Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/particle_system.c')
-rw-r--r--source/blender/blenkernel/intern/particle_system.c623
1 files changed, 281 insertions, 342 deletions
diff --git a/source/blender/blenkernel/intern/particle_system.c b/source/blender/blenkernel/intern/particle_system.c
index ef8373ee977..df193bc3802 100644
--- a/source/blender/blenkernel/intern/particle_system.c
+++ b/source/blender/blenkernel/intern/particle_system.c
@@ -53,12 +53,14 @@
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_kdtree.h"
+#include "BLI_kdopbvh.h"
#include "BLI_linklist.h"
#include "BLI_threads.h"
#include "BKE_anim.h"
#include "BKE_bad_level_calls.h"
#include "BKE_cdderivedmesh.h"
+#include "BKE_collision.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_particle.h"
@@ -76,6 +78,8 @@
#include "BKE_modifier.h"
#include "BKE_scene.h"
+#include "PIL_time.h"
+
#include "BSE_headerbuttons.h"
#include "blendef.h"
@@ -146,6 +150,14 @@ void psys_reset(ParticleSystem *psys, int mode)
BLI_freelistN(&psys->reactevents);
}
}
+ else if(mode == PSYS_RESET_CACHE_MISS) {
+ /* set all particles to be skipped */
+ ParticleData *pa = psys->particles;
+ int p=0;
+
+ for(; p<psys->totpart; p++, pa++)
+ pa->flag = PARS_NO_DISP;
+ }
/* reset children */
if(psys->child) {
@@ -2301,7 +2313,15 @@ static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSy
}
}
else if(pd->forcefield)
+ {
type |= PSYS_EC_EFFECTOR;
+
+ if(pd->forcefield == PFIELD_WIND)
+ {
+ pd->rng = rng_new(1);
+ rng_srandom(pd->rng, (unsigned int)(ceil(PIL_check_seconds_timer()))); // use better seed
+ }
+ }
}
if(pd && pd->deflect)
@@ -2413,13 +2433,16 @@ void psys_end_effectors(ParticleSystem *psys)
if(ec->tree)
BLI_kdtree_free(ec->tree);
+
+ if(ec->ob->pd && (ec->ob->pd->forcefield == PFIELD_WIND))
+ rng_free(ec->ob->pd->rng);
}
BLI_freelistN(lb);
}
}
-static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
+static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra)
{
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
@@ -2459,96 +2482,20 @@ static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemMo
}
}
}
- else if(ec->type==PSYS_EC_DEFLECT){
- DerivedMesh *dm;
- MFace *mface=0;
- MVert *mvert=0;
- int i, totface;
- float v1[3],v2[3],v3[3],v4[4], *min, *max;
-
- if(ob==ec->ob)
- dm=psmd->dm;
- else{
- psys_disable_all(ec->ob);
-
- dm=mesh_get_derived_final(ec->ob,0);
-
- psys_enable_all(ec->ob);
- }
-
- if(dm){
- totvert=dm->getNumVerts(dm);
- totface=dm->getNumFaces(dm);
- mface=dm->getFaceDataArray(dm,CD_MFACE);
- mvert=dm->getVertDataArray(dm,CD_MVERT);
-
- /* Decide which is faster to calculate by the amount of*/
- /* matrice multiplications needed to convert spaces. */
- /* With size deflect we have to convert allways because */
- /* the object can be scaled nonuniformly (sphere->ellipsoid). */
- if(totvert<2*psys->totpart || part->flag & PART_SIZE_DEFL){
- co=ec->vert_cos=MEM_callocN(sizeof(float)*3*totvert,"Particle deflection vert cos");
- /* convert vert coordinates to global (particle) coordinates */
- for(i=0; i<totvert; i++, co+=3){
- VECCOPY(co,mvert[i].co);
- Mat4MulVecfl(ec->ob->obmat,co);
- }
- co=ec->vert_cos;
- }
- else
- ec->vert_cos=0;
-
- INIT_MINMAX(ec->ob_minmax,ec->ob_minmax+3);
-
- min=ec->face_minmax=MEM_callocN(sizeof(float)*6*totface,"Particle deflection face minmax");
