Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/subdiv_mesh.c')
-rw-r--r--source/blender/blenkernel/intern/subdiv_mesh.c2432
1 files changed, 2432 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/subdiv_mesh.c b/source/blender/blenkernel/intern/subdiv_mesh.c
new file mode 100644
index 00000000000..bb27cb6a31e
--- /dev/null
+++ b/source/blender/blenkernel/intern/subdiv_mesh.c
@@ -0,0 +1,2432 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2018 by Blender Foundation.
+ * All rights reserved.
+ *
+ * Contributor(s): Sergey Sharybin.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/subdiv_mesh.c
+ * \ingroup bke
+ */
+
+#include "BKE_subdiv.h"
+
+#include "atomic_ops.h"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_key_types.h"
+
+#include "BLI_alloca.h"
+#include "BLI_bitmap.h"
+#include "BLI_math_vector.h"
+#include "BLI_task.h"
+
+#include "BKE_mesh.h"
+#include "BKE_key.h"
+
+#include "MEM_guardedalloc.h"
+
+/* =============================================================================
+ * General helpers.
+ */
+
+/* Number of ptex faces for a given polygon. */
+BLI_INLINE int num_ptex_faces_per_poly_get(const MPoly *poly)
+{
+ return (poly->totloop == 4) ? 1 : poly->totloop;
+}
+
+BLI_INLINE int num_edges_per_ptex_face_get(const int resolution)
+{
+ return 2 * (resolution - 1) * resolution;
+}
+
+BLI_INLINE int num_inner_edges_per_ptex_face_get(const int resolution)
+{
+ if (resolution < 2) {
+ return 0;
+ }
+ return (resolution - 2) * resolution +
+ (resolution - 1) * (resolution - 1);
+}
+
+/* Number of subdivision polygons per ptex face. */
+BLI_INLINE int num_polys_per_ptex_get(const int resolution)
+{
+ return (resolution - 1) * (resolution - 1);
+}
+
+/* Subdivision resolution per given polygon's ptex faces. */
+BLI_INLINE int ptex_face_resolution_get(const MPoly *poly, int resolution)
+{
+ return (poly->totloop == 4) ? (resolution)
+ : ((resolution >> 1) + 1);
+}
+
+/* =============================================================================
+ * Mesh subdivision context.
+ */
+
+typedef struct SubdivMeshContext {
+ const Mesh *coarse_mesh;
+ Subdiv *subdiv;
+ Mesh *subdiv_mesh;
+ const SubdivToMeshSettings *settings;
+ /* Cached custom data arrays for fastter access. */
+ int *vert_origindex;
+ int *edge_origindex;
+ int *loop_origindex;
+ int *poly_origindex;
+ /* UV layers interpolation. */
+ int num_uv_layers;
+ MLoopUV *uv_layers[MAX_MTFACE];
+ /* Counters of geometry in subdivided mesh, initialized as a part of
+ * offsets calculation.
+ */
+ int num_subdiv_vertices;
+ int num_subdiv_edges;
+ int num_subdiv_loops;
+ int num_subdiv_polygons;
+ /* Offsets of various geometry in the subdivision mesh arrays. */
+ int vertices_corner_offset;
+ int vertices_edge_offset;
+ int vertices_inner_offset;
+ int edge_boundary_offset;
+ int edge_inner_offset;
+ /* Indexed by coarse polygon index, indicates offset in subdivided mesh
+ * vertices, edges and polygons arrays, where first element of the poly
+ * begins.
+ */
+ int *subdiv_vertex_offset;
+ int *subdiv_edge_offset;
+ int *subdiv_polygon_offset;
+ /* Indexed by base face index, element indicates total number of ptex faces
+ * created for preceding base faces.
+ */
+ int *face_ptex_offset;
+ /* Bitmap indicating whether vertex was used already or not.
+ * - During patch evaluation indicates whether coarse vertex was already
+ * evaluated and its position on limit is already known.
+ */
+ BLI_bitmap *coarse_vertices_used_map;
+ /* Bitmap indicating whether edge was used already or not. This includes:
+ * - During context initialization it indicates whether subdivided verticies
+ * for corresponding edge were already calculated or not.
+ * - During patch evaluation it indicates whether vertices along this edge
+ * were already evaluated.
+ */
+ BLI_bitmap *coarse_edges_used_map;
+} SubdivMeshContext;
+
+static void subdiv_mesh_ctx_cache_uv_layers(SubdivMeshContext *ctx)
+{
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ ctx->num_uv_layers =
+ CustomData_number_of_layers(&subdiv_mesh->ldata, CD_MLOOPUV);
+ for (int layer_index = 0; layer_index < ctx->num_uv_layers; ++layer_index) {
+ ctx->uv_layers[layer_index] = CustomData_get_layer_n(
+ &subdiv_mesh->ldata, CD_MLOOPUV, layer_index);
+ }
+}
+
+static void subdiv_mesh_ctx_cache_custom_data_layers(SubdivMeshContext *ctx)
+{
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ /* Pointers to original indices layers. */
+ ctx->vert_origindex = CustomData_get_layer(
+ &subdiv_mesh->vdata, CD_ORIGINDEX);
+ ctx->edge_origindex = CustomData_get_layer(
+ &subdiv_mesh->edata, CD_ORIGINDEX);
+ ctx->loop_origindex = CustomData_get_layer(
+ &subdiv_mesh->ldata, CD_ORIGINDEX);
+ ctx->poly_origindex = CustomData_get_layer(
+ &subdiv_mesh->pdata, CD_ORIGINDEX);
+ /* UV layers interpolation. */
+ subdiv_mesh_ctx_cache_uv_layers(ctx);
+}
+
+/* NOTE: Expects edge map to be zeroed. */
+static void subdiv_mesh_ctx_count(SubdivMeshContext *ctx)
+{
+ /* Reset counters. */
+ ctx->num_subdiv_vertices = 0;
+ ctx->num_subdiv_edges = 0;
+ ctx->num_subdiv_loops = 0;
+ ctx->num_subdiv_polygons = 0;
+ /* Static geometry counters. */
+ const int resolution = ctx->settings->resolution;
+ const int no_quad_patch_resolution = ((resolution >> 1) + 1);
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const int num_inner_vertices_per_quad = (resolution - 2) * (resolution - 2);
+ const int num_inner_vertices_per_noquad_patch =
+ (no_quad_patch_resolution - 2) * (no_quad_patch_resolution - 2);
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ ctx->num_subdiv_vertices = coarse_mesh->totvert;
+ ctx->num_subdiv_edges =
+ coarse_mesh->totedge * (num_subdiv_vertices_per_coarse_edge + 1);
+ /* Calculate extra vertices and edges createdd by non-loose geometry. */
+ for (int poly_index = 0; poly_index < coarse_mesh->totpoly; poly_index++) {
+ const MPoly *coarse_poly = &coarse_mpoly[poly_index];
+ const int num_ptex_faces_per_poly =
+ num_ptex_faces_per_poly_get(coarse_poly);
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const MLoop *loop = &coarse_mloop[coarse_poly->loopstart + corner];
+ const bool is_edge_used =
+ BLI_BITMAP_TEST_BOOL(ctx->coarse_edges_used_map, loop->e);
+ /* Edges which aren't counted yet. */
+ if (!is_edge_used) {
+ BLI_BITMAP_ENABLE(ctx->coarse_edges_used_map, loop->e);
+ ctx->num_subdiv_vertices += num_subdiv_vertices_per_coarse_edge;
+ }
+ }
+ /* Inner verticies of polygon. */
+ if (num_ptex_faces_per_poly == 1) {
+ ctx->num_subdiv_vertices += num_inner_vertices_per_quad;
+ ctx->num_subdiv_edges +=
+ num_edges_per_ptex_face_get(resolution - 2) +
+ 4 * num_subdiv_vertices_per_coarse_edge;
+ ctx->num_subdiv_polygons += num_polys_per_ptex_get(resolution);
+ }
+ else {
+ ctx->num_subdiv_vertices +=
+ 1 +
+ num_ptex_faces_per_poly * (no_quad_patch_resolution - 2) +
+ num_ptex_faces_per_poly * num_inner_vertices_per_noquad_patch;
+ ctx->num_subdiv_edges +=
+ num_ptex_faces_per_poly *
+ (num_inner_edges_per_ptex_face_get(
+ no_quad_patch_resolution - 1) +
+ (no_quad_patch_resolution - 2) +
+ num_subdiv_vertices_per_coarse_edge);
+ if (no_quad_patch_resolution >= 3) {
+ ctx->num_subdiv_edges += coarse_poly->totloop;
+ }
+ ctx->num_subdiv_polygons +=
+ num_ptex_faces_per_poly *
+ num_polys_per_ptex_get(no_quad_patch_resolution);
+ }
+ }
+ /* Calculate extra edges createdd by loose edges. */
+ for (int edge_index = 0; edge_index < coarse_mesh->totedge; edge_index++) {
+ if (!BLI_BITMAP_TEST_BOOL(ctx->coarse_edges_used_map, edge_index)) {
+ ctx->num_subdiv_vertices += num_subdiv_vertices_per_coarse_edge;
+ }
+ }
+ ctx->num_subdiv_loops = ctx->num_subdiv_polygons * 4;
+}
+
+static void subdiv_mesh_ctx_init_offsets(SubdivMeshContext *ctx)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const int resolution = ctx->settings->resolution;
+ const int resolution_2 = resolution - 2;
+ const int resolution_2_squared = resolution_2 * resolution_2;
+ const int no_quad_patch_resolution = ((resolution >> 1) + 1);
+ const int num_irregular_vertices_per_patch =
+ (no_quad_patch_resolution - 2) * (no_quad_patch_resolution - 1);
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const int num_subdiv_edges_per_coarse_edge = resolution - 1;
+ /* Constant offsets in arrays. */
+ ctx->vertices_corner_offset = 0;
+ ctx->vertices_edge_offset = coarse_mesh->totvert;
+ ctx->vertices_inner_offset =
+ ctx->vertices_edge_offset +
+ coarse_mesh->totedge * num_subdiv_vertices_per_coarse_edge;
+ ctx->edge_boundary_offset = 0;
+ ctx->edge_inner_offset =
+ ctx->edge_boundary_offset +
+ coarse_mesh->totedge * num_subdiv_edges_per_coarse_edge;
+ /* "Indexed" offsets. */
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ int vertex_offset = 0;
+ int edge_offset = 0;
+ int polygon_offset = 0;
+ int face_ptex_offset = 0;
+ for (int poly_index = 0; poly_index < coarse_mesh->totpoly; poly_index++) {
+ const MPoly *coarse_poly = &coarse_mpoly[poly_index];
+ const int num_ptex_faces_per_poly =
+ num_ptex_faces_per_poly_get(coarse_poly);
+ ctx->face_ptex_offset[poly_index] = face_ptex_offset;
+ ctx->subdiv_vertex_offset[poly_index] = vertex_offset;
+ ctx->subdiv_edge_offset[poly_index] = edge_offset;
+ ctx->subdiv_polygon_offset[poly_index] = polygon_offset;
+ face_ptex_offset += num_ptex_faces_per_poly;
+ if (num_ptex_faces_per_poly == 1) {
+ vertex_offset += resolution_2_squared;
+ edge_offset += num_edges_per_ptex_face_get(resolution - 2) +
+ 4 * num_subdiv_vertices_per_coarse_edge;
+ polygon_offset += num_polys_per_ptex_get(resolution);
+ }
+ else {
+ vertex_offset +=
+ 1 +
+ num_ptex_faces_per_poly * num_irregular_vertices_per_patch;
+ edge_offset +=
+ num_ptex_faces_per_poly *
+ (num_inner_edges_per_ptex_face_get(
+ no_quad_patch_resolution - 1) +
+ (no_quad_patch_resolution - 2) +
+ num_subdiv_vertices_per_coarse_edge);
+ if (no_quad_patch_resolution >= 3) {
+ edge_offset += coarse_poly->totloop;
+ }
+ polygon_offset +=
+ num_ptex_faces_per_poly *
+ num_polys_per_ptex_get(no_quad_patch_resolution);
+ }
+ }
+}
+
+static void subdiv_mesh_ctx_init(SubdivMeshContext *ctx)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ /* Allocate maps and offsets. */
+ ctx->coarse_vertices_used_map =
+ BLI_BITMAP_NEW(coarse_mesh->totvert, "vertices used map");
+ ctx->coarse_edges_used_map =
+ BLI_BITMAP_NEW(coarse_mesh->totedge, "edges used map");
+ ctx->subdiv_vertex_offset = MEM_malloc_arrayN(
+ coarse_mesh->totpoly,
+ sizeof(*ctx->subdiv_vertex_offset),
+ "vertex_offset");
+ ctx->subdiv_edge_offset = MEM_malloc_arrayN(
+ coarse_mesh->totpoly,
+ sizeof(*ctx->subdiv_edge_offset),
+ "subdiv_edge_offset");
+ ctx->subdiv_polygon_offset = MEM_malloc_arrayN(
+ coarse_mesh->totpoly,
+ sizeof(*ctx->subdiv_polygon_offset),
+ "subdiv_edge_offset");
+ ctx->face_ptex_offset = MEM_malloc_arrayN(coarse_mesh->totpoly,
+ sizeof(*ctx->face_ptex_offset),
+ "face_ptex_offset");
+ /* Initialize all offsets. */
+ subdiv_mesh_ctx_init_offsets(ctx);
+ /* Calculate number of geometry in the result subdivision mesh. */
+ subdiv_mesh_ctx_count(ctx);
+ /* Re-set maps which were used at this step. */
+ BLI_BITMAP_SET_ALL(ctx->coarse_edges_used_map, false, coarse_mesh->totedge);
+}
+
+static void subdiv_mesh_ctx_init_result(SubdivMeshContext *ctx)
+{
+ subdiv_mesh_ctx_cache_custom_data_layers(ctx);
+}
+
+static void subdiv_mesh_ctx_free(SubdivMeshContext *ctx)
+{
+ MEM_freeN(ctx->coarse_vertices_used_map);
+ MEM_freeN(ctx->coarse_edges_used_map);
+ MEM_freeN(ctx->subdiv_vertex_offset);
+ MEM_freeN(ctx->subdiv_edge_offset);
+ MEM_freeN(ctx->subdiv_polygon_offset);
+ MEM_freeN(ctx->face_ptex_offset);
+}
+
+/* =============================================================================
+ * Loop custom data copy helpers.
