Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/particle_system.c')
-rw-r--r--source/blender/blenkernel/intern/particle_system.c1455
1 files changed, 614 insertions, 841 deletions
diff --git a/source/blender/blenkernel/intern/particle_system.c b/source/blender/blenkernel/intern/particle_system.c
index d1c0cdec71d..8a964c5b32e 100644
--- a/source/blender/blenkernel/intern/particle_system.c
+++ b/source/blender/blenkernel/intern/particle_system.c
@@ -53,13 +53,16 @@
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_kdtree.h"
+#include "BLI_kdopbvh.h"
#include "BLI_linklist.h"
#include "BLI_threads.h"
#include "BKE_anim.h"
#include "BKE_bad_level_calls.h"
#include "BKE_cdderivedmesh.h"
+#include "BKE_collision.h"
#include "BKE_displist.h"
+#include "BKE_effect.h"
#include "BKE_particle.h"
#include "BKE_global.h"
#include "BKE_utildefines.h"
@@ -75,6 +78,8 @@
#include "BKE_modifier.h"
#include "BKE_scene.h"
+#include "PIL_time.h"
+
#include "BSE_headerbuttons.h"
#include "blendef.h"
@@ -145,6 +150,14 @@ void psys_reset(ParticleSystem *psys, int mode)
BLI_freelistN(&psys->reactevents);
}
}
+ else if(mode == PSYS_RESET_CACHE_MISS) {
+ /* set all particles to be skipped */
+ ParticleData *pa = psys->particles;
+ int p=0;
+
+ for(; p<psys->totpart; p++, pa++)
+ pa->flag |= PARS_NO_DISP;
+ }
/* reset children */
if(psys->child) {
@@ -609,7 +622,7 @@ void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, C
KDTreeNearest ptn[3];
int w, maxw;
- psys_particle_on_dm(ctx->ob,ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
+ psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn);
@@ -753,7 +766,7 @@ void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, C
do_seams= (part->flag&PART_CHILD_SEAMS && ctx->seams);
- psys_particle_on_dm(ob,dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1);
+ psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,(do_seams)?10:4,orco1,ornor1,ptn);
@@ -818,7 +831,7 @@ void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, C
VecCopyf(tan,seam->tan);
VecSubf(temp2,co1,temp);
if(Inpf(tan,temp2)<0.0f)
- VecMulf(tan,-1.0f);
+ VecNegf(tan);
}
for(w=0; w<maxw; w++){
VecSubf(temp2,ptn[w].co,temp);
@@ -851,7 +864,7 @@ void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, C
}
}
-void *exec_distribution(void *data)
+static void *exec_distribution(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleSystem *psys= thread->ctx->psys;
@@ -967,7 +980,7 @@ int psys_threads_init_distribution(ParticleThread *threads, DerivedMesh *finaldm
tree=BLI_kdtree_new(totpart);
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
- psys_particle_on_dm(ob,dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
+ psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1);
BLI_kdtree_insert(tree, p, orco, ornor);
}
@@ -1115,12 +1128,14 @@ int psys_threads_init_distribution(ParticleThread *threads, DerivedMesh *finaldm
if(children){
if(G.f & G_DEBUG)
fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n");
- for(p=0,cpa=psys->child; p<totpart; p++,cpa++){
- cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
- cpa->foffset= 0.0f;
- cpa->parent=0;
- cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
- cpa->num= -1;
+ if(psys->child) {
+ for(p=0,cpa=psys->child; p<totpart; p++,cpa++){
+ cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
+ cpa->foffset= 0.0f;
+ cpa->parent=0;
+ cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
+ cpa->num= -1;
+ }
}
}
else {
@@ -1699,10 +1714,8 @@ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifi
tob=ob;
tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
-
- /*TODO: get precise location of particle at birth*/
- state.time=cfra;
+ state.time = pa->time;
if(pa->num == -1)
memset(&state, 0, sizeof(state));
else
@@ -1728,7 +1741,7 @@ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifi
where_is_object_time(ob,pa->time);
/* get birth location from object */
- psys_particle_on_emitter(ob,psmd,part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
+ psys_particle_on_emitter(psmd,part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
/* save local coordinates for later */
VECCOPY(tloc,loc);
@@ -1737,7 +1750,7 @@ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifi
psys_get_texture(ob,give_current_material(ob,part->omat),psmd,psys,pa,&ptex,MAP_PA_IVEL);
if(vg_vel && pa->num != -1)
- ptex.ivel*=psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_vel);
+ ptex.ivel*=psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_vel);
/* particles live in global space so */
/* let's convert: */
@@ -1752,7 +1765,7 @@ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifi
/* -tangent */
if(part->tanfac!=0.0){
- float phase=vg_rot?2.0f*(psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_rot)-0.5f):0.0f;
+ float phase=vg_rot?2.0f*(psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f;
VecMulf(vtan,-(float)cos(M_PI*(part->tanphase+phase)));
fac=-(float)sin(M_PI*(part->tanphase+phase));
VECADDFAC(vtan,vtan,utan,fac);
@@ -1794,6 +1807,12 @@ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifi
}
/* conversion done so now we apply new: */
/* -velocity from: */
+
+ /* *reactions */
+ if(dtime>0.0f){
+ VECSUB(vel,pa->state.vel,pa->prev_state.vel);
+ }
+
/* *emitter velocity */
if(dtime!=0.0 && part->obfac!=0.0){
VECSUB(vel,loc,pa->state.co);
@@ -1806,7 +1825,7 @@ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifi
/* *emitter tangent */
if(part->tanfac!=0.0)
- VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_tan):1.0f));
+ VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_tan):1.0f));
/* *texture */
/* TODO */
@@ -1858,7 +1877,7 @@ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifi
}
/* create rotation quat */
- VecMulf(rot_vec,-1.0);
+ VecNegf(rot_vec);
vectoquat(rot_vec, OB_POSX, OB_POSZ, q2);
/* randomize rotation quat */
@@ -2095,22 +2114,18 @@ static void react_to_events(ParticleSystem *psys, int pa_num)
for(re=psys->reactevents.first; re; re=re->next){
birth=0;
if(part->from==PART_FROM_PARTICLE){
- if(pa->num==re->pa_num){
+ if(pa->num==re->pa_num && pa->alive==PARS_UNBORN){
if(re->event==PART_EVENT_NEAR){
ParticleData *tpa = re->psys->particles+re->pa_num;
float pa_time=tpa->time + pa->foffset*tpa->lifetime;
- if(re->time > pa_time){
- pa->alive=PARS_ALIVE;
+ if(re->time >= pa_time){
pa->time=pa_time;
pa->dietime=pa->time+pa->lifetime;
}
}
else{
- if(pa->alive==PARS_UNBORN){
- pa->alive=PARS_ALIVE;
- pa->time=re->time;
- pa->dietime=pa->time+pa->lifetime;
- }
+ pa->time=re->time;
+ pa->dietime=pa->time+pa->lifetime;
}
}
}
@@ -2118,7 +2133,6 @@ static void react_to_events(ParticleSystem *psys, int pa_num)
dist=VecLenf(pa->state.co, re->state.co);
if(dist <= re->size){
if(pa->alive==PARS_UNBORN){
- pa->alive=PARS_ALIVE;
pa->time=re->time;
pa->dietime=pa->time+pa->lifetime;
birth=1;
@@ -2194,6 +2208,8 @@ static int get_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
/* assuming struct consists of tightly packed floats */
for(i=0, pa=psys->particles; i<totpart; i++, pa++) {
+ if(cfra!=pa->state.time)
+ copy_particle_key(&pa->prev_state,&pa->state,1);
if(!BKE_ptcache_file_read_floats(pf, (float*)&pa->state, sizeof(ParticleKey)/sizeof(float))) {
BKE_ptcache_file_close(pf);
return 0;
@@ -2208,174 +2224,6 @@ static int get_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
/************************************************/
/* Effectors */
/************************************************/
-static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power)
-{
- if(!usemin)
- mindist= 0.0f;
-
- if(fac < mindist) {
- return 1.0f;
- }
- else if(usemax) {
- if(fac>maxdist || (maxdist-mindist)<=0.0f)
- return 0.0f;
-
- fac= (fac-mindist)/(maxdist-mindist);
- return 1.0f - (float)pow((double)fac, (double)power);
- }
- else
- return pow((double)1.0f+fac-mindist, (double)-power);
-}
-
-static float falloff_func_dist(PartDeflect *pd, float fac)
-{
- return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power);
-}
-
-static float falloff_func_rad(PartDeflect *pd, float fac)
-{
- return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
-}
-
-static float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
-{
- float eff_dir[3], temp[3];
- float falloff=1.0, fac, r_fac;
-
- VecCopyf(eff_dir,eff_velocity);
- Normalize(eff_dir);
-
- if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
- falloff=0.0f;
- else switch(pd->falloff){
- case PFIELD_FALL_SPHERE:
- fac=VecLength(vec_to_part);
- falloff= falloff_func_dist(pd, fac);
- break;
-
- case PFIELD_FALL_TUBE:
- fac=Inpf(vec_to_part,eff_dir);
- falloff= falloff_func_dist(pd, ABS(fac));
- if(falloff == 0.0f)
- break;
-
- VECADDFAC(temp,vec_to_part,eff_dir,-fac);
- r_fac=VecLength(temp);
- falloff*= falloff_func_rad(pd, r_fac);
- break;
- case PFIELD_FALL_CONE:
- fac=Inpf(vec_to_part,eff_dir);
- falloff= falloff_func_dist(pd, ABS(fac));
