Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/subdiv_mesh.c')
-rw-r--r--source/blender/blenkernel/intern/subdiv_mesh.c910
1 files changed, 910 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/subdiv_mesh.c b/source/blender/blenkernel/intern/subdiv_mesh.c
new file mode 100644
index 00000000000..8a58605ba19
--- /dev/null
+++ b/source/blender/blenkernel/intern/subdiv_mesh.c
@@ -0,0 +1,910 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2018 by Blender Foundation.
+ * All rights reserved.
+ *
+ * Contributor(s): Sergey Sharybin.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/subdiv_mesh.c
+ * \ingroup bke
+ */
+
+#include "BKE_subdiv.h"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+
+#include "BLI_alloca.h"
+#include "BLI_math_vector.h"
+#include "BLI_task.h"
+
+#include "BKE_mesh.h"
+
+/* TODO(sergey): Somehow move this to subdiv code? */
+static int mpoly_ptex_faces_count_get(const MPoly *mp)
+{
+ if (mp->totloop == 4) {
+ return 1;
+ }
+ else {
+ return mp->totloop;
+ }
+}
+
+static int num_edges_per_ptex_get(const int resolution)
+{
+ return 2 * (resolution - 1) * resolution;
+}
+
+static int num_polys_per_ptex_get(const int resolution)
+{
+ return (resolution - 1) * (resolution - 1);
+}
+
+typedef struct SubdivMeshContext {
+ const Mesh *coarse_mesh;
+ Subdiv *subdiv;
+ Mesh *subdiv_mesh;
+ const SubdivToMeshSettings *settings;
+ /* Cached custom data arrays for fastter access. */
+ int *vert_origindex;
+ int *edge_origindex;
+ int *loop_origindex;
+ int *poly_origindex;
+ /* UV layers interpolation. */
+ int num_uv_layers;
+ MLoopUV *uv_layers[MAX_MTFACE];
+} SubdivMeshContext;
+
+typedef struct LoopsOfPtex {
+ /* First loop of the ptex, starts at ptex (0, 0) and goes in u direction. */
+ const MLoop *first_loop;
+ /* Last loop of the ptex, starts at ptex (0, 0) and goes in v direction. */
+ const MLoop *last_loop;
+ /* For quad coarse faces only. */
+ const MLoop *second_loop;
+ const MLoop *third_loop;
+} LoopsOfPtex;
+
+static void loops_of_ptex_get(
+ const SubdivMeshContext *ctx,
+ LoopsOfPtex *loops_of_ptex,
+ const MPoly *coarse_poly,
+ const int ptex_face_index)
+{
+ const MLoop *coarse_mloop = ctx->coarse_mesh->mloop;
+ const int first_ptex_loop_index = coarse_poly->loopstart + ptex_face_index;
+ /* Loop which look in the (opposite) V direction of the current
+ * ptex face.
+ *
+ * TOOD(sergey): Get rid of using module on every iteration.
+ */
+ const int last_ptex_loop_index =
+ coarse_poly->loopstart +
+ (ptex_face_index + coarse_poly->totloop - 1) % coarse_poly->totloop;
+ loops_of_ptex->first_loop = &coarse_mloop[first_ptex_loop_index];
+ loops_of_ptex->last_loop = &coarse_mloop[last_ptex_loop_index];
+ if (coarse_poly->totloop == 4) {
+ loops_of_ptex->second_loop = loops_of_ptex->first_loop + 1;
+ loops_of_ptex->third_loop = loops_of_ptex->first_loop + 2;
+ }
+ else {
+ loops_of_ptex->second_loop = NULL;
+ loops_of_ptex->third_loop = NULL;
+ }
+}
+
+typedef struct EdgesOfPtex {
+ /* First edge of the ptex, starts at ptex (0, 0) and goes in u direction. */
+ const MEdge *first_edge;
+ /* Last edge of the ptex, starts at ptex (0, 0) and goes in v direction. */
+ const MEdge *last_edge;
+ /* For quad coarse faces only. */
+ const MEdge *second_edge;
+ const MEdge *third_edge;
+} EdgesOfPtex;
+
+static void edges_of_ptex_get(
+ const SubdivMeshContext *ctx,
+ EdgesOfPtex *edges_of_ptex,
+ const MPoly *coarse_poly,
+ const int ptex_face_index)
+{
+ const MEdge *coarse_medge = ctx->coarse_mesh->medge;
+ LoopsOfPtex loops_of_ptex;
+ loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
+ edges_of_ptex->first_edge = &coarse_medge[loops_of_ptex.first_loop->e];
+ edges_of_ptex->last_edge = &coarse_medge[loops_of_ptex.last_loop->e];
+ if (coarse_poly->totloop == 4) {
+ edges_of_ptex->second_edge =
+ &coarse_medge[loops_of_ptex.second_loop->e];
+ edges_of_ptex->third_edge =
+ &coarse_medge[loops_of_ptex.third_loop->e];
+ }
+ else {
+ edges_of_ptex->second_edge = NULL;
+ edges_of_ptex->third_edge = NULL;
+ }
+}
+
+/* TODO(sergey): Somehow de-duplicate with loops storage, without too much
+ * exception cases all over the code.
