Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenlib/BLI_even_spline.hh')
-rw-r--r--source/blender/blenlib/BLI_even_spline.hh733
1 files changed, 733 insertions, 0 deletions
diff --git a/source/blender/blenlib/BLI_even_spline.hh b/source/blender/blenlib/BLI_even_spline.hh
new file mode 100644
index 00000000000..4b80df0202c
--- /dev/null
+++ b/source/blender/blenlib/BLI_even_spline.hh
@@ -0,0 +1,733 @@
+#pragma once
+
+#include "BLI_compiler_attrs.h"
+#include "BLI_compiler_compat.h"
+
+#include "BLI_math.h"
+#include "BLI_math_vec_types.hh"
+#include "BLI_vector.hh"
+
+#include <cstdio>
+#include <utility>
+
+//#define FINITE_DIFF
+
+/*
+ * Arc length parameterized spline library.
+ */
+namespace blender {
+/*
+ Abstract curve interface.
+
+template<typename Float> class Curve {
+ using Vector = vec_base<Float, 2>;
+
+ public:
+ Float length;
+
+ Vector evaluate(Float s);
+ Vector derivative(Float s);
+ Vector derivative2(Float s);
+ Float curvature(float s);
+
+ void update();
+};
+*/
+
+/*
+comment: Reduce algebra script;
+
+on factor;
+off period;
+
+procedure bez(a, b);
+ a + (b - a) * t;
+
+lin := bez(k1, k2);
+quad := bez(lin, sub(k2=k3, k1=k2, lin));
+
+cubic := bez(quad, sub(k3=k4, k2=k3, k1=k2, quad));
+dcubic := df(cubic, t);
+icubic := int(cubic, t);
+
+x1 := 0;
+y1 := 0;
+
+dx := sub(k1=x1, k2=x2, k3=x3, k4=x4, dcubic);
+dy := sub(k1=y1, k2=y2, k3=y3, k4=y4, dcubic);
+darc := sqrt(dx**2 + dy**2);
+
+arcstep := darc*dt + 0.5*df(darc, t)*dt*dt;
+
+d2x := df(dx / darc, t);
+d2y := df(dy / darc, t);
+
+gentran
+begin
+declare <<
+x1,x2,x3,x4 : float;
+y1,y2,y3,y4 : float;
+dt,t : float;
+>>;
+return eval(arcstep)
+end;
+
+on fort;
+cubic;
+dcubic;
+icubic;
+arcstep;
+d2x;
+d2y;
+off fort;
+
+*/
+template<typename Float, int axes = 2, int table_size = 512> class CubicBezier {
+ using Vector = vec_base<Float, axes>;
+
+ public:
+ Vector ps[4];
+
+ CubicBezier(Vector a, Vector b, Vector c, Vector d)
+ {
+ ps[0] = a;
+ ps[1] = b;
+ ps[2] = c;
+ ps[3] = d;
+
+ deleted = false;
+ _arc_to_t = new Float[table_size];
+ }
+
+ ~CubicBezier()
+ {
+ deleted = true;
+
+ if (_arc_to_t) {
+ delete[] _arc_to_t;
+ _arc_to_t = nullptr;
+ }
+ }
+
+ CubicBezier()
+ {
+ deleted = false;
+ _arc_to_t = new Float[table_size];
+ }
+
+ CubicBezier(const CubicBezier &b)
+ {
+ _arc_to_t = new Float[table_size];
+ *this = b;
+ deleted = false;
+ }
+
+ CubicBezier &operator=(const CubicBezier &b)
+ {
+ ps[0] = b.ps[0];
+ ps[1] = b.ps[1];
+ ps[2] = b.ps[2];
+ ps[3] = b.ps[3];
+
+ length = b.length;
+
+ if (!_arc_to_t) {
+ _arc_to_t = new Float[table_size];
+ }
+
+ if (b._arc_to_t) {
+ for (int i = 0; i < table_size; i++) {
+ _arc_to_t[i] = b._arc_to_t[i];
+ }
+ }
+
+ return *this;
+ }
+
+#if 1