- max=min+3;
-
- for(i=0; i<totface; i++,mface++,min+=6,max+=6){
- if(co){
- VECCOPY(v1,co+3*mface->v1);
- VECCOPY(v2,co+3*mface->v2);
- VECCOPY(v3,co+3*mface->v3);
- }
- else{
- VECCOPY(v1,mvert[mface->v1].co);
- VECCOPY(v2,mvert[mface->v2].co);
- VECCOPY(v3,mvert[mface->v3].co);
- }
- INIT_MINMAX(min,max);
- DO_MINMAX(v1,min,max);
- DO_MINMAX(v2,min,max);
- DO_MINMAX(v3,min,max);
-
- if(mface->v4){
- if(co){
- VECCOPY(v4,co+3*mface->v4);
- }
- else{
- VECCOPY(v4,mvert[mface->v4].co);
- }
- DO_MINMAX(v4,min,max);
- }
-
- DO_MINMAX(min,ec->ob_minmax,ec->ob_minmax+3);
- DO_MINMAX(max,ec->ob_minmax,ec->ob_minmax+3);
- }
- }
- else
- ec->face_minmax=0;
- }
else if(ec->type==PSYS_EC_PARTICLE){
+ Object *eob = ec->ob;
+ ParticleSystem *epsys = BLI_findlink(&eob->particlesystem,ec->psys_nbr);
+ ParticleSettings *epart = epsys->part;
+ ParticleData *epa = epsys->particles;
+ int totepart = epsys->totpart;
+
if(psys->part->phystype==PART_PHYS_BOIDS){
- Object *eob = ec->ob;
- ParticleSystem *epsys;
- ParticleSettings *epart;
ParticleData *epa;
ParticleKey state;
PartDeflect *pd;
- int totepart, p;
- epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
- epart= epsys->part;
+ int p;
+
pd= epart->pd;
- totepart= epsys->totpart;
if(pd->forcefield==PFIELD_FORCE && totepart){
KDTree *tree;
@@ -2563,6 +2510,11 @@ static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemMo
}
}
}
+ else if(ec->type==PSYS_EC_DEFLECT) {
+ CollisionModifierData *collmd = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) );
+ if(collmd)
+ collision_move_object(collmd, 1.0, 0.0);
+ }
}
}
@@ -2665,7 +2617,7 @@ void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, P
state->vel,force_field,0, pd->rng, pd->f_noise,charge,pa->size);
}
}
- else if(pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
+ else if(pd && pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
/* first step after key release */
psys_get_particle_state(eob,epsys,p,&estate,1);
VECADD(vel,vel,estate.vel);
@@ -3011,37 +2963,124 @@ int psys_intersect_dm(Object *ob, DerivedMesh *dm, float *vert_cos, float *co1,
}
return intersect;
}
+
+/* container for moving data between deflet_particle and particle_intersect_face */
+typedef struct ParticleCollision
+{
+ struct Object *ob, *ob_t; // collided and current objects
+ struct CollisionModifierData *md; // collision modifier for ob_t;
+ float nor[3]; // normal at collision point
+ float vel[3]; // velocity of collision point
+ float co1[3], co2[3]; // ray start and end points
+ float ray_len; // original length of co2-co1, needed for collision time evaluation
+ float t; // time of previous collision, needed for substracting face velocity
+}
+ParticleCollision;
+
+static void particle_intersect_face(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
+{
+ ParticleCollision *col = (ParticleCollision *) userdata;
+ MFace *face = col->md->mfaces + index;
+ MVert *x = col->md->x;
+ MVert *v = col->md->current_v;
+ float dir[3], vel[3], co1[3], co2[3], uv[2], ipoint[3], temp[3], dist, t, threshold;
+ int ret=0;
+
+ float *t0, *t1, *t2, *t3;
+ t0 = x[ face->v1 ].co;
+ t1 = x[ face->v2 ].co;
+ t2 = x[ face->v3 ].co;
+ t3 = face->v4 ? x[ face->v4].co : NULL;
+
+ /* calculate average velocity of face */
+ VECCOPY(vel, v[ face->v1 ].co);