+ */
+
+typedef struct VerticesForInterpolation {
+ /* This field points to a vertex data which is to be used for interpolation.
+ * The idea is to avoid unnecessary allocations for regular faces, where
+ * we can simply
+ */
+ const CustomData *vertex_data;
+ /* Vertices data calculated for ptex corners. There are always 4 elements
+ * in this custom data, aligned the following way:
+ *
+ * index 0 -> uv (0, 0)
+ * index 1 -> uv (0, 1)
+ * index 2 -> uv (1, 1)
+ * index 3 -> uv (1, 0)
+ *
+ * Is allocated for non-regular faces (triangles and n-gons).
+ */
+ CustomData vertex_data_storage;
+ bool vertex_data_storage_allocated;
+ /* Infices within vertex_data to interpolate for. The indices are aligned
+ * with uv coordinates in a similar way as indices in loop_data_storage.
+ */
+ int vertex_indices[4];
+} VerticesForInterpolation;
+
+static void vertex_interpolation_init(
+ const SubdivMeshContext *ctx,
+ VerticesForInterpolation *vertex_interpolation,
+ const MPoly *coarse_poly)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ if (coarse_poly->totloop == 4) {
+ vertex_interpolation->vertex_data = &coarse_mesh->vdata;
+ vertex_interpolation->vertex_indices[0] =
+ coarse_mloop[coarse_poly->loopstart + 0].v;
+ vertex_interpolation->vertex_indices[1] =
+ coarse_mloop[coarse_poly->loopstart + 1].v;
+ vertex_interpolation->vertex_indices[2] =
+ coarse_mloop[coarse_poly->loopstart + 2].v;
+ vertex_interpolation->vertex_indices[3] =
+ coarse_mloop[coarse_poly->loopstart + 3].v;
+ vertex_interpolation->vertex_data_storage_allocated = false;
+ }
+ else {
+ vertex_interpolation->vertex_data =
+ &vertex_interpolation->vertex_data_storage;
+ /* Allocate storage for loops corresponding to ptex corners. */
+ CustomData_copy(&ctx->coarse_mesh->vdata,
+ &vertex_interpolation->vertex_data_storage,
+ CD_MASK_EVERYTHING,
+ CD_CALLOC,
+ 4);
+ /* Initialize indices. */
+ vertex_interpolation->vertex_indices[0] = 0;
+ vertex_interpolation->vertex_indices[1] = 1;
+ vertex_interpolation->vertex_indices[2] = 2;
+ vertex_interpolation->vertex_indices[3] = 3;
+ vertex_interpolation->vertex_data_storage_allocated = true;
+ /* Interpolate center of poly right away, it stays unchanged for all
+ * ptex faces.
+ */
+ const float weight = 1.0f / (float)coarse_poly->totloop;
+ float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
+ int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
+ for (int i = 0; i < coarse_poly->totloop; ++i) {
+ weights[i] = weight;
+ indices[i] = coarse_poly->loopstart + i;
+ }
+ CustomData_interp(&coarse_mesh->vdata,
+ &vertex_interpolation->vertex_data_storage,
+ indices,
+ weights, NULL,
+ coarse_poly->totloop,
+ 2);
+ }
+}
+
+static void vertex_interpolation_from_ptex(
+ const SubdivMeshContext *ctx,
+ VerticesForInterpolation *vertex_interpolation,
+ const MPoly *coarse_poly,
+ const int ptex_face_index)
+{
+ if (coarse_poly->totloop == 4) {
+ /* Nothing to do, all indices and data is already assigned. */
+ } else {
+ const CustomData *vertex_data = &ctx->coarse_mesh->vdata;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ LoopsOfPtex loops_of_ptex;
+ loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
+ /* Ptex face corner corresponds to a poly loop with same index. */
+ CustomData_copy_data(
+ vertex_data,
+ &vertex_interpolation->vertex_data_storage,
+ coarse_mloop[coarse_poly->loopstart + ptex_face_index].v,
+ 0,
+ 1);
+ /* Interpolate remaining ptex face corners, which hits loops
+ * middle points.