+ */
+
+typedef struct LoopsOfPtex {
+ /* First loop of the ptex, starts at ptex (0, 0) and goes in u direction. */
+ const MLoop *first_loop;
+ /* Last loop of the ptex, starts at ptex (0, 0) and goes in v direction. */
+ const MLoop *last_loop;
+ /* For quad coarse faces only. */
+ const MLoop *second_loop;
+ const MLoop *third_loop;
+} LoopsOfPtex;
+
+static void loops_of_ptex_get(
+ const SubdivMeshContext *ctx,
+ LoopsOfPtex *loops_of_ptex,
+ const MPoly *coarse_poly,
+ const int ptex_of_poly_index)
+{
+ const MLoop *coarse_mloop = ctx->coarse_mesh->mloop;
+ const int first_ptex_loop_index =
+ coarse_poly->loopstart + ptex_of_poly_index;
+ /* Loop which look in the (opposite) V direction of the current
+ * ptex face.
+ *
+ * TOOD(sergey): Get rid of using module on every iteration.
+ */
+ const int last_ptex_loop_index =
+ coarse_poly->loopstart +
+ (ptex_of_poly_index + coarse_poly->totloop - 1) %
+ coarse_poly->totloop;
+ loops_of_ptex->first_loop = &coarse_mloop[first_ptex_loop_index];
+ loops_of_ptex->last_loop = &coarse_mloop[last_ptex_loop_index];
+ if (coarse_poly->totloop == 4) {
+ loops_of_ptex->second_loop = loops_of_ptex->first_loop + 1;
+ loops_of_ptex->third_loop = loops_of_ptex->first_loop + 2;
+ }
+ else {
+ loops_of_ptex->second_loop = NULL;
+ loops_of_ptex->third_loop = NULL;
+ }
+}
+
+/* =============================================================================
+ * Vertex custom data interpolation helpers.
+ */
+
+/* TODO(sergey): Somehow de-duplicate with loops storage, without too much
+ * exception cases all over the code.
+ */
+
+typedef struct VerticesForInterpolation {
+ /* This field points to a vertex data which is to be used for interpolation.
+ * The idea is to avoid unnecessary allocations for regular faces, where
+ * we can simply
+ */
+ const CustomData *vertex_data;
+ /* Vertices data calculated for ptex corners. There are always 4 elements
+ * in this custom data, aligned the following way:
+ *
+ * index 0 -> uv (0, 0)
+ * index 1 -> uv (0, 1)
+ * index 2 -> uv (1, 1)
+ * index 3 -> uv (1, 0)
+ *
+ * Is allocated for non-regular faces (triangles and n-gons).
+ */
+ CustomData vertex_data_storage;
+ bool vertex_data_storage_allocated;
+ /* Infices within vertex_data to interpolate for. The indices are aligned
+ * with uv coordinates in a similar way as indices in loop_data_storage.
+ */
+ int vertex_indices[4];
+} VerticesForInterpolation;
+
+static void vertex_interpolation_init(
+ const SubdivMeshContext *ctx,
+ VerticesForInterpolation *vertex_interpolation,
+ const MPoly *coarse_poly)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ if (coarse_poly->totloop == 4) {
+ vertex_interpolation->vertex_data = &coarse_mesh->vdata;
+ vertex_interpolation->vertex_indices[0] =
+ coarse_mloop[coarse_poly->loopstart + 0].v;
+ vertex_interpolation->vertex_indices[1] =
+ coarse_mloop[coarse_poly->loopstart + 1].v;
+ vertex_interpolation->vertex_indices[2] =
+ coarse_mloop[coarse_poly->loopstart + 2].v;
+ vertex_interpolation->vertex_indices[3] =
+ coarse_mloop[coarse_poly->loopstart + 3].v;
+ vertex_interpolation->vertex_data_storage_allocated = false;
+ }
+ else {
+ vertex_interpolation->vertex_data =
+ &vertex_interpolation->vertex_data_storage;
+ /* Allocate storage for loops corresponding to ptex corners. */
+ CustomData_copy(&ctx->coarse_mesh->vdata,
+ &vertex_interpolation->vertex_data_storage,
+ CD_MASK_EVERYTHING,
+ CD_CALLOC,
+ 4);
+ /* Initialize indices. */
+ vertex_interpolation->vertex_indices[0] = 0;
+ vertex_interpolation->vertex_indices[1] = 1;
+ vertex_interpolation->vertex_indices[2] = 2;
+ vertex_interpolation->vertex_indices[3] = 3;
+ vertex_interpolation->vertex_data_storage_allocated = true;
+ /* Interpolate center of poly right away, it stays unchanged for all
+ * ptex faces.
+ */
+ const float weight = 1.0f / (float)coarse_poly->totloop;
+ float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
+ int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
+ for (int i = 0; i < coarse_poly->totloop; ++i) {
+ weights[i] = weight;
+ indices[i] = coarse_mloop[coarse_poly->loopstart + i].v;
+ }
+ CustomData_interp(&coarse_mesh->vdata,
+ &vertex_interpolation->vertex_data_storage,
+ indices,
+ weights, NULL,
+ coarse_poly->totloop,
+ 2);
+ }
+}
+
+static void vertex_interpolation_from_ptex(
+ const SubdivMeshContext *ctx,
+ VerticesForInterpolation *vertex_interpolation,
+ const MPoly *coarse_poly,
+ const int ptex_of_poly_index)
+{
+ if (coarse_poly->totloop == 4) {
+ /* Nothing to do, all indices and data is already assigned. */
+ }
+ else {
+ const CustomData *vertex_data = &ctx->coarse_mesh->vdata;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ LoopsOfPtex loops_of_ptex;
+ loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_of_poly_index);
+ /* Ptex face corner corresponds to a poly loop with same index. */
+ CustomData_copy_data(
+ vertex_data,
+ &vertex_interpolation->vertex_data_storage,
+ coarse_mloop[coarse_poly->loopstart + ptex_of_poly_index].v,
+ 0,
+ 1);
+ /* Interpolate remaining ptex face corners, which hits loops
+ * middle points.
+ *
+ * TODO(sergey): Re-use one of interpolation results from previous
+ * iteration.
+ */
+ const float weights[2] = {0.5f, 0.5f};
+ const int first_loop_index = loops_of_ptex.first_loop - coarse_mloop;
+ const int last_loop_index = loops_of_ptex.last_loop - coarse_mloop;
+ const int first_indices[2] = {
+ coarse_mloop[first_loop_index].v,
+ coarse_mloop[coarse_poly->loopstart +
+ (first_loop_index - coarse_poly->loopstart + 1) %
+ coarse_poly->totloop].v};
+ const int last_indices[2] = {coarse_mloop[first_loop_index].v,
+ coarse_mloop[last_loop_index].v};
+ CustomData_interp(vertex_data,
+ &vertex_interpolation->vertex_data_storage,
+ first_indices,
+ weights, NULL,
+ 2,
+ 1);
+ CustomData_interp(vertex_data,
+ &vertex_interpolation->vertex_data_storage,
+ last_indices,
+ weights, NULL,
+ 2,
+ 3);
+ }
+}
+
+static void vertex_interpolation_end(
+ VerticesForInterpolation *vertex_interpolation)
+{
+ if (vertex_interpolation->vertex_data_storage_allocated) {
+ CustomData_free(&vertex_interpolation->vertex_data_storage, 4);
+ }
+}
+
+/* =============================================================================
+ * Loop custom data interpolation helpers.
+ */
+
+typedef struct LoopsForInterpolation {
+ /* This field points to a loop data which is to be used for interpolation.
+ * The idea is to avoid unnecessary allocations for regular faces, where
+ * we can simply
+ */
+ const CustomData *loop_data;
+ /* Loops data calculated for ptex corners. There are always 4 elements
+ * in this custom data, aligned the following way:
+ *
+ * index 0 -> uv (0, 0)
+ * index 1 -> uv (0, 1)
+ * index 2 -> uv (1, 1)
+ * index 3 -> uv (1, 0)
+ *
+ * Is allocated for non-regular faces (triangles and n-gons).
+ */
+ CustomData loop_data_storage;
+ bool loop_data_storage_allocated;
+ /* Infices within loop_data to interpolate for. The indices are aligned with
+ * uv coordinates in a similar way as indices in loop_data_storage.
+ */
+ int loop_indices[4];
+} LoopsForInterpolation;
+
+static void loop_interpolation_init(
+ const SubdivMeshContext *ctx,
+ LoopsForInterpolation *loop_interpolation,
+ const MPoly *coarse_poly)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ if (coarse_poly->totloop == 4) {
+ loop_interpolation->loop_data = &coarse_mesh->ldata;
+ loop_interpolation->loop_indices[0] = coarse_poly->loopstart + 0;
+ loop_interpolation->loop_indices[1] = coarse_poly->loopstart + 1;
+ loop_interpolation->loop_indices[2] = coarse_poly->loopstart + 2;
+ loop_interpolation->loop_indices[3] = coarse_poly->loopstart + 3;
+ loop_interpolation->loop_data_storage_allocated = false;
+ }
+ else {
+ loop_interpolation->loop_data = &loop_interpolation->loop_data_storage;
+ /* Allocate storage for loops corresponding to ptex corners. */
+ CustomData_copy(&ctx->coarse_mesh->ldata,
+ &loop_interpolation->loop_data_storage,
+ CD_MASK_EVERYTHING,
+ CD_CALLOC,
+ 4);
+ /* Initialize indices. */
+ loop_interpolation->loop_indices[0] = 0;
+ loop_interpolation->loop_indices[1] = 1;
+ loop_interpolation->loop_indices[2] = 2;
+ loop_interpolation->loop_indices[3] = 3;
+ loop_interpolation->loop_data_storage_allocated = true;
+ /* Interpolate center of poly right away, it stays unchanged for all
+ * ptex faces.