+ VECADD(vel, vel, v[ face->v2 ].co);
+ VECADD(vel, vel, v[ face->v3 ].co);
+ VecMulf(vel, 0.33334f);
+
+ /* substract face velocity, in other words convert to
+ a coordinate system where only the particle moves */
+ VECADDFAC(co1, col->co1, vel, -col->t);
+ VECSUB(co2, col->co2, vel);
+
+ do
+ {
+ if(ray->radius == 0.0f) {
+ if(LineIntersectsTriangle(co1, co2, t0, t1, t2, &t, uv)) {
+ if(t >= 0.0f && t < hit->dist/col->ray_len) {
+ hit->dist = col->ray_len * t;
+ hit->index = index;
+
+ /* calculate normal that's facing the particle */
+ CalcNormFloat(t0, t1, t2, col->nor);
+ VECSUB(temp, co2, co1);
+ if(Inpf(col->nor, temp) > 0.0f)
+ VecMulf(col->nor, -1.0f);
+
+ VECCOPY(col->vel,vel);
+
+ col->ob = col->ob_t;
+ }
+ }
+ }
+ else {
+ if(SweepingSphereIntersectsTriangleUV(co1, co2, ray->radius, t0, t1, t2, &t, ipoint)) {
+ if(t >=0.0f && t < hit->dist/col->ray_len) {
+ hit->dist = col->ray_len * t;
+ hit->index = index;
+
+ VecLerpf(temp, co1, co2, t);
+
+ VECSUB(col->nor, temp, ipoint);
+ Normalize(col->nor);
+
+ VECCOPY(col->vel,vel);
+
+ col->ob = col->ob_t;
+ }
+ }
+ }
+
+ t1 = t2;
+ t2 = t3;
+ t3 = NULL;
+
+ } while(t2);
+}
/* particle - mesh collision code */
/* in addition to basic point to surface collisions handles friction & damping,*/
/* angular momentum <-> linear momentum and swept sphere - mesh collisions */
/* 1. check for all possible deflectors for closest intersection on particle path */
/* 2. if deflection was found kill the particle or calculate new coordinates */
-static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float dfra, float cfra, ParticleKey *state, int *pa_die){
- Object *ob, *min_ob;
- MFace *mface;
- MVert *mvert;
- DerivedMesh *dm;
+static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float timestep, float dfra, float cfra, ParticleKey *state){
+ Object *ob;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
- ParticleKey cstate;
- float imat[4][4];
- float co1[3],co2[3],def_loc[3],def_nor[3],unit_nor[3],def_tan[3],dvec[3],def_vel[3],dave[3],dvel[3];
- float pa_minmax[6];
- float min_w[4], zerovec[3]={0.0,0.0,0.0}, ipoint[3];
- float min_d,dotprod,damp,frict,o_len,d_len,radius=-1.0f;
- int min_face=0, intersect=1, through=0;
- short deflections=0, global=0;
-
- VECCOPY(def_loc,pa->state.co);
- VECCOPY(def_vel,pa->state.vel);
+ ParticleKey reaction_state;
+ ParticleCollision col;
+ CollisionModifierData *collmd;
+ BVHTreeRayHit hit;
+ float ray_dir[3], zerovec[3]={0.0,0.0,0.0};
+ float radius = ((part->flag & PART_SIZE_DEFL)?pa->size:0.0f);
+ int deflections=0, max_deflections=10;
+
+ VECCOPY(col.co1, pa->state.co);
+ VECCOPY(col.co2, state->co);
+ col.t = 0.0f;
/* 10 iterations to catch multiple deflections */
- if(lb->first) while(deflections<10){
- intersect=0;
- global=0;
- min_d=20000.0;
- min_ob=NULL;
+ if(lb->first) while(deflections < max_deflections){
/* 1. */
+
+ VECSUB(ray_dir, col.co2, col.co1);
+ hit.index = -1;
+ hit.dist = col.ray_len = VecLength(ray_dir);
+
+ /* even if particle is stationary we want to check for moving colliders */
+ /* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
+ if(hit.dist == 0.0f)
+ hit.dist = col.ray_len = 0.000001f;
+
for(ec=lb->first; ec; ec=ec->next){
if(ec->type & PSYS_EC_DEFLECT){
ob= ec->ob;
@@ -3049,263 +3088,165 @@ static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, Part