+ *
+ * TODO(sergey): Re-use one of interpolation results from previous
+ * iteration.
+ */
+ const float weights[2] = {0.5f, 0.5f};
+ const int first_indices[2] = {
+ coarse_mloop[loops_of_ptex.first_loop - coarse_mloop].v,
+ coarse_mloop[(loops_of_ptex.first_loop + 1 - coarse_mloop) %
+ coarse_poly->totloop].v};
+ const int last_indices[2] = {
+ coarse_mloop[loops_of_ptex.last_loop - coarse_mloop].v,
+ coarse_mloop[loops_of_ptex.first_loop - coarse_mloop].v};
+ CustomData_interp(vertex_data,
+ &vertex_interpolation->vertex_data_storage,
+ first_indices,
+ weights, NULL,
+ 2,
+ 1);
+ CustomData_interp(vertex_data,
+ &vertex_interpolation->vertex_data_storage,
+ last_indices,
+ weights, NULL,
+ 2,
+ 3);
+ }
+}
+
+static void vertex_interpolation_end(
+ VerticesForInterpolation *vertex_interpolation)
+{
+ if (vertex_interpolation->vertex_data_storage_allocated) {
+ CustomData_free(&vertex_interpolation->vertex_data_storage, 4);
+ }
+}
+
+typedef struct LoopsForInterpolation {
+ /* This field points to a loop data which is to be used for interpolation.
+ * The idea is to avoid unnecessary allocations for regular faces, where
+ * we can simply
+ */
+ const CustomData *loop_data;
+ /* Loops data calculated for ptex corners. There are always 4 elements
+ * in this custom data, aligned the following way:
+ *
+ * index 0 -> uv (0, 0)
+ * index 1 -> uv (0, 1)
+ * index 2 -> uv (1, 1)
+ * index 3 -> uv (1, 0)
+ *
+ * Is allocated for non-regular faces (triangles and n-gons).
+ */
+ CustomData loop_data_storage;
+ bool loop_data_storage_allocated;
+ /* Infices within loop_data to interpolate for. The indices are aligned with
+ * uv coordinates in a similar way as indices in loop_data_storage.
+ */
+ int loop_indices[4];
+} LoopsForInterpolation;
+
+static void loop_interpolation_init(
+ const SubdivMeshContext *ctx,
+ LoopsForInterpolation *loop_interpolation,
+ const MPoly *coarse_poly)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ if (coarse_poly->totloop == 4) {
+ loop_interpolation->loop_data = &coarse_mesh->ldata;
+ loop_interpolation->loop_indices[0] = coarse_poly->loopstart + 0;
+ loop_interpolation->loop_indices[1] = coarse_poly->loopstart + 1;
+ loop_interpolation->loop_indices[2] = coarse_poly->loopstart + 2;
+ loop_interpolation->loop_indices[3] = coarse_poly->loopstart + 3;
+ loop_interpolation->loop_data_storage_allocated = false;
+ }
+ else {
+ loop_interpolation->loop_data = &loop_interpolation->loop_data_storage;
+ /* Allocate storage for loops corresponding to ptex corners. */
+ CustomData_copy(&ctx->coarse_mesh->ldata,
+ &loop_interpolation->loop_data_storage,
+ CD_MASK_EVERYTHING,
+ CD_CALLOC,
+ 4);
+ /* Initialize indices. */
+ loop_interpolation->loop_indices[0] = 0;
+ loop_interpolation->loop_indices[1] = 1;
+ loop_interpolation->loop_indices[2] = 2;
+ loop_interpolation->loop_indices[3] = 3;
+ loop_interpolation->loop_data_storage_allocated = true;
+ /* Interpolate center of poly right away, it stays unchanged for all
+ * ptex faces.