- if(falloff == 0.0f)
- break;
-
- r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
- falloff*= falloff_func_rad(pd, r_fac);
-
- break;
-// case PFIELD_FALL_INSIDE:
- //for(i=0; i<totface; i++,mface++){
- // VECCOPY(v1,mvert[mface->v1].co);
- // VECCOPY(v2,mvert[mface->v2].co);
- // VECCOPY(v3,mvert[mface->v3].co);
-
- // if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
- // if(from==PART_FROM_FACE)
- // (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
- // else /* store number of intersections */
- // (pa+(int)(lambda*size[a])*a0mul)->loop++;
- // }
- //
- // if(mface->v4){
- // VECCOPY(v4,mvert[mface->v4].co);
-
- // if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
- // if(from==PART_FROM_FACE)
- // (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
- // else
- // (pa+(int)(lambda*size[a])*a0mul)->loop++;
- // }
- // }
- //}
-
-// break;
- }
-
- return falloff;
-}
-static void do_physical_effector(short type, float force_val, float distance, float falloff, float size, float damp,
- float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar)
-{
- float mag_vec[3]={0,0,0};
- float temp[3], temp2[3];
- float eff_vel[3];
-
- VecCopyf(eff_vel,eff_velocity);
- Normalize(eff_vel);
-
- switch(type){
- case PFIELD_WIND:
- VECCOPY(mag_vec,eff_vel);
-
- VecMulf(mag_vec,force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
-
- case PFIELD_FORCE:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
-
- VecMulf(mag_vec,force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
-
- case PFIELD_VORTEX:
- Crossf(mag_vec,eff_vel,vec_to_part);
- Normalize(mag_vec);
-
- VecMulf(mag_vec,force_val*distance*falloff);
- VecAddf(field,field,mag_vec);
-
- break;
- case PFIELD_MAGNET:
- if(planar)
- VecCopyf(temp,eff_vel);
- else
- /* magnetic field of a moving charge */
- Crossf(temp,eff_vel,vec_to_part);
-
- Crossf(temp2,velocity,temp);
- VecAddf(mag_vec,mag_vec,temp2);
-
- VecMulf(mag_vec,force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
- case PFIELD_HARMONIC:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
-
- VecMulf(mag_vec,force_val*falloff);
- VecSubf(field,field,mag_vec);
-
- VecCopyf(mag_vec,velocity);
- /* 1.9 is an experimental value to get critical damping at damp=1.0 */
- VecMulf(mag_vec,damp*1.9f*(float)sqrt(force_val));
- VecSubf(field,field,mag_vec);
- break;
- case PFIELD_NUCLEAR:
- /*pow here is root of cosine expression below*/
- //rad=(float)pow(2.0,-1.0/power)*distance/size;
- //VECCOPY(mag_vec,vec_to_part);
- //Normalize(mag_vec);
- //VecMulf(mag_vec,(float)cos(3.0*M_PI/2.0*(1.0-1.0/(pow(rad,power)+1.0)))/(rad+0.2f));
- //VECADDFAC(field,field,mag_vec,force_val);
- break;
- }
-}
static void do_texture_effector(Tex *tex, short mode, short is_2d, float nabla, short object, float *pa_co, float obmat[4][4], float force_val, float falloff, float *field)
{
TexResult result[4];
@@ -2468,7 +2316,9 @@ static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSy
}
}
else if(pd->forcefield)
+ {
type |= PSYS_EC_EFFECTOR;
+ }
}
if(pd && pd->deflect)
@@ -2480,6 +2330,9 @@ static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSy
ec->type=type;
ec->distances=0;
ec->locations=0;
+ ec->rng = rng_new(1);
+ rng_srandom(ec->rng, (unsigned int)(ceil(PIL_check_seconds_timer()))); // use better seed
+
BLI_addtail(lb, ec);
}
@@ -2493,11 +2346,14 @@ static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSy
for(i=0; epsys; epsys=epsys->next,i++){
type=0;
- if(epsys!=psys){
+ if(epsys!=psys || (psys->part->flag & PART_SELF_EFFECT)){
epart=epsys->part;
- if(epsys->part->pd && epsys->part->pd->forcefield)
+ if((epsys->part->pd && epsys->part->pd->forcefield)
+ || (epsys->part->pd2 && epsys->part->pd2->forcefield))
+ {
type=PSYS_EC_PARTICLE;
+ }
if(epart->type==PART_REACTOR) {
tob=epsys->target_ob;
@@ -2512,6 +2368,9 @@ static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSy
ec->ob= ob;
ec->type=type;
ec->psys_nbr=i;
+ ec->rng = rng_new(1);
+ rng_srandom(ec->rng, (unsigned int)(ceil(PIL_check_seconds_timer())));
+
BLI_addtail(lb, ec);
}
}
@@ -2561,6 +2420,9 @@ void psys_init_effectors(Object *obsrc, Group *group, ParticleSystem *psys)
void psys_end_effectors(ParticleSystem *psys)
{
+ /* NOTE:
+ ec->ob is not valid in here anymore! - dg
+ */
ListBase *lb=&psys->effectors;
if(lb->first) {
ParticleEffectorCache *ec;
@@ -2579,20 +2441,24 @@ void psys_end_effectors(ParticleSystem *psys)
if(ec->tree)
BLI_kdtree_free(ec->tree);
+
+ if(ec->rng)
+ rng_free(ec->rng);
+
}
BLI_freelistN(lb);
}
}
-static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
+static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra)
{
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
ParticleSettings *part=psys->part;
ParticleData *pa;
float vec2[3],loc[3],*co=0;
- int p,totpart,totvert;
+ int p,totpart;
for(ec= lb->first; ec; ec= ec->next) {
PartDeflect *pd= ec->ob->pd;
@@ -2617,7 +2483,7 @@ static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemMo
ec->locations=MEM_callocN(totpart*3*sizeof(float),"particle locations");
for(p=0,pa=psys->particles; p<totpart; p++, pa++){
- psys_particle_on_emitter(ob,psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,0,0);
+ psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,0,0);
Mat4MulVecfl(ob->obmat,loc);
ec->distances[p]=VecLenf(loc,vec);
VECSUB(loc,loc,vec);
@@ -2625,96 +2491,18 @@ static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemMo
}
}
}
- else if(ec->type==PSYS_EC_DEFLECT){
- DerivedMesh *dm;
- MFace *mface=0;
- MVert *mvert=0;
- int i, totface;
- float v1[3],v2[3],v3[3],v4[4], *min, *max;
-
- if(ob==ec->ob)
- dm=psmd->dm;
- else{
- psys_disable_all(ec->ob);
-
- dm=mesh_get_derived_final(ec->ob,0);
-
- psys_enable_all(ec->ob);
- }
-
- if(dm){
- totvert=dm->getNumVerts(dm);
- totface=dm->getNumFaces(dm);
- mface=dm->getFaceDataArray(dm,CD_MFACE);
- mvert=dm->getVertDataArray(dm,CD_MVERT);
-
- /* Decide which is faster to calculate by the amount of*/
- /* matrice multiplications needed to convert spaces. */
- /* With size deflect we have to convert allways because */
- /* the object can be scaled nonuniformly (sphere->ellipsoid). */
- if(totvert<2*psys->totpart || part->flag & PART_SIZE_DEFL){
- co=ec->vert_cos=MEM_callocN(sizeof(float)*3*totvert,"Particle deflection vert cos");
- /* convert vert coordinates to global (particle) coordinates */
- for(i=0; i<totvert; i++, co+=3){
- VECCOPY(co,mvert[i].co);
- Mat4MulVecfl(ec->ob->obmat,co);
- }
- co=ec->vert_cos;
- }
- else
- ec->vert_cos=0;
-
- INIT_MINMAX(ec->ob_minmax,ec->ob_minmax+3);
-
- min=ec->face_minmax=MEM_callocN(sizeof(float)*6*totface,"Particle deflection face minmax");
- max=min+3;
-
- for(i=0; i<totface; i++,mface++,min+=6,max+=6){
- if(co){
- VECCOPY(v1,co+3*mface->v1);
- VECCOPY(v2,co+3*mface->v2);
- VECCOPY(v3,co+3*mface->v3);
- }
- else{
- VECCOPY(v1,mvert[mface->v1].co);
- VECCOPY(v2,mvert[mface->v2].co);
- VECCOPY(v3,mvert[mface->v3].co);
- }
- INIT_MINMAX(min,max);
- DO_MINMAX(v1,min,max);
- DO_MINMAX(v2,min,max);
- DO_MINMAX(v3,min,max);
-
- if(mface->v4){
- if(co){
- VECCOPY(v4,co+3*mface->v4);
- }
- else{
- VECCOPY(v4,mvert[mface->v4].co);
- }
- DO_MINMAX(v4,min,max);
- }
-
- DO_MINMAX(min,ec->ob_minmax,ec->ob_minmax+3);
- DO_MINMAX(max,ec->ob_minmax,ec->ob_minmax+3);
- }
- }
- else
- ec->face_minmax=0;
- }
else if(ec->type==PSYS_EC_PARTICLE){
+ Object *eob = ec->ob;
+ ParticleSystem *epsys = BLI_findlink(&eob->particlesystem,ec->psys_nbr);
+ ParticleSettings *epart = epsys->part;
+ ParticleData *epa;
+ int p, totepart = epsys->totpart;
+
if(psys->part->phystype==PART_PHYS_BOIDS){
- Object *eob = ec->ob;
- ParticleSystem *epsys;
- ParticleSettings *epart;
- ParticleData *epa;
ParticleKey state;
PartDeflect *pd;
- int totepart, p;
- epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
- epart= epsys->part;
+
pd= epart->pd;
- totepart= epsys->totpart;
if(pd->forcefield==PFIELD_FORCE && totepart){
KDTree *tree;
@@ -2728,6 +2516,12 @@ static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemMo
BLI_kdtree_balance(tree);
}
}
+
+ }
+ else if(ec->type==PSYS_EC_DEFLECT) {
+ CollisionModifierData *collmd = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) );
+ if(collmd)
+ collision_move_object(collmd, 1.0, 0.0);
}
}
}
@@ -2745,35 +2539,31 @@ void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, P
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
float distance, vec_to_part[3];
- float falloff;
+ float falloff, charge = 0.0f;
int p;
/* check all effector objects for interaction */
if(lb->first){
+ if(psys->part->pd && psys->part->pd->forcefield==PFIELD_CHARGE){
+ /* Only the charge of the effected particle is used for
+ interaction, not fall-offs. If the fall-offs aren't the
+ same this will be unphysical, but for animation this
+ could be the wanted behavior. If you want physical
+ correctness the fall-off should be spherical 2.0 anyways.