if(part->type!=PART_HAIR)
where_is_object_time(ob,cfra);
- if(ob==pob){
- dm=psmd->dm;
- /* particles should not collide with emitter at birth */
- if(pa->time < cfra && pa->time >= psys->cfra)
- continue;
- }
- else
- dm=0;
-
- VECCOPY(co1,def_loc);
- VECCOPY(co2,state->co);
-
- if(ec->vert_cos==0){
- /* convert particle coordinates to object coordinates */
- Mat4Invert(imat,ob->obmat);
- Mat4MulVecfl(imat,co1);
- Mat4MulVecfl(imat,co2);
- }
-
- INIT_MINMAX(pa_minmax,pa_minmax+3);
- DO_MINMAX(co1,pa_minmax,pa_minmax+3);
- DO_MINMAX(co2,pa_minmax,pa_minmax+3);
- if(part->flag&PART_SIZE_DEFL){
- pa_minmax[0]-=pa->size;
- pa_minmax[1]-=pa->size;
- pa_minmax[2]-=pa->size;
- pa_minmax[3]+=pa->size;
- pa_minmax[4]+=pa->size;
- pa_minmax[5]+=pa->size;
-
- radius=pa->size;
- }
-
- if(ec->face_minmax==0 || AabbIntersectAabb(pa_minmax,pa_minmax+3,ec->ob_minmax,ec->ob_minmax+3)) {
- if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,
- ec->face_minmax,pa_minmax,radius,ipoint)){
+ /* particles should not collide with emitter at birth */
+ if(ob==pob && pa->time < cfra && pa->time >= psys->cfra)
+ continue;
- min_ob=ob;
+ col.md = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) );
+ col.ob_t = ob;
- if(ec->vert_cos)
- global=1;
- else
- global=0;
- }
- }
+ if(col.md->bvhtree)
+ BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col);
}
}
/* 2. */
- if(min_ob){
- BLI_srandom((int)cfra+p);
- ob=min_ob;
-
- if(ob==pob){
- dm=psmd->dm;
- }
- else{
- psys_disable_all(ob);
-
- dm=mesh_get_derived_final(ob,0);
-
- psys_enable_all(ob);
- }
-
- mface=dm->getFaceDataArray(dm,CD_MFACE);
- mface+=min_face;
- mvert=dm->getVertDataArray(dm,CD_MVERT);
-
- /* permeability check */
- if(BLI_frand()<ob->pd->pdef_perm)
- through=1;
- else
- through=0;
-
- if(through==0 && (part->flag & PART_DIE_ON_COL || ob->pd->flag & PDEFLE_KILL_PART)){
- pa->dietime = cfra-(1.0f-min_d)*dfra;
- VecLerpf(def_loc,def_loc,state->co,min_d);
-
- VECCOPY(state->co,def_loc);
- VecLerpf(state->vel,pa->state.vel,state->vel,min_d);
- QuatInterpol(state->rot,pa->state.rot,state->rot,min_d);
- VecLerpf(state->ave,pa->state.ave,state->ave,min_d);
-
- *pa_die=1;
+ if(hit.index>=0) {
+ PartDeflect *pd = col.ob->pd;
+ int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0;
+ float co[3]; /* point of collision */
+ float vec[3]; /* movement through collision */
+ float vel[3]; /* velocity after collision */
+ float t = hit.dist/col.ray_len; /* time of collision between this iteration */
+ float dt = col.t + t * (1.0f - col.t); /* time of collision between frame change*/
+
+ VecLerpf(co, col.co1, col.co2, t);
+ VECSUB(vec, col.co2, col.co1);
+
+ VecMulf(col.vel, 1.0f-col.t);
+
+ /* particle dies in collision */
+ if(through == 0 && (part->flag & PART_DIE_ON_COL || pd->flag & PDEFLE_KILL_PART)) {
+ pa->alive = PARS_DYING;
+ pa->dietime = pa->state.time + (cfra - pa->state.time) * dt;
+ VECCOPY(state->co, co);
+ VecLerpf(state->vel, pa->state.vel, state->vel, dt);
+ QuatInterpol(state->rot, pa->state.rot, state->rot, dt);
+ VecLerpf(state->ave, pa->state.ave, state->ave, dt);
/* particle is dead so we don't need to calculate further */
- deflections=10;
+ deflections=max_deflections;
/* store for reactors */
- copy_particle_key(&cstate,state,0);
+ copy_particle_key(&reaction_state,state,0);