+ */
+ const float weight = 1.0f / (float)coarse_poly->totloop;
+ float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
+ int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
+ for (int i = 0; i < coarse_poly->totloop; ++i) {
+ weights[i] = weight;
+ indices[i] = coarse_poly->loopstart + i;
+ }
+ CustomData_interp(&coarse_mesh->ldata,
+ &loop_interpolation->loop_data_storage,
+ indices,
+ weights, NULL,
+ coarse_poly->totloop,
+ 2);
+ }
+}
+
+static void loop_interpolation_from_ptex(
+ const SubdivMeshContext *ctx,
+ LoopsForInterpolation *loop_interpolation,
+ const MPoly *coarse_poly,
+ const int ptex_face_index)
+{
+ if (coarse_poly->totloop == 4) {
+ /* Nothing to do, all indices and data is already assigned. */
+ } else {
+ const CustomData *loop_data = &ctx->coarse_mesh->ldata;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ LoopsOfPtex loops_of_ptex;
+ loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
+ /* Ptex face corner corresponds to a poly loop with same index. */
+ CustomData_copy_data(loop_data,
+ &loop_interpolation->loop_data_storage,
+ coarse_poly->loopstart + ptex_face_index,
+ 0,
+ 1);
+ /* Interpolate remaining ptex face corners, which hits loops
+ * middle points.
+ *
+ * TODO(sergey): Re-use one of interpolation results from previous
+ * iteration.
+ */
+ const float weights[2] = {0.5f, 0.5f};
+ const int first_indices[2] = {
+ loops_of_ptex.first_loop - coarse_mloop,
+ (loops_of_ptex.first_loop + 1 - coarse_mloop) %
+ coarse_poly->totloop};
+ const int last_indices[2] = {
+ loops_of_ptex.last_loop - coarse_mloop,
+ loops_of_ptex.first_loop - coarse_mloop};
+ CustomData_interp(loop_data,
+ &loop_interpolation->loop_data_storage,
+ first_indices,
+ weights, NULL,
+ 2,
+ 1);
+ CustomData_interp(loop_data,
+ &loop_interpolation->loop_data_storage,
+ last_indices,
+ weights, NULL,
+ 2,
+ 3);
+ }
+}
+
+static void loop_interpolation_end(LoopsForInterpolation *loop_interpolation)
+{
+ if (loop_interpolation->loop_data_storage_allocated) {
+ CustomData_free(&loop_interpolation->loop_data_storage, 4);
+ }
+}
+
+static void subdiv_copy_vertex_data(
+ const SubdivMeshContext *ctx,
+ MVert *subdiv_vertex,
+ const VerticesForInterpolation *vertex_interpolation,
+ const float u, const float v)
+{
+ const int subdiv_vertex_index = subdiv_vertex - ctx->subdiv_mesh->mvert;
+ const float weights[4] = {(1.0f - u) * (1.0f - v),
+ u * (1.0f - v),
+ u * v,
+ (1.0f - u) * v};
+ CustomData_interp(vertex_interpolation->vertex_data,
+ &ctx->subdiv_mesh->vdata,
+ vertex_interpolation->vertex_indices,
+ weights, NULL,
+ 4,
+ subdiv_vertex_index);
+ /* TODO(sergey): Set ORIGINDEX. */
+}
+
+static void subdiv_evaluate_vertices(SubdivMeshContext *ctx,
+ const int poly_index)
+{
+ Subdiv *subdiv = ctx->subdiv;
+ const int resolution = ctx->settings->resolution;
+ const int resolution2 = resolution * resolution;
+ const float inv_resolution_1 = 1.0f / (float)(resolution - 1);
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_polyoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_polyoly[poly_index];
+ const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
+ /* Hi-poly subdivided mesh. */
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_vertert = subdiv_mesh->mvert;
+ const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
+ /* Actual evaluation. */
+ VerticesForInterpolation vertex_interpolation;
+ vertex_interpolation_init(ctx, &vertex_interpolation, coarse_poly);
+ MVert *subdiv_vert = &subdiv_vertert[ptex_face_index * resolution2];
+ for (int ptex_of_poly_index = 0;
+ ptex_of_poly_index < num_poly_ptex_faces;
+ ptex_of_poly_index++)
+ {
+ vertex_interpolation_from_ptex(ctx,
