pset->flag&PE_SHOW_CHILD)))
+ psys_cache_child_paths(ob, psys, cfra, 0);
+ }
+ }
+ else if(psys->pathcache)
+ psys_free_path_cache(psys);
+}
+
+static void hair_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
+{
+ ParticleSettings *part = psys->part;
+
+ if(psys->recalc & PSYS_DISTR){
+ /* need this for changing subsurf levels */
+ psys_calc_dmfaces(ob, psmd->dm, psys);
+ }
+
+ if(psys->effectors.first)
+ psys_end_effectors(psys);
+
+ psys_init_effectors(ob,part->eff_group,psys);
+ if(psys->effectors.first)
+ precalc_effectors(ob,psys,psmd);
+
+ if(psys_in_edit_mode(psys))
+ PE_recalc_world_cos(ob, psys);
+
+ psys_update_path_cache(ob,psmd,psys,cfra);
+}
+
+/* updates cached particles' alive & other flags etc..*/
+static void cached_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra, float *vg_size)
+{
+ ParticleSettings *part=psys->part;
+ ParticleData *pa;
+ ParticleKey state;
+ IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
+ Material *ma=give_current_material(ob,part->omat);
+ int p;
+ float ipotime=cfra, disp;
+
+ /* deprecated */
+ //if(psys->recalc&PSYS_DISTR){
+ // /* The dm could have been changed so particle emitter element */
+ // /* indices might be wrong. There's really no "nice" way to handle*/
+ // /* this so we just try not to crash by correcting indices. */
+ // int totnum=-1;
+ // switch(part->from){
+ // case PART_FROM_VERT:
+ // totnum=psmd->dm->getNumVerts(psmd->dm);
+ // break;
+ // case PART_FROM_FACE:
+ // case PART_FROM_VOLUME:
+ // totnum=psmd->dm->getNumFaces(psmd->dm);
+ // break;
+ // }
+
+ // if(totnum==0){
+ // /* Now we're in real trouble, there's no emitter elements!! */
+ // for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++)
+ // pa->num=-1;
+ // }
+ // else if(totnum>0){
+ // for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++)
+ // pa->num=pa->num%totnum;
+ // }
+ //}
+
+ if(psys->effectors.first)
+ psys_end_effectors(psys);
+
+ //if(part->flag & (PART_BAKED_GUIDES+PART_BAKED_DEATHS)){
+ psys_init_effectors(ob,part->eff_group,psys);
+ if(psys->effectors.first)
+ precalc_effectors(ob,psys,psmd);
+ //}
+
+ disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
+
+ for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++){
+ if((part->flag&PART_ABS_TIME)==0 && part->ipo){
+ ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
+ calc_ipo(part->ipo, ipotime);
+ execute_ipo((ID *)part, part->ipo);
+ }
+ pa->size= psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
+
+ psys->lattice=psys_get_lattice(ob,psys);
+
+ /* update alive status and push events */
+ if(pa->time>cfra)
+ pa->alive=PARS_UNBORN;
+ else if(pa->dietime<=cfra){
+ if(pa->dietime>psys->cfra){
+ state.time=pa->dietime;
+ psys_get_particle_state(ob,psys,p,&state,1);
+ push_reaction(ob,psys,p,PART_EVENT_DEATH,&state);
+ }
+ pa->alive=PARS_DEAD;
+ }
+ else{
+ pa->alive=PARS_ALIVE;
+ state.time=cfra;
+ psys_get_particle_state(ob,psys,p,&state,1);
+ state.time=cfra;
+ push_reaction(ob,psys,p,PART_EVENT_NEAR,&state);
+ }
+
+ if(psys->lattice){
+ end_latt_deform();
+ psys->lattice=0;
+ }
+
+ if(pa->r_rot[0] > disp)
+ pa->flag |= PARS_NO_DISP;
+ else
+ pa->flag &= ~PARS_NO_DISP;
+ }
+}
+/* Calculates the next state for all particles of the system */
+/* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)*/