+ */
+ const float weight = 1.0f / (float)coarse_poly->totloop;
+ float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
+ int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
+ for (int i = 0; i < coarse_poly->totloop; ++i) {
+ weights[i] = weight;
+ indices[i] = coarse_poly->loopstart + i;
+ }
+ CustomData_interp(&coarse_mesh->ldata,
+ &loop_interpolation->loop_data_storage,
+ indices,
+ weights, NULL,
+ coarse_poly->totloop,
+ 2);
+ }
+}
+
+static void loop_interpolation_from_ptex(
+ const SubdivMeshContext *ctx,
+ LoopsForInterpolation *loop_interpolation,
+ const MPoly *coarse_poly,
+ const int ptex_face_index)
+{
+ if (coarse_poly->totloop == 4) {
+ /* Nothing to do, all indices and data is already assigned. */
+ }
+ else {
+ const CustomData *loop_data = &ctx->coarse_mesh->ldata;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ LoopsOfPtex loops_of_ptex;
+ loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
+ /* Ptex face corner corresponds to a poly loop with same index. */
+ CustomData_copy_data(loop_data,
+ &loop_interpolation->loop_data_storage,
+ coarse_poly->loopstart + ptex_face_index,
+ 0,
+ 1);
+ /* Interpolate remaining ptex face corners, which hits loops
+ * middle points.
+ *
+ * TODO(sergey): Re-use one of interpolation results from previous
+ * iteration.
+ */
+ const float weights[2] = {0.5f, 0.5f};
+ const int first_indices[2] = {
+ loops_of_ptex.first_loop - coarse_mloop,
+ (loops_of_ptex.first_loop + 1 - coarse_mloop) %
+ coarse_poly->totloop};
+ const int last_indices[2] = {
+ loops_of_ptex.last_loop - coarse_mloop,
+ loops_of_ptex.first_loop - coarse_mloop};
+ CustomData_interp(loop_data,
+ &loop_interpolation->loop_data_storage,
+ first_indices,
+ weights, NULL,
+ 2,
+ 1);
+ CustomData_interp(loop_data,
+ &loop_interpolation->loop_data_storage,
+ last_indices,
+ weights, NULL,
+ 2,
+ 3);
+ }
+}
+
+static void loop_interpolation_end(LoopsForInterpolation *loop_interpolation)
+{
+ if (loop_interpolation->loop_data_storage_allocated) {
+ CustomData_free(&loop_interpolation->loop_data_storage, 4);
+ }
+}
+
+/* =============================================================================
+ * Vertex subdivision process.
+ */
+
+/* Custom data interpolation helpers. */
+
+static void subdiv_vertex_data_copy(
+ const SubdivMeshContext *ctx,
+ const MVert *coarse_vertex,
+ MVert *subdiv_vertex)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ const int coarse_vertex_index = coarse_vertex - coarse_mesh->mvert;
+ const int subdiv_vertex_index = subdiv_vertex - subdiv_mesh->mvert;
+ CustomData_copy_data(&coarse_mesh->vdata,
+ &ctx->subdiv_mesh->vdata,
+ coarse_vertex_index,
+ subdiv_vertex_index,
+ 1);
+}
+
+static void subdiv_vertex_data_interpolate(
+ const SubdivMeshContext *ctx,
+ MVert *subdiv_vertex,
+ const VerticesForInterpolation *vertex_interpolation,
+ const float u, const float v)
+{
+ const int subdiv_vertex_index = subdiv_vertex - ctx->subdiv_mesh->mvert;
+ const float weights[4] = {(1.0f - u) * (1.0f - v),
+ u * (1.0f - v),
+ u * v,
+ (1.0f - u) * v};
+ CustomData_interp(vertex_interpolation->vertex_data,
+ &ctx->subdiv_mesh->vdata,
+ vertex_interpolation->vertex_indices,
+ weights, NULL,
+ 4,
+ subdiv_vertex_index);
+ if (ctx->vert_origindex != NULL) {
+ ctx->vert_origindex[subdiv_vertex_index] = ORIGINDEX_NONE;
+ }
+}
+
+/* Evaluation of corner vertices. They are coming from coarse vertices. */
+
+static void subdiv_evaluate_corner_vertices_regular(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ const float weights[4][2] = {{0.0f, 0.0f},
+ {1.0f, 0.0f},
+ {1.0f, 1.0f},
+ {0.0f, 1.0f}};
+ Subdiv *subdiv = ctx->subdiv;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MVert *coarse_mvert = coarse_mesh->mvert;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ const int poly_index = coarse_poly - coarse_mesh->mpoly;
+ const int ptex_face_index = ctx->face_ptex_offset[poly_index];
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ if (BLI_BITMAP_TEST_AND_SET_ATOMIC(ctx->coarse_vertices_used_map,
+ coarse_loop->v))
+ {
+ continue;
+ }
+ const MVert *coarse_vert = &coarse_mvert[coarse_loop->v];
+ MVert *subdiv_vert = &subdiv_mvert[
+ ctx->vertices_corner_offset + coarse_loop->v];
+ subdiv_vertex_data_copy(ctx, coarse_vert, subdiv_vert);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ ptex_face_index,
+ weights[corner][0], weights[corner][1],
+ subdiv_vert->co, subdiv_vert->no);
+ }
+}
+
+static void subdiv_evaluate_corner_vertices_special(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ Subdiv *subdiv = ctx->subdiv;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MVert *coarse_mvert = coarse_mesh->mvert;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ const int poly_index = coarse_poly - coarse_mesh->mpoly;
+ int ptex_face_index = ctx->face_ptex_offset[poly_index];
+ for (int corner = 0;
+ corner < coarse_poly->totloop;
+ corner++, ptex_face_index++)
+ {
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ if (BLI_BITMAP_TEST_AND_SET_ATOMIC(ctx->coarse_vertices_used_map,
+ coarse_loop->v))
+ {
+ continue;
+ }
+ const MVert *coarse_vert = &coarse_mvert[coarse_loop->v];
+ MVert *subdiv_vert = &subdiv_mvert[
+ ctx->vertices_corner_offset + coarse_loop->v];
+ subdiv_vertex_data_copy(ctx, coarse_vert, subdiv_vert);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ ptex_face_index,
+ 0.0f, 0.0f,
+ subdiv_vert->co, subdiv_vert->no);
+ }
+}
+
+static void subdiv_evaluate_corner_vertices(SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ if (coarse_poly->totloop == 4) {
+ subdiv_evaluate_corner_vertices_regular(ctx, coarse_poly);
+ }
+ else {
+ subdiv_evaluate_corner_vertices_special(ctx, coarse_poly);
+ }
+}
+
+/* Evaluation of edge vertices. They are coming from coarse edges. */
+
+static void subdiv_evaluate_edge_vertices_regular(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly,
+ VerticesForInterpolation *vertex_interpolation)
+{
+ const int resolution = ctx->settings->resolution;
+ const int resolution_1 = resolution - 1;
+ const float inv_resolution_1 = 1.0f / (float)resolution_1;
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ Subdiv *subdiv = ctx->subdiv;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ const int poly_index = coarse_poly - coarse_mesh->mpoly;
+ const int ptex_face_index = ctx->face_ptex_offset[poly_index];
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ if (BLI_BITMAP_TEST_AND_SET_ATOMIC(ctx->coarse_edges_used_map,
+ coarse_loop->e))
+ {
+ continue;
+ }
+ vertex_interpolation_from_ptex(ctx,
+ vertex_interpolation,
+ coarse_poly,
+ corner);
+ const MEdge *coarse_edge = &coarse_medge[coarse_loop->e];
+ const bool flip = (coarse_edge->v2 == coarse_loop->v);
+ MVert *subdiv_vert = &subdiv_mvert[
+ ctx->vertices_edge_offset +
+ coarse_loop->e * num_subdiv_vertices_per_coarse_edge];
+ for (int vertex_index = 0;
+ vertex_index < num_subdiv_vertices_per_coarse_edge;
+ vertex_index++, subdiv_vert++)
+ {
+ float fac = (vertex_index + 1) * inv_resolution_1;
+ if (flip) {
+ fac = 1.0f - fac;
+ }
+ if (corner >= 2) {
+ fac = 1.0f - fac;
+ }
+ float u, v;
+ if ((corner & 1) == 0) {
+ u = fac;
+ v = (corner == 2) ? 1.0f : 0.0f;
+ }
+ else {
+ u = (corner == 1) ? 1.0f : 0.0f;
+ v = fac;
+ }
+ subdiv_vertex_data_interpolate(ctx,
+ subdiv_vert,
+ vertex_interpolation,
+ u, v);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ ptex_face_index,
+ u, v,
+ subdiv_vert->co, subdiv_vert->no);
+ }
+ }
+}
+
+static void subdiv_evaluate_edge_vertices_special(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly,
+ VerticesForInterpolation *vertex_interpolation)
+{
+ const int resolution = ctx->settings->resolution;
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const int num_vertices_per_ptex_edge = ((resolution >> 1) + 1);
+ const float inv_ptex_resolution_1 =
+ 1.0f / (float)(num_vertices_per_ptex_edge - 1);
+ Subdiv *subdiv = ctx->subdiv;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ const int poly_index = coarse_poly - coarse_mesh->mpoly;
+ const int ptex_face_start_index = ctx->face_ptex_offset[poly_index];
+ int ptex_face_index = ptex_face_start_index;
+ for (int corner = 0;
+ corner < coarse_poly->totloop;
+ corner++, ptex_face_index++)
+ {
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ if (BLI_BITMAP_TEST_AND_SET_ATOMIC(ctx->coarse_edges_used_map,
+ coarse_loop->e))
+ {
+ continue;
+ }
+ vertex_interpolation_from_ptex(ctx,
+ vertex_interpolation,
+ coarse_poly,
+ corner);
+ const MEdge *coarse_edge = &coarse_medge[coarse_loop->e];
+ const bool flip = (coarse_edge->v2 == coarse_loop->v);
+ MVert *subdiv_vert = &subdiv_mvert[
+ ctx->vertices_edge_offset +
+ coarse_loop->e * num_subdiv_vertices_per_coarse_edge];
+ int veretx_delta = 1;
+ if (flip) {
+ subdiv_vert += num_subdiv_vertices_per_coarse_edge - 1;
+ veretx_delta = -1;
+ }
+ for (int vertex_index = 1;
+ vertex_index < num_vertices_per_ptex_edge;
