Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/particle_system.c')
-rw-r--r--source/blender/blenkernel/intern/particle_system.c4362
1 files changed, 4362 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/particle_system.c b/source/blender/blenkernel/intern/particle_system.c
new file mode 100644
index 00000000000..ee435051151
--- /dev/null
+++ b/source/blender/blenkernel/intern/particle_system.c
@@ -0,0 +1,4362 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2007 by Janne Karhu.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Raul Fernandez Hernandez (Farsthary), Stephen Swhitehorn.
+ *
+ * Adaptive time step
+ * Classical SPH
+ * Copyright 2011-2012 AutoCRC
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/particle_system.c
+ * \ingroup bke
+ */
+
+
+#include <stddef.h>
+
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+
+#include "MEM_guardedalloc.h"
+
+#include "DNA_anim_types.h"
+#include "DNA_boid_types.h"
+#include "DNA_particle_types.h"
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_modifier_types.h"
+#include "DNA_object_force.h"
+#include "DNA_object_types.h"
+#include "DNA_curve_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_texture_types.h"
+#include "DNA_listBase.h"
+
+#include "BLI_utildefines.h"
+#include "BLI_edgehash.h"
+#include "BLI_rand.h"
+#include "BLI_jitter.h"
+#include "BLI_math.h"
+#include "BLI_blenlib.h"
+#include "BLI_kdtree.h"
+#include "BLI_kdopbvh.h"
+#include "BLI_sort.h"
+#include "BLI_task.h"
+#include "BLI_threads.h"
+#include "BLI_linklist.h"
+
+#include "BKE_animsys.h"
+#include "BKE_boids.h"
+#include "BKE_cdderivedmesh.h"
+#include "BKE_collision.h"
+#include "BKE_colortools.h"
+#include "BKE_effect.h"
+#include "BKE_library_query.h"
+#include "BKE_particle.h"
+#include "BKE_global.h"
+
+#include "BKE_DerivedMesh.h"
+#include "BKE_object.h"
+#include "BKE_material.h"
+#include "BKE_cloth.h"
+#include "BKE_lattice.h"
+#include "BKE_pointcache.h"
+#include "BKE_mesh.h"
+#include "BKE_modifier.h"
+#include "BKE_scene.h"
+#include "BKE_bvhutils.h"
+#include "BKE_depsgraph.h"
+
+#include "PIL_time.h"
+
+#include "RE_shader_ext.h"
+
+/* fluid sim particle import */
+#ifdef WITH_MOD_FLUID
+#include "DNA_object_fluidsim.h"
+#include "LBM_fluidsim.h"
+#include <zlib.h>
+#include <string.h>
+
+#endif // WITH_MOD_FLUID
+
+static ThreadRWMutex psys_bvhtree_rwlock = BLI_RWLOCK_INITIALIZER;
+
+/************************************************/
+/* Reacting to system events */
+/************************************************/
+
+static int particles_are_dynamic(ParticleSystem *psys)
+{
+ if (psys->pointcache->flag & PTCACHE_BAKED)
+ return 0;
+
+ if (psys->part->type == PART_HAIR)
+ return psys->flag & PSYS_HAIR_DYNAMICS;
+ else
+ return ELEM(psys->part->phystype, PART_PHYS_NEWTON, PART_PHYS_BOIDS, PART_PHYS_FLUID);
+}
+
+float psys_get_current_display_percentage(ParticleSystem *psys)
+{
+ ParticleSettings *part=psys->part;
+
+ if ((psys->renderdata && !particles_are_dynamic(psys)) || /* non-dynamic particles can be rendered fully */
+ (part->child_nbr && part->childtype) || /* display percentage applies to children */
+ (psys->pointcache->flag & PTCACHE_BAKING)) /* baking is always done with full amount */
+ {
+ return 1.0f;
+ }
+
+ return psys->part->disp/100.0f;
+}
+
+static int tot_particles(ParticleSystem *psys, PTCacheID *pid)
+{
+ if (pid && psys->pointcache->flag & PTCACHE_EXTERNAL)
+ return pid->cache->totpoint;
+ else if (psys->part->distr == PART_DISTR_GRID && psys->part->from != PART_FROM_VERT)
+ return psys->part->grid_res * psys->part->grid_res * psys->part->grid_res - psys->totunexist;
+ else
+ return psys->part->totpart - psys->totunexist;
+}
+
+void psys_reset(ParticleSystem *psys, int mode)
+{
+ PARTICLE_P;
+
+ if (ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
+ if (mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) {
+ /* don't free if not absolutely necessary */
+ if (psys->totpart != tot_particles(psys, NULL)) {
+ psys_free_particles(psys);
+ psys->totpart= 0;
+ }
+
+ psys->totkeyed= 0;
+ psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED);
+
+ if (psys->edit && psys->free_edit) {
+ psys->free_edit(psys->edit);
+ psys->edit = NULL;
+ psys->free_edit = NULL;
+ }
+ }
+ }
+ else if (mode == PSYS_RESET_CACHE_MISS) {
+ /* set all particles to be skipped */
+ LOOP_PARTICLES
+ pa->flag |= PARS_NO_DISP;
+ }
+
+ /* reset children */
+ if (psys->child) {
+ MEM_freeN(psys->child);
+ psys->child= NULL;
+ }
+
+ psys->totchild= 0;
+
+ /* reset path cache */
+ psys_free_path_cache(psys, psys->edit);
+
+ /* reset point cache */
+ BKE_ptcache_invalidate(psys->pointcache);
+
+ if (psys->fluid_springs) {
+ MEM_freeN(psys->fluid_springs);
+ psys->fluid_springs = NULL;
+ }
+
+ psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
+}
+
+static void realloc_particles(ParticleSimulationData *sim, int new_totpart)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ ParticleData *newpars = NULL;
+ BoidParticle *newboids = NULL;
+ PARTICLE_P;
+ int totpart, totsaved = 0;
+
+ if (new_totpart<0) {
+ if ((part->distr == PART_DISTR_GRID) && (part->from != PART_FROM_VERT)) {
+ totpart= part->grid_res;
+ totpart*=totpart*totpart;
+ }
+ else
+ totpart=part->totpart;
+ }
+ else
+ totpart=new_totpart;
+
+ if (totpart != psys->totpart) {
+ if (psys->edit && psys->free_edit) {
+ psys->free_edit(psys->edit);
+ psys->edit = NULL;
+ psys->free_edit = NULL;
+ }
+
+ if (totpart) {
+ newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
+ if (newpars == NULL)
+ return;
+
+ if (psys->part->phystype == PART_PHYS_BOIDS) {
+ newboids= MEM_callocN(totpart*sizeof(BoidParticle), "boid particles");
+
+ if (newboids == NULL) {
+ /* allocation error! */
+ if (newpars)
+ MEM_freeN(newpars);
+ return;
+ }
+ }
+ }
+
+ if (psys->particles) {
+ totsaved=MIN2(psys->totpart,totpart);
+ /*save old pars*/
+ if (totsaved) {
+ memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
+
+ if (psys->particles->boid)
+ memcpy(newboids, psys->particles->boid, totsaved*sizeof(BoidParticle));
+ }
+
+ if (psys->particles->keys)
+ MEM_freeN(psys->particles->keys);
+
+ if (psys->particles->boid)
+ MEM_freeN(psys->particles->boid);
+
+ for (p=0, pa=newpars; p<totsaved; p++, pa++) {
+ if (pa->keys) {
+ pa->keys= NULL;
+ pa->totkey= 0;
+ }
+ }
+
+ for (p=totsaved, pa=psys->particles+totsaved; p<psys->totpart; p++, pa++)
+ if (pa->hair) MEM_freeN(pa->hair);
+
+ MEM_freeN(psys->particles);
+ psys_free_pdd(psys);
+ }
+
+ psys->particles=newpars;
+ psys->totpart=totpart;
+
+ if (newboids) {
+ LOOP_PARTICLES
+ pa->boid = newboids++;
+ }
+ }
+
+ if (psys->child) {
+ MEM_freeN(psys->child);
+ psys->child=NULL;
+ psys->totchild=0;
+ }
+}
+
+int psys_get_child_number(Scene *scene, ParticleSystem *psys)
+{
+ int nbr;
+
+ if (!psys->part->childtype)
+ return 0;
+
+ if (psys->renderdata)
+ nbr= psys->part->ren_child_nbr;
+ else
+ nbr= psys->part->child_nbr;
+
+ return get_render_child_particle_number(&scene->r, nbr, psys->renderdata != NULL);
+}
+
+int psys_get_tot_child(Scene *scene, ParticleSystem *psys)
+{
+ return psys->totpart*psys_get_child_number(scene, psys);
+}
+
+/************************************************/
+/* Distribution */
+/************************************************/
+
+void psys_calc_dmcache(Object *ob, DerivedMesh *dm_final, DerivedMesh *dm_deformed, ParticleSystem *psys)
+{
+ /* use for building derived mesh mapping info:
+ *
+ * node: the allocated links - total derived mesh element count
+ * nodearray: the array of nodes aligned with the base mesh's elements, so
+ * each original elements can reference its derived elements
+ */
+ Mesh *me= (Mesh*)ob->data;
+ bool use_modifier_stack= psys->part->use_modifier_stack;
+ PARTICLE_P;
+
+ /* CACHE LOCATIONS */
+ if (!dm_final->deformedOnly) {
+ /* Will use later to speed up subsurf/derivedmesh */
+ LinkNode *node, *nodedmelem, **nodearray;
+ int totdmelem, totelem, i, *origindex, *origindex_poly = NULL;
+
+ if (psys->part->from == PART_FROM_VERT) {
+ totdmelem= dm_final->getNumVerts(dm_final);
+
+ if (use_modifier_stack) {
+ totelem= totdmelem;
+ origindex= NULL;
+ }
+ else {
+ totelem= me->totvert;
+ origindex= dm_final->getVertDataArray(dm_final, CD_ORIGINDEX);
+ }
+ }
+ else { /* FROM_FACE/FROM_VOLUME */
+ totdmelem= dm_final->getNumTessFaces(dm_final);
+
+ if (use_modifier_stack) {
+ totelem= totdmelem;
+ origindex= NULL;
+ origindex_poly= NULL;
+ }
+ else {
+ totelem = dm_deformed->getNumTessFaces(dm_deformed);
+ origindex = dm_final->getTessFaceDataArray(dm_final, CD_ORIGINDEX);
+
+ /* for face lookups we need the poly origindex too */
+ origindex_poly= dm_final->getPolyDataArray(dm_final, CD_ORIGINDEX);
+ if (origindex_poly == NULL) {
+ origindex= NULL;
+ }
+ }
+ }
+
+ nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems");
+ nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array");
+
+ for (i=0, node=nodedmelem; i<totdmelem; i++, node++) {
+ int origindex_final;
+ node->link = SET_INT_IN_POINTER(i);
+
+ /* may be vertex or face origindex */
+ if (use_modifier_stack) {
+ origindex_final = i;
+ }
+ else {
+ origindex_final = origindex ? origindex[i] : ORIGINDEX_NONE;
+
+ /* if we have a poly source, do an index lookup */
+ if (origindex_poly && origindex_final != ORIGINDEX_NONE) {
+ origindex_final = origindex_poly[origindex_final];
+ }
+ }
+
+ if (origindex_final != ORIGINDEX_NONE && origindex_final < totelem) {
+ if (nodearray[origindex_final]) {
+ /* prepend */
+ node->next = nodearray[origindex_final];
+ nodearray[origindex_final] = node;
+ }
+ else {
+ nodearray[origindex_final] = node;
+ }
+ }
+ }
+
+ /* cache the verts/faces! */
+ LOOP_PARTICLES {
+ if (pa->num < 0) {
+ pa->num_dmcache = DMCACHE_NOTFOUND;
+ continue;
+ }
+
+ if (use_modifier_stack) {
+ if (pa->num < totelem)
+ pa->num_dmcache = DMCACHE_ISCHILD;
+ else
+ pa->num_dmcache = DMCACHE_NOTFOUND;
+ }
+ else {
+ if (psys->part->from == PART_FROM_VERT) {
+ if (pa->num < totelem && nodearray[pa->num])
+ pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link);
+ else
+ pa->num_dmcache = DMCACHE_NOTFOUND;
+ }
+ else { /* FROM_FACE/FROM_VOLUME */
+ pa->num_dmcache = psys_particle_dm_face_lookup(dm_final, dm_deformed, pa->num, pa->fuv, nodearray);
+ }
+ }
+ }
+
+ MEM_freeN(nodearray);
+ MEM_freeN(nodedmelem);
+ }
+ else {
+ /* TODO PARTICLE, make the following line unnecessary, each function
+ * should know to use the num or num_dmcache, set the num_dmcache to
+ * an invalid value, just in case */
+
+ LOOP_PARTICLES {
+ pa->num_dmcache = DMCACHE_NOTFOUND;
+ }
+ }
+}
+
+/* threaded child particle distribution and path caching */
+void psys_thread_context_init(ParticleThreadContext *ctx, ParticleSimulationData *sim)
+{
+ memset(ctx, 0, sizeof(ParticleThreadContext));
+ ctx->sim = *sim;
+ ctx->dm = ctx->sim.psmd->dm_final;
+ ctx->ma = give_current_material(sim->ob, sim->psys->part->omat);
+}
+
+#define MAX_PARTICLES_PER_TASK 256 /* XXX arbitrary - maybe use at least number of points instead for better balancing? */
+
+BLI_INLINE int ceil_ii(int a, int b)
+{
+ return (a + b - 1) / b;
+}
+
+void psys_tasks_create(ParticleThreadContext *ctx, int startpart, int endpart, ParticleTask **r_tasks, int *r_numtasks)
+{
+ ParticleTask *tasks;
+ int numtasks = ceil_ii((endpart - startpart), MAX_PARTICLES_PER_TASK);
+ float particles_per_task = (float)(endpart - startpart) / (float)numtasks, p, pnext;
+ int i;
+
+ tasks = MEM_callocN(sizeof(ParticleTask) * numtasks, "ParticleThread");
+ *r_numtasks = numtasks;
+ *r_tasks = tasks;
+
+ p = (float)startpart;
+ for (i = 0; i < numtasks; i++, p = pnext) {
+ pnext = p + particles_per_task;
+
+ tasks[i].ctx = ctx;
+ tasks[i].begin = (int)p;
+ tasks[i].end = min_ii((int)pnext, endpart);
+ }
+}
+
+void psys_tasks_free(ParticleTask *tasks, int numtasks)
+{
+ int i;
+
+ /* threads */
+ for (i = 0; i < numtasks; ++i) {
+ if (tasks[i].rng)
+ BLI_rng_free(tasks[i].rng);
+ if (tasks[i].rng_path)
+ BLI_rng_free(tasks[i].rng_path);
+ }
+
+ MEM_freeN(tasks);
+}
+
+void psys_thread_context_free(ParticleThreadContext *ctx)
+{
+ /* path caching */
+ if (ctx->vg_length)
+ MEM_freeN(ctx->vg_length);
+ if (ctx->vg_clump)
+ MEM_freeN(ctx->vg_clump);
+ if (ctx->vg_kink)
+ MEM_freeN(ctx->vg_kink);
+ if (ctx->vg_rough1)
+ MEM_freeN(ctx->vg_rough1);
+ if (ctx->vg_rough2)
+ MEM_freeN(ctx->vg_rough2);
+ if (ctx->vg_roughe)
+ MEM_freeN(ctx->vg_roughe);
+
+ if (ctx->sim.psys->lattice_deform_data) {
+ end_latt_deform(ctx->sim.psys->lattice_deform_data);
+ ctx->sim.psys->lattice_deform_data = NULL;
+ }
+
+ /* distribution */
+ if (ctx->jit) MEM_freeN(ctx->jit);
+ if (ctx->jitoff) MEM_freeN(ctx->jitoff);
+ if (ctx->weight) MEM_freeN(ctx->weight);
+ if (ctx->index) MEM_freeN(ctx->index);
+ if (ctx->skip) MEM_freeN(ctx->skip);
+ if (ctx->seams) MEM_freeN(ctx->seams);
+ //if (ctx->vertpart) MEM_freeN(ctx->vertpart);
+ BLI_kdtree_free(ctx->tree);
+
+ if (ctx->clumpcurve != NULL) {
+ curvemapping_free(ctx->clumpcurve);
+ }
+ if (ctx->roughcurve != NULL) {
+ curvemapping_free(ctx->roughcurve);
+ }
+}
+
+static void initialize_particle_texture(ParticleSimulationData *sim, ParticleData *pa, int p)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ ParticleTexture ptex;
+
+ psys_get_texture(sim, pa, &ptex, PAMAP_INIT, 0.f);
+
+ switch (part->type) {
+ case PART_EMITTER:
+ if (ptex.exist < psys_frand(psys, p+125))
+ pa->flag |= PARS_UNEXIST;
+ pa->time = part->sta + (part->end - part->sta)*ptex.time;
+ break;
+ case PART_HAIR:
+ if (ptex.exist < psys_frand(psys, p+125))
+ pa->flag |= PARS_UNEXIST;
+ pa->time = 0.f;
+ break;
+ case PART_FLUID:
+ break;
+ }
+}
+
+/* set particle parameters that don't change during particle's life */
+void initialize_particle(ParticleSimulationData *sim, ParticleData *pa)
+{
+ ParticleSettings *part = sim->psys->part;
+ float birth_time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart;
+
+ pa->flag &= ~PARS_UNEXIST;
+ pa->time = part->sta + (part->end - part->sta) * birth_time;
+
+ pa->hair_index = 0;
+ /* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
+ /* usage other than straight after distribute has to handle this index by itself - jahka*/
+ //pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we don't have a derived mesh face */
+}
+
+static void initialize_all_particles(ParticleSimulationData *sim)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ /* Grid distributionsets UNEXIST flag, need to take care of
+ * it here because later this flag is being reset.
+ *
+ * We can't do it for any distribution, because it'll then
+ * conflict with texture influence, which does not free
+ * unexisting particles and only sets flag.
+ *
+ * It's not so bad, because only grid distribution sets
+ * UNEXIST flag.