if(part->flag & PART_STICKY){
pa->stick_ob=ob;
pa->flag |= PARS_STICKY;
}
}
- else{
- VECCOPY(co1,def_loc);
- VECCOPY(co2,state->co);
+ else {
+ float nor_vec[3], tan_vec[3], tan_vel[3], vel[3];
+ float damp, frict;
+ float inp, inp_v;
+
+ /* get damping & friction factors */
+ damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f);
+ CLAMP(damp,0.0,1.0);
- if(global==0){
- /* convert particle coordinates to object coordinates */
- Mat4Invert(imat,ob->obmat);
- Mat4MulVecfl(imat,co1);
- Mat4MulVecfl(imat,co2);
- }
+ frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f);
+ CLAMP(frict,0.0,1.0);
- VecLerpf(def_loc,co1,co2,min_d);
+ /* treat normal & tangent components separately */
+ inp = Inpf(col.nor, vec);
+ inp_v = Inpf(col.nor, col.vel);
- if(radius>0.0f){
- VECSUB(unit_nor,def_loc,ipoint);
- }
- else{
- /* get deflection point & normal */
- psys_interpolate_face(mvert,mface,0,0,min_w,ipoint,unit_nor,0,0,0,0);
- if(global){
- Mat4Mul3Vecfl(ob->obmat,unit_nor);
- Mat4MulVecfl(ob->obmat,ipoint);
- }
- }
+ VECADDFAC(tan_vec, vec, col.nor, -inp);
+ VECADDFAC(tan_vel, col.vel, col.nor, -inp_v);
+ if((part->flag & PART_ROT_DYN)==0)
+ VecLerpf(tan_vec, tan_vec, tan_vel, frict);
- Normalize(unit_nor);
+ VECCOPY(nor_vec, col.nor);
+ inp *= 1.0f - damp;
- VECSUB(dvec,co1,co2);
- /* scale to remaining length after deflection */
- VecMulf(dvec,1.0f-min_d);
+ if(through)
+ inp_v *= damp;
- /* flip normal to face particle */
- if(Inpf(unit_nor,dvec)<0.0f)
- VecMulf(unit_nor,-1.0f);
+ /* special case for object hitting the particle from behind */
+ if(through==0 && ((inp_v>0 && inp>0 && inp_v>inp) || (inp_v<0 && inp<0 && inp_v<inp)))
+ VecMulf(nor_vec, inp_v);
+ else
+ VecMulf(nor_vec, inp_v + (through ? 1.0f : -1.0f) * inp);
- /* store for easy velocity calculation */
- o_len=VecLength(dvec);
+ /* angular <-> linear velocity - slightly more physical and looks even nicer than before */
+ if(part->flag & PART_ROT_DYN) {
+ float surface_vel[3], rot_vel[3], friction[3], dave[3], dvel[3];
- /* project particle movement to normal & create tangent */
- dotprod=Inpf(dvec,unit_nor);
- VECCOPY(def_nor,unit_nor);
- VecMulf(def_nor,dotprod);
- VECSUB(def_tan,def_nor,dvec);
+ /* apparent velocity along collision surface */
+ VECSUB(surface_vel, tan_vec, tan_vel);
- damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
+ /* direction of rolling friction */
+ Crossf(rot_vel, state->ave, col.nor);
+ /* convert to current dt */
+ VecMulf(rot_vel, (timestep*dfra) * (1.0f - col.t));
+ VecMulf(rot_vel, pa->size);
- /* create location after deflection */
- VECCOPY(dvec,def_nor);
- damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
- CLAMP(damp,0.0,1.0);
- VecMulf(dvec,1.0f-damp);
- if(through)
- VecMulf(dvec,-1.0);
-
- frict=ob->pd->pdef_frict+ob->pd->pdef_rfrict*2.0f*(BLI_frand()-0.5f);
- CLAMP(frict,0.0,1.0);
- VECADDFAC(dvec,dvec,def_tan,1.0f-frict);
+ /* apply sliding friction */
+ VECSUB(surface_vel, surface_vel, rot_vel);
+ VECCOPY(friction, surface_vel);
- /* store for easy velocity calculation */
- d_len=VecLength(dvec);
+ VecMulf(surface_vel, 1.0 - frict);
+ VecMulf(friction, frict);
- /* just to be sure we don't hit the current face again */
- if(through){
- VECADDFAC(ipoint,ipoint,unit_nor,-0.0001f);
- VECADDFAC(def_loc,def_loc,unit_nor,-0.0001f);