+static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra)
+{
+ ParticleSettings *part;
+ ParticleData *pa;
+ int totpart,oldtotpart=0,p;
+ float disp, *vg_vel=0, *vg_tan=0, *vg_rot=0, *vg_size=0;
+ int init=0,distr=0,alloc=0;
+
+ /*----start validity checks----*/
+
+ part=psys->part;
+
+ if(part->flag&PART_ABS_TIME && part->ipo){
+ calc_ipo(part->ipo, cfra);
+ execute_ipo((ID *)part, part->ipo);
+ }
+
+ if(part->from!=PART_FROM_PARTICLE)
+ vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
+
+ if(part->type == PART_HAIR) {
+ if(psys->flag & PSYS_HAIR_DONE) {
+ hair_step(ob, psmd, psys, cfra);
+ psys->cfra = cfra;
+ psys->recalc = 0;
+ return;
+ }
+ }
+ else {
+ if(psys->recalc)
+ clear_particles_from_cache(ob,psys,(int)cfra);
+ else if(get_particles_from_cache(ob, psys, (int)cfra)){
+ cached_step(ob,psmd,psys,cfra,vg_size);
+ psys->cfra=cfra;
+ psys->recalc = 0;
+ return;
+ }
+ }
+
+ /* if still here react to events */
+
+ if(psys->recalc&PSYS_TYPE) {
+ /* system type has changed so set sensible defaults and clear non applicable flags */
+ if(part->from == PART_FROM_PARTICLE) {
+ if(part->type != PART_REACTOR)
+ part->from = PART_FROM_FACE;
+ if(part->distr == PART_DISTR_GRID)
+ part->distr = PART_DISTR_JIT;
+ }
+
+ if(psys->part->phystype != PART_PHYS_KEYED)
+ psys->flag &= ~PSYS_KEYED;
+
+ if(part->type == PART_HAIR) {
+ part->draw_as = PART_DRAW_PATH;
+ part->rotfrom = PART_ROT_IINCR;
+ }
+ else
+ free_hair(psys);
+
+ psys->recalc &= ~PSYS_TYPE;
+ alloc = 1;
+ }
+ else
+ oldtotpart = psys->totpart;
+
+ if(part->distr == PART_DISTR_GRID)
+ totpart = part->grid_res * part->grid_res * part->grid_res;
+ else
+ totpart = psys->part->totpart;
+
+ if(oldtotpart != totpart || psys->recalc&PSYS_ALLOC || (psys->part->childtype && psys->totchild != psys->totpart*part->child_nbr))
+ alloc = 1;
+
+ if(alloc || psys->recalc&PSYS_DISTR || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT) && ob==OBACT))
+ distr = 1;
+
+ if(distr || psys->recalc&PSYS_INIT)
+ init = 1;
+
+ if(init) {
+ if(distr) {
+ if(alloc)
+ alloc_particles(psys, totpart);
+
+ distribute_particles(ob, psys, part->from);
+
+ if(psys->totchild && part->childtype)
+ distribute_particles(ob, psys, PART_FROM_CHILD);
+ }
+ initialize_all_particles(ob, psys, psmd);
+
+ if(alloc)
+ reset_all_particles(ob, psys, psmd, 0.0, cfra, oldtotpart);
+
+ /* flag for possible explode modifiers after this system */
+ psmd->flag |= eParticleSystemFlag_Pars;
+ }
+
+
+ if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED)
+ psys_count_keyed_targets(ob,psys);
+
+ if(part->from!=PART_FROM_PARTICLE){
+ vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
+ vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
+ vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
+ }
+
+ /* set particles to be not calculated */
+ disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
+
+ if(disp<1.0f) for(p=0, pa=psys->particles; p<totpart; p++,pa++){
+ if(pa->r_rot[0] > disp)
+ pa->flag |= PARS_NO_DISP;
+ else
+ pa->flag &= ~PARS_NO_DISP;
+ }
+
+ /* ok now we're all set so let's go */
+ if(psys->totpart) {
+ //if(psys->part->from==PART_FROM_FACE) {
+ // psys_calc_dmfaces(ob, psmd->dm, psys);
+ //}
+ dynamics_step(ob,psys,psmd,cfra,vg_vel,vg_tan,vg_rot,vg_size);
+ }