+ */
+ const bool emit_from_volume_grid = (part->distr == PART_DISTR_GRID) &&
+ (!ELEM(part->from, PART_FROM_VERT, PART_FROM_CHILD));
+ PARTICLE_P;
+ LOOP_PARTICLES {
+ if (!(emit_from_volume_grid && (pa->flag & PARS_UNEXIST) != 0)) {
+ initialize_particle(sim, pa);
+ }
+ }
+}
+
+static void free_unexisting_particles(ParticleSimulationData *sim)
+{
+ ParticleSystem *psys = sim->psys;
+ PARTICLE_P;
+
+ psys->totunexist = 0;
+
+ LOOP_PARTICLES {
+ if (pa->flag & PARS_UNEXIST) {
+ psys->totunexist++;
+ }
+ }
+
+ if (psys->totpart && psys->totunexist == psys->totpart) {
+ if (psys->particles->boid)
+ MEM_freeN(psys->particles->boid);
+
+ MEM_freeN(psys->particles);
+ psys->particles = NULL;
+ psys->totpart = psys->totunexist = 0;
+ }
+
+ if (psys->totunexist) {
+ int newtotpart = psys->totpart - psys->totunexist;
+ ParticleData *npa, *newpars;
+
+ npa = newpars = MEM_callocN(newtotpart * sizeof(ParticleData), "particles");
+
+ for (p=0, pa=psys->particles; p<newtotpart; p++, pa++, npa++) {
+ while (pa->flag & PARS_UNEXIST)
+ pa++;
+
+ memcpy(npa, pa, sizeof(ParticleData));
+ }
+
+ if (psys->particles->boid)
+ MEM_freeN(psys->particles->boid);
+ MEM_freeN(psys->particles);
+ psys->particles = newpars;
+ psys->totpart -= psys->totunexist;
+
+ if (psys->particles->boid) {
+ BoidParticle *newboids = MEM_callocN(psys->totpart * sizeof(BoidParticle), "boid particles");
+
+ LOOP_PARTICLES {
+ pa->boid = newboids++;
+ }
+
+ }
+ }
+}
+
+static void get_angular_velocity_vector(short avemode, ParticleKey *state, float vec[3])
+{
+ switch (avemode) {
+ case PART_AVE_VELOCITY:
+ copy_v3_v3(vec, state->vel);
+ break;
+ case PART_AVE_HORIZONTAL:
+ {
+ float zvec[3];
+ zvec[0] = zvec[1] = 0;
+ zvec[2] = 1.f;
+ cross_v3_v3v3(vec, state->vel, zvec);
+ break;
+ }
+ case PART_AVE_VERTICAL:
+ {
+ float zvec[3], temp[3];
+ zvec[0] = zvec[1] = 0;
+ zvec[2] = 1.f;
+ cross_v3_v3v3(temp, state->vel, zvec);
+ cross_v3_v3v3(vec, temp, state->vel);
+ break;
+ }
+ case PART_AVE_GLOBAL_X:
+ vec[0] = 1.f;
+ vec[1] = vec[2] = 0;
+ break;
+ case PART_AVE_GLOBAL_Y:
+ vec[1] = 1.f;
+ vec[0] = vec[2] = 0;
+ break;
+ case PART_AVE_GLOBAL_Z:
+ vec[2] = 1.f;
+ vec[0] = vec[1] = 0;
+ break;
+ }
+}
+
+void psys_get_birth_coords(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, float dtime, float cfra)
+{
+ Object *ob = sim->ob;
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ ParticleTexture ptex;
+ float fac, phasefac, nor[3] = {0,0,0},loc[3],vel[3] = {0.0,0.0,0.0},rot[4],q2[4];
+ float r_vel[3],r_ave[3],r_rot[4],vec[3],p_vel[3] = {0.0,0.0,0.0};
+ float x_vec[3] = {1.0,0.0,0.0}, utan[3] = {0.0,1.0,0.0}, vtan[3] = {0.0,0.0,1.0}, rot_vec[3] = {0.0,0.0,0.0};
+ float q_phase[4];
+
+ const bool use_boids = ((part->phystype == PART_PHYS_BOIDS) &&
+ (pa->boid != NULL));
+ const bool use_tangents = ((use_boids == false) &&
+ ((part->tanfac != 0.0f) || (part->rotmode == PART_ROT_NOR_TAN)));
+
+ int p = pa - psys->particles;
+
+ /* get birth location from object */
+ if (use_tangents)
+ psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
+ else
+ psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,0,0,0,0);
+
+ /* get possible textural influence */
+ psys_get_texture(sim, pa, &ptex, PAMAP_IVEL, cfra);
+
+ /* particles live in global space so */
+ /* let's convert: */
+ /* -location */
+ mul_m4_v3(ob->obmat, loc);
+
+ /* -normal */
+ mul_mat3_m4_v3(ob->obmat, nor);
+ normalize_v3(nor);
+
+ /* -tangent */
+ if (use_tangents) {
+ //float phase=vg_rot?2.0f*(psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f;
+ float phase=0.0f;
+ mul_v3_fl(vtan,-cosf((float)M_PI*(part->tanphase+phase)));
+ fac= -sinf((float)M_PI*(part->tanphase+phase));
+ madd_v3_v3fl(vtan, utan, fac);
+
+ mul_mat3_m4_v3(ob->obmat,vtan);
+
+ copy_v3_v3(utan, nor);
+ mul_v3_fl(utan,dot_v3v3(vtan,nor));
+ sub_v3_v3(vtan, utan);
+
+ normalize_v3(vtan);
+ }
+
+
+ /* -velocity (boids need this even if there's no random velocity) */
+ if (part->randfac != 0.0f || (part->phystype==PART_PHYS_BOIDS && pa->boid)) {
+ r_vel[0] = 2.0f * (psys_frand(psys, p + 10) - 0.5f);
+ r_vel[1] = 2.0f * (psys_frand(psys, p + 11) - 0.5f);
+ r_vel[2] = 2.0f * (psys_frand(psys, p + 12) - 0.5f);
+
+ mul_mat3_m4_v3(ob->obmat, r_vel);
+ normalize_v3(r_vel);
+ }
+
+ /* -angular velocity */
+ if (part->avemode==PART_AVE_RAND) {
+ r_ave[0] = 2.0f * (psys_frand(psys, p + 13) - 0.5f);
+ r_ave[1] = 2.0f * (psys_frand(psys, p + 14) - 0.5f);
+ r_ave[2] = 2.0f * (psys_frand(psys, p + 15) - 0.5f);
+
+ mul_mat3_m4_v3(ob->obmat,r_ave);
+ normalize_v3(r_ave);
+ }
+
+ /* -rotation */
+ if (part->randrotfac != 0.0f) {
+ r_rot[0] = 2.0f * (psys_frand(psys, p + 16) - 0.5f);
+ r_rot[1] = 2.0f * (psys_frand(psys, p + 17) - 0.5f);
+ r_rot[2] = 2.0f * (psys_frand(psys, p + 18) - 0.5f);
+ r_rot[3] = 2.0f * (psys_frand(psys, p + 19) - 0.5f);
+ normalize_qt(r_rot);
+
+ mat4_to_quat(rot,ob->obmat);
+ mul_qt_qtqt(r_rot,r_rot,rot);
+ }
+
+ if (use_boids) {
+ float dvec[3], q[4], mat[3][3];
+
+ copy_v3_v3(state->co,loc);
+
+ /* boids don't get any initial velocity */
+ zero_v3(state->vel);
+
+ /* boids store direction in ave */
+ if (fabsf(nor[2])==1.0f) {
+ sub_v3_v3v3(state->ave, loc, ob->obmat[3]);
+ normalize_v3(state->ave);
+ }
+ else {
+ copy_v3_v3(state->ave, nor);
+ }
+
+ /* calculate rotation matrix */
+ project_v3_v3v3(dvec, r_vel, state->ave);
+ sub_v3_v3v3(mat[0], state->ave, dvec);
+ normalize_v3(mat[0]);
+ negate_v3_v3(mat[2], r_vel);
+ normalize_v3(mat[2]);
+ cross_v3_v3v3(mat[1], mat[2], mat[0]);
+
+ /* apply rotation */
+ mat3_to_quat_is_ok( q,mat);
+ copy_qt_qt(state->rot, q);
+ }
+ else {
+ /* conversion done so now we apply new: */
+ /* -velocity from: */
+
+ /* *reactions */
+ if (dtime > 0.f) {
+ sub_v3_v3v3(vel, pa->state.vel, pa->prev_state.vel);
+ }
+
+ /* *emitter velocity */
+ if (dtime != 0.f && part->obfac != 0.f) {
+ sub_v3_v3v3(vel, loc, state->co);
+ mul_v3_fl(vel, part->obfac/dtime);
+ }
+
+ /* *emitter normal */
+ if (part->normfac != 0.f)
+ madd_v3_v3fl(vel, nor, part->normfac);
+
+ /* *emitter tangent */
+ if (sim->psmd && part->tanfac != 0.f)
+ madd_v3_v3fl(vel, vtan, part->tanfac);
+
+ /* *emitter object orientation */
+ if (part->ob_vel[0] != 0.f) {
+ normalize_v3_v3(vec, ob->obmat[0]);
+ madd_v3_v3fl(vel, vec, part->ob_vel[0]);
+ }
+ if (part->ob_vel[1] != 0.f) {
+ normalize_v3_v3(vec, ob->obmat[1]);
+ madd_v3_v3fl(vel, vec, part->ob_vel[1]);
+ }
+ if (part->ob_vel[2] != 0.f) {
+ normalize_v3_v3(vec, ob->obmat[2]);
+ madd_v3_v3fl(vel, vec, part->ob_vel[2]);
+ }
+
+ /* *texture */
+ /* TODO */
+
+ /* *random */
+ if (part->randfac != 0.f)
+ madd_v3_v3fl(vel, r_vel, part->randfac);
+
+ /* *particle */
+ if (part->partfac != 0.f)
+ madd_v3_v3fl(vel, p_vel, part->partfac);
+
+ mul_v3_v3fl(state->vel, vel, ptex.ivel);
+
+ /* -location from emitter */
+ copy_v3_v3(state->co,loc);
+
+ /* -rotation */
+ unit_qt(state->rot);
+
+ if (part->rotmode) {
+ bool use_global_space;
+
+ /* create vector into which rotation is aligned */
+ switch (part->rotmode) {
+ case PART_ROT_NOR:
+ case PART_ROT_NOR_TAN:
+ copy_v3_v3(rot_vec, nor);
+ use_global_space = false;
+ break;
+ case PART_ROT_VEL:
+ copy_v3_v3(rot_vec, vel);
+ use_global_space = true;
+ break;
+ case PART_ROT_GLOB_X:
+ case PART_ROT_GLOB_Y:
+ case PART_ROT_GLOB_Z:
+ rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
+ use_global_space = true;
+ break;
+ case PART_ROT_OB_X:
+ case PART_ROT_OB_Y:
+ case PART_ROT_OB_Z:
+ copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
+ use_global_space = false;
+ break;
+ default:
+ use_global_space = true;
+ break;
+ }
+
+ /* create rotation quat */
+
+
+ if (use_global_space) {
+ negate_v3(rot_vec);
+ vec_to_quat(q2, rot_vec, OB_POSX, OB_POSZ);
+
+ /* randomize rotation quat */
+ if (part->randrotfac != 0.0f) {
+ interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
+ }
+ else {
+ copy_qt_qt(rot, q2);
+ }
+ }
+ else {
+ /* calculate rotation in local-space */
+ float q_obmat[4];
+ float q_imat[4];
+
+ mat4_to_quat(q_obmat, ob->obmat);
+ invert_qt_qt_normalized(q_imat, q_obmat);
+
+
+ if (part->rotmode != PART_ROT_NOR_TAN) {
+ float rot_vec_local[3];
+
+ /* rot_vec */
+ negate_v3(rot_vec);
+ copy_v3_v3(rot_vec_local, rot_vec);
+ mul_qt_v3(q_imat, rot_vec_local);
+ normalize_v3(rot_vec_local);
+
+ vec_to_quat(q2, rot_vec_local, OB_POSX, OB_POSZ);
+ }
+ else {
+ /* (part->rotmode == PART_ROT_NOR_TAN) */
+ float tmat[3][3];
+
+ /* note: utan_local is not taken from 'utan', we calculate from rot_vec/vtan */
+ /* note: it looks like rotation phase may be applied twice (once with vtan, again below)
+ * however this isn't the case - campbell */
+ float *rot_vec_local = tmat[0];
+ float *vtan_local = tmat[1];
+ float *utan_local = tmat[2];
+
+ /* use tangents */
+ BLI_assert(use_tangents == true);
+
+ /* rot_vec */
+ copy_v3_v3(rot_vec_local, rot_vec);
+ mul_qt_v3(q_imat, rot_vec_local);
+
+ /* vtan_local */
+ copy_v3_v3(vtan_local, vtan); /* flips, cant use */
+ mul_qt_v3(q_imat, vtan_local);
+
+ /* ensure orthogonal matrix (rot_vec aligned) */
+ cross_v3_v3v3(utan_local, vtan_local, rot_vec_local);
+ cross_v3_v3v3(vtan_local, utan_local, rot_vec_local);
+
+ /* note: no need to normalize */
+ mat3_to_quat(q2, tmat);
+ }
+
+ /* randomize rotation quat */
+ if (part->randrotfac != 0.0f) {
+ mul_qt_qtqt(r_rot, r_rot, q_imat);
+ interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
+ }
+ else {
+ copy_qt_qt(rot, q2);
+ }
+
+ mul_qt_qtqt(rot, q_obmat, rot);
+ }
+
+ /* rotation phase */
+ phasefac = part->phasefac;
+ if (part->randphasefac != 0.0f)
+ phasefac += part->randphasefac * psys_frand(psys, p + 20);
+ axis_angle_to_quat( q_phase,x_vec, phasefac*(float)M_PI);
+
+ /* combine base rotation & phase */
+ mul_qt_qtqt(state->rot, rot, q_phase);
+ }
+
+ /* -angular velocity */
+
+ zero_v3(state->ave);
+
+ if (part->avemode) {
+ if (part->avemode == PART_AVE_RAND)
+ copy_v3_v3(state->ave, r_ave);
+ else
+ get_angular_velocity_vector(part->avemode, state, state->ave);
+
+ normalize_v3(state->ave);
+ mul_v3_fl(state->ave, part->avefac);
+ }
+ }
+}
+
+/* recursively evaluate emitter parent anim at cfra */
+static void evaluate_emitter_anim(Scene *scene, Object *ob, float cfra)
+{
+ if (ob->parent)
+ evaluate_emitter_anim(scene, ob->parent, cfra);
+
+ /* we have to force RECALC_ANIM here since where_is_objec_time only does drivers */
+ BKE_animsys_evaluate_animdata(scene, &ob->id, ob->adt, cfra, ADT_RECALC_ANIM);
+ BKE_object_where_is_calc_time(scene, ob, cfra);
+}
+
+/* sets particle to the emitter surface with initial velocity & rotation */
+void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part;
+ ParticleTexture ptex;
+ int p = pa - psys->particles;
+ part=psys->part;
+
+ /* get precise emitter matrix if particle is born */
+ if (part->type!=PART_HAIR && dtime > 0.f && pa->time < cfra && pa->time >= sim->psys->cfra) {
+ evaluate_emitter_anim(sim->scene, sim->ob, pa->time);
+
+ psys->flag |= PSYS_OB_ANIM_RESTORE;
+ }
+
+ psys_get_birth_coords(sim, pa, &pa->state, dtime, cfra);
+
+ /* Initialize particle settings which depends on texture.
+ *
+ * We could only do it now because we'll need to know coordinate
+ * before sampling the texture.