+ vertex_index++, subdiv_vert += veretx_delta)
+ {
+ float u = vertex_index * inv_ptex_resolution_1;
+ subdiv_vertex_data_interpolate(ctx,
+ subdiv_vert,
+ vertex_interpolation,
+ u, 0.0f);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ ptex_face_index,
+ u, 0.0f,
+ subdiv_vert->co, subdiv_vert->no);
+ }
+ const int next_ptex_face_index =
+ ptex_face_start_index + (corner + 1) % coarse_poly->totloop;
+ for (int vertex_index = 1;
+ vertex_index < num_vertices_per_ptex_edge - 1;
+ vertex_index++, subdiv_vert += veretx_delta)
+ {
+ float v = 1.0f - vertex_index * inv_ptex_resolution_1;
+ subdiv_vertex_data_interpolate(ctx,
+ subdiv_vert,
+ vertex_interpolation,
+ 0.0f, v);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ next_ptex_face_index,
+ 0.0f, v,
+ subdiv_vert->co, subdiv_vert->no);
+ }
+ }
+}
+
+static void subdiv_evaluate_edge_vertices(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly,
+ VerticesForInterpolation *vertex_interpolation)
+{
+ if (coarse_poly->totloop == 4) {
+ subdiv_evaluate_edge_vertices_regular(
+ ctx, coarse_poly, vertex_interpolation);
+ }
+ else {
+ subdiv_evaluate_edge_vertices_special(
+ ctx, coarse_poly, vertex_interpolation);
+ }
+}
+
+/* Evaluation of inner vertices, they are coming from ptex patches. */
+
+static void subdiv_evaluate_inner_vertices_regular(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly,
+ VerticesForInterpolation *vertex_interpolation)
+{
+ const int resolution = ctx->settings->resolution;
+ const float inv_resolution_1 = 1.0f / (float)(resolution - 1);
+ Subdiv *subdiv = ctx->subdiv;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ const int poly_index = coarse_poly - coarse_mesh->mpoly;
+ const int ptex_face_index = ctx->face_ptex_offset[poly_index];
+ const int start_vertex_index = ctx->subdiv_vertex_offset[poly_index];
+ MVert *subdiv_vert =
+ &subdiv_mvert[ctx->vertices_inner_offset + start_vertex_index];
+ vertex_interpolation_from_ptex(ctx,
+ vertex_interpolation,
+ coarse_poly,
+ 0);
+ for (int y = 1; y < resolution - 1; y++) {
+ const float v = y * inv_resolution_1;
+ for (int x = 1; x < resolution - 1; x++, subdiv_vert++) {
+ const float u = x * inv_resolution_1;
+ subdiv_vertex_data_interpolate(ctx,
+ subdiv_vert,
+ vertex_interpolation,
+ u, v);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ ptex_face_index,
+ u, v,
+ subdiv_vert->co, subdiv_vert->no);
+ }
+ }
+}
+
+static void subdiv_evaluate_inner_vertices_special(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly,
+ VerticesForInterpolation *vertex_interpolation)
+{
+ const int resolution = ctx->settings->resolution;
+ const int ptex_face_resolution = ptex_face_resolution_get(
+ coarse_poly, resolution);
+ const float inv_ptex_face_resolution_1 =
+ 1.0f / (float)(ptex_face_resolution - 1);
+ Subdiv *subdiv = ctx->subdiv;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ const int poly_index = coarse_poly - coarse_mesh->mpoly;
+ int ptex_face_index = ctx->face_ptex_offset[poly_index];
+ const int start_vertex_index = ctx->subdiv_vertex_offset[poly_index];
+ MVert *subdiv_vert =
+ &subdiv_mvert[ctx->vertices_inner_offset + start_vertex_index];
+ vertex_interpolation_from_ptex(ctx,
+ vertex_interpolation,
+ coarse_poly,
+ 0);
+ subdiv_vertex_data_interpolate(ctx,
+ subdiv_vert,
+ vertex_interpolation,
+ 1.0f, 1.0f);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ ptex_face_index,
+ 1.0f, 1.0f,
+ subdiv_vert->co, subdiv_vert->no);
+ subdiv_vert++;
+ for (int corner = 0;
+ corner < coarse_poly->totloop;
+ corner++, ptex_face_index++)
+ {
+ if (corner != 0) {
+ vertex_interpolation_from_ptex(ctx,
+ vertex_interpolation,
+ coarse_poly,
+ corner);
+ }
+ for (int y = 1; y < ptex_face_resolution - 1; y++) {
+ const float v = y * inv_ptex_face_resolution_1;
+ for (int x = 1; x < ptex_face_resolution; x++, subdiv_vert++) {
+ const float u = x * inv_ptex_face_resolution_1;
+ subdiv_vertex_data_interpolate(ctx,
+ subdiv_vert,
+ vertex_interpolation,
+ u, v);
+ BKE_subdiv_eval_limit_point_and_short_normal(
+ subdiv,
+ ptex_face_index,
+ u, v,
+ subdiv_vert->co, subdiv_vert->no);
+ }
+ }
+ }
+}
+
+static void subdiv_evaluate_inner_vertices(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly,
+ VerticesForInterpolation *vertex_interpolation)
+{
+ if (coarse_poly->totloop == 4) {
+ subdiv_evaluate_inner_vertices_regular(
+ ctx, coarse_poly, vertex_interpolation);
+ }
+ else {
+ subdiv_evaluate_inner_vertices_special(
+ ctx, coarse_poly, vertex_interpolation);
+ }
+}
+
+/* Evaluate all vertices which are emitted from given coarse polygon. */
+static void subdiv_evaluate_vertices(SubdivMeshContext *ctx,
+ const int poly_index)
+{
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_mpoly[poly_index];
+ /* Initialize vertex interpolation, it is reused by corner vertices, coarse
+ * edges and patch evaluation.
+ */
+ VerticesForInterpolation vertex_interpolation;
+ vertex_interpolation_init(ctx, &vertex_interpolation, coarse_poly);
+ (void) vertex_interpolation;
+ subdiv_evaluate_corner_vertices(ctx, coarse_poly);
+ subdiv_evaluate_edge_vertices(ctx, coarse_poly, &vertex_interpolation);
+ subdiv_evaluate_inner_vertices(ctx, coarse_poly, &vertex_interpolation);
+ vertex_interpolation_end(&vertex_interpolation);
+}
+
+/* =============================================================================
+ * Edge subdivision process.
+ */
+
+static void subdiv_copy_edge_data(
+ SubdivMeshContext *ctx,
+ MEdge *subdiv_edge,
+ const MEdge *coarse_edge)
+{
+ const int subdiv_edge_index = subdiv_edge - ctx->subdiv_mesh->medge;
+ if (coarse_edge == NULL) {
+ subdiv_edge->crease = 0;
+ subdiv_edge->bweight = 0;
+ subdiv_edge->flag = 0;
+ if (ctx->edge_origindex != NULL) {
+ ctx->edge_origindex[subdiv_edge_index] = ORIGINDEX_NONE;
+ }
+ return;
+ }
+ const int coarse_edge_index = coarse_edge - ctx->coarse_mesh->medge;
+ CustomData_copy_data(&ctx->coarse_mesh->edata,
+ &ctx->subdiv_mesh->edata,
+ coarse_edge_index,
+ subdiv_edge_index,
+ 1);
+}
+
+static MEdge *subdiv_create_edges_row(SubdivMeshContext *ctx,
+ MEdge *subdiv_edge,
+ const MEdge *coarse_edge,
+ const int start_vertex_index,
+ const int num_edges_per_row)
+{
+ int vertex_index = start_vertex_index;
+ for (int edge_index = 0;
+ edge_index < num_edges_per_row - 1;
+ edge_index++, subdiv_edge++)
+ {
+ subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
+ subdiv_edge->v1 = vertex_index;
+ subdiv_edge->v2 = vertex_index + 1;
+ vertex_index += 1;
+ }
+ return subdiv_edge;
+}
+
+static MEdge *subdiv_create_edges_column(SubdivMeshContext *ctx,
+ MEdge *subdiv_edge,
+ const MEdge *coarse_start_edge,
+ const MEdge *coarse_end_edge,
+ const int start_vertex_index,
+ const int num_edges_per_row)
+{
+ int vertex_index = start_vertex_index;
+ for (int edge_index = 0;
+ edge_index < num_edges_per_row;
+ edge_index++, subdiv_edge++)
+ {
+ const MEdge *coarse_edge = NULL;
+ if (edge_index == 0) {
+ coarse_edge = coarse_start_edge;
+ }
+ else if (edge_index == num_edges_per_row - 1) {
+ coarse_edge = coarse_end_edge;
+ }
+ subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
+ subdiv_edge->v1 = vertex_index;
+ subdiv_edge->v2 = vertex_index + num_edges_per_row;
+ vertex_index += 1;
+ }
+ return subdiv_edge;
+}
+
+/* Create edges between inner vertices of patch, and also edges to the
+ * boundary.
+ */
+
+/* Consider a subdivision of base face at level 1:
+ *
+ * y
+ * ^
+ * | (6) ---- (7) ---- (8)
+ * | | | |
+ * | (3) ---- (4) ---- (5)
+ * | | | |
+ * | (0) ---- (1) ---- (2)
+ * o---------------------------> x
+ *
+ * This is illustrate which parts of geometry is created by code below.
+ */
+
+static void subdiv_create_edges_all_patches_regular(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const int poly_index = coarse_poly - coarse_mpoly;
+ const int resolution = ctx->settings->resolution;
+ const int start_vertex_index =
+ ctx->vertices_inner_offset +
+ ctx->subdiv_vertex_offset[poly_index];
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MEdge *subdiv_medge = subdiv_mesh->medge;
+ MEdge *subdiv_edge = &subdiv_medge[
+ ctx->edge_inner_offset + ctx->subdiv_edge_offset[poly_index]];
+ /* Create bottom row of edges (0-1, 1-2). */
+ subdiv_edge = subdiv_create_edges_row(
+ ctx,
+ subdiv_edge,
+ NULL,
+ start_vertex_index,
+ resolution - 2);
+ /* Create remaining edges. */
+ for (int row = 0; row < resolution - 3; row++) {
+ const int start_row_vertex_index =
+ start_vertex_index + row * (resolution - 2);
+ /* Create vertical columns.
+ *
+ * At first iteration it will be edges (0-3. 1-4, 2-5), then it
+ * will be (3-6, 4-7, 5-8) and so on.
+ */
+ subdiv_edge = subdiv_create_edges_column(
+ ctx,
+ subdiv_edge,
+ NULL,
+ NULL,
+ start_row_vertex_index,
+ resolution - 2);
+ /* Create horizontal edge row.
+ *
+ * At first iteration it will be edges (3-4, 4-5), then it will be
+ * (6-7, 7-8) and so on.