+ */
+ charge = psys->part->pd->f_strength;
+ }
+ if(psys->part->pd2 && psys->part->pd2->forcefield==PFIELD_CHARGE){
+ charge += psys->part->pd2->f_strength;
+ }
for(ec = lb->first; ec; ec= ec->next){
eob= ec->ob;
if(ec->type & PSYS_EC_EFFECTOR){
pd=eob->pd;
if(psys->part->type!=PART_HAIR && psys->part->integrator)
where_is_object_time(eob,cfra);
- /* Get IPO force strength and fall off values here */
- //if (has_ipo_code(eob->ipo, OB_PD_FSTR))
- // force_val = IPO_GetFloatValue(eob->ipo, OB_PD_FSTR, cfra);
- //else
- // force_val = pd->f_strength;
-
- //if (has_ipo_code(eob->ipo, OB_PD_FFALL))
- // ffall_val = IPO_GetFloatValue(eob->ipo, OB_PD_FFALL, cfra);
- //else
- // ffall_val = pd->f_power;
-
- //if (has_ipo_code(eob->ipo, OB_PD_FMAXD))
- // maxdist = IPO_GetFloatValue(eob->ipo, OB_PD_FMAXD, cfra);
- //else
- // maxdist = pd->maxdist;
/* use center of object for distance calculus */
- //obloc= eob->obmat[3];
VecSubf(vec_to_part, state->co, eob->obmat[3]);
distance = VecLength(vec_to_part);
@@ -2786,22 +2576,22 @@ void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, P
pd->flag & PFIELD_TEX_OBJECT, (pd->flag & PFIELD_TEX_ROOTCO) ? rootco : state->co, eob->obmat,
pd->f_strength, falloff, force_field);
} else {
- do_physical_effector(pd->forcefield,pd->f_strength,distance,
- falloff,pd->f_dist,pd->f_damp,eob->obmat[2],vec_to_part,
- pa->state.vel,force_field,pd->flag&PFIELD_PLANAR);
+ do_physical_effector(eob, state->co, pd->forcefield,pd->f_strength,distance,
+ falloff,0.0,pd->f_damp,eob->obmat[2],vec_to_part,
+ state->vel,force_field,pd->flag&PFIELD_PLANAR,ec->rng,pd->f_noise,charge,pa->size);
}
}
if(ec->type & PSYS_EC_PARTICLE){
- int totepart;
+ int totepart, i;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
- pd= epart->pd;
+ pd=epart->pd;
totepart= epsys->totpart;
if(totepart <= 0)
continue;
- if(pd->forcefield==PFIELD_HARMONIC){
+ if(pd && pd->forcefield==PFIELD_HARMONIC){
/* every particle is mapped to only one harmonic effector particle */
p= pa_no%epsys->totpart;
totepart= p+1;
@@ -2813,33 +2603,29 @@ void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, P
epsys->lattice=psys_get_lattice(ob,psys);
for(; p<totepart; p++){
+ /* particle skips itself as effector */
+ if(epsys==psys && p == pa_no) continue;
+
epa = epsys->particles + p;
- estate.time=-1.0;
+ estate.time=cfra;
if(psys_get_particle_state(eob,epsys,p,&estate,0)){
VECSUB(vec_to_part, state->co, estate.co);
distance = VecLength(vec_to_part);
-
- //if(pd->forcefield==PFIELD_HARMONIC){
- // //if(cfra < epa->time + radius){ /* radius is fade-in in ui */
- // // eforce*=(cfra-epa->time)/radius;
- // //}
- //}
- //else{
- // /* Limit minimum distance to effector particle so that */
- // /* the force is not too big */
- // if (distance < 0.001) distance = 0.001f;
- //}
- falloff=effector_falloff(pd,estate.vel,vec_to_part);
+ for(i=0, pd = epart->pd; i<2; i++,pd = epart->pd2) {
+ if(pd==NULL || pd->forcefield==0) continue;
- if(falloff<=0.0f)
- ; /* don't do anything */
- else
- do_physical_effector(pd->forcefield,pd->f_strength,distance,
- falloff,epart->size,pd->f_damp,estate.vel,vec_to_part,
- state->vel,force_field,0);
+ falloff=effector_falloff(pd,estate.vel,vec_to_part);
+
+ if(falloff<=0.0f)
+ ; /* don't do anything */
+ else
+ do_physical_effector(eob, state->co, pd->forcefield,pd->f_strength,distance,
+ falloff,epart->size,pd->f_damp,estate.vel,vec_to_part,
+ state->vel,force_field,0, ec->rng, pd->f_noise,charge,pa->size);
+ }
}
- else if(pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
+ else if(pd && pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
/* first step after key release */
psys_get_particle_state(eob,epsys,p,&estate,1);
VECADD(vel,vel,estate.vel);
@@ -2860,7 +2646,7 @@ void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, P
/* Newtonian physics */
/************************************************/
/* gathers all forces that effect particles and calculates a new state for the particle */
-static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, float timestep, float dfra, float cfra, ParticleKey *state)
+static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, float timestep, float dfra, float cfra)
{
ParticleKey states[5], tkey;
float force[3],tvel[3],dx[4][3],dv[4][3];
@@ -2868,7 +2654,7 @@ static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, Parti
int i, steps=1;
/* maintain angular velocity */
- VECCOPY(state->ave,pa->state.ave);
+ VECCOPY(pa->state.ave,pa->prev_state.ave);
if(part->flag & PART_SIZEMASS)
pa_mass*=pa->size;
@@ -2918,8 +2704,8 @@ static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, Parti
switch(part->integrator){
case PART_INT_EULER:
- VECADDFAC(state->co,states->co,states->vel,dtime);
- VECADDFAC(state->vel,states->vel,force,dtime);
+ VECADDFAC(pa->state.co,states->co,states->vel,dtime);
+ VECADDFAC(pa->state.vel,states->vel,force,dtime);
break;
case PART_INT_MIDPOINT:
if(i==0){
@@ -2928,8 +2714,8 @@ static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, Parti
fra=psys->cfra+0.5f*dfra;
}
else{
- VECADDFAC(state->co,states->co,states[1].vel,dtime);
- VECADDFAC(state->vel,states->vel,force,dtime);
+ VECADDFAC(pa->state.co,states->co,states[1].vel,dtime);
+ VECADDFAC(pa->state.vel,states->vel,force,dtime);
}
break;
case PART_INT_RK4:
@@ -2969,15 +2755,15 @@ static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, Parti
VECCOPY(dv[3],force);
VecMulf(dv[3],dtime);
- VECADDFAC(state->co,states->co,dx[0],1.0f/6.0f);
- VECADDFAC(state->co,state->co,dx[1],1.0f/3.0f);
- VECADDFAC(state->co,state->co,dx[2],1.0f/3.0f);
- VECADDFAC(state->co,state->co,dx[3],1.0f/6.0f);
+ VECADDFAC(pa->state.co,states->co,dx[0],1.0f/6.0f);
+ VECADDFAC(pa->state.co,pa->state.co,dx[1],1.0f/3.0f);
+ VECADDFAC(pa->state.co,pa->state.co,dx[2],1.0f/3.0f);
+ VECADDFAC(pa->state.co,pa->state.co,dx[3],1.0f/6.0f);
- VECADDFAC(state->vel,states->vel,dv[0],1.0f/6.0f);
- VECADDFAC(state->vel,state->vel,dv[1],1.0f/3.0f);
- VECADDFAC(state->vel,state->vel,dv[2],1.0f/3.0f);
- VECADDFAC(state->vel,state->vel,dv[3],1.0f/6.0f);
+ VECADDFAC(pa->state.vel,states->vel,dv[0],1.0f/6.0f);
+ VECADDFAC(pa->state.vel,pa->state.vel,dv[1],1.0f/3.0f);
+ VECADDFAC(pa->state.vel,pa->state.vel,dv[2],1.0f/3.0f);
+ VECADDFAC(pa->state.vel,pa->state.vel,dv[3],1.0f/6.0f);
}
break;
}
@@ -2985,62 +2771,62 @@ static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, Parti
/* damp affects final velocity */
if(part->dampfac!=0.0)
- VecMulf(state->vel,1.0f-part->dampfac);
+ VecMulf(pa->state.vel,1.0f-part->dampfac);
/* finally we do guides */
time=(cfra-pa->time)/pa->lifetime;
CLAMP(time,0.0,1.0);
- VECCOPY(tkey.co,state->co);
- VECCOPY(tkey.vel,state->vel);
- tkey.time=state->time;
+ VECCOPY(tkey.co,pa->state.co);
+ VECCOPY(tkey.vel,pa->state.vel);
+ tkey.time=pa->state.time;
if(part->type != PART_HAIR) {
if(do_guide(&tkey,pa_no,time,&psys->effectors)) {
- VECCOPY(state->co,tkey.co);
+ VECCOPY(pa->state.co,tkey.co);
/* guides don't produce valid velocity */
- VECSUB(state->vel,tkey.co,pa->state.co);
- VecMulf(state->vel,1.0f/dtime);
- state->time=tkey.time;
+ VECSUB(pa->state.vel,tkey.co,pa->prev_state.co);
+ VecMulf(pa->state.vel,1.0f/dtime);
+ pa->state.time=tkey.time;
}
}
}
-static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep, ParticleKey *state)
+static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
{
float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep;
if((part->flag & PART_ROT_DYN)==0){
if(part->avemode==PART_AVE_SPIN){
float angle;
- float len1 = VecLength(pa->state.vel);
- float len2 = VecLength(state->vel);
+ float len1 = VecLength(pa->prev_state.vel);
+ float len2 = VecLength(pa->state.vel);
if(len1==0.0f || len2==0.0f)
- state->ave[0]=state->ave[1]=state->ave[2]=0.0f;
+ pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0f;
else{
- Crossf(state->ave,pa->state.vel,state->vel);
- Normalize(state->ave);
- angle=Inpf(pa->state.vel,state->vel)/(len1*len2);
- VecMulf(state->ave,saacos(angle)/dtime);
+ Crossf(pa->state.ave,pa->prev_state.vel,pa->state.vel);
+ Normalize(pa->state.ave);
+ angle=Inpf(pa->prev_state.vel,pa->state.vel)/(len1*len2);
+ VecMulf(pa->state.ave,saacos(angle)/dtime);
}
- VecRotToQuat(state->vel,dtime*part->avefac,rot2);
+ VecRotToQuat(pa->state.vel,dtime*part->avefac,rot2);
}
}
- rotfac=VecLength(state->ave);
+ rotfac=VecLength(pa->state.ave);
if(rotfac==0.0){ /* QuatOne (in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */
rot1[0]=1.0;
rot1[1]=rot1[2]=rot1[3]=0;
}
else{