+ */
+ initialize_particle_texture(sim, pa, p);
+
+ if (part->phystype==PART_PHYS_BOIDS && pa->boid) {
+ BoidParticle *bpa = pa->boid;
+
+ /* and gravity in r_ve */
+ bpa->gravity[0] = bpa->gravity[1] = 0.0f;
+ bpa->gravity[2] = -1.0f;
+ if ((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) &&
+ (sim->scene->physics_settings.gravity[2] != 0.0f))
+ {
+ bpa->gravity[2] = sim->scene->physics_settings.gravity[2];
+ }
+
+ bpa->data.health = part->boids->health;
+ bpa->data.mode = eBoidMode_InAir;
+ bpa->data.state_id = ((BoidState*)part->boids->states.first)->id;
+ bpa->data.acc[0]=bpa->data.acc[1]=bpa->data.acc[2]=0.0f;
+ }
+
+ if (part->type == PART_HAIR) {
+ pa->lifetime = 100.0f;
+ }
+ else {
+ /* initialize the lifetime, in case the texture coordinates
+ * are from Particles/Strands, which would cause undefined values
+ */
+ pa->lifetime = part->lifetime * (1.0f - part->randlife * psys_frand(psys, p + 21));
+ pa->dietime = pa->time + pa->lifetime;
+
+ /* get possible textural influence */
+ psys_get_texture(sim, pa, &ptex, PAMAP_LIFE, cfra);
+
+ pa->lifetime = part->lifetime * ptex.life;
+
+ if (part->randlife != 0.0f)
+ pa->lifetime *= 1.0f - part->randlife * psys_frand(psys, p + 21);
+ }
+
+ pa->dietime = pa->time + pa->lifetime;
+
+ if (sim->psys->pointcache && sim->psys->pointcache->flag & PTCACHE_BAKED &&
+ sim->psys->pointcache->mem_cache.first) {
+ float dietime = psys_get_dietime_from_cache(sim->psys->pointcache, p);
+ pa->dietime = MIN2(pa->dietime, dietime);
+ }
+
+ if (pa->time > cfra)
+ pa->alive = PARS_UNBORN;
+ else if (pa->dietime <= cfra)
+ pa->alive = PARS_DEAD;
+ else
+ pa->alive = PARS_ALIVE;
+
+ pa->state.time = cfra;
+}
+static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from)
+{
+ ParticleData *pa;
+ int p, totpart=sim->psys->totpart;
+
+ for (p=from, pa=sim->psys->particles+from; p<totpart; p++, pa++)
+ reset_particle(sim, pa, dtime, cfra);
+}
+/************************************************/
+/* Particle targets */
+/************************************************/
+ParticleSystem *psys_get_target_system(Object *ob, ParticleTarget *pt)
+{
+ ParticleSystem *psys = NULL;
+
+ if (pt->ob == NULL || pt->ob == ob)
+ psys = BLI_findlink(&ob->particlesystem, pt->psys-1);
+ else
+ psys = BLI_findlink(&pt->ob->particlesystem, pt->psys-1);
+
+ if (psys)
+ pt->flag |= PTARGET_VALID;
+ else
+ pt->flag &= ~PTARGET_VALID;
+
+ return psys;
+}
+/************************************************/
+/* Keyed particles */
+/************************************************/
+/* Counts valid keyed targets */
+void psys_count_keyed_targets(ParticleSimulationData *sim)
+{
+ ParticleSystem *psys = sim->psys, *kpsys;
+ ParticleTarget *pt = psys->targets.first;
+ int keys_valid = 1;
+ psys->totkeyed = 0;
+
+ for (; pt; pt=pt->next) {
+ kpsys = psys_get_target_system(sim->ob, pt);
+
+ if (kpsys && kpsys->totpart) {
+ psys->totkeyed += keys_valid;
+ if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f)
+ psys->totkeyed += 1;
+ }
+ else {
+ keys_valid = 0;
+ }
+ }
+
+ psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops;
+}
+
+static void set_keyed_keys(ParticleSimulationData *sim)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSimulationData ksim= {0};
+ ParticleTarget *pt;
+ PARTICLE_P;
+ ParticleKey *key;
+ int totpart = psys->totpart, k, totkeys = psys->totkeyed;
+ int keyed_flag = 0;
+
+ ksim.scene= sim->scene;
+
+ /* no proper targets so let's clear and bail out */
+ if (psys->totkeyed==0) {
+ free_keyed_keys(psys);
+ psys->flag &= ~PSYS_KEYED;
+ return;
+ }
+
+ if (totpart && psys->particles->totkey != totkeys) {
+ free_keyed_keys(psys);
+
+ key = MEM_callocN(totpart*totkeys*sizeof(ParticleKey), "Keyed keys");
+
+ LOOP_PARTICLES {
+ pa->keys = key;
+ pa->totkey = totkeys;
+ key += totkeys;
+ }
+ }
+
+ psys->flag &= ~PSYS_KEYED;
+
+
+ pt = psys->targets.first;
+ for (k=0; k<totkeys; k++) {
+ ksim.ob = pt->ob ? pt->ob : sim->ob;
+ ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1);
+ keyed_flag = (ksim.psys->flag & PSYS_KEYED);
+ ksim.psys->flag &= ~PSYS_KEYED;
+
+ LOOP_PARTICLES {
+ key = pa->keys + k;
+ key->time = -1.0; /* use current time */
+
+ psys_get_particle_state(&ksim, p%ksim.psys->totpart, key, 1);
+
+ if (psys->flag & PSYS_KEYED_TIMING) {
+ key->time = pa->time + pt->time;
+ if (pt->duration != 0.0f && k+1 < totkeys) {
+ copy_particle_key(key+1, key, 1);
+ (key+1)->time = pa->time + pt->time + pt->duration;
+ }
+ }
+ else if (totkeys > 1)
+ key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
+ else
+ key->time = pa->time;
+ }
+
+ if (psys->flag & PSYS_KEYED_TIMING && pt->duration!=0.0f)
+ k++;
+
+ ksim.psys->flag |= keyed_flag;
+
+ pt = (pt->next && pt->next->flag & PTARGET_VALID) ? pt->next : psys->targets.first;
+ }
+
+ psys->flag |= PSYS_KEYED;
+}
+
+/************************************************/
+/* Point Cache */
+/************************************************/
+void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys)
+{
+ PointCache *cache = psys->pointcache;
+
+ if (cache->flag & PTCACHE_DISK_CACHE && BLI_listbase_is_empty(&cache->mem_cache)) {
+ PTCacheID pid;
+ BKE_ptcache_id_from_particles(&pid, ob, psys);
+ cache->flag &= ~PTCACHE_DISK_CACHE;
+ BKE_ptcache_disk_to_mem(&pid);
+ cache->flag |= PTCACHE_DISK_CACHE;
+ }
+}
+static void psys_clear_temp_pointcache(ParticleSystem *psys)
+{
+ if (psys->pointcache->flag & PTCACHE_DISK_CACHE)
+ BKE_ptcache_free_mem(&psys->pointcache->mem_cache);
+}
+void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra)
+{
+ ParticleSettings *part = psys->part;
+
+ *sfra = max_ii(1, (int)part->sta);
+ *efra = min_ii((int)(part->end + part->lifetime + 1.0f), max_ii(scene->r.pefra, scene->r.efra));
+}
+
+/************************************************/
+/* Effectors */
+/************************************************/
+static void psys_update_particle_bvhtree(ParticleSystem *psys, float cfra)
+{
+ if (psys) {
+ PARTICLE_P;
+ int totpart = 0;
+ bool need_rebuild;
+
+ BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
+ need_rebuild = !psys->bvhtree || psys->bvhtree_frame != cfra;
+ BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
+
+ if (need_rebuild) {
+ LOOP_SHOWN_PARTICLES {
+ totpart++;
+ }
+
+ BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_WRITE);
+
+ BLI_bvhtree_free(psys->bvhtree);
+ psys->bvhtree = BLI_bvhtree_new(totpart, 0.0, 4, 6);
+
+ LOOP_SHOWN_PARTICLES {
+ if (pa->alive == PARS_ALIVE) {
+ if (pa->state.time == cfra)
+ BLI_bvhtree_insert(psys->bvhtree, p, pa->prev_state.co, 1);
+ else
+ BLI_bvhtree_insert(psys->bvhtree, p, pa->state.co, 1);
+ }
+ }
+ BLI_bvhtree_balance(psys->bvhtree);
+
+ psys->bvhtree_frame = cfra;
+
+ BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
+ }
+ }
+}
+void psys_update_particle_tree(ParticleSystem *psys, float cfra)
+{
+ if (psys) {
+ PARTICLE_P;
+ int totpart = 0;
+
+ if (!psys->tree || psys->tree_frame != cfra) {
+ LOOP_SHOWN_PARTICLES {
+ totpart++;
+ }
+
+ BLI_kdtree_free(psys->tree);
+ psys->tree = BLI_kdtree_new(psys->totpart);
+
+ LOOP_SHOWN_PARTICLES {
+ if (pa->alive == PARS_ALIVE) {
+ if (pa->state.time == cfra)
+ BLI_kdtree_insert(psys->tree, p, pa->prev_state.co);
+ else
+ BLI_kdtree_insert(psys->tree, p, pa->state.co);
+ }
+ }
+ BLI_kdtree_balance(psys->tree);
+
+ psys->tree_frame = cfra;
+ }
+ }
+}
+
+static void psys_update_effectors(ParticleSimulationData *sim)
+{
+ pdEndEffectors(&sim->psys->effectors);
+ sim->psys->effectors = pdInitEffectors(sim->scene, sim->ob, sim->psys,
+ sim->psys->part->effector_weights, true);
+ precalc_guides(sim, sim->psys->effectors);
+}
+
+static void integrate_particle(ParticleSettings *part, ParticleData *pa, float dtime, float *external_acceleration,
+ void (*force_func)(void *forcedata, ParticleKey *state, float *force, float *impulse),
+ void *forcedata)
+{
+#define ZERO_F43 {{0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}}
+
+ ParticleKey states[5];
+ float force[3], acceleration[3], impulse[3], dx[4][3] = ZERO_F43, dv[4][3] = ZERO_F43, oldpos[3];
+ float pa_mass= (part->flag & PART_SIZEMASS ? part->mass * pa->size : part->mass);
+ int i, steps=1;
+ int integrator = part->integrator;
+
+#undef ZERO_F43
+
+ copy_v3_v3(oldpos, pa->state.co);
+
+ /* Verlet integration behaves strangely with moving emitters, so do first step with euler. */
+ if (pa->prev_state.time < 0.f && integrator == PART_INT_VERLET)
+ integrator = PART_INT_EULER;
+
+ switch (integrator) {
+ case PART_INT_EULER:
+ steps=1;
+ break;
+ case PART_INT_MIDPOINT:
+ steps=2;
+ break;
+ case PART_INT_RK4:
+ steps=4;
+ break;
+ case PART_INT_VERLET:
+ steps=1;
+ break;
+ }
+
+ for (i=0; i<steps; i++) {
+ copy_particle_key(states + i, &pa->state, 1);
+ }
+
+ states->time = 0.f;
+
+ for (i=0; i<steps; i++) {
+ zero_v3(force);
+ zero_v3(impulse);
+
+ force_func(forcedata, states+i, force, impulse);
+
+ /* force to acceleration*/
+ mul_v3_v3fl(acceleration, force, 1.0f/pa_mass);
+
+ if (external_acceleration)
+ add_v3_v3(acceleration, external_acceleration);
+
+ /* calculate next state */
+ add_v3_v3(states[i].vel, impulse);
+
+ switch (integrator) {
+ case PART_INT_EULER:
+ madd_v3_v3v3fl(pa->state.co, states->co, states->vel, dtime);
+ madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
+ break;
+ case PART_INT_MIDPOINT:
+ if (i==0) {
+ madd_v3_v3v3fl(states[1].co, states->co, states->vel, dtime*0.5f);
+ madd_v3_v3v3fl(states[1].vel, states->vel, acceleration, dtime*0.5f);
+ states[1].time = dtime*0.5f;
+ /*fra=sim->psys->cfra+0.5f*dfra;*/
+ }
+ else {
+ madd_v3_v3v3fl(pa->state.co, states->co, states[1].vel, dtime);
+ madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
+ }
+ break;
+ case PART_INT_RK4:
+ switch (i) {
+ case 0:
+ copy_v3_v3(dx[0], states->vel);
+ mul_v3_fl(dx[0], dtime);
+ copy_v3_v3(dv[0], acceleration);
+ mul_v3_fl(dv[0], dtime);
+
+ madd_v3_v3v3fl(states[1].co, states->co, dx[0], 0.5f);
+ madd_v3_v3v3fl(states[1].vel, states->vel, dv[0], 0.5f);
+ states[1].time = dtime*0.5f;
+ /*fra=sim->psys->cfra+0.5f*dfra;*/
+ break;
+ case 1:
+ madd_v3_v3v3fl(dx[1], states->vel, dv[0], 0.5f);
+ mul_v3_fl(dx[1], dtime);
+ copy_v3_v3(dv[1], acceleration);
+ mul_v3_fl(dv[1], dtime);
+
+ madd_v3_v3v3fl(states[2].co, states->co, dx[1], 0.5f);
+ madd_v3_v3v3fl(states[2].vel, states->vel, dv[1], 0.5f);
+ states[2].time = dtime*0.5f;
+ break;
+ case 2:
+ madd_v3_v3v3fl(dx[2], states->vel, dv[1], 0.5f);
+ mul_v3_fl(dx[2], dtime);
+ copy_v3_v3(dv[2], acceleration);
+ mul_v3_fl(dv[2], dtime);
+
+ add_v3_v3v3(states[3].co, states->co, dx[2]);
+ add_v3_v3v3(states[3].vel, states->vel, dv[2]);
+ states[3].time = dtime;
+ /*fra=cfra;*/
+ break;
+ case 3:
+ add_v3_v3v3(dx[3], states->vel, dv[2]);
+ mul_v3_fl(dx[3], dtime);
+ copy_v3_v3(dv[3], acceleration);
+ mul_v3_fl(dv[3], dtime);
+
+ madd_v3_v3v3fl(pa->state.co, states->co, dx[0], 1.0f/6.0f);
+ madd_v3_v3fl(pa->state.co, dx[1], 1.0f/3.0f);
+ madd_v3_v3fl(pa->state.co, dx[2], 1.0f/3.0f);
+ madd_v3_v3fl(pa->state.co, dx[3], 1.0f/6.0f);
+
+ madd_v3_v3v3fl(pa->state.vel, states->vel, dv[0], 1.0f/6.0f);
+ madd_v3_v3fl(pa->state.vel, dv[1], 1.0f/3.0f);
+ madd_v3_v3fl(pa->state.vel, dv[2], 1.0f/3.0f);
+ madd_v3_v3fl(pa->state.vel, dv[3], 1.0f/6.0f);
+ }
+ break;
+ case PART_INT_VERLET: /* Verlet integration */
+ madd_v3_v3v3fl(pa->state.vel, pa->prev_state.vel, acceleration, dtime);
+ madd_v3_v3v3fl(pa->state.co, pa->prev_state.co, pa->state.vel, dtime);
+
+ sub_v3_v3v3(pa->state.vel, pa->state.co, oldpos);
+ mul_v3_fl(pa->state.vel, 1.0f/dtime);
+ break;
+ }
+ }
+}
+
+/*********************************************************************************************************
+ * SPH fluid physics
+ *
+ * In theory, there could be unlimited implementation of SPH simulators
+ *
+ * This code uses in some parts adapted algorithms from the pseudo code as outlined in the Research paper:
+ *
+ * Titled: Particle-based Viscoelastic Fluid Simulation.
+ * Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin
+ * Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/
+ *
+ * Presented at Siggraph, (2005)
+ *
+ * ********************************************************************************************************/
+#define PSYS_FLUID_SPRINGS_INITIAL_SIZE 256
+static ParticleSpring *sph_spring_add(ParticleSystem *psys, ParticleSpring *spring)
+{
+ /* Are more refs required? */
+ if (psys->alloc_fluidsprings == 0 || psys->fluid_springs == NULL) {
+ psys->alloc_fluidsprings = PSYS_FLUID_SPRINGS_INITIAL_SIZE;
+ psys->fluid_springs = (ParticleSpring*)MEM_callocN(psys->alloc_fluidsprings * sizeof(ParticleSpring), "Particle Fluid Springs");
+ }
+ else if (psys->tot_fluidsprings == psys->alloc_fluidsprings) {
+ /* Double the number of refs allocated */
+ psys->alloc_fluidsprings *= 2;
+ psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
+ }
+
+ memcpy(psys->fluid_springs + psys->tot_fluidsprings, spring, sizeof(ParticleSpring));
+ psys->tot_fluidsprings++;
+
+ return psys->fluid_springs + psys->tot_fluidsprings - 1;
+}
+static void sph_spring_delete(ParticleSystem *psys, int j)
+{
+ if (j != psys->tot_fluidsprings - 1)
+ psys->fluid_springs[j] = psys->fluid_springs[psys->tot_fluidsprings - 1];
+
+ psys->tot_fluidsprings--;
+
+ if (psys->tot_fluidsprings < psys->alloc_fluidsprings/2 && psys->alloc_fluidsprings > PSYS_FLUID_SPRINGS_INITIAL_SIZE) {
+ psys->alloc_fluidsprings /= 2;
+ psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
+ }
+}
+static void sph_springs_modify(ParticleSystem *psys, float dtime)
+{
+ SPHFluidSettings *fluid = psys->part->fluid;
+ ParticleData *pa1, *pa2;
+ ParticleSpring *spring = psys->fluid_springs;
+
+ float h, d, Rij[3], rij, Lij;
+ int i;
+
+ float yield_ratio = fluid->yield_ratio;
+ float plasticity = fluid->plasticity_constant;
+ /* scale things according to dtime */
+ float timefix = 25.f * dtime;
+
+ if ((fluid->flag & SPH_VISCOELASTIC_SPRINGS)==0 || fluid->spring_k == 0.f)
+ return;
+
+ /* Loop through the springs */
+ for (i=0; i<psys->tot_fluidsprings; i++, spring++) {
+ pa1 = psys->particles + spring->particle_index[0];
+ pa2 = psys->particles + spring->particle_index[1];
+
+ sub_v3_v3v3(Rij, pa2->prev_state.co, pa1->prev_state.co);
+ rij = normalize_v3(Rij);
+
+ /* adjust rest length */
+ Lij = spring->rest_length;
+ d = yield_ratio * timefix * Lij;
+
+ if (rij > Lij + d) // Stretch
+ spring->rest_length += plasticity * (rij - Lij - d) * timefix;
+ else if (rij < Lij - d) // Compress
+ spring->rest_length -= plasticity * (Lij - d - rij) * timefix;
+
+ h = 4.f*pa1->size;
+
+ if (spring->rest_length > h)
+ spring->delete_flag = 1;
+ }
+
+ /* Loop through springs backwaqrds - for efficient delete function */
+ for (i=psys->tot_fluidsprings-1; i >= 0; i--) {
+ if (psys->fluid_springs[i].delete_flag)
+ sph_spring_delete(psys, i);
+ }
+}
+static EdgeHash *sph_springhash_build(ParticleSystem *psys)
+{
+ EdgeHash *springhash = NULL;
+ ParticleSpring *spring;
+ int i = 0;
+
+ springhash = BLI_edgehash_new_ex(__func__, psys->tot_fluidsprings);
+
+ for (i=0, spring=psys->fluid_springs; i<psys->tot_fluidsprings; i++, spring++)
+ BLI_edgehash_insert(springhash, spring->particle_index[0], spring->particle_index[1], SET_INT_IN_POINTER(i+1));
+
+ return springhash;
+}
+
+#define SPH_NEIGHBORS 512
+typedef struct SPHNeighbor {
+ ParticleSystem *psys;
+ int index;
+} SPHNeighbor;
+
+typedef struct SPHRangeData {
+ SPHNeighbor neighbors[SPH_NEIGHBORS];
+ int tot_neighbors;
+
+ float* data;
+
+ ParticleSystem *npsys;
+ ParticleData *pa;
+
+ float h;
+ float mass;
+ float massfac;
+ int use_size;
+} SPHRangeData;
+
+static void sph_evaluate_func(BVHTree *tree, ParticleSystem **psys, float co[3], SPHRangeData *pfr, float interaction_radius, BVHTree_RangeQuery callback)
+{
+ int i;
+
+ pfr->tot_neighbors = 0;
+
+ for (i=0; i < 10 && psys[i]; i++) {
+ pfr->npsys = psys[i];
+ pfr->massfac = psys[i]->part->mass / pfr->mass;
+ pfr->use_size = psys[i]->part->flag & PART_SIZEMASS;
+
+ if (tree) {
+ BLI_bvhtree_range_query(tree, co, interaction_radius, callback, pfr);
+ break;
+ }
+ else {
+ BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
+
+ BLI_bvhtree_range_query(psys[i]->bvhtree, co, interaction_radius, callback, pfr);
+
+ BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
+ }
+ }
+}
+static void sph_density_accum_cb(void *userdata, int index, const float co[3], float squared_dist)
+{
+ SPHRangeData *pfr = (SPHRangeData *)userdata;
+ ParticleData *npa = pfr->npsys->particles + index;
+ float q;
+ float dist;
+
+ UNUSED_VARS(co);
+
+ if (npa == pfr->pa || squared_dist < FLT_EPSILON)
+ return;
+
+ /* Ugh! One particle has too many neighbors! If some aren't taken into
+ * account, the forces will be biased by the tree search order. This
+ * effectively adds enery to the system, and results in a churning motion.
+ * But, we have to stop somewhere, and it's not the end of the world.
+ * - jahka and z0r
+ */
+ if (pfr->tot_neighbors >= SPH_NEIGHBORS)
+ return;
+
+ pfr->neighbors[pfr->tot_neighbors].index = index;
+ pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
+ pfr->tot_neighbors++;
+
+ dist = sqrtf(squared_dist);
+ q = (1.f - dist/pfr->h) * pfr->massfac;
+
+ if (pfr->use_size)
+ q *= npa->size;
+
+ pfr->data[0] += q*q;
+ pfr->data[1] += q*q*q;
+}
+
+/*
+ * Find the Courant number for an SPH particle (used for adaptive time step).