+ */
+ subdiv_edge = subdiv_create_edges_row(
+ ctx,
+ subdiv_edge,
+ NULL,
+ start_row_vertex_index + resolution - 2,
+ resolution - 2);
+ }
+ /* Connect inner part of patch to boundary. */
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ const MEdge *coarse_edge = &coarse_medge[coarse_loop->e];
+ const int start_edge_vertex = ctx->vertices_edge_offset +
+ coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ const bool flip = (coarse_edge->v2 == coarse_loop->v);
+ int side_start_index = start_vertex_index;
+ int side_stride = 0;
+ /* Calculate starting veretx of corresponding inner part of ptex. */
+ if (corner == 0) {
+ side_stride = 1;
+ }
+ else if (corner == 1) {
+ side_start_index += resolution - 3;
+ side_stride = resolution - 2;
+ }
+ else if (corner == 2) {
+ side_start_index += num_subdiv_vertices_per_coarse_edge *
+ num_subdiv_vertices_per_coarse_edge - 1;
+ side_stride = -1;
+ }
+ else if (corner == 3) {
+ side_start_index += num_subdiv_vertices_per_coarse_edge *
+ (num_subdiv_vertices_per_coarse_edge - 1);
+ side_stride = -(resolution - 2);
+ }
+ for (int i = 0; i < resolution - 2; i++, subdiv_edge++) {
+ subdiv_copy_edge_data(ctx, subdiv_edge, NULL);
+ if (flip) {
+ subdiv_edge->v1 = start_edge_vertex + (resolution - i - 3);
+ }
+ else {
+ subdiv_edge->v1 = start_edge_vertex + i;
+ }
+ subdiv_edge->v2 = side_start_index + side_stride * i;
+ }
+ }
+}
+
+static void subdiv_create_edges_all_patches_special(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const int poly_index = coarse_poly - coarse_mpoly;
+ const int resolution = ctx->settings->resolution;
+ const int ptex_face_resolution =
+ ptex_face_resolution_get(coarse_poly, resolution);
+ const int ptex_face_inner_resolution = ptex_face_resolution - 2;
+ const int num_inner_vertices_per_ptex =
+ (ptex_face_resolution - 1) * (ptex_face_resolution - 2);
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const int center_vertex_index =
+ ctx->vertices_inner_offset +
+ ctx->subdiv_vertex_offset[poly_index];
+ const int start_vertex_index = center_vertex_index + 1;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MEdge *subdiv_medge = subdiv_mesh->medge;
+ MEdge *subdiv_edge = &subdiv_medge[
+ ctx->edge_inner_offset + ctx->subdiv_edge_offset[poly_index]];
+ /* Create inner ptex edges. */
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const int start_ptex_face_vertex_index =
+ start_vertex_index + corner * num_inner_vertices_per_ptex;
+ /* Similar steps to regular patch case. */
+ subdiv_edge = subdiv_create_edges_row(
+ ctx,
+ subdiv_edge,
+ NULL,
+ start_ptex_face_vertex_index,
+ ptex_face_inner_resolution + 1);
+ for (int row = 0; row < ptex_face_inner_resolution - 1; row++) {
+ const int start_row_vertex_index =
+ start_ptex_face_vertex_index +
+ row * (ptex_face_inner_resolution + 1);
+ subdiv_edge = subdiv_create_edges_column(
+ ctx,
+ subdiv_edge,
+ NULL,
+ NULL,
+ start_row_vertex_index,
+ ptex_face_inner_resolution + 1);
+ subdiv_edge = subdiv_create_edges_row(
+ ctx,
+ subdiv_edge,
+ NULL,
+ start_row_vertex_index + ptex_face_inner_resolution + 1,
+ ptex_face_inner_resolution + 1);
+ }
+ }
+ /* Create connections between ptex faces. */
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const int next_corner = (corner + 1) % coarse_poly->totloop;
+ int current_patch_vertex_index =
+ start_vertex_index + corner * num_inner_vertices_per_ptex +
+ ptex_face_inner_resolution;
+ int next_path_vertex_index =
+ start_vertex_index + next_corner * num_inner_vertices_per_ptex +
+ num_inner_vertices_per_ptex - ptex_face_resolution + 1;
+ for (int row = 0;
+ row < ptex_face_inner_resolution;
+ row++, subdiv_edge++)
+ {
+ subdiv_copy_edge_data(ctx, subdiv_edge, NULL);
+ subdiv_edge->v1 = current_patch_vertex_index;
+ subdiv_edge->v2 = next_path_vertex_index;
+ current_patch_vertex_index += ptex_face_inner_resolution + 1;
+ next_path_vertex_index += 1;
+ }
+ }
+ /* Create edges from center. */
+ if (ptex_face_resolution >= 3) {
+ for (int corner = 0;
+ corner < coarse_poly->totloop;
+ corner++, subdiv_edge++)
+ {
+ const int current_patch_end_vertex_index =
+ start_vertex_index + corner * num_inner_vertices_per_ptex +
+ num_inner_vertices_per_ptex - 1;
+ subdiv_copy_edge_data(ctx, subdiv_edge, NULL);
+ subdiv_edge->v1 = center_vertex_index;
+ subdiv_edge->v2 = current_patch_end_vertex_index;
+ }
+ }
+ /* Connect inner path of patch to boundary. */
+ const MLoop *prev_coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + coarse_poly->totloop - 1];
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ {
+ const MEdge *coarse_edge = &coarse_medge[coarse_loop->e];
+ const int start_edge_vertex = ctx->vertices_edge_offset +
+ coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ const bool flip = (coarse_edge->v2 == coarse_loop->v);
+ int side_start_index;
+ if (ptex_face_resolution >= 3) {
+ side_start_index =
+ start_vertex_index + num_inner_vertices_per_ptex * corner;
+ }
+ else {
+ side_start_index = center_vertex_index;
+ }
+ for (int i = 0; i < ptex_face_resolution - 1; i++, subdiv_edge++) {
+ subdiv_copy_edge_data(ctx, subdiv_edge, NULL);
+ if (flip) {
+ subdiv_edge->v1 = start_edge_vertex + (resolution - i - 3);
+ }
+ else {
+ subdiv_edge->v1 = start_edge_vertex + i;
+ }
+ subdiv_edge->v2 = side_start_index + i;
+ }
+ }
+ if (ptex_face_resolution >= 3) {
+ const MEdge *coarse_edge = &coarse_medge[prev_coarse_loop->e];
+ const int start_edge_vertex = ctx->vertices_edge_offset +
+ prev_coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ const bool flip = (coarse_edge->v2 == coarse_loop->v);
+ int side_start_index =
+ start_vertex_index + num_inner_vertices_per_ptex * corner;
+ for (int i = 0; i < ptex_face_resolution - 2; i++, subdiv_edge++) {
+ subdiv_copy_edge_data(ctx, subdiv_edge, NULL);
+ if (flip) {
+ subdiv_edge->v1 = start_edge_vertex + (resolution - i - 3);
+ }
+ else {
+ subdiv_edge->v1 = start_edge_vertex + i;
+ }
+ subdiv_edge->v2 = side_start_index +
+ (ptex_face_inner_resolution + 1) * i;
+ }
+ }
+ prev_coarse_loop = coarse_loop;
+ }
+}
+
+static void subdiv_create_edges_all_patches(
+ SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ if (coarse_poly->totloop == 4) {
+ subdiv_create_edges_all_patches_regular(ctx, coarse_poly);
+ }
+ else {
+ subdiv_create_edges_all_patches_special(ctx, coarse_poly);
+ }
+}
+
+static void subdiv_create_edges(SubdivMeshContext *ctx, int poly_index)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_mpoly[poly_index];
+ subdiv_create_edges_all_patches(ctx, coarse_poly);
+}
+
+static void subdiv_create_boundary_edges(
+ SubdivMeshContext *ctx,
+ int edge_index)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ const MEdge *coarse_edge = &coarse_medge[edge_index];
+ const int resolution = ctx->settings->resolution;
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const int num_subdiv_edges_per_coarse_edge = resolution - 1;
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MEdge *subdiv_medge = subdiv_mesh->medge;
+ MEdge *subdiv_edge = &subdiv_medge[
+ ctx->edge_boundary_offset +
+ edge_index * num_subdiv_edges_per_coarse_edge];
+ int last_vertex_index = ctx->vertices_corner_offset + coarse_edge->v1;
+ for (int i = 0;
+ i < num_subdiv_edges_per_coarse_edge - 1;
+ i++, subdiv_edge++)
+ {
+ subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
+ subdiv_edge->v1 = last_vertex_index;
+ subdiv_edge->v2 =
+ ctx->vertices_edge_offset +
+ edge_index * num_subdiv_vertices_per_coarse_edge +
+ i;
+ last_vertex_index = subdiv_edge->v2;
+ }
+ subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
+ subdiv_edge->v1 = last_vertex_index;
+ subdiv_edge->v2 = ctx->vertices_corner_offset + coarse_edge->v2;
+}
+
+/* =============================================================================
+ * Loops creation/interpolation.
+ */
+
+static void subdiv_copy_loop_data(
+ const SubdivMeshContext *ctx,
+ MLoop *subdiv_loop,
+ const LoopsForInterpolation *loop_interpolation,
+ const float u, const float v)
+{
+ const int subdiv_loop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
+ const float weights[4] = {(1.0f - u) * (1.0f - v),
+ u * (1.0f - v),
+ u * v,
+ (1.0f - u) * v};
+ CustomData_interp(loop_interpolation->loop_data,
+ &ctx->subdiv_mesh->ldata,
+ loop_interpolation->loop_indices,
+ weights, NULL,
+ 4,
+ subdiv_loop_index);
+ /* TODO(sergey): Set ORIGINDEX. */
+}
+
+static void subdiv_eval_uv_layer(SubdivMeshContext *ctx,
+ MLoop *subdiv_loop,
+ const int ptex_face_index,
+ const float u, const float v,
+ const float du, const float dv)
+{
+ if (ctx->num_uv_layers == 0) {
+ return;
+ }
+ Subdiv *subdiv = ctx->subdiv;
+ const int mloop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
+ for (int layer_index = 0; layer_index < ctx->num_uv_layers; layer_index++) {
+ MLoopUV *subdiv_loopuv = &ctx->uv_layers[layer_index][mloop_index];
+ BKE_subdiv_eval_face_varying(subdiv,
+ layer_index,
+ ptex_face_index,
+ u, v,
+ subdiv_loopuv[0].uv);
+ BKE_subdiv_eval_face_varying(subdiv,
+ layer_index,
+ ptex_face_index,
+ u + du, v,
+ subdiv_loopuv[1].uv);
+ BKE_subdiv_eval_face_varying(subdiv,
+ layer_index,
+ ptex_face_index,
+ u + du, v + dv,
+ subdiv_loopuv[2].uv);
+ BKE_subdiv_eval_face_varying(subdiv,
+ layer_index,
+ ptex_face_index,
+ u, v + dv,
+ subdiv_loopuv[3].uv);
+ }
+}
+
+static void rotate_indices(const int rot, int *a, int *b, int *c, int *d)
+{
+ int values[4] = {*a, *b, *c, *d};
+ *a = values[(0 - rot + 4) % 4];
+ *b = values[(1 - rot + 4) % 4];
+ *c = values[(2 - rot + 4) % 4];
+ *d = values[(3 - rot + 4) % 4];
+}
+
+static void subdiv_create_loops_of_poly(
+ SubdivMeshContext *ctx,
+ LoopsForInterpolation *loop_interpolation,
+ MLoop *subdiv_loop_start,
+ const int ptex_face_index,
+ const int rotation,
+ /*const*/ int v0, /*const*/ int e0,