- VecRotToQuat(state->ave,rotfac*dtime,rot1);
+ VecRotToQuat(pa->state.ave,rotfac*dtime,rot1);
}
- QuatMul(state->rot,rot1,pa->state.rot);
- QuatMul(state->rot,rot2,state->rot);
+ QuatMul(pa->state.rot,rot1,pa->prev_state.rot);
+ QuatMul(pa->state.rot,rot2,pa->state.rot);
/* keep rotation quat in good health */
- NormalQuat(state->rot);
+ NormalQuat(pa->state.rot);
}
/* convert from triangle barycentric weights to quad mean value weights */
@@ -3075,7 +2861,7 @@ int psys_intersect_dm(Object *ob, DerivedMesh *dm, float *vert_cos, float *co1,
dm=mesh_get_derived_final(ob,0);
if(dm==0)
- mesh_get_derived_deform(ob,0);
+ dm=mesh_get_derived_deform(ob,0);
psys_enable_all(ob);
@@ -3185,37 +2971,122 @@ int psys_intersect_dm(Object *ob, DerivedMesh *dm, float *vert_cos, float *co1,
}
return intersect;
}
+
+/* container for moving data between deflet_particle and particle_intersect_face */
+typedef struct ParticleCollision
+{
+ struct Object *ob, *ob_t; // collided and current objects
+ struct CollisionModifierData *md; // collision modifier for ob_t;
+ float nor[3]; // normal at collision point
+ float vel[3]; // velocity of collision point
+ float co1[3], co2[3]; // ray start and end points
+ float ray_len; // original length of co2-co1, needed for collision time evaluation
+ float t; // time of previous collision, needed for substracting face velocity
+}
+ParticleCollision;
+
+static void particle_intersect_face(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
+{
+ ParticleCollision *col = (ParticleCollision *) userdata;
+ MFace *face = col->md->mfaces + index;
+ MVert *x = col->md->x;
+ MVert *v = col->md->current_v;
+ float vel[3], co1[3], co2[3], uv[2], ipoint[3], temp[3], t;
+
+ float *t0, *t1, *t2, *t3;
+ t0 = x[ face->v1 ].co;
+ t1 = x[ face->v2 ].co;
+ t2 = x[ face->v3 ].co;
+ t3 = face->v4 ? x[ face->v4].co : NULL;
+
+ /* calculate average velocity of face */
+ VECCOPY(vel, v[ face->v1 ].co);
+ VECADD(vel, vel, v[ face->v2 ].co);
+ VECADD(vel, vel, v[ face->v3 ].co);
+ VecMulf(vel, 0.33334f);
+
+ /* substract face velocity, in other words convert to
+ a coordinate system where only the particle moves */
+ VECADDFAC(co1, col->co1, vel, -col->t);
+ VECSUB(co2, col->co2, vel);
+
+ do
+ {
+ if(ray->radius == 0.0f) {
+ if(LineIntersectsTriangle(co1, co2, t0, t1, t2, &t, uv)) {
+ if(t >= 0.0f && t < hit->dist/col->ray_len) {
+ hit->dist = col->ray_len * t;
+ hit->index = index;
+
+ /* calculate normal that's facing the particle */
+ CalcNormFloat(t0, t1, t2, col->nor);
+ VECSUB(temp, co2, co1);
+ if(Inpf(col->nor, temp) > 0.0f)
+ VecNegf(col->nor);
+
+ VECCOPY(col->vel,vel);
+
+ col->ob = col->ob_t;
+ }
+ }
+ }
+ else {
+ if(SweepingSphereIntersectsTriangleUV(co1, co2, ray->radius, t0, t1, t2, &t, ipoint)) {
+ if(t >=0.0f && t < hit->dist/col->ray_len) {
+ hit->dist = col->ray_len * t;
+ hit->index = index;
+
+ VecLerpf(temp, co1, co2, t);
+
+ VECSUB(col->nor, temp, ipoint);
+ Normalize(col->nor);
+
+ VECCOPY(col->vel,vel);
+
+ col->ob = col->ob_t;
+ }
+ }
+ }
+
+ t1 = t2;
+ t2 = t3;
+ t3 = NULL;
+
+ } while(t2);
+}
/* particle - mesh collision code */
/* in addition to basic point to surface collisions handles friction & damping,*/
/* angular momentum <-> linear momentum and swept sphere - mesh collisions */
/* 1. check for all possible deflectors for closest intersection on particle path */
/* 2. if deflection was found kill the particle or calculate new coordinates */
-static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float dfra, float cfra, ParticleKey *state, int *pa_die){
- Object *ob, *min_ob;
- MFace *mface;
- MVert *mvert;
- DerivedMesh *dm;
+static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float timestep, float dfra, float cfra){
+ Object *ob = NULL;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
- ParticleKey cstate;
- float imat[4][4];
- float co1[3],co2[3],def_loc[3],def_nor[3],unit_nor[3],def_tan[3],dvec[3],def_vel[3],dave[3],dvel[3];
- float pa_minmax[6];
- float min_w[4], zerovec[3]={0.0,0.0,0.0}, ipoint[3];
- float min_d,dotprod,damp,frict,o_len,d_len,radius=-1.0f;
- int min_face=0, intersect=1, through=0;
- short deflections=0, global=0;
+ ParticleKey reaction_state;
+ ParticleCollision col;
+ BVHTreeRayHit hit;
+ float ray_dir[3], zerovec[3]={0.0,0.0,0.0};
+ float radius = ((part->flag & PART_SIZE_DEFL)?pa->size:0.0f);
+ int deflections=0, max_deflections=10;
- VECCOPY(def_loc,pa->state.co);
- VECCOPY(def_vel,pa->state.vel);
+ VECCOPY(col.co1, pa->prev_state.co);
+ VECCOPY(col.co2, pa->state.co);
+ col.t = 0.0f;
/* 10 iterations to catch multiple deflections */
- if(lb->first) while(deflections<10){
- intersect=0;
- global=0;
- min_d=20000.0;
- min_ob=NULL;
+ if(lb->first) while(deflections < max_deflections){
/* 1. */
+
+ VECSUB(ray_dir, col.co2, col.co1);
+ hit.index = -1;
+ hit.dist = col.ray_len = VecLength(ray_dir);
+
+ /* even if particle is stationary we want to check for moving colliders */
+ /* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
+ if(hit.dist == 0.0f)
+ hit.dist = col.ray_len = 0.000001f;
+
for(ec=lb->first; ec; ec=ec->next){
if(ec->type & PSYS_EC_DEFLECT){
ob= ec->ob;
@@ -3223,263 +3094,168 @@ static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, Part
if(part->type!=PART_HAIR)
where_is_object_time(ob,cfra);
- if(ob==pob){
- dm=psmd->dm;
- /* particles should not collide with emitter at birth */
- if(pa->time < cfra && pa->time >= psys->cfra)
- continue;
- }
- else
- dm=0;
-
- VECCOPY(co1,def_loc);
- VECCOPY(co2,state->co);
-
- if(ec->vert_cos==0){
- /* convert particle coordinates to object coordinates */
- Mat4Invert(imat,ob->obmat);
- Mat4MulVecfl(imat,co1);
- Mat4MulVecfl(imat,co2);
- }
-
- INIT_MINMAX(pa_minmax,pa_minmax+3);
- DO_MINMAX(co1,pa_minmax,pa_minmax+3);
- DO_MINMAX(co2,pa_minmax,pa_minmax+3);
- if(part->flag&PART_SIZE_DEFL){
- pa_minmax[0]-=pa->size;
- pa_minmax[1]-=pa->size;
- pa_minmax[2]-=pa->size;
- pa_minmax[3]+=pa->size;
- pa_minmax[4]+=pa->size;
- pa_minmax[5]+=pa->size;
-
- radius=pa->size;
- }
-
- if(ec->face_minmax==0 || AabbIntersectAabb(pa_minmax,pa_minmax+3,ec->ob_minmax,ec->ob_minmax+3)) {
- if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,
- ec->face_minmax,pa_minmax,radius,ipoint)){
+ /* particles should not collide with emitter at birth */
+ if(ob==pob && pa->time < cfra && pa->time >= psys->cfra)
+ continue;
- min_ob=ob;
+ col.md = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) );
+ col.ob_t = ob;
- if(ec->vert_cos)
- global=1;
- else
- global=0;
- }
- }
+ if(col.md && col.md->bvhtree)
+ BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col);
}
}
/* 2. */
- if(min_ob){
- BLI_srandom((int)cfra+p);
- ob=min_ob;
-
- if(ob==pob){
- dm=psmd->dm;
- }
- else{
- psys_disable_all(ob);
-
- dm=mesh_get_derived_final(ob,0);
-
- psys_enable_all(ob);
- }
-
- mface=dm->getFaceDataArray(dm,CD_MFACE);
- mface+=min_face;
- mvert=dm->getVertDataArray(dm,CD_MVERT);
-
- /* permeability check */
- if(BLI_frand()<ob->pd->pdef_perm)
- through=1;
- else
- through=0;
-
- if(through==0 && (part->flag & PART_DIE_ON_COL || ob->pd->flag & PDEFLE_KILL_PART)){
- pa->dietime = cfra-(1.0f-min_d)*dfra;
- VecLerpf(def_loc,def_loc,state->co,min_d);
-
- VECCOPY(state->co,def_loc);
- VecLerpf(state->vel,pa->state.vel,state->vel,min_d);
- QuatInterpol(state->rot,pa->state.rot,state->rot,min_d);
- VecLerpf(state->ave,pa->state.ave,state->ave,min_d);
+ if(hit.index>=0) {
+ PartDeflect *pd = col.ob->pd;
+ int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0;
+ float co[3]; /* point of collision */
+ float vec[3]; /* movement through collision */
+ float t = hit.dist/col.ray_len; /* time of collision between this iteration */
+ float dt = col.t + t * (1.0f - col.t); /* time of collision between frame change*/
+
+ VecLerpf(co, col.co1, col.co2, t);
+ VECSUB(vec, col.co2, col.co1);
+
+ VecMulf(col.vel, 1.0f-col.t);
+
+ /* particle dies in collision */
+ if(through == 0 && (part->flag & PART_DIE_ON_COL || pd->flag & PDEFLE_KILL_PART)) {
+ pa->alive = PARS_DYING;
+ pa->dietime = pa->state.time + (cfra - pa->state.time) * dt;
+
+ /* we have to add this for dying particles too so that reactors work correctly */
+ VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f));
- *pa_die=1;
+ VECCOPY(pa->state.co, co);
+ VecLerpf(pa->state.vel, pa->prev_state.vel, pa->state.vel, dt);
+ QuatInterpol(pa->state.rot, pa->prev_state.rot, pa->state.rot, dt);
+ VecLerpf(pa->state.ave, pa->prev_state.ave, pa->state.ave, dt);
/* particle is dead so we don't need to calculate further */
- deflections=10;