+ &vertex_interpolation,
+ coarse_poly,
+ ptex_of_poly_index);
+ const int current_ptex_face_index =
+ ptex_face_index + ptex_of_poly_index;
+ BKE_subdiv_eval_limit_patch_resolution_point_and_short_normal(
+ subdiv,
+ current_ptex_face_index,
+ resolution,
+ subdiv_vert, offsetof(MVert, co), sizeof(MVert),
+ subdiv_vert, offsetof(MVert, no), sizeof(MVert));
+ for (int y = 0; y < resolution; y++) {
+ const float v = y * inv_resolution_1;
+ for (int x = 0; x < resolution; x++, subdiv_vert++) {
+ const float u = x * inv_resolution_1;
+ subdiv_copy_vertex_data(ctx,
+ subdiv_vert,
+ &vertex_interpolation,
+ u, v);
+ }
+ }
+ }
+ vertex_interpolation_end(&vertex_interpolation);
+}
+
+static void subdiv_copy_edge_data(SubdivMeshContext *ctx,
+ MEdge *subdiv_edge,
+ const MEdge *coarse_edge)
+{
+ if (coarse_edge == NULL) {
+ subdiv_edge->crease = 0;
+ subdiv_edge->bweight = 0;
+ subdiv_edge->flag = 0;
+ return;
+ }
+ const int coarse_edge_index = coarse_edge - ctx->coarse_mesh->medge;
+ const int subdiv_edge_index = subdiv_edge - ctx->subdiv_mesh->medge;
+ CustomData_copy_data(&ctx->coarse_mesh->edata,
+ &ctx->subdiv_mesh->edata,
+ coarse_edge_index,
+ subdiv_edge_index,
+ 1);
+ if (ctx->edge_origindex != NULL) {
+ ctx->edge_origindex[subdiv_edge_index] = coarse_edge_index;
+ }
+}
+
+static MEdge *subdiv_create_edges_row(SubdivMeshContext *ctx,
+ MEdge *subdiv_edge,
+ const MEdge *coarse_edge,
+ const int start_vertex_index,
+ const int resolution)
+{
+ int vertex_index = start_vertex_index;
+ for (int edge_index = 0;
+ edge_index < resolution - 1;
+ edge_index++, subdiv_edge++)
+ {
+ subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
+ subdiv_edge->v1 = vertex_index;
+ subdiv_edge->v2 = vertex_index + 1;
+ vertex_index += 1;
+ }
+ return subdiv_edge;
+}
+
+static MEdge *subdiv_create_edges_column(SubdivMeshContext *ctx,
+ MEdge *subdiv_edge,
+ const MEdge *coarse_start_edge,
+ const MEdge *coarse_end_edge,
+ const int start_vertex_index,
+ const int resolution)
+{
+ int vertex_index = start_vertex_index;
+ for (int edge_index = 0;
+ edge_index < resolution;
+ edge_index++, subdiv_edge++)
+ {
+ const MEdge *coarse_edge = NULL;
+ if (edge_index == 0) {
+ coarse_edge = coarse_start_edge;
+ }
+ else if (edge_index == resolution - 1) {
+ coarse_edge = coarse_end_edge;
+ }
+ subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
+ subdiv_edge->v1 = vertex_index;
+ subdiv_edge->v2 = vertex_index + resolution;
+ vertex_index += 1;
+ }
+ return subdiv_edge;
+}
+
+static void subdiv_create_edges(SubdivMeshContext *ctx, int poly_index)
+{
+ Subdiv *subdiv = ctx->subdiv;
+ const int resolution = ctx->settings->resolution;
+ const int resolution2 = resolution * resolution;
+ const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
+ const int num_edges_per_ptex = num_edges_per_ptex_get(resolution);
+ const int start_edge_index = ptex_face_index * num_edges_per_ptex;
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_polyoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_polyoly[poly_index];
+ const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
+ /* Hi-poly subdivided mesh. */
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MEdge *subdiv_medge = subdiv_mesh->medge;
+ MEdge *subdiv_edge = &subdiv_medge[start_edge_index];
+ const int start_poly_vertex_index = ptex_face_index * resolution2;
+ /* Consider a subdivision of base face at level 1:
+ *
+ * y
+ * ^
+ * | (6) ---- (7) ---- (8)
+ * | | | |
+ * | (3) ---- (4) ---- (5)
+ * | | | |
+ * | (0) ---- (1) ---- (2)
+ * o---------------------------> x
+ *
+ * This is illustrate which parts of geometry is created by code below.