+ /*const*/ int v1, /*const*/ int e1,
+ /*const*/ int v2, /*const*/ int e2,
+ /*const*/ int v3, /*const*/ int e3,
+ const float u, const float v,
+ const float du, const float dv)
+{
+ rotate_indices(rotation, &v0, &v1, &v2, &v3);
+ rotate_indices(rotation, &e0, &e1, &e2, &e3);
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop_start[0],
+ loop_interpolation,
+ u, v);
+ subdiv_loop_start[0].v = v0;
+ subdiv_loop_start[0].e = e0;
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop_start[1],
+ loop_interpolation,
+ u + du, v);
+ subdiv_loop_start[1].v = v1;
+ subdiv_loop_start[1].e = e1;
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop_start[2],
+ loop_interpolation,
+ u + du, v + dv);
+ subdiv_loop_start[2].v = v2;
+ subdiv_loop_start[2].e = e2;
+ subdiv_copy_loop_data(ctx,
+ &subdiv_loop_start[3],
+ loop_interpolation,
+ u, v + dv);
+ subdiv_loop_start[3].v = v3;
+ subdiv_loop_start[3].e = e3;
+ /* Interpolate UV layers using OpenSubdiv. */
+ subdiv_eval_uv_layer(ctx,
+ subdiv_loop_start,
+ ptex_face_index,
+ u, v, du, dv);
+}
+
+static void subdiv_create_loops_regular(SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ const int resolution = ctx->settings->resolution;
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const int poly_index = coarse_poly - coarse_mpoly;
+ const int ptex_resolution =
+ ptex_face_resolution_get(coarse_poly, resolution);
+ const int ptex_inner_resolution = ptex_resolution - 2;
+ const int num_subdiv_edges_per_coarse_edge = resolution - 1;
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const float inv_ptex_resolution_1 = 1.0f / (float)(ptex_resolution - 1);
+ const int ptex_face_index = ctx->face_ptex_offset[poly_index];
+ const int start_vertex_index =
+ ctx->vertices_inner_offset +
+ ctx->subdiv_vertex_offset[poly_index];
+ const int start_edge_index =
+ ctx->edge_inner_offset +
+ ctx->subdiv_edge_offset[poly_index];
+ const int start_poly_index = ctx->subdiv_polygon_offset[poly_index];
+ const int start_loop_index = 4 * start_poly_index;
+ const float du = inv_ptex_resolution_1;
+ const float dv = inv_ptex_resolution_1;
+ /* Hi-poly subdivided mesh. */
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MLoop *subdiv_loopoop = subdiv_mesh->mloop;
+ MLoop *subdiv_loop = &subdiv_loopoop[start_loop_index];
+ LoopsForInterpolation loop_interpolation;
+ loop_interpolation_init(ctx, &loop_interpolation, coarse_poly);
+ loop_interpolation_from_ptex(ctx,
+ &loop_interpolation,
+ coarse_poly,
+ 0);
+ /* Loops for inner part of ptex. */
+ for (int y = 1; y < ptex_resolution - 2; y++) {
+ const float v = y * inv_ptex_resolution_1;
+ const int inner_y = y - 1;
+ for (int x = 1; x < ptex_resolution - 2; x++, subdiv_loop += 4) {
+ const int inner_x = x - 1;
+ const float u = x * inv_ptex_resolution_1;
+ /* Vertex indicies ordered counter-clockwise. */
+ const int v0 = start_vertex_index +
+ (inner_y * ptex_inner_resolution + inner_x);
+ const int v1 = v0 + 1;
+ const int v2 = v0 + ptex_inner_resolution + 1;
+ const int v3 = v0 + ptex_inner_resolution;
+ /* Edge indicies ordered counter-clockwise. */
+ const int e0 = start_edge_index +
+ (inner_y * (2 * ptex_inner_resolution - 1) + inner_x);
+ const int e1 = e0 + ptex_inner_resolution;
+ const int e2 = e0 + (2 * ptex_inner_resolution - 1);
+ const int e3 = e0 + ptex_inner_resolution - 1;
+ subdiv_create_loops_of_poly(
+ ctx, &loop_interpolation, subdiv_loop, ptex_face_index, 0,
+ v0, e0, v1, e1, v2, e2, v3, e3,
+ u, v, du, dv);
+ }
+ }
+ /* Loops for faces connecting inner ptex part with boundary. */
+ const MLoop *prev_coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + coarse_poly->totloop - 1];
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ const MEdge *coarse_edge = &coarse_medge[coarse_loop->e];
+ const MEdge *prev_coarse_edge = &coarse_medge[prev_coarse_loop->e];
+ const int start_edge_vertex = ctx->vertices_edge_offset +
+ coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ const bool flip = (coarse_edge->v2 == coarse_loop->v);
+ int side_start_index = start_vertex_index;
+ int side_stride = 0;
+ int v0 = ctx->vertices_corner_offset + coarse_loop->v;
+ int v3, e3;
+ int e2_offset, e2_stride;
+ float u, v, delta_u, delta_v;
+ if (prev_coarse_loop->v == prev_coarse_edge->v1) {
+ v3 = ctx->vertices_edge_offset +
+ prev_coarse_loop->e * num_subdiv_vertices_per_coarse_edge +
+ num_subdiv_vertices_per_coarse_edge - 1;
+ e3 = ctx->edge_boundary_offset +
+ prev_coarse_loop->e * num_subdiv_edges_per_coarse_edge +
+ num_subdiv_edges_per_coarse_edge - 1;
+ }
+ else {
+ v3 = ctx->vertices_edge_offset +
+ prev_coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ e3 = ctx->edge_boundary_offset +
+ prev_coarse_loop->e * num_subdiv_edges_per_coarse_edge;
+ }
+ /* Calculate starting veretx of corresponding inner part of ptex. */
+ if (corner == 0) {
+ side_stride = 1;
+ e2_offset = 0;
+ e2_stride = 1;
+ u = 0.0f;
+ v = 0.0f;
+ delta_u = du;
+ delta_v = 0.0f;
+ }
+ else if (corner == 1) {
+ side_start_index += resolution - 3;
+ side_stride = resolution - 2;
+ e2_offset = 2 * num_subdiv_edges_per_coarse_edge - 4;
+ e2_stride = 2 * num_subdiv_edges_per_coarse_edge - 3;
+ u = 1.0f - du;
+ v = 0;
+ delta_u = 0.0f;
+ delta_v = dv;
+ }
+ else if (corner == 2) {
+ side_start_index += num_subdiv_vertices_per_coarse_edge *
+ num_subdiv_vertices_per_coarse_edge - 1;
+ side_stride = -1;
+ e2_offset = num_edges_per_ptex_face_get(resolution - 2) - 1;
+ e2_stride = -1;
+ u = 1.0f - du;
+ v = 1.0f - dv;
+ delta_u = -du;
+ delta_v = 0.0f;
+ }
+ else if (corner == 3) {
+ side_start_index += num_subdiv_vertices_per_coarse_edge *
+ (num_subdiv_vertices_per_coarse_edge - 1);
+ side_stride = -(resolution - 2);
+ e2_offset = num_edges_per_ptex_face_get(resolution - 2) -
+ (2 * num_subdiv_edges_per_coarse_edge - 3);
+ e2_stride = -(2 * num_subdiv_edges_per_coarse_edge - 3);
+ u = 0.0f;
+ v = 1.0f - dv;
+ delta_u = 0.0f;
+ delta_v = -dv;
+ }
+ for (int i = 0; i < resolution - 2; i++, subdiv_loop += 4) {
+ int v1;
+ if (flip) {
+ v1 = start_edge_vertex + (resolution - i - 3);
+ }
+ else {
+ v1 = start_edge_vertex + i;
+ }
+ const int v2 = side_start_index + side_stride * i;
+ int e0;
+ if (flip) {
+ e0 = ctx->edge_boundary_offset +
+ coarse_loop->e * num_subdiv_edges_per_coarse_edge +
+ num_subdiv_edges_per_coarse_edge - i - 1;
+ }
+ else {
+ e0 = ctx->edge_boundary_offset +
+ coarse_loop->e * num_subdiv_edges_per_coarse_edge +
+ i;
+ }
+ int e1 = start_edge_index +
+ num_edges_per_ptex_face_get(resolution - 2) +
+ corner * num_subdiv_vertices_per_coarse_edge +
+ i;
+ int e2;
+ if (i == 0) {
+ e2 = start_edge_index +
+ num_edges_per_ptex_face_get(resolution - 2) +
+ ((corner - 1 + coarse_poly->totloop) %
+ coarse_poly->totloop) *
+ num_subdiv_vertices_per_coarse_edge +
+ num_subdiv_vertices_per_coarse_edge - 1;
+ }
+ else {
+ e2 = start_edge_index + e2_offset + e2_stride * (i - 1);
+ }
+ subdiv_create_loops_of_poly(
+ ctx, &loop_interpolation, subdiv_loop,
+ ptex_face_index, corner,
+ v0, e0, v1, e1, v2, e2, v3, e3,
+ u + delta_u * i, v + delta_v * i, du, dv);
+ v0 = v1;
+ v3 = v2;
+ e3 = e1;
+ }
+ prev_coarse_loop = coarse_loop;
+ }
+ loop_interpolation_end(&loop_interpolation);
+}
+
+static void subdiv_create_loops_special(SubdivMeshContext *ctx,
+ const MPoly *coarse_poly)
+{
+ const int resolution = ctx->settings->resolution;
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ const MLoop *coarse_mloop = coarse_mesh->mloop;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const int poly_index = coarse_poly - coarse_mpoly;
+ const int ptex_face_resolution =
+ ptex_face_resolution_get(coarse_poly, resolution);
+ const int ptex_face_inner_resolution = ptex_face_resolution - 2;
+ const float inv_ptex_resolution_1 =
+ 1.0f / (float)(ptex_face_resolution - 1);
+ const int num_inner_vertices_per_ptex =
+ (ptex_face_resolution - 1) * (ptex_face_resolution - 2);
+ const int num_inner_edges_per_ptex_face =
+ num_inner_edges_per_ptex_face_get(
+ ptex_face_inner_resolution + 1);
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const int num_subdiv_edges_per_coarse_edge = resolution - 1;
+ const int ptex_face_index = ctx->face_ptex_offset[poly_index];
+ const int center_vertex_index =
+ ctx->vertices_inner_offset +
+ ctx->subdiv_vertex_offset[poly_index];
+ const int start_vertex_index = center_vertex_index + 1;
+ const int start_inner_vertex_index = center_vertex_index + 1;
+ const int start_edge_index = ctx->edge_inner_offset +
+ ctx->subdiv_edge_offset[poly_index];
+ const int start_poly_index = ctx->subdiv_polygon_offset[poly_index];
+ const int start_loop_index = 4 * start_poly_index;
+ const float du = inv_ptex_resolution_1;
+ const float dv = inv_ptex_resolution_1;
+ /* Hi-poly subdivided mesh. */
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MLoop *subdiv_loopoop = subdiv_mesh->mloop;
+ MLoop *subdiv_loop = &subdiv_loopoop[start_loop_index];
+ LoopsForInterpolation loop_interpolation;
+ loop_interpolation_init(ctx, &loop_interpolation, coarse_poly);
+ for (int corner = 0;
+ corner < coarse_poly->totloop;
+ corner++)
+ {
+ const int corner_vertex_index =
+ start_vertex_index + corner * num_inner_vertices_per_ptex;
+ const int corner_edge_index =
+ start_edge_index + corner * num_inner_edges_per_ptex_face;
+ loop_interpolation_from_ptex(ctx,
+ &loop_interpolation,
+ coarse_poly,
+ corner);
+ for (int y = 1; y < ptex_face_inner_resolution; y++) {
+ const float v = y * inv_ptex_resolution_1;
+ const int inner_y = y - 1;
+ for (int x = 1;
+ x < ptex_face_inner_resolution + 1;
+ x++, subdiv_loop += 4)
+ {
+ const int inner_x = x - 1;
+ const float u = x * inv_ptex_resolution_1;
+ /* Vertex indicies ordered counter-clockwise. */
+ const int v0 =
+ corner_vertex_index +