+ deflections=max_deflections;
/* store for reactors */
- copy_particle_key(&cstate,state,0);
+ copy_particle_key(&reaction_state,&pa->state,0);
if(part->flag & PART_STICKY){
pa->stick_ob=ob;
pa->flag |= PARS_STICKY;
}
}
- else{
- VECCOPY(co1,def_loc);
- VECCOPY(co2,state->co);
+ else {
+ float nor_vec[3], tan_vec[3], tan_vel[3], vel[3];
+ float damp, frict;
+ float inp, inp_v;
+
+ /* get damping & friction factors */
+ damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f);
+ CLAMP(damp,0.0,1.0);
- if(global==0){
- /* convert particle coordinates to object coordinates */
- Mat4Invert(imat,ob->obmat);
- Mat4MulVecfl(imat,co1);
- Mat4MulVecfl(imat,co2);
- }
+ frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f);
+ CLAMP(frict,0.0,1.0);
- VecLerpf(def_loc,co1,co2,min_d);
+ /* treat normal & tangent components separately */
+ inp = Inpf(col.nor, vec);
+ inp_v = Inpf(col.nor, col.vel);
- if(radius>0.0f){
- VECSUB(unit_nor,def_loc,ipoint);
- }
- else{
- /* get deflection point & normal */
- psys_interpolate_face(mvert,mface,0,0,min_w,ipoint,unit_nor,0,0,0,0);
- if(global){
- Mat4Mul3Vecfl(ob->obmat,unit_nor);
- Mat4MulVecfl(ob->obmat,ipoint);
- }
- }
+ VECADDFAC(tan_vec, vec, col.nor, -inp);
+ VECADDFAC(tan_vel, col.vel, col.nor, -inp_v);
+ if((part->flag & PART_ROT_DYN)==0)
+ VecLerpf(tan_vec, tan_vec, tan_vel, frict);
- Normalize(unit_nor);
+ VECCOPY(nor_vec, col.nor);
+ inp *= 1.0f - damp;
- VECSUB(dvec,co1,co2);
- /* scale to remaining length after deflection */
- VecMulf(dvec,1.0f-min_d);
+ if(through)
+ inp_v *= damp;
- /* flip normal to face particle */
- if(Inpf(unit_nor,dvec)<0.0f)
- VecMulf(unit_nor,-1.0f);
+ /* special case for object hitting the particle from behind */
+ if(through==0 && ((inp_v>0 && inp>0 && inp_v>inp) || (inp_v<0 && inp<0 && inp_v<inp)))
+ VecMulf(nor_vec, inp_v);
+ else
+ VecMulf(nor_vec, inp_v + (through ? 1.0f : -1.0f) * inp);
- /* store for easy velocity calculation */
- o_len=VecLength(dvec);
+ /* angular <-> linear velocity - slightly more physical and looks even nicer than before */
+ if(part->flag & PART_ROT_DYN) {
+ float surface_vel[3], rot_vel[3], friction[3], dave[3], dvel[3];
- /* project particle movement to normal & create tangent */
- dotprod=Inpf(dvec,unit_nor);
- VECCOPY(def_nor,unit_nor);
- VecMulf(def_nor,dotprod);
- VECSUB(def_tan,def_nor,dvec);
+ /* apparent velocity along collision surface */
+ VECSUB(surface_vel, tan_vec, tan_vel);
- damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
+ /* direction of rolling friction */
+ Crossf(rot_vel, pa->state.ave, col.nor);
+ /* convert to current dt */
+ VecMulf(rot_vel, (timestep*dfra) * (1.0f - col.t));
+ VecMulf(rot_vel, pa->size);
- /* create location after deflection */
- VECCOPY(dvec,def_nor);
- damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
- CLAMP(damp,0.0,1.0);
- VecMulf(dvec,1.0f-damp);
- if(through)
- VecMulf(dvec,-1.0);
-
- frict=ob->pd->pdef_frict+ob->pd->pdef_rfrict*2.0f*(BLI_frand()-0.5f);
- CLAMP(frict,0.0,1.0);
- VECADDFAC(dvec,dvec,def_tan,1.0f-frict);
+ /* apply sliding friction */
+ VECSUB(surface_vel, surface_vel, rot_vel);
+ VECCOPY(friction, surface_vel);
- /* store for easy velocity calculation */
- d_len=VecLength(dvec);
+ VecMulf(surface_vel, 1.0 - frict);
+ VecMulf(friction, frict);
- /* just to be sure we don't hit the current face again */
- if(through){
- VECADDFAC(ipoint,ipoint,unit_nor,-0.0001f);
- VECADDFAC(def_loc,def_loc,unit_nor,-0.0001f);
+ /* sliding changes angular velocity */
+ Crossf(dave, col.nor, friction);
+ VecMulf(dave, 1.0f/MAX2(pa->size, 0.001));
- if(part->flag & PART_ROT_DYN){
- VECADDFAC(def_tan,def_tan,unit_nor,-0.0001f);
- VECADDFAC(def_nor,def_nor,unit_nor,-0.0001f);
- }
- }
- else{
- VECADDFAC(ipoint,ipoint,unit_nor,0.0001f);
- VECADDFAC(def_loc,def_loc,unit_nor,0.0001f);
+ /* we assume rolling friction is around 0.01 of sliding friction */
+ VecMulf(rot_vel, 1.0 - frict*0.01);
- if(part->flag & PART_ROT_DYN){
- VECADDFAC(def_tan,def_tan,unit_nor,0.0001f);
- VECADDFAC(def_nor,def_nor,unit_nor,0.0001f);
- }
- }
+ /* change in angular velocity has to be added to the linear velocity too */
+ Crossf(dvel, dave, col.nor);
+ VecMulf(dvel, pa->size);
+ VECADD(rot_vel, rot_vel, dvel);
- /* lets get back to global space */
- if(global==0){
- Mat4Mul3Vecfl(ob->obmat,dvec);
- Mat4MulVecfl(ob->obmat,ipoint);
- Mat4MulVecfl(ob->obmat,def_loc);/* def_loc remains as intersection point for next iteration */
- }
+ VECADD(surface_vel, surface_vel, rot_vel);
+ VECADD(tan_vec, surface_vel, tan_vel);
- /* store for reactors */
- VECCOPY(cstate.co,ipoint);
- VecLerpf(cstate.vel,pa->state.vel,state->vel,min_d);
- QuatInterpol(cstate.rot,pa->state.rot,state->rot,min_d);
-
- /* slightly unphysical but looks nice enough */
- if(part->flag & PART_ROT_DYN){
- if(global==0){
- Mat4Mul3Vecfl(ob->obmat,def_nor);
- Mat4Mul3Vecfl(ob->obmat,def_tan);
- }
+ /* convert back to normal time */
+ VecMulf(dave, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001));
- Normalize(def_tan);
- Normalize(def_nor);
- VECCOPY(unit_nor,def_nor);
+ VecMulf(pa->state.ave, 1.0 - frict*0.01);
+ VECADD(pa->state.ave, pa->state.ave, dave);
+ }
- /* create normal velocity */
- VecMulf(def_nor,Inpf(pa->state.vel,def_nor));
+ /* combine components together again */
+ VECADD(vec, nor_vec, tan_vec);
- /* create tangential velocity */
- VecMulf(def_tan,Inpf(pa->state.vel,def_tan));
-
- /* angular velocity change due to tangential velocity */
- Crossf(dave,unit_nor,def_tan);
- VecMulf(dave,1.0f/pa->size);
+ /* calculate velocity from collision vector */
+ VECCOPY(vel, vec);
+ VecMulf(vel, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001));
- /* linear velocity change due to angular velocity */
- VecMulf(unit_nor,pa->size); /* point of impact from particle center */
- Crossf(dvel,pa->state.ave,unit_nor);
+ /* make sure we don't hit the current face again */
+ VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f));
- if(through)
- VecMulf(def_nor,-1.0);
+ /* store state for reactors */
+ VECCOPY(reaction_state.co, co);
+ VecLerpf(reaction_state.vel, pa->prev_state.vel, pa->state.vel, dt);
+ QuatInterpol(reaction_state.rot, pa->prev_state.rot, pa->state.rot, dt);
- VecMulf(def_nor,1.0f-damp);
- VECSUB(dvel,dvel,def_nor);
+ /* set coordinates for next iteration */
+ VECCOPY(col.co1, co);
+ VECADDFAC(col.co2, co, vec, 1.0f - t);
+ col.t = dt;
- VecMulf(dvel,1.0f-frict);
- VecMulf(dave,1.0f-frict);
- }
-
- if(d_len<0.001 && VecLength(pa->state.vel)<0.001){
+ if(VecLength(vec) < 0.001 && VecLength(pa->state.vel) < 0.001) {
/* kill speed to stop slipping */
- VECCOPY(state->vel,zerovec);
- VECCOPY(state->co,def_loc);
- if(part->flag & PART_ROT_DYN)
- VECCOPY(state->ave,zerovec);
- deflections=10;
- }
- else{
-
- /* apply new coordinates */
- VECADD(state->co,def_loc,dvec);
-
- Normalize(dvec);
-
- /* we have to use original velocity because otherwise we get slipping */
- /* when forces like gravity balance out damping & friction */
- VecMulf(dvec,VecLength(pa->state.vel)*(d_len/o_len));
- VECCOPY(state->vel,dvec);
-
- if(part->flag & PART_ROT_DYN){
- VECADD(state->vel,state->vel,dvel);
- VecMulf(state->vel,0.5);
- VECADD(state->ave,state->ave,dave);
- VecMulf(state->ave,0.5);
+ VECCOPY(pa->state.vel,zerovec);
+ VECCOPY(pa->state.co, co);
+ if(part->flag & PART_ROT_DYN) {
+ VECCOPY(pa->state.ave,zerovec);
}
}
+ else {
+ VECCOPY(pa->state.co, col.co2);
+ VECCOPY(pa->state.vel, vel);
+ }
}
deflections++;
- cstate.time=cfra-(1.0f-min_d)*dfra;
- //particle_react_to_collision(min_ob,pob,psys,pa,p,&cstate);
- push_reaction(pob,psys,p,PART_EVENT_COLLIDE,&cstate);
+ reaction_state.time = cfra - (1.0f - dt) * dfra;
+ push_reaction(col.ob, psys, p, PART_EVENT_COLLIDE, &reaction_state);
}
else
return;
@@ -3540,7 +3316,9 @@ static int boid_see_mesh(ListBase *lb, Object *pob, ParticleSystem *psys, float
else{
psys_disable_all(ob);
- dm=mesh_get_derived_deform(ob,0);
+ dm=mesh_get_derived_final(ob,0);
+ if(dm==0)
+ dm=mesh_get_derived_deform(ob,0);
psys_enable_all(ob);
}
@@ -3643,7 +3421,7 @@ static int add_boid_acc(BoidVecFunc *bvf, float lat_max, float tan_max, float *l
}
}
/* determines the acceleration that the boid tries to acchieve */
-static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc, int *pa_die)
+static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc)
{
ParticleData *pars=psys->particles;
KDTreeNearest ptn[MAX_BOIDNEIGHBOURS+1];
@@ -3674,18 +3452,18 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
switch(part->boidrule[i]){