+ */
+ for (int i = 0; i < num_poly_ptex_faces; i++) {
+ const int start_ptex_face_vertex_index =
+ start_poly_vertex_index + i * resolution2;
+ EdgesOfPtex edges_of_ptex;
+ edges_of_ptex_get(ctx, &edges_of_ptex, coarse_poly, i);
+ /* Create bottom row of edges (0-1, 1-2). */
+ subdiv_edge = subdiv_create_edges_row(ctx,
+ subdiv_edge,
+ edges_of_ptex.first_edge,
+ start_ptex_face_vertex_index,
+ resolution);
+ /* Create remaining edges. */
+ for (int row = 0; row < resolution - 1; row++) {
+ const int start_row_vertex_index =
+ start_ptex_face_vertex_index + row * resolution;
+ /* Create vertical columns.
+ *
+ * At first iteration it will be edges (0-3. 1-4, 2-5), then it
+ * will be (3-6, 4-7, 5-8) and so on.
+ */
+ subdiv_edge = subdiv_create_edges_column(
+ ctx,
+ subdiv_edge,
+ edges_of_ptex.last_edge,
+ edges_of_ptex.second_edge,
+ start_row_vertex_index,
+ resolution);
+ /* Create horizontal edge row.
+ *
+ * At first iteration it will be edges (3-4, 4-5), then it will be
+ * (6-7, 7-8) and so on.
+ */
+ subdiv_edge = subdiv_create_edges_row(
+ ctx,
+ subdiv_edge,
+ (row == resolution - 2) ? edges_of_ptex.third_edge
+ : NULL,
+ start_row_vertex_index + resolution,
+ resolution);
+ }
+ }
+}
+
+static void subdiv_copy_loop_data(
+ const SubdivMeshContext *ctx,
+ MLoop *subdiv_loop,
+ const LoopsForInterpolation *loop_interpolation,
+ const float u, const float v)
+{
+ const int subdiv_loop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
+ const float weights[4] = {(1.0f - u) * (1.0f - v),
+ u * (1.0f - v),
+ u * v,
+ (1.0f - u) * v};
+ CustomData_interp(loop_interpolation->loop_data,
+ &ctx->subdiv_mesh->ldata,
+ loop_interpolation->loop_indices,
+ weights, NULL,
+ 4,
+ subdiv_loop_index);
+ /* TODO(sergey): Set ORIGINDEX. */
+}
+
+static void subdiv_eval_uv_layer(SubdivMeshContext *ctx,
+ MLoop *subdiv_loop,
+ const int ptex_face_index,
+ const float u, const float v,
+ const float inv_resolution_1)
+{
+ if (ctx->num_uv_layers == 0) {
+ return;
+ }
+ Subdiv *subdiv = ctx->subdiv;
+ const int mloop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
+ const float du = inv_resolution_1;
+ const float dv = inv_resolution_1;
+ for (int layer_index = 0; layer_index < ctx->num_uv_layers; layer_index++) {
+ MLoopUV *subdiv_loopuv = &ctx->uv_layers[layer_index][mloop_index];
+ BKE_subdiv_eval_face_varying(subdiv,
+ ptex_face_index,
+ u, v,
+ subdiv_loopuv[0].uv);
+ BKE_subdiv_eval_face_varying(subdiv,
+ ptex_face_index,
+ u + du, v,
+ subdiv_loopuv[1].uv);
+ BKE_subdiv_eval_face_varying(subdiv,
+ ptex_face_index,
+ u + du, v + dv,
+ subdiv_loopuv[2].uv);
+ BKE_subdiv_eval_face_varying(subdiv,
+ ptex_face_index,
+ u, v + dv,
+ subdiv_loopuv[3].uv);
+ /* TODO(sergey): Currently evaluator only has single UV layer, so can
+ * not evaluate more than that. Need to be solved.