+ (inner_y * (ptex_face_inner_resolution + 1) + inner_x);
+ const int v1 = v0 + 1;
+ const int v2 = v0 + ptex_face_inner_resolution + 2;
+ const int v3 = v0 + ptex_face_inner_resolution + 1;
+ /* Edge indicies ordered counter-clockwise. */
+ const int e0 = corner_edge_index +
+ (inner_y * (2 * ptex_face_inner_resolution + 1) + inner_x);
+ const int e1 = e0 + ptex_face_inner_resolution + 1;
+ const int e2 = e0 + (2 * ptex_face_inner_resolution + 1);
+ const int e3 = e0 + ptex_face_inner_resolution;
+ subdiv_create_loops_of_poly(
+ ctx, &loop_interpolation, subdiv_loop,
+ ptex_face_index + corner, 0,
+ v0, e0, v1, e1, v2, e2, v3, e3,
+ u, v, du, dv);
+ }
+ }
+ }
+ /* Create connections between ptex faces. */
+ for (int corner = 0; corner < coarse_poly->totloop; corner++) {
+ const int next_corner = (corner + 1) % coarse_poly->totloop;
+ const int corner_edge_index =
+ start_edge_index + corner * num_inner_edges_per_ptex_face;
+ const int next_corner_edge_index =
+ start_edge_index + next_corner * num_inner_edges_per_ptex_face;
+ int current_patch_vertex_index =
+ start_inner_vertex_index +
+ corner * num_inner_vertices_per_ptex +
+ ptex_face_inner_resolution;
+ int next_path_vertex_index =
+ start_inner_vertex_index +
+ next_corner * num_inner_vertices_per_ptex +
+ num_inner_vertices_per_ptex - ptex_face_resolution + 1;
+ int v0 = current_patch_vertex_index;
+ int v1 = next_path_vertex_index;
+ current_patch_vertex_index += ptex_face_inner_resolution + 1;
+ next_path_vertex_index += 1;
+ int e0 = start_edge_index +
+ coarse_poly->totloop * num_inner_edges_per_ptex_face +
+ corner * (ptex_face_resolution - 2);
+ int e1 = next_corner_edge_index + num_inner_edges_per_ptex_face -
+ ptex_face_resolution + 2;
+ int e3 = corner_edge_index + 2 * ptex_face_resolution - 4;
+ loop_interpolation_from_ptex(ctx,
+ &loop_interpolation,
+ coarse_poly,
+ next_corner);
+ for (int row = 1;
+ row < ptex_face_inner_resolution;
+ row++, subdiv_loop += 4)
+ {
+ const int v2 = next_path_vertex_index;
+ const int v3 = current_patch_vertex_index;
+ const int e2 = e0 + 1;
+ const float u = row * du;
+ const float v = 1.0f - dv;
+ subdiv_create_loops_of_poly(
+ ctx, &loop_interpolation, subdiv_loop,
+ ptex_face_index + next_corner, 3,
+ v0, e0, v1, e1, v2, e2, v3, e3,
+ u, v, du, dv);
+ current_patch_vertex_index += ptex_face_inner_resolution + 1;
+ next_path_vertex_index += 1;
+ v0 = v3;
+ v1 = v2;
+ e0 = e2;
+ e1 += 1;
+ e3 += 2 * ptex_face_resolution - 3;
+ }
+ }
+ /* Create loops from center. */
+ if (ptex_face_resolution >= 3) {
+ const int start_center_edge_index =
+ start_edge_index +
+ (num_inner_edges_per_ptex_face +
+ ptex_face_inner_resolution) * coarse_poly->totloop;
+ const int start_boundary_edge =
+ start_edge_index +
+ coarse_poly->totloop * num_inner_edges_per_ptex_face +
+ ptex_face_inner_resolution - 1;
+ for (int corner = 0, prev_corner = coarse_poly->totloop - 1;
+ corner < coarse_poly->totloop;
+ prev_corner = corner, corner++, subdiv_loop += 4)
+ {
+ loop_interpolation_from_ptex(ctx,
+ &loop_interpolation,
+ coarse_poly,
+ corner);
+ const int corner_edge_index =
+ start_edge_index +
+ corner * num_inner_edges_per_ptex_face;
+ const int current_patch_end_vertex_index =
+ start_vertex_index + corner * num_inner_vertices_per_ptex +
+ num_inner_vertices_per_ptex - 1;
+ const int prev_current_patch_end_vertex_index =
+ start_vertex_index + prev_corner *
+ num_inner_vertices_per_ptex +
+ num_inner_vertices_per_ptex - 1;
+ const int v0 = center_vertex_index;
+ const int v1 = prev_current_patch_end_vertex_index;
+ const int v2 = current_patch_end_vertex_index - 1;
+ const int v3 = current_patch_end_vertex_index;
+ const int e0 = start_center_edge_index + prev_corner;
+ const int e1 = start_boundary_edge +
+ prev_corner * (ptex_face_inner_resolution);
+ const int e2 = corner_edge_index +
+ num_inner_edges_per_ptex_face - 1;
+ const int e3 = start_center_edge_index + corner;
+ const float u = 1.0f - du;
+ const float v = 1.0f - dv;
+ subdiv_create_loops_of_poly(
+ ctx, &loop_interpolation, subdiv_loop,
+ ptex_face_index + corner, 2,
+ v0, e0, v1, e1, v2, e2, v3, e3,
+ u, v, du, dv);
+ }
+ }
+ /* Loops for faces connecting inner ptex part with boundary. */
+ const MLoop *prev_coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + coarse_poly->totloop - 1];
+ for (int prev_corner = coarse_poly->totloop - 1, corner = 0;
+ corner < coarse_poly->totloop;
+ prev_corner = corner, corner++)
+ {
+ loop_interpolation_from_ptex(ctx,
+ &loop_interpolation,
+ coarse_poly,
+ corner);
+ const MLoop *coarse_loop =
+ &coarse_mloop[coarse_poly->loopstart + corner];
+ const MEdge *coarse_edge = &coarse_medge[coarse_loop->e];
+ const MEdge *prev_coarse_edge = &coarse_medge[prev_coarse_loop->e];
+ const bool flip = (coarse_edge->v2 == coarse_loop->v);
+ const int start_edge_vertex = ctx->vertices_edge_offset +
+ coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ const int corner_vertex_index =
+ start_vertex_index + corner * num_inner_vertices_per_ptex;
+ const int corner_edge_index =
+ start_edge_index + corner * num_inner_edges_per_ptex_face;
+ /* Create loops for polygons along U axis. */
+ int v0 = ctx->vertices_corner_offset + coarse_loop->v;
+ int v3, e3;
+ if (prev_coarse_loop->v == prev_coarse_edge->v1) {
+ v3 = ctx->vertices_edge_offset +
+ prev_coarse_loop->e * num_subdiv_vertices_per_coarse_edge +
+ num_subdiv_vertices_per_coarse_edge - 1;
+ e3 = ctx->edge_boundary_offset +
+ prev_coarse_loop->e * num_subdiv_edges_per_coarse_edge +
+ num_subdiv_edges_per_coarse_edge - 1;
+ }
+ else {
+ v3 = ctx->vertices_edge_offset +
+ prev_coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ e3 = ctx->edge_boundary_offset +
+ prev_coarse_loop->e * num_subdiv_edges_per_coarse_edge;
+ }
+ for (int i = 0;
+ i <= ptex_face_inner_resolution;
+ i++, subdiv_loop += 4)
+ {
+ int v1;
+ if (flip) {
+ v1 = start_edge_vertex + (resolution - i - 3);
+ }
+ else {
+ v1 = start_edge_vertex + i;
+ }
+ int v2;
+ if (ptex_face_inner_resolution >= 1) {
+ v2 = corner_vertex_index + i;
+ }
+ else {
+ v2 = center_vertex_index;
+ }
+ int e0;
+ if (flip) {
+ e0 = ctx->edge_boundary_offset +
+ coarse_loop->e * num_subdiv_edges_per_coarse_edge +
+ num_subdiv_edges_per_coarse_edge - i - 1;
+ }
+ else {
+ e0 = ctx->edge_boundary_offset +
+ coarse_loop->e * num_subdiv_edges_per_coarse_edge +
+ i;
+ }
+ int e1 = start_edge_index +
+ corner * (2 * ptex_face_inner_resolution + 1);
+ if (ptex_face_resolution >= 3) {
+ e1 += coarse_poly->totloop * (num_inner_edges_per_ptex_face +
+ ptex_face_inner_resolution + 1) +
+ i;
+ }
+ int e2 = 0;
+ if (i == 0 && ptex_face_resolution >= 3) {
+ e2 = start_edge_index +
+ coarse_poly->totloop *
+ (num_inner_edges_per_ptex_face +
+ ptex_face_inner_resolution + 1) +
+ corner * (2 * ptex_face_inner_resolution + 1) +
+ ptex_face_inner_resolution + 1;
+ }
+ else if (i == 0 && ptex_face_resolution < 3) {
+ e2 = start_edge_index +
+ prev_corner * (2 * ptex_face_inner_resolution + 1);
+ }
+ else {
+ e2 = corner_edge_index + i - 1;
+ }
+ const float u = du * i;
+ const float v = 0.0f;
+ subdiv_create_loops_of_poly(
+ ctx, &loop_interpolation, subdiv_loop,
+ ptex_face_index + corner, 0,
+ v0, e0, v1, e1, v2, e2, v3, e3,
+ u, v, du, dv);
+ v0 = v1;
+ v3 = v2;
+ e3 = e1;
+ }
+ /* Create loops for polygons along V axis. */
+ const bool flip_prev = (prev_coarse_edge->v2 == coarse_loop->v);
+ v0 = corner_vertex_index;
+ if (prev_coarse_loop->v == prev_coarse_edge->v1) {
+ v3 = ctx->vertices_edge_offset +
+ prev_coarse_loop->e * num_subdiv_vertices_per_coarse_edge +
+ num_subdiv_vertices_per_coarse_edge - 1;
+ }
+ else {
+ v3 = ctx->vertices_edge_offset +
+ prev_coarse_loop->e * num_subdiv_vertices_per_coarse_edge;
+ }
+ e3 = start_edge_index +
+ coarse_poly->totloop *
+ (num_inner_edges_per_ptex_face +
+ ptex_face_inner_resolution + 1) +
+ corner * (2 * ptex_face_inner_resolution + 1) +
+ ptex_face_inner_resolution + 1;
+ for (int i = 0;
+ i <= ptex_face_inner_resolution - 1;
+ i++, subdiv_loop += 4)
+ {
+ int v1;
+ int e0, e1;
+ if (i == ptex_face_inner_resolution - 1) {
+ v1 = start_vertex_index +
+ prev_corner * num_inner_vertices_per_ptex +
+ ptex_face_inner_resolution;
+ e1 = start_edge_index +
+ coarse_poly->totloop *
+ (num_inner_edges_per_ptex_face +
+ ptex_face_inner_resolution + 1) +
+ prev_corner * (2 * ptex_face_inner_resolution + 1) +
+ ptex_face_inner_resolution;
+ e0 = start_edge_index +
+ coarse_poly->totloop * num_inner_edges_per_ptex_face +
+ prev_corner * ptex_face_inner_resolution;
+ }
+ else {
+ v1 = v0 + ptex_face_inner_resolution + 1;
+ e0 = corner_edge_index + ptex_face_inner_resolution +
+ i * (2 * ptex_face_inner_resolution + 1);
+ e1 = e3 + 1;
+ }
+ int v2 = flip_prev ? v3 - 1 : v3 + 1;
+ int e2;
+ if (flip_prev) {
+ e2 = ctx->edge_boundary_offset +
+ prev_coarse_loop->e *
+ num_subdiv_edges_per_coarse_edge +
+ num_subdiv_edges_per_coarse_edge - 2 - i;
+ }
+ else {
+ e2 = ctx->edge_boundary_offset +
+ prev_coarse_loop->e *
+ num_subdiv_edges_per_coarse_edge + 1 + i;
+ }
+ const float u = 0.0f;
+ const float v = du * (i + 1);
+ subdiv_create_loops_of_poly(
+ ctx, &loop_interpolation, subdiv_loop,
+ ptex_face_index + corner, 1,
+ v0, e0, v1, e1, v2, e2, v3, e3,
+ u, v, du, dv);
+ v0 = v1;
+ v3 = v2;
+ e3 = e1;
+ }
+ prev_coarse_loop = coarse_loop;
+ }
+ loop_interpolation_end(&loop_interpolation);
+}
+
+static void subdiv_create_loops(SubdivMeshContext *ctx, int poly_index)
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_mpoly[poly_index];
+ if (coarse_poly->totloop == 4) {
+ subdiv_create_loops_regular(ctx, coarse_poly);
+ }
+ else {
+ subdiv_create_loops_special(ctx, coarse_poly);
+ }
+}
+
+/* =============================================================================
+ * Polygons subdivision process.