case BOID_COLLIDE:
/* collision avoidance */
- bvf->Copyf(dvec,pa->state.vel);
+ bvf->Copyf(dvec,pa->prev_state.vel);
bvf->Mulf(dvec,5.0f);
- bvf->Addf(dvec,dvec,pa->state.co);
- if(boid_see_mesh(&psys->effectors,ob,psys,pa->state.co,dvec,ob_co,ob_nor,cfra)){
+ bvf->Addf(dvec,dvec,pa->prev_state.co);
+ if(boid_see_mesh(&psys->effectors,ob,psys,pa->prev_state.co,dvec,ob_co,ob_nor,cfra)){
float probelen = bvf->Length(dvec);
float proj;
float oblen;
Normalize(ob_nor);
- proj = bvf->Inpf(ob_nor,pa->state.vel);
+ proj = bvf->Inpf(ob_nor,pa->prev_state.vel);
- bvf->Subf(dvec,pa->state.co,ob_co);
+ bvf->Subf(dvec,pa->prev_state.co,ob_co);
oblen=bvf->Length(dvec);
bvf->Copyf(dvec,ob_nor);
@@ -3705,12 +3483,12 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
float distance;
- VECSUB(dvec,eob->obmat[3],pa->state.co);
+ VECSUB(dvec,eob->obmat[3],pa->prev_state.co);
distance=Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < pd->mindist){
- *pa_die=1;
+ pa->alive = PARS_DYING;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
@@ -3739,17 +3517,17 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
pd= epart->pd;
totepart= epsys->totpart;
- if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
- count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0 && ec->tree){
+ count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->prev_state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
- VECSUB(dvec, state.co, pa->state.co);
+ VECSUB(dvec, state.co, pa->prev_state.co);
distance = Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < (epsys->particles+ptn2[p].index)->size){
- *pa_die=1;
+ pa->alive = PARS_DYING;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
@@ -3775,7 +3553,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
for(n=1; n<neighbours; n++){
if(ptn[n].dist<2.0f*pa->size){
if(ptn[n].dist!=0.0f) {
- bvf->Subf(dvec,pa->state.co,pars[ptn[n].index].state.co);
+ bvf->Subf(dvec,pa->prev_state.co,pars[ptn[n].index].state.co);
bvf->Mulf(dvec,(2.0f*pa->size-ptn[n].dist)/ptn[n].dist);
bvf->Addf(avoid,avoid,dvec);
near++;
@@ -3798,7 +3576,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
}
bvf->Mulf(center,1.0f/((float)neighbours-1.0f));
- bvf->Subf(dvec,center,pa->state.co);
+ bvf->Subf(dvec,center,pa->prev_state.co);
bvf->Mulf(dvec,part->boidfac[BOID_CENTER]*2.0f);
@@ -3807,9 +3585,9 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
break;
case BOID_AV_VEL:
/* average velocity */
- cur_vel=bvf->Length(pa->state.vel);
+ cur_vel=bvf->Length(pa->prev_state.vel);
if(cur_vel>0.0){
- bvf->Copyf(dvec,pa->state.vel);
+ bvf->Copyf(dvec,pa->prev_state.vel);
bvf->Mulf(dvec,part->boidfac[BOID_AV_VEL]*(avg_vel-cur_vel)/cur_vel);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
@@ -3824,7 +3602,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
}
bvf->Mulf(velocity,1.0f/((float)neighbours-1.0f));
- bvf->Subf(dvec,velocity,pa->state.vel);
+ bvf->Subf(dvec,velocity,pa->prev_state.vel);
bvf->Mulf(dvec,part->boidfac[BOID_VEL_MATCH]);
@@ -3842,7 +3620,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
float distance;
- VECSUB(dvec,eob->obmat[3],pa->state.co);
+ VECSUB(dvec,eob->obmat[3],pa->prev_state.co);
distance=Normalize(dvec);
@@ -3859,7 +3637,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
where_on_path(eob, (cfra-pa->time)/pa->lifetime, temp, dvec);
- VECSUB(dvec,temp,pa->state.co);
+ VECSUB(dvec,temp,pa->prev_state.co);
distance=Normalize(dvec);
@@ -3886,12 +3664,12 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
pd= epart->pd;
totepart= epsys->totpart;
- if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
- count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
+ if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0 && ec->tree){
+ count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->prev_state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
- VECSUB(dvec, state.co, pa->state.co);
+ VECSUB(dvec, state.co, pa->prev_state.co);
distance = Normalize(dvec);
@@ -3913,7 +3691,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
/* level flight */
if((part->flag & PART_BOIDS_2D)==0){
dvec[0]=dvec[1]=0.0;
- dvec[2]=-pa->state.vel[2];
+ dvec[2]=-pa->prev_state.vel[2];
VecMulf(dvec,part->boidfac[BOID_LEVEL]);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
@@ -3923,7 +3701,7 @@ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleS
}
}
/* tries to realize the wanted acceleration */
-static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys, ParticleSettings *part, float timestep, float *acc, ParticleKey *state)
+static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys, ParticleSettings *part, float timestep, float *acc)
{
float dvec[3], bvec[3], length, max_vel=part->max_vel;
float q2[4], q[4];
@@ -3931,7 +3709,7 @@ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys,
float yvec[3]={0.0,1.0,0.0}, zvec[3]={0.0,0.0,-1.0}, bank;
/* apply new velocity, location & rotation */
- copy_particle_key(state,&pa->state,0);
+ copy_particle_key(&pa->state,&pa->prev_state,0);
if(part->flag & PART_SIZEMASS)
pa_mass*=pa->size;
@@ -3943,32 +3721,49 @@ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys,
bvf->Copyf(dvec,acc);
bvf->Mulf(dvec,timestep*timestep*0.5f);
- bvf->Copyf(bvec,state->vel);
+ bvf->Copyf(bvec,pa->state.vel);
bvf->Mulf(bvec,timestep);
bvf->Addf(dvec,dvec,bvec);
- bvf->Addf(state->co,state->co,dvec);
+ bvf->Addf(pa->state.co,pa->state.co,dvec);
- /* air speed from wind effectors */
- if(psys->effectors.first){
+ /* air speed from wind and vortex effectors */
+ if(psys->effectors.first) {
ParticleEffectorCache *ec;
- for(ec=psys->effectors.first; ec; ec=ec->next){
- if(ec->type & PSYS_EC_EFFECTOR){
+ for(ec=psys->effectors.first; ec; ec=ec->next) {
+ if(ec->type & PSYS_EC_EFFECTOR) {
Object *eob = ec->ob;
PartDeflect *pd = eob->pd;
+ float direction[3], vec_to_part[3];
+ float falloff;
+
+ if(pd->f_strength != 0.0f) {
+ VecCopyf(direction, eob->obmat[2]);
+ VecSubf(vec_to_part, pa->state.co, eob->obmat[3]);
+
+ falloff=effector_falloff(pd, direction, vec_to_part);
+
+ switch(pd->forcefield) {
+ case PFIELD_WIND:
+ if(falloff <= 0.0f)
+ ; /* don't do anything */
+ else {
+ Normalize(direction);
+ VecMulf(direction, pd->f_strength * falloff);
+ bvf->Addf(pa->state.co, pa->state.co, direction);
+ }
+ break;
+ case PFIELD_VORTEX:
+ {
+ float distance, mag_vec[3];
+ Crossf(mag_vec, direction, vec_to_part);
+ Normalize(mag_vec);
- if(pd->forcefield==PFIELD_WIND && pd->f_strength!=0.0){
- float distance, wind[3];
- VecCopyf(wind,eob->obmat[2]);
- distance=VecLenf(state->co,eob->obmat[3]);
-
- if (distance < 0.001) distance = 0.001f;
+ distance = VecLength(vec_to_part);
- if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
- ;
- else{
- Normalize(wind);
- VecMulf(wind,pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
- bvf->Addf(state->co,state->co,wind);
+ VecMulf(mag_vec, pd->f_strength * distance * falloff);
+ bvf->Addf(pa->state.co, pa->state.co, mag_vec);
+ break;
+ }
}
}
}
@@ -3976,8 +3771,8 @@ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys,
}
- if((part->flag & PART_BOIDS_2D)==0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0){
- Crossf(yvec,state->vel,zvec);
+ if((part->flag & PART_BOIDS_2D)==0 && pa->prev_state.vel[0]!=0.0 && pa->prev_state.vel[0]!=0.0 && pa->prev_state.vel[0]!=0.0){
+ Crossf(yvec,pa->state.vel,zvec);
Normalize(yvec);
@@ -4004,27 +3799,27 @@ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys,
}
- VecRotToQuat(state->vel,bank,q);
+ VecRotToQuat(pa->state.vel,bank,q);
- VECCOPY(dvec,state->vel);
- VecMulf(dvec,-1.0f);
+ VECCOPY(dvec,pa->state.vel);
+ VecNegf(dvec);
vectoquat(dvec, OB_POSX, OB_POSZ, q2);
- QuatMul(state->rot,q,q2);
+ QuatMul(pa->state.rot,q,q2);
bvf->Mulf(acc,timestep);
- bvf->Addf(state->vel,state->vel,acc);
+ bvf->Addf(pa->state.vel,pa->state.vel,acc);
if(part->flag & PART_BOIDS_2D){
- state->vel[2]=0.0;
- state->co[2]=part->groundz;
+ pa->state.vel[2]=0.0;
+ pa->state.co[2]=part->groundz;
- if(psys->keyed_ob){
+ if(psys->keyed_ob && (psys->keyed_ob->type == OB_MESH)){
Object *zob=psys->keyed_ob;
int min_face;
float co1[3],co2[3],min_d=2.0,min_w[4],imat[4][4];
- VECCOPY(co1,state->co);
- VECCOPY(co2,state->co);
+ VECCOPY(co1,pa->state.co);
+ VECCOPY(co2,pa->state.co);
co1[2]=1000.0f;
co2[2]=-1000.0f;
@@ -4055,7 +3850,7 @@ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys,
Normalize(nor);
- VECCOPY(state->co,loc);
+ VECCOPY(pa->state.co,loc);
zvec[2]=1.0;
@@ -4067,22 +3862,22 @@ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys,