+ */
+static void sph_particle_courant(SPHData *sphdata, SPHRangeData *pfr)
+{
+ ParticleData *pa, *npa;
+ int i;
+ float flow[3], offset[3], dist;
+
+ zero_v3(flow);
+
+ dist = 0.0f;
+ if (pfr->tot_neighbors > 0) {
+ pa = pfr->pa;
+ for (i=0; i < pfr->tot_neighbors; i++) {
+ npa = pfr->neighbors[i].psys->particles + pfr->neighbors[i].index;
+ sub_v3_v3v3(offset, pa->prev_state.co, npa->prev_state.co);
+ dist += len_v3(offset);
+ add_v3_v3(flow, npa->prev_state.vel);
+ }
+ dist += sphdata->psys[0]->part->fluid->radius; // TODO: remove this? - z0r
+ sphdata->element_size = dist / pfr->tot_neighbors;
+ mul_v3_v3fl(sphdata->flow, flow, 1.0f / pfr->tot_neighbors);
+ }
+ else {
+ sphdata->element_size = FLT_MAX;
+ copy_v3_v3(sphdata->flow, flow);
+ }
+}
+static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
+{
+ SPHData *sphdata = (SPHData *)sphdata_v;
+ ParticleSystem **psys = sphdata->psys;
+ ParticleData *pa = sphdata->pa;
+ SPHFluidSettings *fluid = psys[0]->part->fluid;
+ ParticleSpring *spring = NULL;
+ SPHRangeData pfr;
+ SPHNeighbor *pfn;
+ float *gravity = sphdata->gravity;
+ EdgeHash *springhash = sphdata->eh;
+
+ float q, u, rij, dv[3];
+ float pressure, near_pressure;
+
+ float visc = fluid->viscosity_omega;
+ float stiff_visc = fluid->viscosity_beta * (fluid->flag & SPH_FAC_VISCOSITY ? fluid->viscosity_omega : 1.f);
+
+ float inv_mass = 1.0f / sphdata->mass;
+ float spring_constant = fluid->spring_k;
+
+ /* 4.0 seems to be a pretty good value */
+ float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
+ float h = interaction_radius * sphdata->hfac;
+ float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.f); /* 4.77 is an experimentally determined density factor */
+ float rest_length = fluid->rest_length * (fluid->flag & SPH_FAC_REST_LENGTH ? 2.588f * pa->size : 1.f);
+
+ float stiffness = fluid->stiffness_k;
+ float stiffness_near_fac = fluid->stiffness_knear * (fluid->flag & SPH_FAC_REPULSION ? fluid->stiffness_k : 1.f);
+
+ ParticleData *npa;
+ float vec[3];
+ float vel[3];
+ float co[3];
+ float data[2];
+ float density, near_density;
+
+ int i, spring_index, index = pa - psys[0]->particles;
+
+ data[0] = data[1] = 0;
+ pfr.data = data;
+ pfr.h = h;
+ pfr.pa = pa;
+ pfr.mass = sphdata->mass;
+
+ sph_evaluate_func( NULL, psys, state->co, &pfr, interaction_radius, sph_density_accum_cb);
+
+ density = data[0];
+ near_density = data[1];
+
+ pressure = stiffness * (density - rest_density);
+ near_pressure = stiffness_near_fac * near_density;
+
+ pfn = pfr.neighbors;
+ for (i=0; i<pfr.tot_neighbors; i++, pfn++) {
+ npa = pfn->psys->particles + pfn->index;
+
+ madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
+
+ sub_v3_v3v3(vec, co, state->co);
+ rij = normalize_v3(vec);
+
+ q = (1.f - rij/h) * pfn->psys->part->mass * inv_mass;
+
+ if (pfn->psys->part->flag & PART_SIZEMASS)
+ q *= npa->size;
+
+ copy_v3_v3(vel, npa->prev_state.vel);
+
+ /* Double Density Relaxation */
+ madd_v3_v3fl(force, vec, -(pressure + near_pressure*q)*q);
+
+ /* Viscosity */
+ if (visc > 0.f || stiff_visc > 0.f) {
+ sub_v3_v3v3(dv, vel, state->vel);
+ u = dot_v3v3(vec, dv);
+
+ if (u < 0.f && visc > 0.f)
+ madd_v3_v3fl(force, vec, 0.5f * q * visc * u );
+
+ if (u > 0.f && stiff_visc > 0.f)
+ madd_v3_v3fl(force, vec, 0.5f * q * stiff_visc * u );
+ }
+
+ if (spring_constant > 0.f) {
+ /* Viscoelastic spring force */
+ if (pfn->psys == psys[0] && fluid->flag & SPH_VISCOELASTIC_SPRINGS && springhash) {
+ /* BLI_edgehash_lookup appears to be thread-safe. - z0r */
+ spring_index = GET_INT_FROM_POINTER(BLI_edgehash_lookup(springhash, index, pfn->index));
+
+ if (spring_index) {
+ spring = psys[0]->fluid_springs + spring_index - 1;
+
+ madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (spring->rest_length - rij));
+ }
+ else if (fluid->spring_frames == 0 || (pa->prev_state.time-pa->time) <= fluid->spring_frames) {
+ ParticleSpring temp_spring;
+ temp_spring.particle_index[0] = index;
+ temp_spring.particle_index[1] = pfn->index;
+ temp_spring.rest_length = (fluid->flag & SPH_CURRENT_REST_LENGTH) ? rij : rest_length;
+ temp_spring.delete_flag = 0;
+
+ /* sph_spring_add is not thread-safe. - z0r */
+ sph_spring_add(psys[0], &temp_spring);
+ }
+ }
+ else {/* PART_SPRING_HOOKES - Hooke's spring force */
+ madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (rest_length - rij));
+ }
+ }
+ }
+
+ /* Artificial buoyancy force in negative gravity direction */
+ if (fluid->buoyancy > 0.f && gravity)
+ madd_v3_v3fl(force, gravity, fluid->buoyancy * (density-rest_density));
+
+ if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF)
+ sph_particle_courant(sphdata, &pfr);
+ sphdata->pass++;
+}
+
+static void sphclassical_density_accum_cb(void *userdata, int index, const float co[3], float UNUSED(squared_dist))
+{
+ SPHRangeData *pfr = (SPHRangeData *)userdata;
+ ParticleData *npa = pfr->npsys->particles + index;
+ float q;
+ float qfac = 21.0f / (256.f * (float)M_PI);
+ float rij, rij_h;
+ float vec[3];
+
+ /* Exclude particles that are more than 2h away. Can't use squared_dist here
+ * because it is not accurate enough. Use current state, i.e. the output of
+ * basic_integrate() - z0r */
+ sub_v3_v3v3(vec, npa->state.co, co);
+ rij = len_v3(vec);
+ rij_h = rij / pfr->h;
+ if (rij_h > 2.0f)
+ return;
+
+ /* Smoothing factor. Utilise the Wendland kernel. gnuplot:
+ * q1(x) = (2.0 - x)**4 * ( 1.0 + 2.0 * x)
+ * plot [0:2] q1(x) */
+ q = qfac / pow3f(pfr->h) * pow4f(2.0f - rij_h) * ( 1.0f + 2.0f * rij_h);
+ q *= pfr->npsys->part->mass;
+
+ if (pfr->use_size)
+ q *= pfr->pa->size;
+
+ pfr->data[0] += q;
+ pfr->data[1] += q / npa->sphdensity;
+}
+
+static void sphclassical_neighbour_accum_cb(void *userdata, int index, const float co[3], float UNUSED(squared_dist))
+{
+ SPHRangeData *pfr = (SPHRangeData *)userdata;
+ ParticleData *npa = pfr->npsys->particles + index;
+ float rij, rij_h;
+ float vec[3];
+
+ if (pfr->tot_neighbors >= SPH_NEIGHBORS)
+ return;
+
+ /* Exclude particles that are more than 2h away. Can't use squared_dist here
+ * because it is not accurate enough. Use current state, i.e. the output of
+ * basic_integrate() - z0r */
+ sub_v3_v3v3(vec, npa->state.co, co);
+ rij = len_v3(vec);
+ rij_h = rij / pfr->h;
+ if (rij_h > 2.0f)
+ return;
+
+ pfr->neighbors[pfr->tot_neighbors].index = index;
+ pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
+ pfr->tot_neighbors++;
+}
+static void sphclassical_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
+{
+ SPHData *sphdata = (SPHData *)sphdata_v;
+ ParticleSystem **psys = sphdata->psys;
+ ParticleData *pa = sphdata->pa;
+ SPHFluidSettings *fluid = psys[0]->part->fluid;
+ SPHRangeData pfr;
+ SPHNeighbor *pfn;
+ float *gravity = sphdata->gravity;
+
+ float dq, u, rij, dv[3];
+ float pressure, npressure;
+
+ float visc = fluid->viscosity_omega;
+
+ float interaction_radius;
+ float h, hinv;
+ /* 4.77 is an experimentally determined density factor */
+ float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.0f);
+
+ // Use speed of sound squared
+ float stiffness = pow2f(fluid->stiffness_k);
+
+ ParticleData *npa;
+ float vec[3];
+ float co[3];
+ float pressureTerm;
+
+ int i;
+
+ float qfac2 = 42.0f / (256.0f * (float)M_PI);
+ float rij_h;
+
+ /* 4.0 here is to be consistent with previous formulation/interface */
+ interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
+ h = interaction_radius * sphdata->hfac;
+ hinv = 1.0f / h;
+
+ pfr.h = h;
+ pfr.pa = pa;
+
+ sph_evaluate_func(NULL, psys, state->co, &pfr, interaction_radius, sphclassical_neighbour_accum_cb);
+ pressure = stiffness * (pow7f(pa->sphdensity / rest_density) - 1.0f);
+
+ /* multiply by mass so that we return a force, not accel */
+ qfac2 *= sphdata->mass / pow3f(pfr.h);
+
+ pfn = pfr.neighbors;
+ for (i = 0; i < pfr.tot_neighbors; i++, pfn++) {
+ npa = pfn->psys->particles + pfn->index;
+ if (npa == pa) {
+ /* we do not contribute to ourselves */
+ continue;
+ }
+
+ /* Find vector to neighbor. Exclude particles that are more than 2h
+ * away. Can't use current state here because it may have changed on
+ * another thread - so do own mini integration. Unlike basic_integrate,
+ * SPH integration depends on neighboring particles. - z0r */
+ madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
+ sub_v3_v3v3(vec, co, state->co);
+ rij = normalize_v3(vec);
+ rij_h = rij / pfr.h;
+ if (rij_h > 2.0f)
+ continue;
+
+ npressure = stiffness * (pow7f(npa->sphdensity / rest_density) - 1.0f);
+
+ /* First derivative of smoothing factor. Utilise the Wendland kernel.
+ * gnuplot:
+ * q2(x) = 2.0 * (2.0 - x)**4 - 4.0 * (2.0 - x)**3 * (1.0 + 2.0 * x)
+ * plot [0:2] q2(x)
+ * Particles > 2h away are excluded above. */
+ dq = qfac2 * (2.0f * pow4f(2.0f - rij_h) - 4.0f * pow3f(2.0f - rij_h) * (1.0f + 2.0f * rij_h) );
+
+ if (pfn->psys->part->flag & PART_SIZEMASS)
+ dq *= npa->size;
+
+ pressureTerm = pressure / pow2f(pa->sphdensity) + npressure / pow2f(npa->sphdensity);
+
+ /* Note that 'minus' is removed, because vec = vecBA, not vecAB.
+ * This applies to the viscosity calculation below, too. */
+ madd_v3_v3fl(force, vec, pressureTerm * dq);
+
+ /* Viscosity */
+ if (visc > 0.0f) {
+ sub_v3_v3v3(dv, npa->prev_state.vel, pa->prev_state.vel);
+ u = dot_v3v3(vec, dv);
+ /* Apply parameters */
+ u *= -dq * hinv * visc / (0.5f * npa->sphdensity + 0.5f * pa->sphdensity);
+ madd_v3_v3fl(force, vec, u);
+ }
+ }
+
+ /* Artificial buoyancy force in negative gravity direction */
+ if (fluid->buoyancy > 0.f && gravity)
+ madd_v3_v3fl(force, gravity, fluid->buoyancy * (pa->sphdensity - rest_density));
+
+ if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF)
+ sph_particle_courant(sphdata, &pfr);
+ sphdata->pass++;
+}
+
+static void sphclassical_calc_dens(ParticleData *pa, float UNUSED(dfra), SPHData *sphdata)
+{
+ ParticleSystem **psys = sphdata->psys;
+ SPHFluidSettings *fluid = psys[0]->part->fluid;
+ /* 4.0 seems to be a pretty good value */
+ float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
+ SPHRangeData pfr;
+ float data[2];
+
+ data[0] = 0;
+ data[1] = 0;
+ pfr.data = data;
+ pfr.h = interaction_radius * sphdata->hfac;
+ pfr.pa = pa;
+ pfr.mass = sphdata->mass;
+
+ sph_evaluate_func( NULL, psys, pa->state.co, &pfr, interaction_radius, sphclassical_density_accum_cb);
+ pa->sphdensity = min_ff(max_ff(data[0], fluid->rest_density * 0.9f), fluid->rest_density * 1.1f);
+}
+
+void psys_sph_init(ParticleSimulationData *sim, SPHData *sphdata)
+{
+ ParticleTarget *pt;
+ int i;
+
+ // Add other coupled particle systems.
+ sphdata->psys[0] = sim->psys;
+ for (i=1, pt=sim->psys->targets.first; i<10; i++, pt=(pt?pt->next:NULL))
+ sphdata->psys[i] = pt ? psys_get_target_system(sim->ob, pt) : NULL;
+
+ if (psys_uses_gravity(sim))
+ sphdata->gravity = sim->scene->physics_settings.gravity;
+ else
+ sphdata->gravity = NULL;
+ sphdata->eh = sph_springhash_build(sim->psys);
+
+ // These per-particle values should be overridden later, but just for
+ // completeness we give them default values now.
+ sphdata->pa = NULL;
+ sphdata->mass = 1.0f;
+
+ if (sim->psys->part->fluid->solver == SPH_SOLVER_DDR) {
+ sphdata->force_cb = sph_force_cb;
+ sphdata->density_cb = sph_density_accum_cb;
+ sphdata->hfac = 1.0f;
+ }
+ else {
+ /* SPH_SOLVER_CLASSICAL */
+ sphdata->force_cb = sphclassical_force_cb;
+ sphdata->density_cb = sphclassical_density_accum_cb;
+ sphdata->hfac = 0.5f;
+ }
+
+}
+
+void psys_sph_finalise(SPHData *sphdata)
+{
+ if (sphdata->eh) {
+ BLI_edgehash_free(sphdata->eh, NULL);
+ sphdata->eh = NULL;
+ }
+}
+/* Sample the density field at a point in space. */
+void psys_sph_density(BVHTree *tree, SPHData *sphdata, float co[3], float vars[2])
+{
+ ParticleSystem **psys = sphdata->psys;
+ SPHFluidSettings *fluid = psys[0]->part->fluid;
+ /* 4.0 seems to be a pretty good value */
+ float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
+ SPHRangeData pfr;
+ float density[2];
+
+ density[0] = density[1] = 0.0f;
+ pfr.data = density;
+ pfr.h = interaction_radius * sphdata->hfac;
+ pfr.mass = sphdata->mass;
+
+ sph_evaluate_func(tree, psys, co, &pfr, interaction_radius, sphdata->density_cb);
+
+ vars[0] = pfr.data[0];
+ vars[1] = pfr.data[1];
+}
+
+static void sph_integrate(ParticleSimulationData *sim, ParticleData *pa, float dfra, SPHData *sphdata)
+{
+ ParticleSettings *part = sim->psys->part;
+ // float timestep = psys_get_timestep(sim); // UNUSED
+ float pa_mass = part->mass * (part->flag & PART_SIZEMASS ? pa->size : 1.f);
+ float dtime = dfra*psys_get_timestep(sim);
+ // int steps = 1; // UNUSED
+ float effector_acceleration[3];
+
+ sphdata->pa = pa;
+ sphdata->mass = pa_mass;
+ sphdata->pass = 0;
+ //sphdata.element_size and sphdata.flow are set in the callback.
+
+ /* restore previous state and treat gravity & effectors as external acceleration*/
+ sub_v3_v3v3(effector_acceleration, pa->state.vel, pa->prev_state.vel);
+ mul_v3_fl(effector_acceleration, 1.f/dtime);
+
+ copy_particle_key(&pa->state, &pa->prev_state, 0);
+
+ integrate_particle(part, pa, dtime, effector_acceleration, sphdata->force_cb, sphdata);
+}
+
+/************************************************/
+/* Basic physics */
+/************************************************/
+typedef struct EfData {
+ ParticleTexture ptex;
+ ParticleSimulationData *sim;
+ ParticleData *pa;
+} EfData;
+static void basic_force_cb(void *efdata_v, ParticleKey *state, float *force, float *impulse)
+{
+ EfData *efdata = (EfData *)efdata_v;
+ ParticleSimulationData *sim = efdata->sim;
+ ParticleSettings *part = sim->psys->part;
+ ParticleData *pa = efdata->pa;
+ EffectedPoint epoint;
+
+ /* add effectors */
+ pd_point_from_particle(efdata->sim, efdata->pa, state, &epoint);
+ if (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)
+ pdDoEffectors(sim->psys->effectors, sim->colliders, part->effector_weights, &epoint, force, impulse);
+
+ mul_v3_fl(force, efdata->ptex.field);
+ mul_v3_fl(impulse, efdata->ptex.field);
+
+ /* calculate air-particle interaction */
+ if (part->dragfac != 0.0f)
+ madd_v3_v3fl(force, state->vel, -part->dragfac * pa->size * pa->size * len_v3(state->vel));
+
+ /* brownian force */
+ if (part->brownfac != 0.0f) {
+ force[0] += (BLI_frand()-0.5f) * part->brownfac;
+ force[1] += (BLI_frand()-0.5f) * part->brownfac;
+ force[2] += (BLI_frand()-0.5f) * part->brownfac;
+ }
+
+ if (part->flag & PART_ROT_DYN && epoint.ave)
+ copy_v3_v3(pa->state.ave, epoint.ave);
+}
+/* gathers all forces that effect particles and calculates a new state for the particle */
+static void basic_integrate(ParticleSimulationData *sim, int p, float dfra, float cfra)
+{
+ ParticleSettings *part = sim->psys->part;
+ ParticleData *pa = sim->psys->particles + p;
+ ParticleKey tkey;
+ float dtime=dfra*psys_get_timestep(sim), time;
+ float *gravity = NULL, gr[3];
+ EfData efdata;
+
+ psys_get_texture(sim, pa, &efdata.ptex, PAMAP_PHYSICS, cfra);
+
+ efdata.pa = pa;
+ efdata.sim = sim;
+
+ /* add global acceleration (gravitation) */
+ if (psys_uses_gravity(sim) &&
+ /* normal gravity is too strong for hair so it's disabled by default */
+ (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR))
+ {
+ zero_v3(gr);
+ madd_v3_v3fl(gr, sim->scene->physics_settings.gravity, part->effector_weights->global_gravity * efdata.ptex.gravity);
+ gravity = gr;
+ }
+
+ /* maintain angular velocity */
+ copy_v3_v3(pa->state.ave, pa->prev_state.ave);
+
+ integrate_particle(part, pa, dtime, gravity, basic_force_cb, &efdata);
+
+ /* damp affects final velocity */
+ if (part->dampfac != 0.f)
+ mul_v3_fl(pa->state.vel, 1.f - part->dampfac * efdata.ptex.damp * 25.f * dtime);
+
+ //copy_v3_v3(pa->state.ave, states->ave);
+
+ /* finally we do guides */
+ time=(cfra-pa->time)/pa->lifetime;
+ CLAMP(time, 0.0f, 1.0f);
+
+ copy_v3_v3(tkey.co,pa->state.co);
+ copy_v3_v3(tkey.vel,pa->state.vel);
+ tkey.time=pa->state.time;
+
+ if (part->type != PART_HAIR) {
+ if (do_guides(sim->psys->part, sim->psys->effectors, &tkey, p, time)) {
+ copy_v3_v3(pa->state.co,tkey.co);
+ /* guides don't produce valid velocity */
+ sub_v3_v3v3(pa->state.vel, tkey.co, pa->prev_state.co);
+ mul_v3_fl(pa->state.vel,1.0f/dtime);
+ pa->state.time=tkey.time;
+ }
+ }
+}
+static void basic_rotate(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
+{
+ float rotfac, rot1[4], rot2[4] = {1.0,0.0,0.0,0.0}, dtime=dfra*timestep, extrotfac;
+
+ if ((part->flag & PART_ROTATIONS) == 0) {
+ unit_qt(pa->state.rot);
+ return;
+ }
+
+ if (part->flag & PART_ROT_DYN) {
+ extrotfac = len_v3(pa->state.ave);
+ }
+ else {
+ extrotfac = 0.0f;
+ }
+
+ if ((part->flag & PART_ROT_DYN) && ELEM(part->avemode, PART_AVE_VELOCITY, PART_AVE_HORIZONTAL, PART_AVE_VERTICAL)) {
+ float angle;
+ float len1 = len_v3(pa->prev_state.vel);
+ float len2 = len_v3(pa->state.vel);
+ float vec[3];
+
+ if (len1 == 0.0f || len2 == 0.0f) {
+ zero_v3(pa->state.ave);
+ }
+ else {
+ cross_v3_v3v3(pa->state.ave, pa->prev_state.vel, pa->state.vel);
+ normalize_v3(pa->state.ave);
+ angle = dot_v3v3(pa->prev_state.vel, pa->state.vel) / (len1 * len2);
+ mul_v3_fl(pa->state.ave, saacos(angle) / dtime);
+ }
+
+ get_angular_velocity_vector(part->avemode, &pa->state, vec);
+ axis_angle_to_quat(rot2, vec, dtime*part->avefac);
+ }
+
+ rotfac = len_v3(pa->state.ave);
+ if (rotfac == 0.0f || (part->flag & PART_ROT_DYN)==0 || extrotfac == 0.0f) {
+ unit_qt(rot1);
+ }
+ else {
+ axis_angle_to_quat(rot1,pa->state.ave,rotfac*dtime);
+ }
+ mul_qt_qtqt(pa->state.rot,rot1,pa->prev_state.rot);
+ mul_qt_qtqt(pa->state.rot,rot2,pa->state.rot);
+
+ /* keep rotation quat in good health */
+ normalize_qt(pa->state.rot);
+}
+
+/************************************************
+ * Collisions
+ *
+ * The algorithm is roughly:
+ * 1. Use a BVH tree to search for faces that a particle may collide with.
+ * 2. Use Newton's method to find the exact time at which the collision occurs.