+ */
+ break;
+ }
+}
+
+static void subdiv_create_loops(SubdivMeshContext *ctx, int poly_index)
+{
+ Subdiv *subdiv = ctx->subdiv;
+ const int resolution = ctx->settings->resolution;
+ const int resolution2 = resolution * resolution;
+ const float inv_resolution_1 = 1.0f / (float)(resolution - 1);
+ const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
+ const int num_edges_per_ptex = num_edges_per_ptex_get(resolution);
+ const int start_edge_index = ptex_face_index * num_edges_per_ptex;
+ const int num_polys_per_ptex = num_polys_per_ptex_get(resolution);
+ const int start_poly_index = ptex_face_index * num_polys_per_ptex;
+ const int start_loop_index = 4 * start_poly_index;
+ const int start_vert_index = ptex_face_index * resolution2;
+ const float du = inv_resolution_1;
+ const float dv = inv_resolution_1;
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_polyoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_polyoly[poly_index];
+ const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
+ /* Hi-poly subdivided mesh. */
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MLoop *subdiv_loopoop = subdiv_mesh->mloop;
+ MLoop *subdiv_loop = &subdiv_loopoop[start_loop_index];
+ LoopsForInterpolation loop_interpolation;
+ loop_interpolation_init(ctx, &loop_interpolation, coarse_poly);
+ for (int ptex_of_poly_index = 0;
+ ptex_of_poly_index < num_poly_ptex_faces;
+ ptex_of_poly_index++)
+ {
+ loop_interpolation_from_ptex(ctx,
+ &loop_interpolation,
+ coarse_poly,
+ ptex_of_poly_index);
+ const int current_ptex_face_index =
+ ptex_face_index + ptex_of_poly_index;
+ for (int y = 0; y < resolution - 1; y++) {
+ const float v = y * inv_resolution_1;
+ for (int x = 0; x < resolution - 1; x++, subdiv_loop += 4) {
+ const float u = x * inv_resolution_1;
+ /* Vertex indicies ordered counter-clockwise. */
+ const int v0 = start_vert_index +
+ (ptex_of_poly_index * resolution2) +
+ (y * resolution + x);
+ const int v1 = v0 + 1;
+ const int v2 = v0 + resolution + 1;
+ const int v3 = v0 + resolution;
+ /* Edge indicies ordered counter-clockwise. */
+ const int e0 = start_edge_index +
+ (ptex_of_poly_index * num_edges_per_ptex) +
+ (y * (2 * resolution - 1) + x);
+ const int e1 = e0 + resolution;
+ const int e2 = e0 + (2 * resolution - 1);
+ const int e3 = e0 + resolution - 1;
+ /* Initialize 4 loops of corresponding hi-poly poly. */
+ /* TODO(sergey): For ptex boundaries we should use loops from
+ * coarse mesh.
+ */
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop[0],
+ &loop_interpolation,
+ u, v);
+ subdiv_loop[0].v = v0;
+ subdiv_loop[0].e = e0;
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop[1],
+ &loop_interpolation,
+ u + du, v);
+ subdiv_loop[1].v = v1;
+ subdiv_loop[1].e = e1;
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop[2],
+ &loop_interpolation,
+ u + du, v + dv);
+ subdiv_loop[2].v = v2;
+ subdiv_loop[2].e = e2;
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop[3],
+ &loop_interpolation,
+ u, v + dv);
+ subdiv_loop[3].v = v3;
+ subdiv_loop[3].e = e3;
+ /* Interpolate UV layers using OpenSubdiv. */
+ subdiv_eval_uv_layer(ctx,
+ subdiv_loop,
+ current_ptex_face_index,
+ u, v,
+ inv_resolution_1);
+ }
+ }
+ }
+ loop_interpolation_end(&loop_interpolation);
+}
+
+static void subdiv_copy_poly_data(const SubdivMeshContext *ctx,
+ MPoly *subdiv_poly,
+ const MPoly *coarse_poly)
+{
+ const int coarse_poly_index = coarse_poly - ctx->coarse_mesh->mpoly;
+ const int subdiv_poly_index = subdiv_poly - ctx->subdiv_mesh->mpoly;
+ CustomData_copy_data(&ctx->coarse_mesh->pdata,
+ &ctx->subdiv_mesh->pdata,
+ coarse_poly_index,
+ subdiv_poly_index,
+ 1);
+ if (ctx->poly_origindex != NULL) {
+ ctx->poly_origindex[subdiv_poly_index] = coarse_poly_index;
+ }
+}
+
+static void subdiv_create_polys(SubdivMeshContext *ctx, int poly_index)
+{
+ Subdiv *subdiv = ctx->subdiv;
+ const int resolution = ctx->settings->resolution;