VecRotToQuat(loc,bank,q);
- QUATCOPY(q1,state->rot);
+ QUATCOPY(q1,pa->state.rot);
- QuatMul(state->rot,q,q1);
+ QuatMul(pa->state.rot,q,q1);
}
}
}
}
- length=bvf->Length(state->vel);
+ length=bvf->Length(pa->state.vel);
if(length > max_vel)
- bvf->Mulf(state->vel,max_vel/length);
+ bvf->Mulf(pa->state.vel,max_vel/length);
}
/************************************************/
/* Hair */
/************************************************/
-void save_hair(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra){
+static void save_hair(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra){
ParticleData *pa;
HairKey *key;
int totpart;
@@ -4134,14 +3929,13 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
float *vg_vel, float *vg_tan, float *vg_rot, float *vg_size)
{
ParticleData *pa;
- ParticleKey *outstate, *key;
ParticleSettings *part=psys->part;
KDTree *tree=0;
BoidVecFunc bvf;
IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
Material *ma=give_current_material(ob,part->omat);
float timestep;
- int p, totpart, pa_die;
+ int p, totpart;
/* current time */
float ctime, ipotime;
/* frame & time changes */
@@ -4179,9 +3973,6 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
}
pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
- if(part->type==PART_REACTOR)
- initialize_particle(pa,p,ob,psys,psmd);
-
reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
if(cfra>pa->time && part->flag & PART_LOOP && part->type!=PART_HAIR){
@@ -4204,15 +3995,9 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
if(vg_size)
MEM_freeN(vg_size);
-
- //if(part->phystype==PART_PHYS_SOLID)
- // reset_to_first_fragment(psys);
}
else{
BLI_srandom(31415926 + (int)cfra + psys->seed);
-
- /* outstate is used so that particles are updated in parallel */
- outstate=MEM_callocN(totpart*sizeof(ParticleKey),"Particle Outstates");
/* update effectors */
if(psys->effectors.first)
@@ -4221,7 +4006,7 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
- precalc_effectors(ob,psys,psmd);
+ precalc_effectors(ob,psys,psmd,cfra);
if(part->phystype==PART_PHYS_BOIDS){
/* create particle tree for fast inter-particle comparisons */
@@ -4237,10 +4022,10 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
}
/* main loop: calculate physics for all particles */
- for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++){
+ for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->flag & PARS_UNEXIST) continue;
- copy_particle_key(key,&pa->state,1);
+ copy_particle_key(&pa->prev_state,&pa->state,1);
/* set correct ipo timing */
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
@@ -4250,99 +4035,85 @@ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifi
}
pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
- pa_die=0;
+ /* reactions can change birth time so they need to be checked first */
+ if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0)
+ react_to_events(psys,p);
birthtime = pa->time + pa->loop * pa->lifetime;
+ dietime = birthtime + pa->lifetime;
+ /* allways reset particles to emitter before birth */
if(pa->alive==PARS_UNBORN
|| pa->alive==PARS_KILLED
|| ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)
|| birthtime >= cfra){
- /* allways reset particles to emitter before birth */
reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
- copy_particle_key(key,&pa->state,1);
}
- if(1) {
-
- if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0)
- react_to_events(psys,p);
-
- pa_dfra = dfra;
- pa_dtime = dtime;
-
- dietime = birthtime + pa->lifetime;
+ pa_dfra = dfra;
+ pa_dtime = dtime;
- if(birthtime < cfra && birthtime >= psys->cfra){
- /* particle is born some time between this and last step*/
- pa->alive = PARS_ALIVE;
- pa_dfra = cfra - birthtime;
- pa_dtime = pa_dfra*timestep;
- }
- else if(dietime <= cfra && psys->cfra < dietime){
- /* particle dies some time between this and last step */
- pa_dfra = dietime - psys->cfra;
- pa_dtime = pa_dfra * timestep;
- pa_die = 1;
- }
- else if(dietime < cfra){
- /* TODO: figure out if there's something to be done when particle is dead */
- }
-
- copy_particle_key(key,&pa->state,1);
-
- if(dfra>0.0 && pa->alive==PARS_ALIVE){
- switch(part->phystype){
- case PART_PHYS_NEWTON:
- /* do global forces & effectors */
- apply_particle_forces(p,pa,ob,psys,part,timestep,pa_dfra,cfra,key);
+ if(birthtime <= cfra && birthtime >= psys->cfra){
+ /* particle is born some time between this and last step*/
+ pa->alive = PARS_ALIVE;
+ pa_dfra = cfra - birthtime;
+ pa_dtime = pa_dfra*timestep;
+ }
+ else if(dietime <= cfra && psys->cfra < dietime){
+ /* particle dies some time between this and last step */
+ pa_dfra = dietime - psys->cfra;
+ pa_dtime = pa_dfra * timestep;
+ pa->alive = PARS_DYING;
+ }
+ else if(dietime < cfra){
+ /* nothing to be done when particle is dead */
+ }
- /* deflection */
- deflect_particle(ob,psmd,psys,part,pa,p,pa_dfra,cfra,key,&pa_die);
- /* rotations */
- rotate_particle(part,pa,pa_dfra,timestep,key);
+ if(dfra>0.0 && ELEM(pa->alive,PARS_ALIVE,PARS_DYING)){
+ switch(part->phystype){
+ case PART_PHYS_NEWTON:
+ /* do global forces & effectors */
+ apply_particle_forces(p,pa,ob,psys,part,timestep,pa_dfra,cfra);
+
+ /* deflection */
+ deflect_particle(ob,psmd,psys,part,pa,p,timestep,pa_dfra,cfra);
- break;
- case PART_PHYS_BOIDS:
- {
- float acc[3];
- boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc,&pa_die);
- if(pa_die==0)
- boid_body(&bvf,pa,psys,part,timestep,acc,key);
- break;
- }
+ /* rotations */
+ rotate_particle(part,pa,pa_dfra,timestep);
+ break;
+ case PART_PHYS_BOIDS:
+ {
+ float acc[3];
+ boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc);
+ if(pa->alive != PARS_DYING)
+ boid_body(&bvf,pa,psys,part,timestep,acc);
+ break;
}
+ }
- push_reaction(ob,psys,p,PART_EVENT_NEAR,key);
-
- if(pa_die){
- push_reaction(ob,psys,p,PART_EVENT_DEATH,key);
+ if(pa->alive == PARS_DYING){
+ push_reaction(ob,psys,p,PART_EVENT_DEATH,&pa->state);
- if(part->flag & PART_LOOP && part->type!=PART_HAIR){
- pa->loop++;
- reset_particle(pa,psys,psmd,ob,0.0,cfra,vg_vel,vg_tan,vg_rot);
- copy_particle_key(key,&pa->state,1);
- pa->alive=PARS_ALIVE;
- }
- else{
- pa->alive=PARS_DEAD;
- key->time=pa->dietime;
+ if(part->flag & PART_LOOP && part->type!=PART_HAIR){
+ pa->loop++;
+ reset_particle(pa,psys,psmd,ob,0.0,cfra,vg_vel,vg_tan,vg_rot);
+ pa->alive=PARS_ALIVE;
+ }
+ else{
+ pa->alive=PARS_DEAD;
+ pa->state.time=pa->dietime;
- if(pa->flag&PARS_STICKY)
- psys_key_to_object(pa->stick_ob,key,0);
- }
+ if(pa->flag&PARS_STICKY)
+ psys_key_to_object(pa->stick_ob,&pa->state,0);
}
- else
- key->time=cfra;
}
+ else
+ pa->state.time=cfra;
+
+ push_reaction(ob,psys,p,PART_EVENT_NEAR,&pa->state);
}
}
- /* apply outstates to particles */
- for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++)
- copy_particle_key(&pa->state,key,1);
-
- MEM_freeN(outstate);
}
if(psys->reactevents.first)
BLI_freelistN(&psys->reactevents);
@@ -4380,7 +4151,7 @@ static void psys_update_path_cache(Object *ob, ParticleSystemModifierData *psmd,
}
if((part->type==PART_HAIR || psys->flag&PSYS_KEYED) && (psys_in_edit_mode(psys)
- || (part->type==PART_HAIR || part->draw_as==PART_DRAW_PATH) || part->draw&PART_DRAW_KEYS)){
+ || (part->type==PART_HAIR || part->draw_as==PART_DRAW_PATH))){
psys_cache_paths(ob, psys, cfra, 0);
/* for render, child particle paths are computed on the fly */
@@ -4417,7 +4188,7 @@ static void hair_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSyst
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
- precalc_effectors(ob,psys,psmd);
+ precalc_effectors(ob,psys,psmd,cfra);
if(psys_in_edit_mode(psys))
PE_recalc_world_cos(ob, psys);
@@ -4445,7 +4216,7 @@ static void cached_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSy
//if(part->flag & (PART_BAKED_GUIDES+PART_BAKED_DEATHS)){
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
- precalc_effectors(ob,psys,psmd);
+ precalc_effectors(ob,psys,psmd,cfra);
//}
disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
@@ -4543,7 +4314,7 @@ void psys_changed_type(ParticleSystem *psys)
}
static void particles_fluid_step(Object *ob, ParticleSystem *psys, int cfra)
-{
+{
if(psys->particles){
MEM_freeN(psys->particles);
psys->particles = 0;
@@ -4552,94 +4323,98 @@ static void particles_fluid_step(Object *ob, ParticleSystem *psys, int cfra)
/* fluid sim particle import handling, actual loading of particles from file */
#ifndef DISABLE_ELBEEM
- if( (1) && (ob->fluidsimFlag & OB_FLUIDSIM_ENABLE) && // broken, disabled for now!