+ * https://en.wikipedia.org/wiki/Newton's_method
+ *
+ ************************************************/
+#define COLLISION_MIN_RADIUS 0.001f
+#define COLLISION_MIN_DISTANCE 0.0001f
+#define COLLISION_ZERO 0.00001f
+#define COLLISION_INIT_STEP 0.00008f
+typedef float (*NRDistanceFunc)(float *p, float radius, ParticleCollisionElement *pce, float *nor);
+static float nr_signed_distance_to_plane(float *p, float radius, ParticleCollisionElement *pce, float *nor)
+{
+ float p0[3], e1[3], e2[3], d;
+
+ sub_v3_v3v3(e1, pce->x1, pce->x0);
+ sub_v3_v3v3(e2, pce->x2, pce->x0);
+ sub_v3_v3v3(p0, p, pce->x0);
+
+ cross_v3_v3v3(nor, e1, e2);
+ normalize_v3(nor);
+
+ d = dot_v3v3(p0, nor);
+
+ if (pce->inv_nor == -1) {
+ if (d < 0.f)
+ pce->inv_nor = 1;
+ else
+ pce->inv_nor = 0;
+ }
+
+ if (pce->inv_nor == 1) {
+ negate_v3(nor);
+ d = -d;
+ }
+
+ return d - radius;
+}
+static float nr_distance_to_edge(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
+{
+ float v0[3], v1[3], v2[3], c[3];
+
+ sub_v3_v3v3(v0, pce->x1, pce->x0);
+ sub_v3_v3v3(v1, p, pce->x0);
+ sub_v3_v3v3(v2, p, pce->x1);
+
+ cross_v3_v3v3(c, v1, v2);
+
+ return fabsf(len_v3(c)/len_v3(v0)) - radius;
+}
+static float nr_distance_to_vert(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
+{
+ return len_v3v3(p, pce->x0) - radius;
+}
+static void collision_interpolate_element(ParticleCollisionElement *pce, float t, float fac, ParticleCollision *col)
+{
+ /* t is the current time for newton rhapson */
+ /* fac is the starting factor for current collision iteration */
+ /* the col->fac's are factors for the particle subframe step start and end during collision modifier step */
+ float f = fac + t*(1.f-fac);
+ float mul = col->fac1 + f * (col->fac2-col->fac1);
+ if (pce->tot > 0) {
+ madd_v3_v3v3fl(pce->x0, pce->x[0], pce->v[0], mul);
+
+ if (pce->tot > 1) {
+ madd_v3_v3v3fl(pce->x1, pce->x[1], pce->v[1], mul);
+
+ if (pce->tot > 2)
+ madd_v3_v3v3fl(pce->x2, pce->x[2], pce->v[2], mul);
+ }
+ }
+}
+static void collision_point_velocity(ParticleCollisionElement *pce)
+{
+ float v[3];
+
+ copy_v3_v3(pce->vel, pce->v[0]);
+
+ if (pce->tot > 1) {
+ sub_v3_v3v3(v, pce->v[1], pce->v[0]);
+ madd_v3_v3fl(pce->vel, v, pce->uv[0]);
+
+ if (pce->tot > 2) {
+ sub_v3_v3v3(v, pce->v[2], pce->v[0]);
+ madd_v3_v3fl(pce->vel, v, pce->uv[1]);
+ }
+ }
+}
+static float collision_point_distance_with_normal(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *nor)
+{
+ if (fac >= 0.f)
+ collision_interpolate_element(pce, 0.f, fac, col);
+
+ switch (pce->tot) {
+ case 1:
+ {
+ sub_v3_v3v3(nor, p, pce->x0);
+ return normalize_v3(nor);
+ }
+ case 2:
+ {
+ float u, e[3], vec[3];
+ sub_v3_v3v3(e, pce->x1, pce->x0);
+ sub_v3_v3v3(vec, p, pce->x0);
+ u = dot_v3v3(vec, e) / dot_v3v3(e, e);
+
+ madd_v3_v3v3fl(nor, vec, e, -u);
+ return normalize_v3(nor);
+ }
+ case 3:
+ return nr_signed_distance_to_plane(p, 0.f, pce, nor);
+ }
+ return 0;
+}
+static void collision_point_on_surface(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *co)
+{
+ collision_interpolate_element(pce, 0.f, fac, col);
+
+ switch (pce->tot) {
+ case 1:
+ {
+ sub_v3_v3v3(co, p, pce->x0);
+ normalize_v3(co);
+ madd_v3_v3v3fl(co, pce->x0, co, col->radius);
+ break;
+ }
+ case 2:
+ {
+ float u, e[3], vec[3], nor[3];
+ sub_v3_v3v3(e, pce->x1, pce->x0);
+ sub_v3_v3v3(vec, p, pce->x0);
+ u = dot_v3v3(vec, e) / dot_v3v3(e, e);
+
+ madd_v3_v3v3fl(nor, vec, e, -u);
+ normalize_v3(nor);
+
+ madd_v3_v3v3fl(co, pce->x0, e, pce->uv[0]);
+ madd_v3_v3fl(co, nor, col->radius);
+ break;
+ }
+ case 3:
+ {
+ float p0[3], e1[3], e2[3], nor[3];
+
+ sub_v3_v3v3(e1, pce->x1, pce->x0);
+ sub_v3_v3v3(e2, pce->x2, pce->x0);
+ sub_v3_v3v3(p0, p, pce->x0);
+
+ cross_v3_v3v3(nor, e1, e2);
+ normalize_v3(nor);
+
+ if (pce->inv_nor == 1)
+ negate_v3(nor);
+
+ madd_v3_v3v3fl(co, pce->x0, nor, col->radius);
+ madd_v3_v3fl(co, e1, pce->uv[0]);
+ madd_v3_v3fl(co, e2, pce->uv[1]);
+ break;
+ }
+ }
+}
+/* find first root in range [0-1] starting from 0 */
+static float collision_newton_rhapson(ParticleCollision *col, float radius, ParticleCollisionElement *pce, NRDistanceFunc distance_func)
+{
+ float t0, t1, dt_init, d0, d1, dd, n[3];
+ int iter;
+
+ pce->inv_nor = -1;
+
+ if (col->inv_total_time > 0.0f) {
+ /* Initial step size should be small, but not too small or floating point
+ * precision errors will appear. - z0r */
+ dt_init = COLLISION_INIT_STEP * col->inv_total_time;
+ }
+ else {
+ dt_init = 0.001f;
+ }
+
+ /* start from the beginning */
+ t0 = 0.f;
+ collision_interpolate_element(pce, t0, col->f, col);
+ d0 = distance_func(col->co1, radius, pce, n);
+ t1 = dt_init;
+ d1 = 0.f;
+
+ for (iter=0; iter<10; iter++) {//, itersum++) {
+ /* get current location */
+ collision_interpolate_element(pce, t1, col->f, col);
+ interp_v3_v3v3(pce->p, col->co1, col->co2, t1);
+
+ d1 = distance_func(pce->p, radius, pce, n);
+
+ /* particle already inside face, so report collision */
+ if (iter == 0 && d0 < 0.f && d0 > -radius) {
+ copy_v3_v3(pce->p, col->co1);
+ copy_v3_v3(pce->nor, n);
+ pce->inside = 1;
+ return 0.f;
+ }
+
+ /* Zero gradient (no movement relative to element). Can't step from
+ * here. */
+ if (d1 == d0) {
+ /* If first iteration, try from other end where the gradient may be
+ * greater. Note: code duplicated below. */
+ if (iter == 0) {
+ t0 = 1.f;
+ collision_interpolate_element(pce, t0, col->f, col);
+ d0 = distance_func(col->co2, radius, pce, n);
+ t1 = 1.0f - dt_init;
+ d1 = 0.f;
+ continue;
+ }
+ else
+ return -1.f;
+ }
+
+ dd = (t1-t0)/(d1-d0);
+
+ t0 = t1;
+ d0 = d1;
+
+ t1 -= d1*dd;
+
+ /* Particle moving away from plane could also mean a strangely rotating
+ * face, so check from end. Note: code duplicated above. */
+ if (iter == 0 && t1 < 0.f) {
+ t0 = 1.f;
+ collision_interpolate_element(pce, t0, col->f, col);
+ d0 = distance_func(col->co2, radius, pce, n);
+ t1 = 1.0f - dt_init;
+ d1 = 0.f;
+ continue;
+ }
+ else if (iter == 1 && (t1 < -COLLISION_ZERO || t1 > 1.f))
+ return -1.f;
+
+ if (d1 <= COLLISION_ZERO && d1 >= -COLLISION_ZERO) {
+ if (t1 >= -COLLISION_ZERO && t1 <= 1.f) {
+ if (distance_func == nr_signed_distance_to_plane)
+ copy_v3_v3(pce->nor, n);
+
+ CLAMP(t1, 0.f, 1.f);
+
+ return t1;
+ }
+ else
+ return -1.f;
+ }
+ }
+ return -1.0;
+}
+static int collision_sphere_to_tri(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
+{
+ ParticleCollisionElement *result = &col->pce;
+ float ct, u, v;
+
+ pce->inv_nor = -1;
+ pce->inside = 0;
+
+ ct = collision_newton_rhapson(col, radius, pce, nr_signed_distance_to_plane);
+
+ if (ct >= 0.f && ct < *t && (result->inside==0 || pce->inside==1) ) {
+ float e1[3], e2[3], p0[3];
+ float e1e1, e1e2, e1p0, e2e2, e2p0, inv;
+
+ sub_v3_v3v3(e1, pce->x1, pce->x0);
+ sub_v3_v3v3(e2, pce->x2, pce->x0);
+ /* XXX: add radius correction here? */
+ sub_v3_v3v3(p0, pce->p, pce->x0);
+
+ e1e1 = dot_v3v3(e1, e1);
+ e1e2 = dot_v3v3(e1, e2);
+ e1p0 = dot_v3v3(e1, p0);
+ e2e2 = dot_v3v3(e2, e2);
+ e2p0 = dot_v3v3(e2, p0);
+
+ inv = 1.f/(e1e1 * e2e2 - e1e2 * e1e2);
+ u = (e2e2 * e1p0 - e1e2 * e2p0) * inv;
+ v = (e1e1 * e2p0 - e1e2 * e1p0) * inv;
+
+ if (u>=0.f && u<=1.f && v>=0.f && u+v<=1.f) {
+ *result = *pce;
+
+ /* normal already calculated in pce */
+
+ result->uv[0] = u;
+ result->uv[1] = v;
+
+ *t = ct;
+ return 1;
+ }
+ }
+ return 0;
+}
+static int collision_sphere_to_edges(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
+{
+ ParticleCollisionElement edge[3], *cur = NULL, *hit = NULL;
+ ParticleCollisionElement *result = &col->pce;
+
+ float ct;
+ int i;
+
+ for (i=0; i<3; i++) {
+ cur = edge+i;
+ cur->x[0] = pce->x[i]; cur->x[1] = pce->x[(i+1)%3];
+ cur->v[0] = pce->v[i]; cur->v[1] = pce->v[(i+1)%3];
+ cur->tot = 2;
+ cur->inside = 0;
+
+ ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_edge);
+
+ if (ct >= 0.f && ct < *t) {
+ float u, e[3], vec[3];
+
+ sub_v3_v3v3(e, cur->x1, cur->x0);
+ sub_v3_v3v3(vec, cur->p, cur->x0);
+ u = dot_v3v3(vec, e) / dot_v3v3(e, e);
+
+ if (u < 0.f || u > 1.f)
+ break;
+
+ *result = *cur;
+
+ madd_v3_v3v3fl(result->nor, vec, e, -u);
+ normalize_v3(result->nor);
+
+ result->uv[0] = u;
+
+
+ hit = cur;
+ *t = ct;
+ }
+
+ }
+
+ return hit != NULL;
+}
+static int collision_sphere_to_verts(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
+{
+ ParticleCollisionElement vert[3], *cur = NULL, *hit = NULL;
+ ParticleCollisionElement *result = &col->pce;
+
+ float ct;
+ int i;
+
+ for (i=0; i<3; i++) {
+ cur = vert+i;
+ cur->x[0] = pce->x[i];
+ cur->v[0] = pce->v[i];
+ cur->tot = 1;
+ cur->inside = 0;
+
+ ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_vert);
+
+ if (ct >= 0.f && ct < *t) {
+ *result = *cur;
+
+ sub_v3_v3v3(result->nor, cur->p, cur->x0);
+ normalize_v3(result->nor);
+
+ hit = cur;
+ *t = ct;
+ }
+
+ }
+
+ return hit != NULL;
+}
+/* Callback for BVHTree near test */
+void BKE_psys_collision_neartest_cb(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
+{
+ ParticleCollision *col = (ParticleCollision *) userdata;
+ ParticleCollisionElement pce;
+ const MVertTri *vt = &col->md->tri[index];
+ MVert *x = col->md->x;
+ MVert *v = col->md->current_v;
+ float t = hit->dist/col->original_ray_length;
+ int collision = 0;
+
+ pce.x[0] = x[vt->tri[0]].co;
+ pce.x[1] = x[vt->tri[1]].co;
+ pce.x[2] = x[vt->tri[2]].co;
+
+ pce.v[0] = v[vt->tri[0]].co;
+ pce.v[1] = v[vt->tri[1]].co;
+ pce.v[2] = v[vt->tri[2]].co;
+
+ pce.tot = 3;
+ pce.inside = 0;
+ pce.index = index;
+
+ collision = collision_sphere_to_tri(col, ray->radius, &pce, &t);
+ if (col->pce.inside == 0) {
+ collision += collision_sphere_to_edges(col, ray->radius, &pce, &t);
+ collision += collision_sphere_to_verts(col, ray->radius, &pce, &t);
+ }
+
+ if (collision) {
+ hit->dist = col->original_ray_length * t;
+ hit->index = index;
+
+ collision_point_velocity(&col->pce);
+
+ col->hit = col->current;
+ }
+}
+static int collision_detect(ParticleData *pa, ParticleCollision *col, BVHTreeRayHit *hit, ListBase *colliders)
+{
+ const int raycast_flag = BVH_RAYCAST_DEFAULT & ~(BVH_RAYCAST_WATERTIGHT);
+ ColliderCache *coll;
+ float ray_dir[3];
+
+ if (BLI_listbase_is_empty(colliders))
+ return 0;
+
+ sub_v3_v3v3(ray_dir, col->co2, col->co1);
+ hit->index = -1;
+ hit->dist = col->original_ray_length = normalize_v3(ray_dir);
+ col->pce.inside = 0;
+
+ /* even if particle is stationary we want to check for moving colliders */
+ /* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
+ if (hit->dist == 0.0f)
+ hit->dist = col->original_ray_length = 0.000001f;
+
+ for (coll = colliders->first; coll; coll=coll->next) {
+ /* for boids: don't check with current ground object; also skip if permeated */
+ bool skip = false;
+
+ for (int i = 0; i < col->skip_count; i++) {
+ if (coll->ob == col->skip[i]) {
+ skip = true;
+ break;
+ }
+ }
+
+ if (skip)
+ continue;
+
+ /* particles should not collide with emitter at birth */
+ if (coll->ob == col->emitter && pa->time < col->cfra && pa->time >= col->old_cfra)
+ continue;
+
+ col->current = coll->ob;
+ col->md = coll->collmd;
+ col->fac1 = (col->old_cfra - coll->collmd->time_x) / (coll->collmd->time_xnew - coll->collmd->time_x);
+ col->fac2 = (col->cfra - coll->collmd->time_x) / (coll->collmd->time_xnew - coll->collmd->time_x);
+
+ if (col->md && col->md->bvhtree) {
+ BLI_bvhtree_ray_cast_ex(
+ col->md->bvhtree, col->co1, ray_dir, col->radius, hit,
+ BKE_psys_collision_neartest_cb, col, raycast_flag);
+ }
+ }
+
+ return hit->index >= 0;
+}
+static int collision_response(ParticleData *pa, ParticleCollision *col, BVHTreeRayHit *hit, int kill, int dynamic_rotation)
+{
+ ParticleCollisionElement *pce = &col->pce;
+ PartDeflect *pd = col->hit->pd;
+ float co[3]; /* point of collision */
+ float x = hit->dist/col->original_ray_length; /* location factor of collision between this iteration */
+ float f = col->f + x * (1.0f - col->f); /* time factor of collision between timestep */
+ float dt1 = (f - col->f) * col->total_time; /* time since previous collision (in seconds) */
+ float dt2 = (1.0f - f) * col->total_time; /* time left after collision (in seconds) */
+ int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0; /* did particle pass through the collision surface? */
+
+ /* calculate exact collision location */
+ interp_v3_v3v3(co, col->co1, col->co2, x);
+
+ /* particle dies in collision */
+ if (through == 0 && (kill || pd->flag & PDEFLE_KILL_PART)) {
+ pa->alive = PARS_DYING;
+ pa->dietime = col->old_cfra + (col->cfra - col->old_cfra) * f;
+
+ copy_v3_v3(pa->state.co, co);
+ interp_v3_v3v3(pa->state.vel, pa->prev_state.vel, pa->state.vel, f);
+ interp_qt_qtqt(pa->state.rot, pa->prev_state.rot, pa->state.rot, f);
+ interp_v3_v3v3(pa->state.ave, pa->prev_state.ave, pa->state.ave, f);
+
+ /* particle is dead so we don't need to calculate further */
+ return 0;
+ }
+ /* figure out velocity and other data after collision */
+ else {
+ float v0[3]; /* velocity directly before collision to be modified into velocity directly after collision */
+ float v0_nor[3];/* normal component of v0 */
+ float v0_tan[3];/* tangential component of v0 */
+ float vc_tan[3];/* tangential component of collision surface velocity */
+ float v0_dot, vc_dot;
+ float damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f);
+ float frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f);
+ float distance, nor[3], dot;
+
+ CLAMP(damp,0.0f, 1.0f);
+ CLAMP(frict,0.0f, 1.0f);
+
+ /* get exact velocity right before collision */
+ madd_v3_v3v3fl(v0, col->ve1, col->acc, dt1);
+
+ /* convert collider velocity from 1/framestep to 1/s TODO: here we assume 1 frame step for collision modifier */
+ mul_v3_fl(pce->vel, col->inv_timestep);
+
+ /* calculate tangential particle velocity */
+ v0_dot = dot_v3v3(pce->nor, v0);
+ madd_v3_v3v3fl(v0_tan, v0, pce->nor, -v0_dot);
+
+ /* calculate tangential collider velocity */
+ vc_dot = dot_v3v3(pce->nor, pce->vel);
+ madd_v3_v3v3fl(vc_tan, pce->vel, pce->nor, -vc_dot);
+
+ /* handle friction effects (tangential and angular velocity) */
+ if (frict > 0.0f) {
+ /* angular <-> linear velocity */
+ if (dynamic_rotation) {
+ float vr_tan[3], v1_tan[3], ave[3];
+
+ /* linear velocity of particle surface */
+ cross_v3_v3v3(vr_tan, pce->nor, pa->state.ave);
+ mul_v3_fl(vr_tan, pa->size);
+
+ /* change to coordinates that move with the collision plane */
+ sub_v3_v3v3(v1_tan, v0_tan, vc_tan);
+
+ /* The resulting velocity is a weighted average of particle cm & surface
+ * velocity. This weight (related to particle's moment of inertia) could
+ * be made a parameter for angular <-> linear conversion.