+ CubicBezier(CubicBezier &&b)
+ {
+ *this = b;
+ }
+
+ CubicBezier &operator=(CubicBezier &&b)
+ {
+ ps[0] = b.ps[0];
+ ps[1] = b.ps[1];
+ ps[2] = b.ps[2];
+ ps[3] = b.ps[3];
+
+ length = b.length;
+
+ if (b._arc_to_t) {
+ _arc_to_t = std::move(b._arc_to_t);
+ b._arc_to_t = nullptr;
+ }
+ else {
+ _arc_to_t = new Float[table_size];
+ }
+
+ return *this;
+ }
+#endif
+
+ Float length;
+
+ void update()
+ {
+ Float t = 0.0, dt = 1.0 / (Float)table_size;
+ Float s = 0.0;
+
+ if (!_arc_to_t) {
+ _arc_to_t = new Float[table_size];
+ }
+
+ auto table = _arc_to_t;
+
+ for (int i = 0; i < table_size; i++) {
+ table[i] = -1.0;
+ }
+
+ length = 0.0;
+
+ for (int i = 0; i < table_size; i++, t += dt) {
+ Float dlen = 0.0;
+ for (int j = 0; j < axes; j++) {
+ float dv = dcubic(ps[0][j], ps[1][j], ps[2][j], ps[3][j], t);
+
+ dlen += dv * dv;
+ }
+
+ dlen = sqrt(dlen) * dt;
+
+ length += dlen;
+ }
+
+ const int samples = table_size;
+ dt = 1.0 / (Float)samples;
+
+ t = 0.0;
+ s = 0.0;
+
+ for (int i = 0; i < samples; i++, t += dt) {
+ Float dlen = 0.0;
+ for (int j = 0; j < axes; j++) {
+ float dv = dcubic(ps[0][j], ps[1][j], ps[2][j], ps[3][j], t);
+
+ dlen += dv * dv;
+ }
+
+ dlen = sqrt(dlen) * dt;
+
+ int j = (int)((s / length) * (Float)table_size * 0.999999);
+ j = min_ii(j, table_size - 1);
+
+ table[j] = t;
+
+ s += dlen;
+ }
+
+ table[0] = 0.0;
+ table[table_size - 1] = 1.0;
+
+#if 1
+ /* Interpolate gaps in table. */
+ for (int i = 0; i < table_size - 1; i++) {
+ if (table[i] == -1.0 || table[i + 1] != -1.0) {
+ continue;
+ }
+
+ int i1 = i;
+ int i2 = i + 1;
+
+ while (table[i2] == -1.0) {
+ i2++;
+ }
+
+ int start = table[i1];
+ int end = table[i2];
+ Float dt2 = 1.0 / (i2 - i1);
+
+ for (int j = i1 + 1; j < i2; j++) {
+ Float factor = (Float)(j - i1) * dt2;
+ table[j] = start + (end - start) * factor;
+ }
+
+ i = i2 - 1;
+ }
+
+# if 0
+ for (int i = 0; i < table_size; i++) {
+ printf("%.3f ", table[i]);
+ }
+ printf("\n\n");
+# endif
+#endif
+ }
+
+ inline Vector evaluate(Float s)
+ {
+ Float t = arc_to_t(s);
+ Vector r;
+
+ for (int i = 0; i < axes; i++) {
+ r[i] = cubic(ps[0][i], ps[1][i], ps[2][i], ps[3][i], t);
+ }
+
+ return r;
+ }
+
+ Vector derivative(Float s, bool exact = true)
+ {
+ Float t = arc_to_t(s);
+ Vector r;
+
+ for (int i = 0; i < axes; i++) {
+ r[i] = dcubic(ps[0][i], ps[1][i], ps[2][i], ps[3][i], t) * length;
+ }
+
+ /* Real arc length parameterized tangent has unit length. */
+ if (exact) {
+ Float len = sqrt(_dot(r, r));
+
+ if (len > 0.00001) {
+ r = r / len;
+ }
+ }
+
+ return r;
+ }
+
+ Vector derivative2(Float s)
+ {
+#ifdef FINITE_DIFF
+ const Float df = 0.0005;
+ Float s1, s2;
+
+ if (s >= 1.0 - df) {
+ s1 = s - df;
+ s2 = s;
+ }
+ else {
+ s1 = s;
+ s2 = s + df;