+ /* sliding changes angular velocity */
+ Crossf(dave, col.nor, friction);
+ VecMulf(dave, 1.0f/MAX2(pa->size, 0.001));
- if(part->flag & PART_ROT_DYN){
- VECADDFAC(def_tan,def_tan,unit_nor,-0.0001f);
- VECADDFAC(def_nor,def_nor,unit_nor,-0.0001f);
- }
- }
- else{
- VECADDFAC(ipoint,ipoint,unit_nor,0.0001f);
- VECADDFAC(def_loc,def_loc,unit_nor,0.0001f);
+ /* we assume rolling friction is around 0.01 of sliding friction */
+ VecMulf(rot_vel, 1.0 - frict*0.01);
- if(part->flag & PART_ROT_DYN){
- VECADDFAC(def_tan,def_tan,unit_nor,0.0001f);
- VECADDFAC(def_nor,def_nor,unit_nor,0.0001f);
- }
- }
+ /* change in angular velocity has to be added to the linear velocity too */
+ Crossf(dvel, dave, col.nor);
+ VecMulf(dvel, pa->size);
+ VECADD(rot_vel, rot_vel, dvel);
- /* lets get back to global space */
- if(global==0){
- Mat4Mul3Vecfl(ob->obmat,dvec);
- Mat4MulVecfl(ob->obmat,ipoint);
- Mat4MulVecfl(ob->obmat,def_loc);/* def_loc remains as intersection point for next iteration */
- }
+ VECADD(surface_vel, surface_vel, rot_vel);
+ VECADD(tan_vec, surface_vel, tan_vel);
- /* store for reactors */
- VECCOPY(cstate.co,ipoint);
- VecLerpf(cstate.vel,pa->state.vel,state->vel,min_d);
- QuatInterpol(cstate.rot,pa->state.rot,state->rot,min_d);
-
- /* slightly unphysical but looks nice enough */
- if(part->flag & PART_ROT_DYN){
- if(global==0){
- Mat4Mul3Vecfl(ob->obmat,def_nor);
- Mat4Mul3Vecfl(ob->obmat,def_tan);
- }
+ /* convert back to normal time */
+ VecMulf(dave, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001));
- Normalize(def_tan);
- Normalize(def_nor);
- VECCOPY(unit_nor,def_nor);
+ VecMulf(state->ave, 1.0 - frict*0.01);
+ VECADD(state->ave, state->ave, dave);
+ }
- /* create normal velocity */
- VecMulf(def_nor,Inpf(pa->state.vel,def_nor));
+ /* combine components together again */
+ VECADD(vec, nor_vec, tan_vec);
- /* create tangential velocity */
- VecMulf(def_tan,Inpf(pa->state.vel,def_tan));
-
- /* angular velocity change due to tangential velocity */
- Crossf(dave,unit_nor,def_tan);
- VecMulf(dave,1.0f/pa->size);
+ /* calculate velocity from collision vector */
+ VECCOPY(vel, vec);
+ VecMulf(vel, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001));
- /* linear velocity change due to angular velocity */
- VecMulf(unit_nor,pa->size); /* point of impact from particle center */
- Crossf(dvel,pa->state.ave,unit_nor);
+ /* make sure we don't hit the current face again */
+ VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f));
- if(through)
- VecMulf(def_nor,-1.0);
+ /* store state for reactors */
+ VECCOPY(reaction_state.co, co);
+ VecLerpf(reaction_state.vel, pa->state.vel, state->vel, dt);
+ QuatInterpol(reaction_state.rot, pa->state.rot, state->rot, dt);
- VecMulf(def_nor,1.0f-damp);
- VECSUB(dvel,dvel,def_nor);
+ /* set coordinates for next iteration */
+ VECCOPY(col.co1, co);
+ VECADDFAC(col.co2, co, vec, 1.0f - t);
+ col.t = dt;
- VecMulf(dvel,1.0f-frict);
- VecMulf(dave,1.0f-frict);
- }
-
- if(d_len<0.001 && VecLength(pa->state.vel)<0.001){
+ if(VecLength(vec) < 0.001 && VecLength(pa->state.vel) < 0.001) {
/* kill speed to stop slipping */
VECCOPY(state->vel,zerovec);
- VECCOPY(state->co,def_loc);
- if(part->flag & PART_ROT_DYN)
+ VECCOPY(state->co, co);
+ if(part->flag & PART_ROT_DYN) {
VECCOPY(state->ave,zerovec);
- deflections=10;
- }
- else{