+ psys->recalc = 0;
+ psys->cfra=cfra;
+
+ if(part->type!=PART_HAIR)
+ write_particles_to_cache(ob, psys, cfra);
+
+ /* for keyed particles the path is allways known so it can be drawn */
+ if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED){
+ set_keyed_keys(ob, psys);
+ psys_update_path_cache(ob,psmd,psys,(int)cfra);
+ }
+ else if(psys->pathcache)
+ psys_free_path_cache(psys);
+
+ if(vg_vel)
+ MEM_freeN(vg_vel);
+
+ if(psys->lattice){
+ end_latt_deform();
+ psys->lattice=0;
+ }
+}
+
+void psys_to_softbody(Object *ob, ParticleSystem *psys, int force_recalc)
+{
+ SoftBody *sb;
+ short softflag;
+
+ if((psys->softflag&OB_SB_ENABLE)==0) return;
+
+ if((ob->recalc&OB_RECALC_TIME)==0)
+ psys->softflag|=OB_SB_REDO;
+
+ /* let's replace the object's own softbody with the particle softbody */
+ /* a temporary solution before cloth simulation is implemented, jahka */
+
+ /* save these */
+ sb=ob->soft;
+ softflag=ob->softflag;
+
+ /* swich to new ones */
+ ob->soft=psys->soft;
+ ob->softflag=psys->softflag;
+
+ /* signal for before/free bake */
+ //if(psys->flag & PSYS_SOFT_BAKE || force_recalc){
+ // sbObjectToSoftbody(ob);
+ // psys->flag &= ~PSYS_SOFT_BAKE;
+ //}
+
+ /* do softbody */
+ sbObjectStep(ob, (float)G.scene->r.cfra, NULL, psys_count_keys(psys));
+
+ /* return things back to normal */
+ psys->soft=ob->soft;
+ psys->softflag=ob->softflag;
+
+ ob->soft=sb;
+ ob->softflag=softflag;
+}
+static int hair_needs_recalc(ParticleSystem *psys)
+{
+ if((psys->flag & PSYS_EDITED)==0 && (
+ (psys->flag & PSYS_HAIR_DONE)==0
+ || psys->recalc & PSYS_RECALC_HAIR)
+ ) {
+ psys->recalc &= ~PSYS_RECALC_HAIR;
+ return 1;
+ }
+
+ return 0;
+}
+/* main particle update call, checks that things are ok on the large scale before actual particle calculations */
+void particle_system_update(Object *ob, ParticleSystem *psys){
+
+ ParticleSystemModifierData *psmd=0;
+ float cfra;
+
+ if((psys->flag & PSYS_ENABLED)==0) return;
+
+ psmd=psys_get_modifier(ob,psys);
+
+ cfra=bsystem_time(ob,(float)CFRA,0.0);
+
+ /* system was already updated from modifier stack */
+ if(psmd->flag&eParticleSystemFlag_psys_updated){
+ psmd->flag &= ~eParticleSystemFlag_psys_updated;
+ /* make sure it really was updated to cfra */
+ if(psys->cfra==cfra)
+ return;
+ }
+
+ /* baked path softbody */
+ if(psys->part->type==PART_HAIR && psys->soft)
+ psys_to_softbody(ob, psys, 0);
+
+ /* not needed, this is all handled in hair_step */
+ ///* is the mesh changing under the edited particles? */
+ //if((psys->flag & PSYS_EDITED) && psys->part->type==PART_HAIR && psys->recalc & PSYS_RECALC_HAIR) {
+ // /* Just update the particles on the mesh */
+ // psys_update_edithair_dmfaces(ob, psmd->dm, psys);
+ //}
+
+ if(psys->part->type==PART_HAIR && hair_needs_recalc(psys)){
+ float hcfra=0.0f;
+ int i;
+ free_hair(psys);
+
+ /* first step is negative so particles get killed and reset */
+ psys->cfra=1.0f;
+
+ for(i=0; i<=psys->part->hair_step; i++){
+ hcfra=100.0f*(float)i/(float)psys->part->hair_step;
+ system_step(ob,psys,psmd,hcfra);
+ save_hair(ob,psys,psmd,hcfra);
+ }
+
+ psys->flag |= PSYS_HAIR_DONE;
+
+ if(psys->softflag&OB_SB_ENABLE)
+ psys_to_softbody(ob,psys,1);
+ }
+
+ system_step(ob,psys,psmd,cfra);
+
+ Mat4CpyMat4(psys->imat, ob->imat); /* used for duplicators */
+}
+