+ */
+ madd_v3_v3fl(v1_tan, vr_tan, -0.4);
+ mul_v3_fl(v1_tan, 1.0f/1.4f); /* 1/(1+0.4) */
+
+ /* rolling friction is around 0.01 of sliding friction (could be made a parameter) */
+ mul_v3_fl(v1_tan, 1.0f - 0.01f * frict);
+
+ /* surface_velocity is opposite to cm velocity */
+ negate_v3_v3(vr_tan, v1_tan);
+
+ /* get back to global coordinates */
+ add_v3_v3(v1_tan, vc_tan);
+
+ /* convert to angular velocity*/
+ cross_v3_v3v3(ave, vr_tan, pce->nor);
+ mul_v3_fl(ave, 1.0f/MAX2(pa->size, 0.001f));
+
+ /* only friction will cause change in linear & angular velocity */
+ interp_v3_v3v3(pa->state.ave, pa->state.ave, ave, frict);
+ interp_v3_v3v3(v0_tan, v0_tan, v1_tan, frict);
+ }
+ else {
+ /* just basic friction (unphysical due to the friction model used in Blender) */
+ interp_v3_v3v3(v0_tan, v0_tan, vc_tan, frict);
+ }
+ }
+
+ /* stickiness was possibly added before, so cancel that before calculating new normal velocity */
+ /* otherwise particles go flying out of the surface because of high reversed sticky velocity */
+ if (v0_dot < 0.0f) {
+ v0_dot += pd->pdef_stickness;
+ if (v0_dot > 0.0f)
+ v0_dot = 0.0f;
+ }
+
+ /* damping and flipping of velocity around normal */
+ v0_dot *= 1.0f - damp;
+ vc_dot *= through ? damp : 1.0f;
+
+ /* calculate normal particle velocity */
+ /* special case for object hitting the particle from behind */
+ if (through==0 && ((vc_dot>0.0f && v0_dot>0.0f && vc_dot>v0_dot) || (vc_dot<0.0f && v0_dot<0.0f && vc_dot<v0_dot)))
+ mul_v3_v3fl(v0_nor, pce->nor, vc_dot);
+ else if (v0_dot > 0.f)
+ mul_v3_v3fl(v0_nor, pce->nor, vc_dot + v0_dot);
+ else
+ mul_v3_v3fl(v0_nor, pce->nor, vc_dot + (through ? 1.0f : -1.0f) * v0_dot);
+
+ /* combine components together again */
+ add_v3_v3v3(v0, v0_nor, v0_tan);
+
+ if (col->boid) {
+ /* keep boids above ground */
+ BoidParticle *bpa = pa->boid;
+ if (bpa->data.mode == eBoidMode_OnLand || co[2] <= col->boid_z) {
+ co[2] = col->boid_z;
+ v0[2] = 0.0f;
+ }
+ }
+
+ /* re-apply acceleration to final location and velocity */
+ madd_v3_v3v3fl(pa->state.co, co, v0, dt2);
+ madd_v3_v3fl(pa->state.co, col->acc, 0.5f*dt2*dt2);
+ madd_v3_v3v3fl(pa->state.vel, v0, col->acc, dt2);
+
+ /* make sure particle stays on the right side of the surface */
+ if (!through) {
+ distance = collision_point_distance_with_normal(co, pce, -1.f, col, nor);
+
+ if (distance < col->radius + COLLISION_MIN_DISTANCE)
+ madd_v3_v3fl(co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
+
+ dot = dot_v3v3(nor, v0);
+ if (dot < 0.f)
+ madd_v3_v3fl(v0, nor, -dot);
+
+ distance = collision_point_distance_with_normal(pa->state.co, pce, 1.f, col, nor);
+
+ if (distance < col->radius + COLLISION_MIN_DISTANCE)
+ madd_v3_v3fl(pa->state.co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
+
+ dot = dot_v3v3(nor, pa->state.vel);
+ if (dot < 0.f)
+ madd_v3_v3fl(pa->state.vel, nor, -dot);
+ }
+
+ /* add stickiness to surface */
+ madd_v3_v3fl(pa->state.vel, pce->nor, -pd->pdef_stickness);
+
+ /* set coordinates for next iteration */
+ copy_v3_v3(col->co1, co);
+ copy_v3_v3(col->co2, pa->state.co);
+
+ copy_v3_v3(col->ve1, v0);
+ copy_v3_v3(col->ve2, pa->state.vel);
+
+ col->f = f;
+ }
+
+ /* if permeability random roll succeeded, disable collider for this sim step */
+ if (through) {
+ col->skip[col->skip_count++] = col->hit;
+ }
+
+ return 1;
+}
+static void collision_fail(ParticleData *pa, ParticleCollision *col)
+{
+ /* final chance to prevent total failure, so stick to the surface and hope for the best */
+ collision_point_on_surface(col->co1, &col->pce, 1.f, col, pa->state.co);
+
+ copy_v3_v3(pa->state.vel, col->pce.vel);
+ mul_v3_fl(pa->state.vel, col->inv_timestep);
+
+
+ /* printf("max iterations\n"); */
+}
+
+/* Particle - Mesh collision detection and response
+ * Features:
+ * -friction and damping
+ * -angular momentum <-> linear momentum
+ * -high accuracy by re-applying particle acceleration after collision
+ * -handles moving, rotating and deforming meshes
+ * -uses Newton-Rhapson iteration to find the collisions
+ * -handles spherical particles and (nearly) point like particles
+ */
+static void collision_check(ParticleSimulationData *sim, int p, float dfra, float cfra)
+{
+ ParticleSettings *part = sim->psys->part;
+ ParticleData *pa = sim->psys->particles + p;
+ ParticleCollision col;
+ BVHTreeRayHit hit;
+ int collision_count=0;
+
+ float timestep = psys_get_timestep(sim);
+
+ memset(&col, 0, sizeof(ParticleCollision));
+
+ col.total_time = timestep * dfra;
+ col.inv_total_time = 1.0f/col.total_time;
+ col.inv_timestep = 1.0f/timestep;
+
+ col.cfra = cfra;
+ col.old_cfra = sim->psys->cfra;
+
+ /* get acceleration (from gravity, forcefields etc. to be re-applied in collision response) */
+ sub_v3_v3v3(col.acc, pa->state.vel, pa->prev_state.vel);
+ mul_v3_fl(col.acc, 1.f/col.total_time);
+
+ /* set values for first iteration */
+ copy_v3_v3(col.co1, pa->prev_state.co);
+ copy_v3_v3(col.co2, pa->state.co);
+ copy_v3_v3(col.ve1, pa->prev_state.vel);
+ copy_v3_v3(col.ve2, pa->state.vel);
+ col.f = 0.0f;
+
+ col.radius = ((part->flag & PART_SIZE_DEFL) || (part->phystype == PART_PHYS_BOIDS)) ? pa->size : COLLISION_MIN_RADIUS;
+
+ /* override for boids */
+ if (part->phystype == PART_PHYS_BOIDS && part->boids->options & BOID_ALLOW_LAND) {
+ col.boid = 1;
+ col.boid_z = pa->state.co[2];
+ col.skip[col.skip_count++] = pa->boid->ground;
+ }
+
+ /* 10 iterations to catch multiple collisions */
+ while (collision_count < PARTICLE_COLLISION_MAX_COLLISIONS) {
+ if (collision_detect(pa, &col, &hit, sim->colliders)) {
+
+ collision_count++;
+
+ if (collision_count == PARTICLE_COLLISION_MAX_COLLISIONS)
+ collision_fail(pa, &col);
+ else if (collision_response(pa, &col, &hit, part->flag & PART_DIE_ON_COL, part->flag & PART_ROT_DYN)==0)
+ return;
+ }
+ else
+ return;
+ }
+}
+/************************************************/
+/* Hair */
+/************************************************/
+/* check if path cache or children need updating and do it if needed */
+static void psys_update_path_cache(ParticleSimulationData *sim, float cfra, const bool use_render_params)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
+ Base *base;
+ int distr=0, alloc=0, skip=0;
+
+ if ((psys->part->childtype && psys->totchild != psys_get_tot_child(sim->scene, psys)) || psys->recalc&PSYS_RECALC_RESET)
+ alloc=1;
+
+ if (alloc || psys->recalc&PSYS_RECALC_CHILD || (psys->vgroup[PSYS_VG_DENSITY] && (sim->ob && sim->ob->mode & OB_MODE_WEIGHT_PAINT)))
+ distr=1;
+
+ if (distr) {
+ if (alloc)
+ realloc_particles(sim, sim->psys->totpart);
+
+ if (psys_get_tot_child(sim->scene, psys)) {
+ /* don't generate children while computing the hair keys */
+ if (!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
+ distribute_particles(sim, PART_FROM_CHILD);
+
+ if (part->childtype==PART_CHILD_FACES && part->parents != 0.0f)
+ psys_find_parents(sim, use_render_params);
+ }
+ }
+ else
+ psys_free_children(psys);
+ }
+
+ if ((part->type==PART_HAIR || psys->flag&PSYS_KEYED || psys->pointcache->flag & PTCACHE_BAKED)==0)
+ skip = 1; /* only hair, keyed and baked stuff can have paths */
+ else if (part->ren_as != PART_DRAW_PATH && !(part->type==PART_HAIR && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)))
+ skip = 1; /* particle visualization must be set as path */
+ else if (!psys->renderdata) {
+ if (part->draw_as != PART_DRAW_REND)
+ skip = 1; /* draw visualization */
+ else if (psys->pointcache->flag & PTCACHE_BAKING)
+ skip = 1; /* no need to cache paths while baking dynamics */
+ else if (psys_in_edit_mode(sim->scene, psys)) {
+ if ((pset->flag & PE_DRAW_PART)==0)
+ skip = 1;
+ else if (part->childtype==0 && (psys->flag & PSYS_HAIR_DYNAMICS && psys->pointcache->flag & PTCACHE_BAKED)==0)
+ skip = 1; /* in edit mode paths are needed for child particles and dynamic hair */
+ }
+ }
+
+
+ /* particle instance modifier with "path" option need cached paths even if particle system doesn't */
+ for (base = sim->scene->base.first; base; base= base->next) {
+ ModifierData *md = modifiers_findByType(base->object, eModifierType_ParticleInstance);
+ if (md) {
+ ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
+ if (pimd->flag & eParticleInstanceFlag_Path && pimd->ob == sim->ob && pimd->psys == (psys - (ParticleSystem*)sim->ob->particlesystem.first)) {
+ skip = 0;
+ break;
+ }
+ }
+ }
+
+ if (!skip) {
+ psys_cache_paths(sim, cfra, use_render_params);
+
+ /* for render, child particle paths are computed on the fly */
+ if (part->childtype) {
+ if (!psys->totchild)
+ skip = 1;
+ else if (psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE)==0)
+ skip = 1;
+
+ if (!skip)
+ psys_cache_child_paths(sim, cfra, 0, use_render_params);
+ }
+ }
+ else if (psys->pathcache)
+ psys_free_path_cache(psys, NULL);
+}
+
+static bool psys_hair_use_simulation(ParticleData *pa, float max_length)
+{
+ /* Minimum segment length relative to average length.
+ * Hairs with segments below this length will be excluded from the simulation,
+ * because otherwise the solver will become unstable.
+ * The hair system should always make sure the hair segments have reasonable length ratios,
+ * but this can happen in old files when e.g. cutting hair.
+ */
+ const float min_length = 0.1f * max_length;
+
+ HairKey *key;
+ int k;
+
+ if (pa->totkey < 2)
+ return false;
+
+ for (k=1, key=pa->hair+1; k<pa->totkey; k++,key++) {
+ float length = len_v3v3(key->co, (key-1)->co);
+ if (length < min_length)
+ return false;
+ }
+
+ return true;
+}
+
+static MDeformVert *hair_set_pinning(MDeformVert *dvert, float weight)
+{
+ if (dvert) {
+ if (!dvert->totweight) {
+ dvert->dw = MEM_callocN(sizeof(MDeformWeight), "deformWeight");
+ dvert->totweight = 1;
+ }
+
+ dvert->dw->weight = weight;
+ dvert++;
+ }
+ return dvert;
+}
+
+static void hair_create_input_dm(ParticleSimulationData *sim, int totpoint, int totedge, DerivedMesh **r_dm, ClothHairData **r_hairdata)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ DerivedMesh *dm;
+ ClothHairData *hairdata;
+ MVert *mvert;
+ MEdge *medge;
+ MDeformVert *dvert;
+ HairKey *key;
+ PARTICLE_P;
+ int k, hair_index;
+ float hairmat[4][4];
+ float max_length;
+ float hair_radius;
+
+ dm = *r_dm;
+ if (!dm) {
+ *r_dm = dm = CDDM_new(totpoint, totedge, 0, 0, 0);
+ DM_add_vert_layer(dm, CD_MDEFORMVERT, CD_CALLOC, NULL);
+ }
+ mvert = CDDM_get_verts(dm);
+ medge = CDDM_get_edges(dm);
+ dvert = DM_get_vert_data_layer(dm, CD_MDEFORMVERT);
+
+ hairdata = *r_hairdata;
+ if (!hairdata) {
+ *r_hairdata = hairdata = MEM_mallocN(sizeof(ClothHairData) * totpoint, "hair data");
+ }
+
+ /* calculate maximum segment length */
+ max_length = 0.0f;
+ LOOP_PARTICLES {
+ for (k=1, key=pa->hair+1; k<pa->totkey; k++,key++) {
+ float length = len_v3v3(key->co, (key-1)->co);
+ if (max_length < length)
+ max_length = length;
+ }
+ }
+
+ psys->clmd->sim_parms->vgroup_mass = 1;
+
+ /* XXX placeholder for more flexible future hair settings */
+ hair_radius = part->size;
+
+ /* make vgroup for pin roots etc.. */
+ hair_index = 1;
+ LOOP_PARTICLES {
+ float root_mat[4][4];
+ float bending_stiffness;
+ bool use_hair;
+
+ pa->hair_index = hair_index;
+ use_hair = psys_hair_use_simulation(pa, max_length);
+
+ psys_mat_hair_to_object(sim->ob, sim->psmd->dm_final, psys->part->from, pa, hairmat);
+ mul_m4_m4m4(root_mat, sim->ob->obmat, hairmat);
+ normalize_m4(root_mat);
+
+ bending_stiffness = CLAMPIS(1.0f - part->bending_random * psys_frand(psys, p + 666), 0.0f, 1.0f);
+
+ for (k=0, key=pa->hair; k<pa->totkey; k++,key++) {
+ ClothHairData *hair;
+ float *co, *co_next;
+
+ co = key->co;
+ co_next = (key+1)->co;
+
+ /* create fake root before actual root to resist bending */
+ if (k==0) {
+ hair = &psys->clmd->hairdata[pa->hair_index - 1];
+ copy_v3_v3(hair->loc, root_mat[3]);
+ copy_m3_m4(hair->rot, root_mat);
+
+ hair->radius = hair_radius;
+ hair->bending_stiffness = bending_stiffness;
+
+ add_v3_v3v3(mvert->co, co, co);
+ sub_v3_v3(mvert->co, co_next);
+ mul_m4_v3(hairmat, mvert->co);
+
+ medge->v1 = pa->hair_index - 1;
+ medge->v2 = pa->hair_index;
+
+ dvert = hair_set_pinning(dvert, 1.0f);
+
+ mvert++;
+ medge++;
+ }
+
+ /* store root transform in cloth data */
+ hair = &psys->clmd->hairdata[pa->hair_index + k];
+ copy_v3_v3(hair->loc, root_mat[3]);
+ copy_m3_m4(hair->rot, root_mat);
+
+ hair->radius = hair_radius;
+ hair->bending_stiffness = bending_stiffness;
+
+ copy_v3_v3(mvert->co, co);
+ mul_m4_v3(hairmat, mvert->co);
+
+ if (k) {
+ medge->v1 = pa->hair_index + k - 1;
+ medge->v2 = pa->hair_index + k;
+ }
+
+ /* roots and disabled hairs should be 1.0, the rest can be anything from 0.0 to 1.0 */
+ if (use_hair)
+ dvert = hair_set_pinning(dvert, key->weight);
+ else
+ dvert = hair_set_pinning(dvert, 1.0f);
+
+ mvert++;
+ if (k)
+ medge++;
+ }
+
+ hair_index += pa->totkey + 1;
+ }
+}
+
+static void do_hair_dynamics(ParticleSimulationData *sim)
+{
+ ParticleSystem *psys = sim->psys;
+ PARTICLE_P;
+ EffectorWeights *clmd_effweights;
+ int totpoint;
+ int totedge;
+ float (*deformedVerts)[3];
+ bool realloc_roots;
+
+ if (!psys->clmd) {
+ psys->clmd = (ClothModifierData*)modifier_new(eModifierType_Cloth);
+ psys->clmd->sim_parms->goalspring = 0.0f;
+ psys->clmd->sim_parms->vel_damping = 1.0f;
+ psys->clmd->sim_parms->flags |= CLOTH_SIMSETTINGS_FLAG_GOAL|CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS;
+ psys->clmd->coll_parms->flags &= ~CLOTH_COLLSETTINGS_FLAG_SELF;
+ }
+
+ /* count simulated points */
+ totpoint = 0;
+ totedge = 0;
+ LOOP_PARTICLES {
+ /* "out" dm contains all hairs */
+ totedge += pa->totkey;
+ totpoint += pa->totkey + 1; /* +1 for virtual root point */
+ }
+
+ realloc_roots = false; /* whether hair root info array has to be reallocated */
+ if (psys->hair_in_dm) {
+ DerivedMesh *dm = psys->hair_in_dm;
+ if (totpoint != dm->getNumVerts(dm) || totedge != dm->getNumEdges(dm)) {
+ dm->release(dm);
+ psys->hair_in_dm = NULL;
+ realloc_roots = true;
+ }
+ }
+
+ if (!psys->hair_in_dm || !psys->clmd->hairdata || realloc_roots) {
+ if (psys->clmd->hairdata) {
+ MEM_freeN(psys->clmd->hairdata);
+ psys->clmd->hairdata = NULL;
+ }
+ }
+
+ hair_create_input_dm(sim, totpoint, totedge, &psys->hair_in_dm, &psys->clmd->hairdata);
+
+ if (psys->hair_out_dm)
+ psys->hair_out_dm->release(psys->hair_out_dm);
+
+ psys->clmd->point_cache = psys->pointcache;
+ /* for hair sim we replace the internal cloth effector weights temporarily
+ * to use the particle settings
+ */
+ clmd_effweights = psys->clmd->sim_parms->effector_weights;
+ psys->clmd->sim_parms->effector_weights = psys->part->effector_weights;
+
+ deformedVerts = MEM_mallocN(sizeof(*deformedVerts) * psys->hair_in_dm->getNumVerts(psys->hair_in_dm), "do_hair_dynamics vertexCos");
+ psys->hair_out_dm = CDDM_copy(psys->hair_in_dm);
+ psys->hair_out_dm->getVertCos(psys->hair_out_dm, deformedVerts);
+
+ clothModifier_do(psys->clmd, sim->scene, sim->ob, psys->hair_in_dm, deformedVerts);
+
+ CDDM_apply_vert_coords(psys->hair_out_dm, deformedVerts);
+
+ MEM_freeN(deformedVerts);
+
+ /* restore cloth effector weights */
+ psys->clmd->sim_parms->effector_weights = clmd_effweights;
+}
+static void hair_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ PARTICLE_P;
+ float disp = psys_get_current_display_percentage(psys);
+
+ LOOP_PARTICLES {
+ pa->size = part->size;
+ if (part->randsize > 0.0f)
+ pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
+
+ if (psys_frand(psys, p) > disp)
+ pa->flag |= PARS_NO_DISP;
+ else
+ pa->flag &= ~PARS_NO_DISP;
+ }
+
+ if (psys->recalc & PSYS_RECALC_RESET) {
+ /* need this for changing subsurf levels */
+ psys_calc_dmcache(sim->ob, sim->psmd->dm_final, sim->psmd->dm_deformed, psys);
+
+ if (psys->clmd)
+ cloth_free_modifier(psys->clmd);
+ }
+
+ /* dynamics with cloth simulation, psys->particles can be NULL with 0 particles [#25519] */
+ if (psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS && psys->particles)
+ do_hair_dynamics(sim);
+
+ /* following lines were removed r29079 but cause bug [#22811], see report for details */
+ psys_update_effectors(sim);
+ psys_update_path_cache(sim, cfra, use_render_params);
+
+ psys->flag |= PSYS_HAIR_UPDATED;
+}
+
+static void save_hair(ParticleSimulationData *sim, float UNUSED(cfra))
+{
+ Object *ob = sim->ob;
+ ParticleSystem *psys = sim->psys;
+ HairKey *key, *root;
+ PARTICLE_P;
+
+ invert_m4_m4(ob->imat, ob->obmat);
+
+ psys->lattice_deform_data= psys_create_lattice_deform_data(sim);
+
+ if (psys->totpart==0) return;