-
- /* apply new coordinates */
- VECADD(state->co,def_loc,dvec);
-
- Normalize(dvec);
-
- /* we have to use original velocity because otherwise we get slipping */
- /* when forces like gravity balance out damping & friction */
- VecMulf(dvec,VecLength(pa->state.vel)*(d_len/o_len));
- VECCOPY(state->vel,dvec);
-
- if(part->flag & PART_ROT_DYN){
- VECADD(state->vel,state->vel,dvel);
- VecMulf(state->vel,0.5);
- VECADD(state->ave,state->ave,dave);
- VecMulf(state->ave,0.5);
}
}
+ else {
+ VECCOPY(state->co, col.co2);
+ VECCOPY(state->vel, vel);
+ }
}
deflections++;
- cstate.time=cfra-(1.0f-min_d)*dfra;
- //particle_react_to_collision(min_ob,pob,psys,pa,p,&cstate);
- push_reaction(pob,psys,p,PART_EVENT_COLLIDE,&cstate);
+ reaction_state.time = cfra - (1.0f - dt) * dfra;
+ push_reaction(col.ob, psys, p, PART_EVENT_COLLIDE, &reaction_state);
}
else
return;
@@ -3469,7 +3410,7 @@ static int add_boid_acc(BoidVecFunc *bvf, float lat_max, float tan_max, float *l
}
}
/* determines the acceleration that the boid tries to acchieve */
-static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc, int *pa_die)
+static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc)
{
ParticleData *pars=psys->particles;
KDTreeNearest ptn[MAX_BOIDNEIGHBOURS+1];
@@ -3536,7 +3477,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
distance=Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < pd->mindist){
- *pa_die=1;
+ pa->alive = PARS_DYING;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
@@ -3565,7 +3506,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
pd= epart->pd;
totepart= epsys->totpart;
- if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0 && ec->tree){
count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
@@ -3575,7 +3516,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
distance = Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < (epsys->particles+ptn2[p].index)->size){
- *pa_die=1;
+ pa->alive = PARS_DYING;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
@@ -3712,7 +3653,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
pd= epart->pd;
totepart= epsys->totpart;
- if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0 && ec->tree){
count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
@@ -3862,7 +3803,7 @@ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys,
state->vel[2]=0.0;
state->co[2]=part->groundz;
- if(psys->keyed_ob){
+ if(psys->keyed_ob && (psys->keyed_ob->type == OB_MESH)){
Object *zob=psys->keyed_ob;
int min_face;
float co1[3],co2[3],min_d=2.0,min_w[4],imat[4][4];
@@ -3984,7 +3925,7 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
Material *ma=give_current_material(ob,part->omat);
float timestep;
- int p, totpart, pa_die;
+ int p, totpart;
/* current time */
float ctime, ipotime;
/* frame & time changes */
@@ -4064,7 +4005,7 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
- precalc_effectors(ob,psys,psmd);
+ precalc_effectors(ob,psys,psmd,cfra);
if(part->phystype==PART_PHYS_BOIDS){
/* create particle tree for fast inter-particle comparisons */
@@ -4093,15 +4034,13 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
}
pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
- pa_die=0;
-
birthtime = pa->time + pa->loop * pa->lifetime;
+ /* allways reset particles to emitter before birth */