- (ob->fluidsimSettings)) {
- ParticleSettings *part = psys->part;
- ParticleData *pa=0;
- char *suffix = "fluidsurface_particles_####";
- char *suffix2 = ".gz";
- char filename[256];
- char debugStrBuffer[256];
- int curFrame = G.scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading
- int p, j, numFileParts, totpart;
- int readMask, activeParts = 0, fileParts = 0;
- gzFile gzf;
-
- if(ob==G.obedit) // off...
- return;
-
- // ok, start loading
- strcpy(filename, ob->fluidsimSettings->surfdataPath);
- strcat(filename, suffix);
- BLI_convertstringcode(filename, G.sce);
- BLI_convertstringframe(filename, curFrame); // fixed #frame-no
- strcat(filename, suffix2);
-
- gzf = gzopen(filename, "rb");
- if (!gzf) {
- snprintf(debugStrBuffer,256,"readFsPartData::error - Unable to open file for reading '%s' \n", filename);
- //elbeemDebugOut(debugStrBuffer);
- return;
- }
-
- gzread(gzf, &totpart, sizeof(totpart));
- numFileParts = totpart;
- totpart = (G.rendering)?totpart:(part->disp*totpart)/100;
-
- part->totpart= totpart;
- part->sta=part->end = 1.0f;
- part->lifetime = G.scene->r.efra + 1;
-
- /* initialize particles */
- realloc_particles(ob, psys, part->totpart);
- initialize_all_particles(ob, psys, 0);
-
- // set up reading mask
- readMask = ob->fluidsimSettings->typeFlags;
+ {
+ FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(ob, eModifierType_Fluidsim);
- for(p=0, pa=psys->particles; p<totpart; p++, pa++) {
- int ptype=0;
-
- gzread(gzf, &ptype, sizeof( ptype ));
- if(ptype&readMask) {
- activeParts++;
-
- gzread(gzf, &(pa->size), sizeof( float ));
-
- pa->size /= 10.0f;
-
- for(j=0; j<3; j++) {
- float wrf;
- gzread(gzf, &wrf, sizeof( wrf ));
- pa->state.co[j] = wrf;
- //fprintf(stderr,"Rj%d ",j);
- }
- for(j=0; j<3; j++) {
- float wrf;
- gzread(gzf, &wrf, sizeof( wrf ));
- pa->state.vel[j] = wrf;
- }
-
- pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0f;
- pa->state.rot[0] = 1.0;
- pa->state.rot[1] = pa->state.rot[2] = pa->state.rot[3] = 0.0;
-
- pa->alive = PARS_ALIVE;
- //if(a<25) fprintf(stderr,"FSPARTICLE debug set %s , a%d = %f,%f,%f , life=%f \n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime );
- } else {
- // skip...
- for(j=0; j<2*3+1; j++) {
- float wrf; gzread(gzf, &wrf, sizeof( wrf ));
+ if( fluidmd && fluidmd->fss) {
+ FluidsimSettings *fss= fluidmd->fss;
+ ParticleSettings *part = psys->part;
+ ParticleData *pa=0;
+ char *suffix = "fluidsurface_particles_####";
+ char *suffix2 = ".gz";
+ char filename[256];
+ char debugStrBuffer[256];
+ int curFrame = G.scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading
+ int p, j, numFileParts, totpart;
+ int readMask, activeParts = 0, fileParts = 0;
+ gzFile gzf;
+
+ if(ob==G.obedit) // off...
+ return;
+
+ // ok, start loading
+ strcpy(filename, fss->surfdataPath);
+ strcat(filename, suffix);
+ BLI_convertstringcode(filename, G.sce);
+ BLI_convertstringframe(filename, curFrame); // fixed #frame-no
+ strcat(filename, suffix2);
+
+ gzf = gzopen(filename, "rb");
+ if (!gzf) {
+ snprintf(debugStrBuffer,256,"readFsPartData::error - Unable to open file for reading '%s' \n", filename);
+ //elbeemDebugOut(debugStrBuffer);
+ return;
+ }
+
+ gzread(gzf, &totpart, sizeof(totpart));
+ numFileParts = totpart;
+ totpart = (G.rendering)?totpart:(part->disp*totpart)/100;
+
+ part->totpart= totpart;
+ part->sta=part->end = 1.0f;
+ part->lifetime = G.scene->r.efra + 1;
+
+ /* initialize particles */
+ realloc_particles(ob, psys, part->totpart);
+ initialize_all_particles(ob, psys, 0);
+
+ // set up reading mask
+ readMask = fss->typeFlags;
+
+ for(p=0, pa=psys->particles; p<totpart; p++, pa++) {
+ int ptype=0;
+
+ gzread(gzf, &ptype, sizeof( ptype ));
+ if(ptype&readMask) {
+ activeParts++;
+
+ gzread(gzf, &(pa->size), sizeof( float ));
+
+ pa->size /= 10.0f;
+
+ for(j=0; j<3; j++) {
+ float wrf;
+ gzread(gzf, &wrf, sizeof( wrf ));
+ pa->state.co[j] = wrf;
+ //fprintf(stderr,"Rj%d ",j);
+ }
+ for(j=0; j<3; j++) {
+ float wrf;
+ gzread(gzf, &wrf, sizeof( wrf ));
+ pa->state.vel[j] = wrf;
+ }
+
+ pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0f;
+ pa->state.rot[0] = 1.0;
+ pa->state.rot[1] = pa->state.rot[2] = pa->state.rot[3] = 0.0;
+
+ pa->alive = PARS_ALIVE;
+ //if(a<25) fprintf(stderr,"FSPARTICLE debug set %s , a%d = %f,%f,%f , life=%f \n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime );
+ } else {
+ // skip...
+ for(j=0; j<2*3+1; j++) {
+ float wrf; gzread(gzf, &wrf, sizeof( wrf ));
+ }
}
+ fileParts++;
}
- fileParts++;
- }
- gzclose( gzf );
-
- totpart = psys->totpart = activeParts;
- snprintf(debugStrBuffer,256,"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d \n", psys->totpart,activeParts,fileParts,readMask);
- elbeemDebugOut(debugStrBuffer);
- } // fluid sim particles done
+ gzclose( gzf );
+
+ totpart = psys->totpart = activeParts;
+ snprintf(debugStrBuffer,256,"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d \n", psys->totpart,activeParts,fileParts,readMask);
+ elbeemDebugOut(debugStrBuffer);
+ } // fluid sim particles done
+ }
#endif // DISABLE_ELBEEM
}
@@ -4686,10 +4461,8 @@ static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifier
return;
}
- /* cache shouldn't be used for hair or "none" or "first keyed" physics */
- if(part->type == PART_HAIR || part->phystype == PART_PHYS_NO)
- usecache= 0;
- else if(part->type == PART_PHYS_KEYED && (psys->flag & PSYS_FIRST_KEYED))
+ /* cache shouldn't be used for hair or "none" or "keyed" physics */
+ if(part->type == PART_HAIR || ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED))
usecache= 0;
else if(BKE_ptcache_get_continue_physics())
usecache= 0;
@@ -4699,7 +4472,7 @@ static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifier
if(usecache) {
/* frame clamping */
if(framenr < startframe) {
- psys_reset(psys, PSYS_RESET_DEPSGRAPH);
+ psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra = cfra;
psys->recalc = 0;
return;
@@ -4779,14 +4552,14 @@ static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifier
return;
}
else if(ob->id.lib || (cache->flag & PTCACHE_BAKED)) {
- psys_reset(psys, PSYS_RESET_DEPSGRAPH);
+ psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra=cfra;
psys->recalc = 0;
return;
}
if(framenr != startframe && framedelta != 1) {
- psys_reset(psys, PSYS_RESET_DEPSGRAPH);
+ psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra = cfra;
psys->recalc = 0;
return;
@@ -4867,7 +4640,7 @@ static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifier
}
}
-void psys_to_softbody(Object *ob, ParticleSystem *psys)
+static void psys_to_softbody(Object *ob, ParticleSystem *psys)
{
SoftBody *sb;
short softflag;