+ const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
+ const int num_polys_per_ptex = num_polys_per_ptex_get(resolution);
+ const int num_loops_per_ptex = 4 * num_polys_per_ptex;
+ const int start_poly_index = ptex_face_index * num_polys_per_ptex;
+ const int start_loop_index = 4 * start_poly_index;
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_polyoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_polyoly[poly_index];
+ const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
+ /* Hi-poly subdivided mesh. */
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MPoly *subdiv_mpoly = subdiv_mesh->mpoly;
+ MPoly *subdiv_mp = &subdiv_mpoly[start_poly_index];
+ for (int ptex_of_poly_index = 0;
+ ptex_of_poly_index < num_poly_ptex_faces;
+ ptex_of_poly_index++)
+ {
+ for (int subdiv_poly_index = 0;
+ subdiv_poly_index < num_polys_per_ptex;
+ subdiv_poly_index++, subdiv_mp++)
+ {
+ subdiv_copy_poly_data(ctx, subdiv_mp, coarse_poly);
+ subdiv_mp->loopstart = start_loop_index +
+ (ptex_of_poly_index * num_loops_per_ptex) +
+ (subdiv_poly_index * 4);
+ subdiv_mp->totloop = 4;
+ }
+ }
+}
+
+static void subdiv_eval_task(
+ void *__restrict userdata,
+ const int poly_index,
+ const ParallelRangeTLS *__restrict UNUSED(tls))
+{
+ SubdivMeshContext *data = userdata;
+ /* Evaluate hi-poly vertex coordinates and normals. */
+ subdiv_evaluate_vertices(data, poly_index);
+ /* Create mesh geometry for the given base poly index. */
+ subdiv_create_edges(data, poly_index);
+ subdiv_create_loops(data, poly_index);
+ subdiv_create_polys(data, poly_index);
+}
+
+static void cache_uv_layers(SubdivMeshContext *ctx)
+{
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ ctx->num_uv_layers =
+ CustomData_number_of_layers(&subdiv_mesh->ldata, CD_MLOOPUV);
+ for (int layer_index = 0; layer_index < ctx->num_uv_layers; ++layer_index) {
+ ctx->uv_layers[layer_index] = CustomData_get_layer_n(
+ &subdiv_mesh->ldata, CD_MLOOPUV, layer_index);
+ }
+}
+
+static void cache_custom_data_layers(SubdivMeshContext *ctx)
+{
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ /* Pointers to original indices layers. */
+ ctx->vert_origindex = CustomData_get_layer(
+ &subdiv_mesh->vdata, CD_ORIGINDEX);
+ ctx->edge_origindex = CustomData_get_layer(
+ &subdiv_mesh->edata, CD_ORIGINDEX);
+ ctx->loop_origindex = CustomData_get_layer(
+ &subdiv_mesh->ldata, CD_ORIGINDEX);
+ ctx->poly_origindex = CustomData_get_layer(
+ &subdiv_mesh->pdata, CD_ORIGINDEX);
+ /* UV layers interpolation. */
+ cache_uv_layers(ctx);
+}
+
+Mesh *BKE_subdiv_to_mesh(
+ Subdiv *subdiv,
+ const SubdivToMeshSettings *settings,
+ const Mesh *coarse_mesh)
+{
+ /* Make sure evaluator is up to date with possible new topology, and that
+ * is is refined for the new positions of coarse vertices.
+ */
+ BKE_subdiv_eval_update_from_mesh(subdiv, coarse_mesh);
+ const int resolution = settings->resolution;
+ const int resolution2 = resolution * resolution;
+ const int num_result_verts = subdiv->num_ptex_faces * resolution2;
+ const int num_result_edges =
+ subdiv->num_ptex_faces * num_edges_per_ptex_get(resolution);
+ const int num_result_polys =
+ subdiv->num_ptex_faces * num_polys_per_ptex_get(resolution);
+ const int num_result_loops = 4 * num_result_polys;
+ /* Create mesh and its arrays. */
+ Mesh *result = BKE_mesh_new_nomain_from_template(
+ coarse_mesh,
+ num_result_verts,
+ num_result_edges,
+ 0,
+ num_result_loops,
+ num_result_polys);
+ /* Evaluate subdivisions of base faces in threads. */
+ SubdivMeshContext ctx;
+ ctx.coarse_mesh = coarse_mesh;
+ ctx.subdiv = subdiv;
+ ctx.subdiv_mesh = result;
+ ctx.settings = settings;
+ cache_custom_data_layers(&ctx);
+ /* Multi-threaded evaluation. */
+ ParallelRangeSettings parallel_range_settings;
+ BLI_parallel_range_settings_defaults(&parallel_range_settings);
+ BLI_task_parallel_range(0, coarse_mesh->totpoly,
+ &ctx,
+ subdiv_eval_task,
+ &parallel_range_settings);
+ return result;
+}