if(pa->alive==PARS_UNBORN
|| pa->alive==PARS_KILLED
|| ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)
|| birthtime >= cfra){
- /* allways reset particles to emitter before birth */
reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
copy_particle_key(key,&pa->state,1);
}
@@ -4126,32 +4065,31 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
/* particle dies some time between this and last step */
pa_dfra = dietime - psys->cfra;
pa_dtime = pa_dfra * timestep;
- pa_die = 1;
+ pa->alive = PARS_DYING;
}
else if(dietime < cfra){
- /* TODO: figure out if there's something to be done when particle is dead */
+ /* nothing to be done when particle is dead */
}
copy_particle_key(key,&pa->state,1);
- if(dfra>0.0 && pa->alive==PARS_ALIVE){
+ if(dfra>0.0 && ELEM(pa->alive,PARS_ALIVE,PARS_DYING)){
switch(part->phystype){
case PART_PHYS_NEWTON:
/* do global forces & effectors */
apply_particle_forces(p,pa,ob,psys,part,timestep,pa_dfra,cfra,key);
-
+
/* deflection */
- deflect_particle(ob,psmd,psys,part,pa,p,pa_dfra,cfra,key,&pa_die);
+ deflect_particle(ob,psmd,psys,part,pa,p,timestep,pa_dfra,cfra,key);
/* rotations */
rotate_particle(part,pa,pa_dfra,timestep,key);
-
break;
case PART_PHYS_BOIDS:
{
float acc[3];
- boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc,&pa_die);
- if(pa_die==0)
+ boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc);
+ if(pa->alive != PARS_DYING)
boid_body(&bvf,pa,psys,part,timestep,acc,key);
break;
}
@@ -4159,7 +4097,7 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
push_reaction(ob,psys,p,PART_EVENT_NEAR,key);
- if(pa_die){
+ if(pa->alive == PARS_DYING){
push_reaction(ob,psys,p,PART_EVENT_DEATH,key);
if(part->flag & PART_LOOP && part->type!=PART_HAIR){
@@ -4181,6 +4119,7 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
}
}
}
+
/* apply outstates to particles */
for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++)
copy_particle_key(&pa->state,key,1);
@@ -4260,7 +4199,7 @@ static void hair_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSyst
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
- precalc_effectors(ob,psys,psmd);
+ precalc_effectors(ob,psys,psmd,cfra);
if(psys_in_edit_mode(psys))
PE_recalc_world_cos(ob, psys);
@@ -4288,7 +4227,7 @@ static void cached_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSy
//if(part->flag & (PART_BAKED_GUIDES+PART_BAKED_DEATHS)){
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
- precalc_effectors(ob,psys,psmd);
+ precalc_effectors(ob,psys,psmd,cfra);
//}
disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
@@ -4542,7 +4481,7 @@ static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifier
if(usecache) {
/* frame clamping */
if(framenr < startframe) {
- psys_reset(psys, PSYS_RESET_DEPSGRAPH);
+ psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra = cfra;
psys->recalc = 0;
return;
@@ -4622,14 +4561,14 @@ static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifier
return;
}
else if(ob->id.lib || (cache->flag & PTCACHE_BAKED)) {
- psys_reset(psys, PSYS_RESET_DEPSGRAPH);
+ psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra=cfra;
psys->recalc = 0;
return;
}
if(framenr != startframe && framedelta != 1) {
- psys_reset(psys, PSYS_RESET_DEPSGRAPH);
+ psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra = cfra;
psys->recalc = 0;
return;