+ */
+
+static void subdiv_copy_poly_data(const SubdivMeshContext *ctx,
+ MPoly *subdiv_poly,
+ const MPoly *coarse_poly)
+{
+ const int coarse_poly_index = coarse_poly - ctx->coarse_mesh->mpoly;
+ const int subdiv_poly_index = subdiv_poly - ctx->subdiv_mesh->mpoly;
+ CustomData_copy_data(&ctx->coarse_mesh->pdata,
+ &ctx->subdiv_mesh->pdata,
+ coarse_poly_index,
+ subdiv_poly_index,
+ 1);
+}
+
+static void subdiv_create_polys(SubdivMeshContext *ctx, int poly_index)
+{
+ const int resolution = ctx->settings->resolution;
+ const int start_poly_index = ctx->subdiv_polygon_offset[poly_index];
+ /* Base/coarse mesh information. */
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MPoly *coarse_mpoly = coarse_mesh->mpoly;
+ const MPoly *coarse_poly = &coarse_mpoly[poly_index];
+ const int num_ptex_faces_per_poly =
+ num_ptex_faces_per_poly_get(coarse_poly);
+ const int ptex_resolution =
+ ptex_face_resolution_get(coarse_poly, resolution);
+ const int num_polys_per_ptex = num_polys_per_ptex_get(ptex_resolution);
+ const int num_loops_per_ptex = 4 * num_polys_per_ptex;
+ const int start_loop_index = 4 * start_poly_index;
+ /* Hi-poly subdivided mesh. */
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MPoly *subdiv_mpoly = subdiv_mesh->mpoly;
+ MPoly *subdiv_mp = &subdiv_mpoly[start_poly_index];
+ for (int ptex_of_poly_index = 0;
+ ptex_of_poly_index < num_ptex_faces_per_poly;
+ ptex_of_poly_index++)
+ {
+ for (int subdiv_poly_index = 0;
+ subdiv_poly_index < num_polys_per_ptex;
+ subdiv_poly_index++, subdiv_mp++)
+ {
+ subdiv_copy_poly_data(ctx, subdiv_mp, coarse_poly);
+ subdiv_mp->loopstart = start_loop_index +
+ (ptex_of_poly_index * num_loops_per_ptex) +
+ (subdiv_poly_index * 4);
+ subdiv_mp->totloop = 4;
+ }
+ }
+}
+
+/* =============================================================================
+ * Loose elements subdivision process.
+ */
+
+static void subdiv_create_loose_vertices_task(
+ void *__restrict userdata,
+ const int vertex_index,
+ const ParallelRangeTLS *__restrict UNUSED(tls))
+{
+ SubdivMeshContext *ctx = userdata;
+ if (BLI_BITMAP_TEST_BOOL(ctx->coarse_vertices_used_map, vertex_index)) {
+ /* Vertex is not loose, was handled when handling polygons. */
+ return;
+ }
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MVert *coarse_mvert = coarse_mesh->mvert;
+ const MVert *coarse_vertex = &coarse_mvert[vertex_index];
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ MVert *subdiv_vertex = &subdiv_mvert[
+ ctx->vertices_corner_offset + vertex_index];
+ subdiv_vertex_data_copy(ctx, coarse_vertex, subdiv_vertex);
+}
+
+/* Get neighbor edges of the given one.
+ * - neighbors[0] is an edge adjacent to edge->v1.
+ * - neighbors[1] is an edge adjacent to edge->v1.
+ */
+static void find_edge_neighbors(const SubdivMeshContext *ctx,
+ const MEdge *edge,
+ const MEdge *neighbors[2])
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_medge = coarse_mesh->medge;
+ neighbors[0] = NULL;
+ neighbors[1] = NULL;
+ for (int edge_index = 0; edge_index < coarse_mesh->totedge; edge_index++) {
+ if (BLI_BITMAP_TEST_BOOL(ctx->coarse_edges_used_map, edge_index)) {
+ continue;
+ }
+ const MEdge *current_edge = &coarse_medge[edge_index];
+ if (current_edge == edge) {
+ continue;
+ }
+ if (ELEM(edge->v1, current_edge->v1, current_edge->v2)) {
+ neighbors[0] = current_edge;
+ }
+ if (ELEM(edge->v2, current_edge->v1, current_edge->v2)) {
+ neighbors[1] = current_edge;
+ }
+ }
+}
+
+static void points_for_loose_edges_interpolation_get(
+ SubdivMeshContext *ctx,
+ const MEdge *coarse_edge,
+ const MEdge *neighbors[2],
+ float points_r[4][3])
+{
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MVert *coarse_mvert = coarse_mesh->mvert;
+ /* Middle points corresponds to the edge. */
+ copy_v3_v3(points_r[1], coarse_mvert[coarse_edge->v1].co);
+ copy_v3_v3(points_r[2], coarse_mvert[coarse_edge->v2].co);
+ /* Start point, duplicate from edge start if no neighbor. */
+ if (neighbors[0] != NULL) {
+ if (neighbors[0]->v1 == coarse_edge->v1) {
+ copy_v3_v3(points_r[0], coarse_mvert[neighbors[0]->v2].co);
+ }
+ else {
+ copy_v3_v3(points_r[0], coarse_mvert[neighbors[0]->v1].co);
+ }
+ }
+ else {
+ sub_v3_v3v3(points_r[0], points_r[1], points_r[2]);
+ add_v3_v3(points_r[0], points_r[1]);
+ }
+ /* End point, duplicate from edge end if no neighbor. */
+ if (neighbors[1] != NULL) {
+ if (neighbors[1]->v1 == coarse_edge->v2) {
+ copy_v3_v3(points_r[3], coarse_mvert[neighbors[1]->v2].co);
+ }
+ else {
+ copy_v3_v3(points_r[3], coarse_mvert[neighbors[1]->v1].co);
+ }
+ }
+ else {
+ sub_v3_v3v3(points_r[3], points_r[2], points_r[1]);
+ add_v3_v3(points_r[3], points_r[2]);
+ }
+}
+
+static void subdiv_create_vertices_of_loose_edges_task(
+ void *__restrict userdata,
+ const int edge_index,
+ const ParallelRangeTLS *__restrict UNUSED(tls))
+{
+ SubdivMeshContext *ctx = userdata;
+ if (BLI_BITMAP_TEST_BOOL(ctx->coarse_edges_used_map, edge_index)) {
+ /* Vertex is not loose, was handled when handling polygons. */
+ return;
+ }
+ const int resolution = ctx->settings->resolution;
+ const int resolution_1 = resolution - 1;
+ const float inv_resolution_1 = 1.0f / (float)resolution_1;
+ const int num_subdiv_vertices_per_coarse_edge = resolution - 2;
+ const Mesh *coarse_mesh = ctx->coarse_mesh;
+ const MEdge *coarse_edge = &coarse_mesh->medge[edge_index];
+ Mesh *subdiv_mesh = ctx->subdiv_mesh;
+ MVert *subdiv_mvert = subdiv_mesh->mvert;
+ /* Find neighbors of the current loose edge. */
+ const MEdge *neighbors[2];
+ find_edge_neighbors(ctx, coarse_edge, neighbors);
+ /* Get points for b-spline interpolation. */
+ float points[4][3];
+ points_for_loose_edges_interpolation_get(
+ ctx, coarse_edge, neighbors, points);
+ /* Subdivion verticies which corresponds to edge's v1 and v2. */
+ MVert *subdiv_v1 = &subdiv_mvert[
+ ctx->vertices_corner_offset + coarse_edge->v1];
+ MVert *subdiv_v2 = &subdiv_mvert[
+ ctx->vertices_corner_offset + coarse_edge->v2];
+ /* First subdivided inner vertex of the edge. */
+ MVert *subdiv_start_vertex = &subdiv_mvert[
+ ctx->vertices_edge_offset +
+ edge_index * num_subdiv_vertices_per_coarse_edge];
+ /* Perform interpolation. */
+ for (int i = 0; i < resolution; i++) {
+ const float u = i * inv_resolution_1;
+ float weights[4];
+ key_curve_position_weights(u, weights, KEY_BSPLINE);
+
+ MVert *subdiv_vertex;
+ if (i == 0) {
+ subdiv_vertex = subdiv_v1;
+ }
+ else if (i == resolution - 1) {
+ subdiv_vertex = subdiv_v2;
+ }
+ else {
+ subdiv_vertex = &subdiv_start_vertex[i - 1];
+ }
+ interp_v3_v3v3v3v3(subdiv_vertex->co,
+ points[0],
+ points[1],
+ points[2],
+ points[3],
+ weights);
+ /* Reset flags and such. */
+ subdiv_vertex->flag = 0;
+ subdiv_vertex->bweight = 0.0f;
+ /* Reset normal. */
+ subdiv_vertex->no[0] = 0.0f;
+ subdiv_vertex->no[1] = 0.0f;
+ subdiv_vertex->no[2] = 1.0f;
+ }
+}
+
+/* =============================================================================
+ * Subdivision process entry points.
+ */
+
+static void subdiv_eval_task(
+ void *__restrict userdata,
+ const int poly_index,
+ const ParallelRangeTLS *__restrict UNUSED(tls))
+{
+ SubdivMeshContext *ctx = userdata;
+ /* Evaluate hi-poly vertex coordinates and normals. */
+ subdiv_evaluate_vertices(ctx, poly_index);
+ /* Create mesh geometry for the given base poly index. */
+ subdiv_create_edges(ctx, poly_index);
+ subdiv_create_loops(ctx, poly_index);
+ subdiv_create_polys(ctx, poly_index);
+}
+
+static void subdiv_create_boundary_edges_task(
+ void *__restrict userdata,
+ const int edge_index,
+ const ParallelRangeTLS *__restrict UNUSED(tls))
+{
+ SubdivMeshContext *ctx = userdata;
+ subdiv_create_boundary_edges(ctx, edge_index);
+}
+
+Mesh *BKE_subdiv_to_mesh(
+ Subdiv *subdiv,
+ const SubdivToMeshSettings *settings,
+ const Mesh *coarse_mesh)
+{
+ BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH);
+ /* Make sure evaluator is up to date with possible new topology, and that
+ * is is refined for the new positions of coarse vertices.
+ */
+ BKE_subdiv_eval_update_from_mesh(subdiv, coarse_mesh);
+ SubdivMeshContext ctx = {0};
+ ctx.coarse_mesh = coarse_mesh;
+ ctx.subdiv = subdiv;
+ ctx.settings = settings;
+ subdiv_mesh_ctx_init(&ctx);
+ Mesh *result = BKE_mesh_new_nomain_from_template(
+ coarse_mesh,
+ ctx.num_subdiv_vertices,
+ ctx.num_subdiv_edges,
+ 0,
+ ctx.num_subdiv_loops,
+ ctx.num_subdiv_polygons);
+ ctx.subdiv_mesh = result;
+ subdiv_mesh_ctx_init_result(&ctx);
+ /* Multi-threaded evaluation. */
+ ParallelRangeSettings parallel_range_settings;
+ BKE_subdiv_stats_begin(&subdiv->stats,
+ SUBDIV_STATS_SUBDIV_TO_MESH_GEOMETRY);
+ BLI_parallel_range_settings_defaults(&parallel_range_settings);
+ BLI_task_parallel_range(0, coarse_mesh->totpoly,
+ &ctx,
+ subdiv_eval_task,
+ &parallel_range_settings);
+ BLI_task_parallel_range(0, coarse_mesh->totvert,
+ &ctx,
+ subdiv_create_loose_vertices_task,
+ &parallel_range_settings);
+ BLI_task_parallel_range(0, coarse_mesh->totedge,
+ &ctx,
+ subdiv_create_vertices_of_loose_edges_task,
+ &parallel_range_settings);
+ BLI_task_parallel_range(0, coarse_mesh->totedge,
+ &ctx,
+ subdiv_create_boundary_edges_task,
+ &parallel_range_settings);
+ subdiv_mesh_ctx_free(&ctx);
+ BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH_GEOMETRY);
+ // BKE_mesh_validate(result, true, true);
+ BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH);
+ return result;
+}