+ }
+
+ Vector a = derivative(s1);
+ Vector b = derivative(s2);
+
+ return (b - a) / df;
+#else
+ Float t = arc_to_t(s);
+ Vector r;
+
+ Float dx = dcubic(ps[0][0], ps[1][0], ps[2][0], ps[3][0], t);
+ Float d2x = d2cubic(ps[0][0], ps[1][0], ps[2][0], ps[3][0], t);
+ Float dy = dcubic(ps[0][1], ps[1][1], ps[2][1], ps[3][1], t);
+ Float d2y = d2cubic(ps[0][1], ps[1][1], ps[2][1], ps[3][1], t);
+
+ /*
+ comment: arc length second derivative;
+
+ operator x, y, z, dx, dy, dz, d2x, d2y, d2z;
+ forall t let df(x(t), t) = dx(t);
+ forall t let df(y(t), t) = dy(t);
+ forall t let df(z(t), t) = dz(t);
+ forall t let df(dx(t), t) = d2x(t);
+ forall t let df(dy(t), t) = d2y(t);
+ forall t let df(dz(t), t) = d2z(t);
+
+ comment: arc length first derivative is just the normalized tangent;
+
+ comment: 2d case;
+
+ dlen := sqrt(df(x(t), t)**2 + df(y(t), t)**2);
+
+ df(df(x(t), t) / dlen, t);
+ df(df(y(t), t) / dlen, t);
+
+ comment: 3d case;
+
+ dlen := sqrt(df(x(t), t)**2 + df(y(t), t)**2 + df(z(t), t)**2);
+
+ comment: final derivatives;
+
+ df(df(x(t), t) / dlen, t);
+ df(df(y(t), t) / dlen, t);
+ df(df(z(t), t) / dlen, t);
+ */
+ if constexpr (axes == 2) {
+ /* Basically the 2d perpidicular normalized tangent multiplied by the curvature. */
+
+ Float div = sqrt(dx * dx + dy * dy) * (dx * dx + dy * dy);
+
+ r[0] = ((d2x * dy - d2y * dx) * dy) / div;
+ r[1] = (-(d2x * dy - d2y * dx) * dx) / div;
+ }
+ else if constexpr (axes == 3) {
+ Float dz = dcubic(ps[0][2], ps[1][2], ps[2][2], ps[3][2], t);
+ Float d2z = d2cubic(ps[0][2], ps[1][2], ps[2][2], ps[3][2], t);
+
+ Float div = sqrt(dx * dx + dy * dy + dz * dz) * (dy * dy + dz * dz + dx * dx);
+
+ r[0] = (d2x * dy * dy + d2x * dz * dz - d2y * dx * dy - d2z * dx * dz) / div;
+ r[1] = (-(d2x * dx * dy - d2y * dx * dx - d2y * dz * dz + d2z * dy * dz)) / div;
+ r[2] = (-(d2x * dx * dz + d2y * dy * dz - d2z * dx * dx - d2z * dy * dy)) / div;
+ }
+ else {
+ for (int i = 0; i < axes; i++) {
+ r[i] = d2cubic(ps[0][i], ps[1][i], ps[2][i], ps[3][i], t) * length;
+ }
+ }
+
+ return r;
+#endif
+ }
+
+ Float curvature(Float s)
+ {
+ Vector dv2 = derivative2(s);
+
+ if constexpr (axes == 2) {
+ Vector dv = derivative(s, true);
+
+ /* Calculate signed curvature. Remember that dv is normalized. */
+ return dv[0] * dv2[1] - dv[1] * dv2[0];
+ }
+
+ return sqrt(_dot(dv2, dv2));
+ }
+
+ private:
+ Float *_arc_to_t;
+ bool deleted = false;
+
+ Float cubic(Float k1, Float k2, Float k3, Float k4, Float t)
+ {
+ return -(((3.0 * (t - 1.0) * k3 - k4 * t) * t - 3.0 * (t - 1.0) * (t - 1.0) * k2) * t +
+ (t - 1) * (t - 1) * (t - 1) * k1);
+ }
+
+ Float dcubic(Float k1, Float k2, Float k3, Float k4, Float t)
+ {
+ return -3.0 * ((t - 1.0) * (t - 1.0) * k1 - k4 * t * t + (3.0 * t - 2.0) * k3 * t -