+
+ /* save new keys for elements if needed */
+ LOOP_PARTICLES {
+ /* first time alloc */
+ if (pa->totkey==0 || pa->hair==NULL) {
+ pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
+ pa->totkey = 0;
+ }
+
+ key = root = pa->hair;
+ key += pa->totkey;
+
+ /* convert from global to geometry space */
+ copy_v3_v3(key->co, pa->state.co);
+ mul_m4_v3(ob->imat, key->co);
+
+ if (pa->totkey) {
+ sub_v3_v3(key->co, root->co);
+ psys_vec_rot_to_face(sim->psmd->dm_final, pa, key->co);
+ }
+
+ key->time = pa->state.time;
+
+ key->weight = 1.0f - key->time / 100.0f;
+
+ pa->totkey++;
+
+ /* root is always in the origin of hair space so we set it to be so after the last key is saved*/
+ if (pa->totkey == psys->part->hair_step + 1) {
+ zero_v3(root->co);
+ }
+
+ }
+}
+
+/* Code for an adaptive time step based on the Courant-Friedrichs-Lewy
+ * condition. */
+static const float MIN_TIMESTEP = 1.0f / 101.0f;
+/* Tolerance of 1.5 means the last subframe neither favors growing nor
+ * shrinking (e.g if it were 1.3, the last subframe would tend to be too
+ * small). */
+static const float TIMESTEP_EXPANSION_FACTOR = 0.1f;
+static const float TIMESTEP_EXPANSION_TOLERANCE = 1.5f;
+
+/* Calculate the speed of the particle relative to the local scale of the
+ * simulation. This should be called once per particle during a simulation
+ * step, after the velocity has been updated. element_size defines the scale of
+ * the simulation, and is typically the distance to neighboring particles. */
+static void update_courant_num(ParticleSimulationData *sim, ParticleData *pa,
+ float dtime, SPHData *sphdata, SpinLock *spin)
+{
+ float relative_vel[3];
+
+ sub_v3_v3v3(relative_vel, pa->prev_state.vel, sphdata->flow);
+
+ const float courant_num = len_v3(relative_vel) * dtime / sphdata->element_size;
+ if (sim->courant_num < courant_num) {
+ BLI_spin_lock(spin);
+ if (sim->courant_num < courant_num) {
+ sim->courant_num = courant_num;
+ }
+ BLI_spin_unlock(spin);
+ }
+}
+static float get_base_time_step(ParticleSettings *part)
+{
+ return 1.0f / (float) (part->subframes + 1);
+}
+/* Update time step size to suit current conditions. */
+static void update_timestep(ParticleSystem *psys, ParticleSimulationData *sim)
+{
+ float dt_target;
+ if (sim->courant_num == 0.0f)
+ dt_target = 1.0f;
+ else
+ dt_target = psys->dt_frac * (psys->part->courant_target / sim->courant_num);
+
+ /* Make sure the time step is reasonable. For some reason, the CLAMP macro
+ * doesn't work here. The time step becomes too large. - z0r */
+ if (dt_target < MIN_TIMESTEP)
+ dt_target = MIN_TIMESTEP;
+ else if (dt_target > get_base_time_step(psys->part))
+ dt_target = get_base_time_step(psys->part);
+
+ /* Decrease time step instantly, but increase slowly. */
+ if (dt_target > psys->dt_frac)
+ psys->dt_frac = interpf(dt_target, psys->dt_frac, TIMESTEP_EXPANSION_FACTOR);
+ else
+ psys->dt_frac = dt_target;
+}
+
+static float sync_timestep(ParticleSystem *psys, float t_frac)
+{
+ /* Sync with frame end if it's close. */
+ if (t_frac == 1.0f)
+ return psys->dt_frac;
+ else if (t_frac + (psys->dt_frac * TIMESTEP_EXPANSION_TOLERANCE) >= 1.0f)
+ return 1.0f - t_frac;
+ else
+ return psys->dt_frac;
+}
+
+/************************************************/
+/* System Core */
+/************************************************/
+
+typedef struct DynamicStepSolverTaskData {
+ ParticleSimulationData *sim;
+
+ float cfra;
+ float timestep;
+ float dtime;
+
+ SpinLock spin;
+} DynamicStepSolverTaskData;
+
+static void dynamics_step_sph_ddr_task_cb_ex(
+ void *userdata, void *userdata_chunk, const int p, const int UNUSED(thread_id))
+{
+ DynamicStepSolverTaskData *data = userdata;
+ ParticleSimulationData *sim = data->sim;
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+
+ SPHData *sphdata = userdata_chunk;
+
+ ParticleData *pa;
+
+ if ((pa = psys->particles + p)->state.time <= 0.0f) {
+ return;
+ }
+
+ /* do global forces & effectors */
+ basic_integrate(sim, p, pa->state.time, data->cfra);
+
+ /* actual fluids calculations */
+ sph_integrate(sim, pa, pa->state.time, sphdata);
+
+ if (sim->colliders)
+ collision_check(sim, p, pa->state.time, data->cfra);
+
+ /* SPH particles are not physical particles, just interpolation
+ * particles, thus rotation has not a direct sense for them */
+ basic_rotate(part, pa, pa->state.time, data->timestep);
+
+ if (part->time_flag & PART_TIME_AUTOSF) {
+ update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
+ }
+}
+
+static void dynamics_step_sph_classical_basic_integrate_task_cb_ex(
+ void *userdata, void *UNUSED(userdata_chunk), const int p, const int UNUSED(thread_id))
+{
+ DynamicStepSolverTaskData *data = userdata;
+ ParticleSimulationData *sim = data->sim;
+ ParticleSystem *psys = sim->psys;
+
+ ParticleData *pa;
+
+ if ((pa = psys->particles + p)->state.time <= 0.0f) {
+ return;
+ }
+
+ basic_integrate(sim, p, pa->state.time, data->cfra);
+}
+
+static void dynamics_step_sph_classical_calc_density_task_cb_ex(
+ void *userdata, void *userdata_chunk, const int p, const int UNUSED(thread_id))
+{
+ DynamicStepSolverTaskData *data = userdata;
+ ParticleSimulationData *sim = data->sim;
+ ParticleSystem *psys = sim->psys;
+
+ SPHData *sphdata = userdata_chunk;
+
+ ParticleData *pa;
+
+ if ((pa = psys->particles + p)->state.time <= 0.0f) {
+ return;
+ }
+
+ sphclassical_calc_dens(pa, pa->state.time, sphdata);
+}
+
+static void dynamics_step_sph_classical_integrate_task_cb_ex(
+ void *userdata, void *userdata_chunk, const int p, const int UNUSED(thread_id))
+{
+ DynamicStepSolverTaskData *data = userdata;
+ ParticleSimulationData *sim = data->sim;
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+
+ SPHData *sphdata = userdata_chunk;
+
+ ParticleData *pa;
+
+ if ((pa = psys->particles + p)->state.time <= 0.0f) {
+ return;
+ }
+
+ /* actual fluids calculations */
+ sph_integrate(sim, pa, pa->state.time, sphdata);
+
+ if (sim->colliders)
+ collision_check(sim, p, pa->state.time, data->cfra);
+
+ /* SPH particles are not physical particles, just interpolation
+ * particles, thus rotation has not a direct sense for them */
+ basic_rotate(part, pa, pa->state.time, data->timestep);
+
+ if (part->time_flag & PART_TIME_AUTOSF) {
+ update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
+ }
+}
+
+/* unbaked particles are calculated dynamically */
+static void dynamics_step(ParticleSimulationData *sim, float cfra)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part=psys->part;
+ RNG *rng;
+ BoidBrainData bbd;
+ ParticleTexture ptex;
+ PARTICLE_P;
+ float timestep;
+ /* frame & time changes */
+ float dfra, dtime;
+ float birthtime, dietime;
+
+ /* where have we gone in time since last time */
+ dfra= cfra - psys->cfra;
+
+ timestep = psys_get_timestep(sim);
+ dtime= dfra*timestep;
+
+ if (dfra < 0.0f) {
+ LOOP_EXISTING_PARTICLES {
+ psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
+ pa->size = part->size*ptex.size;
+ if (part->randsize > 0.0f)
+ pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
+
+ reset_particle(sim, pa, dtime, cfra);
+ }
+ return;
+ }
+
+ BLI_srandom(31415926 + (int)cfra + psys->seed);
+ /* for now do both, boids us 'rng' */
+ rng = BLI_rng_new_srandom(31415926 + (int)cfra + psys->seed);
+
+ psys_update_effectors(sim);
+
+ if (part->type != PART_HAIR)
+ sim->colliders = get_collider_cache(sim->scene, sim->ob, part->collision_group);
+
+ /* initialize physics type specific stuff */
+ switch (part->phystype) {
+ case PART_PHYS_BOIDS:
+ {
+ ParticleTarget *pt = psys->targets.first;
+ bbd.sim = sim;
+ bbd.part = part;
+ bbd.cfra = cfra;
+ bbd.dfra = dfra;
+ bbd.timestep = timestep;
+ bbd.rng = rng;
+
+ psys_update_particle_tree(psys, cfra);
+
+ boids_precalc_rules(part, cfra);
+
+ for (; pt; pt=pt->next) {
+ ParticleSystem *psys_target = psys_get_target_system(sim->ob, pt);
+ if (psys_target && psys_target != psys) {
+ psys_update_particle_tree(psys_target, cfra);
+ }
+ }
+ break;
+ }
+ case PART_PHYS_FLUID:
+ {
+ ParticleTarget *pt = psys->targets.first;
+ psys_update_particle_bvhtree(psys, cfra);
+
+ for (; pt; pt=pt->next) { /* Updating others systems particle tree for fluid-fluid interaction */
+ if (pt->ob)
+ psys_update_particle_bvhtree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra);
+ }
+ break;
+ }
+ }
+ /* initialize all particles for dynamics */
+ LOOP_SHOWN_PARTICLES {
+ copy_particle_key(&pa->prev_state,&pa->state,1);
+
+ psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
+
+ pa->size = part->size*ptex.size;
+ if (part->randsize > 0.0f)
+ pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
+
+ birthtime = pa->time;
+ dietime = pa->dietime;
+
+ /* store this, so we can do multiple loops over particles */
+ pa->state.time = dfra;
+
+ if (dietime <= cfra && psys->cfra < dietime) {
+ /* particle dies some time between this and last step */
+ pa->state.time = dietime - ((birthtime > psys->cfra) ? birthtime : psys->cfra);
+ pa->alive = PARS_DYING;
+ }
+ else if (birthtime <= cfra && birthtime >= psys->cfra) {
+ /* particle is born some time between this and last step*/
+ reset_particle(sim, pa, dfra*timestep, cfra);
+ pa->alive = PARS_ALIVE;
+ pa->state.time = cfra - birthtime;
+ }
+ else if (dietime < cfra) {
+ /* nothing to be done when particle is dead */
+ }
+
+ /* only reset unborn particles if they're shown or if the particle is born soon*/
+ if (pa->alive==PARS_UNBORN && (part->flag & PART_UNBORN || (cfra + psys->pointcache->step > pa->time))) {
+ reset_particle(sim, pa, dtime, cfra);
+ }
+ else if (part->phystype == PART_PHYS_NO) {
+ reset_particle(sim, pa, dtime, cfra);
+ }
+
+ if (ELEM(pa->alive, PARS_ALIVE, PARS_DYING)==0 || (pa->flag & (PARS_UNEXIST|PARS_NO_DISP)))
+ pa->state.time = -1.f;
+ }
+
+ switch (part->phystype) {
+ case PART_PHYS_NEWTON:
+ {
+ LOOP_DYNAMIC_PARTICLES {
+ /* do global forces & effectors */
+ basic_integrate(sim, p, pa->state.time, cfra);
+
+ /* deflection */
+ if (sim->colliders)
+ collision_check(sim, p, pa->state.time, cfra);
+
+ /* rotations */
+ basic_rotate(part, pa, pa->state.time, timestep);
+ }
+ break;
+ }
+ case PART_PHYS_BOIDS:
+ {
+ LOOP_DYNAMIC_PARTICLES {
+ bbd.goal_ob = NULL;
+
+ boid_brain(&bbd, p, pa);
+
+ if (pa->alive != PARS_DYING) {
+ boid_body(&bbd, pa);
+
+ /* deflection */
+ if (sim->colliders)
+ collision_check(sim, p, pa->state.time, cfra);
+ }
+ }
+ break;
+ }
+ case PART_PHYS_FLUID:
+ {
+ SPHData sphdata;
+ psys_sph_init(sim, &sphdata);
+
+ DynamicStepSolverTaskData task_data = {
+ .sim = sim, .cfra = cfra, .timestep = timestep, .dtime = dtime,
+ };
+
+ BLI_spin_init(&task_data.spin);
+
+ if (part->fluid->solver == SPH_SOLVER_DDR) {
+ /* Apply SPH forces using double-density relaxation algorithm
+ * (Clavat et. al.) */
+
+ BLI_task_parallel_range_ex(
+ 0, psys->totpart, &task_data, &sphdata, sizeof(sphdata),
+ dynamics_step_sph_ddr_task_cb_ex, psys->totpart > 100, true);
+
+ sph_springs_modify(psys, timestep);
+ }
+ else {
+ /* SPH_SOLVER_CLASSICAL */
+ /* Apply SPH forces using classical algorithm (due to Gingold
+ * and Monaghan). Note that, unlike double-density relaxation,
+ * this algorithm is separated into distinct loops. */
+
+ BLI_task_parallel_range_ex(
+ 0, psys->totpart, &task_data, NULL, 0,
+ dynamics_step_sph_classical_basic_integrate_task_cb_ex, psys->totpart > 100, true);
+
+ /* calculate summation density */
+ /* Note that we could avoid copying sphdata for each thread here (it's only read here),
+ * but doubt this would gain us anything except confusion... */
+ BLI_task_parallel_range_ex(
+ 0, psys->totpart, &task_data, &sphdata, sizeof(sphdata),
+ dynamics_step_sph_classical_calc_density_task_cb_ex, psys->totpart > 100, true);
+
+ /* do global forces & effectors */
+ BLI_task_parallel_range_ex(
+ 0, psys->totpart, &task_data, &sphdata, sizeof(sphdata),
+ dynamics_step_sph_classical_integrate_task_cb_ex, psys->totpart > 100, true);
+ }
+
+ BLI_spin_end(&task_data.spin);
+
+ psys_sph_finalise(&sphdata);
+ break;
+ }
+ }
+
+ /* finalize particle state and time after dynamics */
+ LOOP_DYNAMIC_PARTICLES {
+ if (pa->alive == PARS_DYING) {
+ pa->alive=PARS_DEAD;
+ pa->state.time=pa->dietime;
+ }
+ else
+ pa->state.time=cfra;
+ }
+
+ free_collider_cache(&sim->colliders);
+ BLI_rng_free(rng);
+}
+static void update_children(ParticleSimulationData *sim)
+{
+ if ((sim->psys->part->type == PART_HAIR) && (sim->psys->flag & PSYS_HAIR_DONE)==0)
+ /* don't generate children while growing hair - waste of time */
+ psys_free_children(sim->psys);
+ else if (sim->psys->part->childtype) {
+ if (sim->psys->totchild != psys_get_tot_child(sim->scene, sim->psys))
+ distribute_particles(sim, PART_FROM_CHILD);
+ else {
+ /* Children are up to date, nothing to do. */
+ }
+ }
+ else
+ psys_free_children(sim->psys);
+}
+/* updates cached particles' alive & other flags etc..*/
+static void cached_step(ParticleSimulationData *sim, float cfra)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ ParticleTexture ptex;
+ PARTICLE_P;
+ float disp, dietime;
+
+ psys_update_effectors(sim);
+
+ disp= psys_get_current_display_percentage(psys);
+
+ LOOP_PARTICLES {
+ psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
+ pa->size = part->size*ptex.size;
+ if (part->randsize > 0.0f)
+ pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
+
+ psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
+
+ dietime = pa->dietime;
+
+ /* update alive status and push events */
+ if (pa->time > cfra) {
+ pa->alive = PARS_UNBORN;
+ if (part->flag & PART_UNBORN && (psys->pointcache->flag & PTCACHE_EXTERNAL) == 0)
+ reset_particle(sim, pa, 0.0f, cfra);
+ }
+ else if (dietime <= cfra)
+ pa->alive = PARS_DEAD;
+ else
+ pa->alive = PARS_ALIVE;
+
+ if (psys->lattice_deform_data) {
+ end_latt_deform(psys->lattice_deform_data);
+ psys->lattice_deform_data = NULL;
+ }
+
+ if (psys_frand(psys, p) > disp)
+ pa->flag |= PARS_NO_DISP;
+ else
+ pa->flag &= ~PARS_NO_DISP;
+ }
+}
+
+static void particles_fluid_step(ParticleSimulationData *sim, int UNUSED(cfra), const bool use_render_params)
+{
+ ParticleSystem *psys = sim->psys;
+ if (psys->particles) {
+ MEM_freeN(psys->particles);
+ psys->particles = 0;
+ psys->totpart = 0;
+ }
+
+ /* fluid sim particle import handling, actual loading of particles from file */
+#ifdef WITH_MOD_FLUID
+ {
+ FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(sim->ob, eModifierType_Fluidsim);
+
+ if ( fluidmd && fluidmd->fss) {
+ FluidsimSettings *fss= fluidmd->fss;
+ ParticleSettings *part = psys->part;
+ ParticleData *pa=NULL;
+ char filename[256];
+ char debugStrBuffer[256];
+ int curFrame = sim->scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading
+ int p, j, totpart;
+ int readMask, activeParts = 0, fileParts = 0;
+ gzFile gzf;
+
+// XXX if (ob==G.obedit) // off...
+// return;
+
+ // ok, start loading
+ BLI_join_dirfile(filename, sizeof(filename), fss->surfdataPath, OB_FLUIDSIM_SURF_PARTICLES_FNAME);
+
+ BLI_path_abs(filename, modifier_path_relbase(sim->ob));
+
+ BLI_path_frame(filename, curFrame, 0); // fixed #frame-no
+
+ gzf = BLI_gzopen(filename, "rb");
+ if (!gzf) {
+ BLI_snprintf(debugStrBuffer, sizeof(debugStrBuffer),"readFsPartData::error - Unable to open file for reading '%s'\n", filename);
+ // XXX bad level call elbeemDebugOut(debugStrBuffer);
+ return;
+ }
+
+ gzread(gzf, &totpart, sizeof(totpart));
+ totpart = (use_render_params) ? totpart:(part->disp*totpart) / 100;
+
+ part->totpart= totpart;
+ part->sta=part->end = 1.0f;
+ part->lifetime = sim->scene->r.efra + 1;
+
+ /* allocate particles */
+ realloc_particles(sim, part->totpart);
+
+ // set up reading mask
+ readMask = fss->typeFlags;
+
+ for (p=0, pa=psys->particles; p<totpart; p++, pa++) {
+ int ptype=0;
+
+ gzread(gzf, &ptype, sizeof( ptype ));
+ if (ptype & readMask) {
+ activeParts++;
+
+ gzread(gzf, &(pa->size), sizeof(float));
+
+ pa->size /= 10.0f;
+
+ for (j=0; j<3; j++) {
+ float wrf;
+ gzread(gzf, &wrf, sizeof( wrf ));
+ pa->state.co[j] = wrf;
+ //fprintf(stderr,"Rj%d ",j);
+ }
+ for (j=0; j<3; j++) {
+ float wrf;
+ gzread(gzf, &wrf, sizeof( wrf ));
+ pa->state.vel[j] = wrf;
+ }
+
+ zero_v3(pa->state.ave);
+ unit_qt(pa->state.rot);
+
+ pa->time = 1.f;
+ pa->dietime = sim->scene->r.efra + 1;
+ pa->lifetime = sim->scene->r.efra;
+ pa->alive = PARS_ALIVE;
+ //if (a < 25) fprintf(stderr,"FSPARTICLE debug set %s, a%d = %f,%f,%f, life=%f\n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime );
+ }
+ else {
+ // skip...