+ (3.0 * t - 1.0) * (t - 1.0) * k2);
+ }
+
+ Float d2cubic(Float k1, Float k2, Float k3, Float k4, Float t)
+ {
+ return -6.0 * (k1 * t - k1 - 3.0 * k2 * t + 2.0 * k2 + 3.0 * k3 * t - k3 - k4 * t);
+ }
+
+ Float _dot(Vector a, Vector b)
+ {
+ Float sum = 0.0;
+
+ for (int i = 0; i < axes; i++) {
+ sum += a[i] * b[i];
+ }
+
+ return sum;
+ }
+
+ Float clamp_s(Float s)
+ {
+ s = s < 0.0 ? 0.0 : s;
+ s = s >= length ? length * 0.999999 : s;
+
+ return s;
+ }
+
+ Float arc_to_t(Float s)
+ {
+ if (length == 0.0) {
+ return 0.0;
+ }
+
+ s = clamp_s(s);
+
+ Float t = s * (Float)(table_size - 1) / length;
+
+ int i1 = floorf(t);
+ int i2 = min_ii(i1 + 1, table_size - 1);
+
+ t -= (Float)i1;
+
+ Float s1 = _arc_to_t[i1];
+ Float s2 = _arc_to_t[i2];
+
+ return s1 + (s2 - s1) * t;
+ }
+};
+
+template<typename Float, int axes = 2> class BezierSpline {
+ using Vector = vec_base<Float, axes>;
+ struct Segment {
+ CubicBezier<Float, axes> bezier;
+ Float start = 0.0;
+
+ Segment(const CubicBezier<Float> &bez)
+ {
+ bezier = bez;
+ }
+
+ Segment(const Segment &b)
+ {
+ *this = b;
+ }
+
+ Segment &operator=(const Segment &b)
+ {
+ bezier = b.bezier;
+ start = b.start;
+
+ return *this;
+ }
+
+ Segment()
+ {
+ }
+ };
+
+ public:
+ Float length = 0.0;
+ bool deleted = false;
+ blender::Vector<Segment> segments;
+
+ void clear()
+ {
+ segments.clear();
+ }
+
+ BezierSpline()
+ {
+ }
+
+ ~BezierSpline()
+ {
+ deleted = true;
+ }
+
+ void add(CubicBezier<Float, axes> &bez)
+ {
+ need_update = true;
+
+ Segment seg;
+
+ seg.bezier = bez;
+ segments.append(seg);
+
+ update();
+ }
+
+ void update()
+ {
+ need_update = false;
+
+ length = 0.0;
+ for (Segment &seg : segments) {
+ seg.start = length;
+ length += seg.bezier.length;
+ }
+ }
+
+ inline Vector evaluate(Float s)
+ {
+ if (s == 0.0) {
+ return segments[0].bezier.ps[0];
+ }
+
+ if (s >= length) {
+ return segments[segments.size() - 1].bezier.ps[3];
+ }
+
+ Segment *seg = get_segment(s);
+
+ return seg->bezier.evaluate(s - seg->start);
+ }
+
+ Vector derivative(Float s, bool exact = true)
+ {
+ if (segments.size() == 0) {
+ return Vector();
+ }
+
+ s = clamp_s(s);
+ Segment *seg = get_segment(s);
+
+ return seg->bezier.derivative(s - seg->start, exact);
+ }
+
+ Vector derivative2(Float s)
+ {
+ if (segments.size() == 0) {
+ return Vector();
+ }
+
+ s = clamp_s(s);
+ Segment *seg = get_segment(s);
+
+ return seg->bezier.derivative2(s - seg->start);
+ }
+
+ Float curvature(Float s)
+ {
+ if (segments.size() == 0) {
+ return 0.0;
+ }
+
+ s = clamp_s(s);
+ Segment *seg = get_segment(s);
+
+ return seg->bezier.curvature(s - seg->start);
+ }
+
+ /* Find the closest point on the spline. Uses a bisecting root finding approach.