+ for (j=0; j<2*3+1; j++) {
+ float wrf; gzread(gzf, &wrf, sizeof( wrf ));
+ }
+ }
+ fileParts++;
+ }
+ gzclose(gzf);
+
+ totpart = psys->totpart = activeParts;
+ BLI_snprintf(debugStrBuffer,sizeof(debugStrBuffer),"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d\n", psys->totpart,activeParts,fileParts,readMask);
+ // bad level call
+ // XXX elbeemDebugOut(debugStrBuffer);
+
+ } // fluid sim particles done
+ }
+#else
+ UNUSED_VARS(use_render_params);
+#endif // WITH_MOD_FLUID
+}
+
+static int emit_particles(ParticleSimulationData *sim, PTCacheID *pid, float UNUSED(cfra))
+{
+ ParticleSystem *psys = sim->psys;
+ int oldtotpart = psys->totpart;
+ int totpart = tot_particles(psys, pid);
+
+ if (totpart != oldtotpart)
+ realloc_particles(sim, totpart);
+
+ return totpart - oldtotpart;
+}
+
+/* Calculates the next state for all particles of the system
+ * In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)
+ * 1. Emit particles
+ * 2. Check cache (if used) and return if frame is cached
+ * 3. Do dynamics
+ * 4. Save to cache */
+static void system_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
+{
+ ParticleSystem *psys = sim->psys;
+ ParticleSettings *part = psys->part;
+ PointCache *cache = psys->pointcache;
+ PTCacheID ptcacheid, *pid = NULL;
+ PARTICLE_P;
+ float disp, cache_cfra = cfra; /*, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; */
+ int startframe = 0, endframe = 100, oldtotpart = 0;
+
+ /* cache shouldn't be used for hair or "continue physics" */
+ if (part->type != PART_HAIR) {
+ psys_clear_temp_pointcache(psys);
+
+ /* set suitable cache range automatically */
+ if ((cache->flag & (PTCACHE_BAKING|PTCACHE_BAKED))==0)
+ psys_get_pointcache_start_end(sim->scene, psys, &cache->startframe, &cache->endframe);
+
+ pid = &ptcacheid;
+ BKE_ptcache_id_from_particles(pid, sim->ob, psys);
+
+ BKE_ptcache_id_time(pid, sim->scene, 0.0f, &startframe, &endframe, NULL);
+
+ /* clear everything on start frame, or when psys needs full reset! */
+ if ((cfra == startframe) || (psys->recalc & PSYS_RECALC_RESET)) {
+ BKE_ptcache_id_reset(sim->scene, pid, PTCACHE_RESET_OUTDATED);
+ BKE_ptcache_validate(cache, startframe);
+ cache->flag &= ~PTCACHE_REDO_NEEDED;
+ }
+
+ CLAMP(cache_cfra, startframe, endframe);
+ }
+
+/* 1. emit particles and redo particles if needed */
+ oldtotpart = psys->totpart;
+ if (emit_particles(sim, pid, cfra) || psys->recalc & PSYS_RECALC_RESET) {
+ distribute_particles(sim, part->from);
+ initialize_all_particles(sim);
+ /* reset only just created particles (on startframe all particles are recreated) */
+ reset_all_particles(sim, 0.0, cfra, oldtotpart);
+ free_unexisting_particles(sim);
+
+ if (psys->fluid_springs) {
+ MEM_freeN(psys->fluid_springs);
+ psys->fluid_springs = NULL;
+ }
+
+ psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
+
+ /* flag for possible explode modifiers after this system */
+ sim->psmd->flag |= eParticleSystemFlag_Pars;
+
+ BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, cfra);
+ }
+
+/* 2. try to read from the cache */
+ if (pid) {
+ int cache_result = BKE_ptcache_read(pid, cache_cfra, true);
+
+ if (ELEM(cache_result, PTCACHE_READ_EXACT, PTCACHE_READ_INTERPOLATED)) {
+ cached_step(sim, cfra);
+ update_children(sim);
+ psys_update_path_cache(sim, cfra, use_render_params);
+
+ BKE_ptcache_validate(cache, (int)cache_cfra);
+
+ if (cache_result == PTCACHE_READ_INTERPOLATED && cache->flag & PTCACHE_REDO_NEEDED)
+ BKE_ptcache_write(pid, (int)cache_cfra);
+
+ return;
+ }
+ /* Cache is supposed to be baked, but no data was found so bail out */
+ else if (cache->flag & PTCACHE_BAKED) {
+ psys_reset(psys, PSYS_RESET_CACHE_MISS);
+ return;
+ }
+ else if (cache_result == PTCACHE_READ_OLD) {
+ psys->cfra = (float)cache->simframe;
+ cached_step(sim, psys->cfra);
+ }
+
+ /* if on second frame, write cache for first frame */
+ if (psys->cfra == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0))
+ BKE_ptcache_write(pid, startframe);
+ }
+ else
+ BKE_ptcache_invalidate(cache);
+
+/* 3. do dynamics */
+ /* set particles to be not calculated TODO: can't work with pointcache */
+ disp= psys_get_current_display_percentage(psys);
+
+ LOOP_PARTICLES {
+ if (psys_frand(psys, p) > disp)
+ pa->flag |= PARS_NO_DISP;
+ else
+ pa->flag &= ~PARS_NO_DISP;
+ }
+
+ if (psys->totpart) {
+ int dframe, totframesback = 0;
+ float t_frac, dt_frac;
+
+ /* handle negative frame start at the first frame by doing
+ * all the steps before the first frame */
+ if ((int)cfra == startframe && part->sta < startframe)
+ totframesback = (startframe - (int)part->sta);
+
+ if (!(part->time_flag & PART_TIME_AUTOSF)) {
+ /* Constant time step */
+ psys->dt_frac = get_base_time_step(part);
+ }
+ else if ((int)cfra == startframe) {
+ /* Variable time step; initialise to subframes */
+ psys->dt_frac = get_base_time_step(part);
+ }
+ else if (psys->dt_frac < MIN_TIMESTEP) {
+ /* Variable time step; subsequent frames */
+ psys->dt_frac = MIN_TIMESTEP;
+ }
+
+ for (dframe=-totframesback; dframe<=0; dframe++) {
+ /* simulate each subframe */
+ dt_frac = psys->dt_frac;
+ for (t_frac = dt_frac; t_frac <= 1.0f; t_frac += dt_frac) {
+ sim->courant_num = 0.0f;
+ dynamics_step(sim, cfra+dframe+t_frac - 1.f);
+ psys->cfra = cfra+dframe+t_frac - 1.f;
+#if 0
+ printf("%f,%f,%f,%f\n", cfra+dframe+t_frac - 1.f, t_frac, dt_frac, sim->courant_num);
+#endif
+ if (part->time_flag & PART_TIME_AUTOSF)
+ update_timestep(psys, sim);
+ /* Even without AUTOSF dt_frac may not add up to 1.0 due to float precision. */
+ dt_frac = sync_timestep(psys, t_frac);
+ }
+ }
+ }
+
+/* 4. only write cache starting from second frame */
+ if (pid) {
+ BKE_ptcache_validate(cache, (int)cache_cfra);
+ if ((int)cache_cfra != startframe)
+ BKE_ptcache_write(pid, (int)cache_cfra);
+ }
+
+ update_children(sim);
+
+/* cleanup */
+ if (psys->lattice_deform_data) {
+ end_latt_deform(psys->lattice_deform_data);
+ psys->lattice_deform_data = NULL;
+ }
+}
+
+/* system type has changed so set sensible defaults and clear non applicable flags */
+void psys_changed_type(Object *ob, ParticleSystem *psys)
+{
+ ParticleSettings *part = psys->part;
+ PTCacheID pid;
+
+ BKE_ptcache_id_from_particles(&pid, ob, psys);
+
+ if (part->phystype != PART_PHYS_KEYED)
+ psys->flag &= ~PSYS_KEYED;
+
+ if (part->type == PART_HAIR) {
+ if (ELEM(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR)==0)
+ part->ren_as = PART_DRAW_PATH;
+
+ if (part->distr == PART_DISTR_GRID)
+ part->distr = PART_DISTR_JIT;
+
+ if (ELEM(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH)==0)
+ part->draw_as = PART_DRAW_REND;
+
+ CLAMP(part->path_start, 0.0f, 100.0f);
+ CLAMP(part->path_end, 0.0f, 100.0f);
+
+ BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
+ }
+ else {
+ free_hair(ob, psys, 1);
+
+ CLAMP(part->path_start, 0.0f, MAX2(100.0f, part->end + part->lifetime));
+ CLAMP(part->path_end, 0.0f, MAX2(100.0f, part->end + part->lifetime));
+ }
+
+ psys_reset(psys, PSYS_RESET_ALL);
+}
+void psys_check_boid_data(ParticleSystem *psys)
+{
+ BoidParticle *bpa;
+ PARTICLE_P;
+
+ pa = psys->particles;
+
+ if (!pa)
+ return;
+
+ if (psys->part && psys->part->phystype==PART_PHYS_BOIDS) {
+ if (!pa->boid) {
+ bpa = MEM_callocN(psys->totpart * sizeof(BoidParticle), "Boid Data");
+
+ LOOP_PARTICLES
+ pa->boid = bpa++;
+ }
+ }
+ else if (pa->boid) {
+ MEM_freeN(pa->boid);
+ LOOP_PARTICLES
+ pa->boid = NULL;
+ }
+}
+
+static void fluid_default_settings(ParticleSettings *part)
+{
+ SPHFluidSettings *fluid = part->fluid;
+
+ fluid->spring_k = 0.f;
+ fluid->plasticity_constant = 0.1f;
+ fluid->yield_ratio = 0.1f;
+ fluid->rest_length = 1.f;
+ fluid->viscosity_omega = 2.f;
+ fluid->viscosity_beta = 0.1f;
+ fluid->stiffness_k = 1.f;
+ fluid->stiffness_knear = 1.f;
+ fluid->rest_density = 1.f;
+ fluid->buoyancy = 0.f;
+ fluid->radius = 1.f;
+ fluid->flag |= SPH_FAC_REPULSION|SPH_FAC_DENSITY|SPH_FAC_RADIUS|SPH_FAC_VISCOSITY|SPH_FAC_REST_LENGTH;
+}
+
+static void psys_prepare_physics(ParticleSimulationData *sim)
+{
+ ParticleSettings *part = sim->psys->part;
+
+ if (ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) {
+ PTCacheID pid;
+ BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
+ BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
+ }
+ else {
+ free_keyed_keys(sim->psys);
+ sim->psys->flag &= ~PSYS_KEYED;
+ }
+
+ if (part->phystype == PART_PHYS_BOIDS && part->boids == NULL) {
+ BoidState *state;
+
+ part->boids = MEM_callocN(sizeof(BoidSettings), "Boid Settings");
+ boid_default_settings(part->boids);
+
+ state = boid_new_state(part->boids);
+ BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Separate));
+ BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Flock));
+
+ ((BoidRule*)state->rules.first)->flag |= BOIDRULE_CURRENT;
+
+ state->flag |= BOIDSTATE_CURRENT;
+ BLI_addtail(&part->boids->states, state);
+ }
+ else if (part->phystype == PART_PHYS_FLUID && part->fluid == NULL) {
+ part->fluid = MEM_callocN(sizeof(SPHFluidSettings), "SPH Fluid Settings");
+ fluid_default_settings(part);
+ }
+
+ psys_check_boid_data(sim->psys);
+}
+static int hair_needs_recalc(ParticleSystem *psys)
+{
+ if (!(psys->flag & PSYS_EDITED) && (!psys->edit || !psys->edit->edited) &&
+ ((psys->flag & PSYS_HAIR_DONE)==0 || psys->recalc & PSYS_RECALC_RESET || (psys->part->flag & PART_HAIR_REGROW && !psys->edit)))
+ {
+ return 1;
+ }
+
+ return 0;
+}
+
+/* main particle update call, checks that things are ok on the large scale and
+ * then advances in to actual particle calculations depending on particle type */
+void particle_system_update(Scene *scene, Object *ob, ParticleSystem *psys, const bool use_render_params)
+{
+ ParticleSimulationData sim= {0};
+ ParticleSettings *part = psys->part;
+ float cfra;
+
+ /* drawdata is outdated after ANY change */
+ if (psys->pdd) psys->pdd->flag &= ~PARTICLE_DRAW_DATA_UPDATED;
+
+ if (!psys_check_enabled(ob, psys, use_render_params))
+ return;
+
+ cfra= BKE_scene_frame_get(scene);
+
+ sim.scene= scene;
+ sim.ob= ob;
+ sim.psys= psys;
+ sim.psmd= psys_get_modifier(ob, psys);
+
+ /* system was already updated from modifier stack */
+ if (sim.psmd->flag & eParticleSystemFlag_psys_updated) {
+ sim.psmd->flag &= ~eParticleSystemFlag_psys_updated;
+ /* make sure it really was updated to cfra */
+ if (psys->cfra == cfra)
+ return;
+ }
+
+ if (!sim.psmd->dm_final)
+ return;
+
+ if (part->from != PART_FROM_VERT) {
+ DM_ensure_tessface(sim.psmd->dm_final);
+ }
+
+ /* execute drivers only, as animation has already been done */
+ BKE_animsys_evaluate_animdata(scene, &part->id, part->adt, cfra, ADT_RECALC_DRIVERS);
+
+ /* to verify if we need to restore object afterwards */
+ psys->flag &= ~PSYS_OB_ANIM_RESTORE;
+
+ if (psys->recalc & PSYS_RECALC_TYPE)
+ psys_changed_type(sim.ob, sim.psys);
+
+ if (psys->recalc & PSYS_RECALC_RESET)
+ psys->totunexist = 0;
+
+ /* setup necessary physics type dependent additional data if it doesn't yet exist */
+ psys_prepare_physics(&sim);
+
+ switch (part->type) {
+ case PART_HAIR:
+ {
+ /* nothing to do so bail out early */
+ if (psys->totpart == 0 && part->totpart == 0) {
+ psys_free_path_cache(psys, NULL);
+ free_hair(ob, psys, 0);
+ psys->flag |= PSYS_HAIR_DONE;
+ }
+ /* (re-)create hair */
+ else if (hair_needs_recalc(psys)) {
+ float hcfra=0.0f;
+ int i, recalc = psys->recalc;
+
+ free_hair(ob, psys, 0);
+
+ if (psys->edit && psys->free_edit) {
+ psys->free_edit(psys->edit);
+ psys->edit = NULL;
+ psys->free_edit = NULL;
+ }
+
+ /* first step is negative so particles get killed and reset */
+ psys->cfra= 1.0f;
+
+ for (i=0; i<=part->hair_step; i++) {
+ hcfra=100.0f*(float)i/(float)psys->part->hair_step;
+ if ((part->flag & PART_HAIR_REGROW)==0)
+ BKE_animsys_evaluate_animdata(scene, &part->id, part->adt, hcfra, ADT_RECALC_ANIM);
+ system_step(&sim, hcfra, use_render_params);
+ psys->cfra = hcfra;
+ psys->recalc = 0;
+ save_hair(&sim, hcfra);
+ }
+
+ psys->flag |= PSYS_HAIR_DONE;
+ psys->recalc = recalc;
+ }
+ else if (psys->flag & PSYS_EDITED)
+ psys->flag |= PSYS_HAIR_DONE;
+
+ if (psys->flag & PSYS_HAIR_DONE)
+ hair_step(&sim, cfra, use_render_params);
+ break;
+ }
+ case PART_FLUID:
+ {
+ particles_fluid_step(&sim, (int)cfra, use_render_params);
+ break;
+ }
+ default:
+ {
+ switch (part->phystype) {
+ case PART_PHYS_NO:
+ case PART_PHYS_KEYED:
+ {
+ PARTICLE_P;
+ float disp = psys_get_current_display_percentage(psys);
+ bool free_unexisting = false;
+
+ /* Particles without dynamics haven't been reset yet because they don't use pointcache */
+ if (psys->recalc & PSYS_RECALC_RESET)
+ psys_reset(psys, PSYS_RESET_ALL);
+
+ if (emit_particles(&sim, NULL, cfra) || (psys->recalc & PSYS_RECALC_RESET)) {
+ free_keyed_keys(psys);
+ distribute_particles(&sim, part->from);
+ initialize_all_particles(&sim);
+ free_unexisting = true;
+
+ /* flag for possible explode modifiers after this system */
+ sim.psmd->flag |= eParticleSystemFlag_Pars;
+ }
+
+ LOOP_EXISTING_PARTICLES {
+ pa->size = part->size;
+ if (part->randsize > 0.0f)
+ pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
+
+ reset_particle(&sim, pa, 0.0, cfra);
+
+ if (psys_frand(psys, p) > disp)
+ pa->flag |= PARS_NO_DISP;
+ else
+ pa->flag &= ~PARS_NO_DISP;
+ }
+
+ /* free unexisting after reseting particles */
+ if (free_unexisting)
+ free_unexisting_particles(&sim);
+
+ if (part->phystype == PART_PHYS_KEYED) {
+ psys_count_keyed_targets(&sim);
+ set_keyed_keys(&sim);
+ psys_update_path_cache(&sim, (int)cfra, use_render_params);
+ }
+ break;
+ }
+ default:
+ {
+ /* the main dynamic particle system step */
+ system_step(&sim, cfra, use_render_params);
+ break;
+ }
+ }
+ break;
+ }
+ }
+
+ /* make sure emitter is left at correct time (particle emission can change this) */
+ if (psys->flag & PSYS_OB_ANIM_RESTORE) {
+ evaluate_emitter_anim(scene, ob, cfra);
+ psys->flag &= ~PSYS_OB_ANIM_RESTORE;
+ }
+
+ psys->cfra = cfra;
+ psys->recalc = 0;
+
+ /* save matrix for duplicators, at rendertime the actual dupliobject's matrix is used so don't update! */
+ if (psys->renderdata==0)
+ invert_m4_m4(psys->imat, ob->obmat);
+}
+
+/* ID looper */
+
+void BKE_particlesystem_id_loop(ParticleSystem *psys, ParticleSystemIDFunc func, void *userdata)
+{
+ ParticleTarget *pt;
+
+ func(psys, (ID **)&psys->part, userdata, IDWALK_USER | IDWALK_NEVER_NULL);
+ func(psys, (ID **)&psys->target_ob, userdata, IDWALK_NOP);
+ func(psys, (ID **)&psys->parent, userdata, IDWALK_NOP);
+
+ for (pt = psys->targets.first; pt; pt = pt->next) {
+ func(psys, (ID **)&pt->ob, userdata, IDWALK_NOP);
+ }
+
+ /* Even though psys->part should never be NULL, this can happen as an exception during deletion.
+ * See ID_REMAP_SKIP/FORCE/FLAG_NEVER_NULL_USAGE in BKE_library_remap. */
+ if (psys->part && psys->part->phystype == PART_PHYS_BOIDS) {
+ ParticleData *pa;
+ int p;
+
+ for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++) {
+ func(psys, (ID **)&pa->boid->ground, userdata, IDWALK_NOP);
+ }
+ }
+}
+
+/* **** Depsgraph evaluation **** */
+
+void BKE_particle_system_eval(EvaluationContext *UNUSED(eval_ctx),
+ Scene *scene,
+ Object *ob,
+ ParticleSystem *psys)
+{
+ if (G.debug & G_DEBUG_DEPSGRAPH) {
+ printf("%s on %s:%s\n", __func__, ob->id.name, psys->name);
+ }
+ BKE_ptcache_object_reset(scene, ob, PTCACHE_RESET_DEPSGRAPH);
+}