+ * Note: in thoery we could split the spline into quadratic segments and solve
+ * for the closest point directy.
+ */
+ Vector closest_point(const Vector p, Float &r_s, Vector &r_tan, Float &r_dis)
+ {
+ if (segments.size() == 0) {
+ return Vector();
+ }
+
+ const int steps = 12;
+ Float s = 0.0, ds = length / steps;
+ Float mindis = FLT_MAX;
+ Vector minp;
+ Float mins = 0.0;
+ bool found = false;
+
+ Vector lastdv, lastp;
+ Vector b, dvb;
+
+ for (int i = 0; i < steps + 1; i++, s += ds, lastp = b, lastdv = dvb) {
+ b = evaluate(s);
+ dvb = derivative(s, false); /* We don't need real normalized derivative here. */
+
+ if (i == 0) {
+ continue;
+ }
+
+ Vector dva = lastdv;
+ Vector a = lastp;
+
+ Vector vec1 = a - p;
+ Vector vec2 = b - p;
+
+ Float sign1 = _dot(vec1, dva);
+ Float sign2 = _dot(vec2, dvb);
+
+ if ((sign1 < 0.0) == (sign2 < 0.0)) {
+ found = true;
+
+ Float len = _dot(vec1, vec1);
+
+ if (len < mindis) {
+ mindis = len;
+ mins = s;
+ minp = evaluate(s);
+ }
+ continue;
+ }
+
+ found = true;
+
+ Float start = s - ds;
+ Float end = s;
+ Float mid = (start + end) * 0.5;
+ const int binary_steps = 10;
+
+ for (int j = 0; j < binary_steps; j++) {
+ Vector dvmid = derivative(mid, false);
+ Vector vecmid = evaluate(mid) - p;
+ Float sign_mid = _dot(vecmid, dvmid);
+
+ if ((sign_mid < 0.0) == (sign1 < 0.0)) {
+ start = mid;
+ }
+ else {
+ end = mid;
+ }
+ mid = (start + end) * 0.5;
+ }
+
+ Vector p2 = evaluate(mid);
+ Vector vec_mid = p2 - p;
+ Float len = _dot(vec_mid, vec_mid);
+
+ if (len < mindis) {
+ mindis = len;
+ minp = p2;
+ mins = mid;
+ }
+ }
+
+ if (!found) {
+ mins = 0.0;
+ minp = evaluate(mins);
+ Vector vec = minp - p;
+ mindis = _dot(vec, vec);
+ }
+
+ r_tan = derivative(mins, true);
+ r_s = mins;
+ r_dis = sqrtf(mindis);
+
+ return minp;
+ }
+
+ void pop_front(int n = 1)
+ {
+ for (int i = 0; i < segments.size() - n; i++) {
+ segments[i] = segments[i + n];
+ }
+
+ segments.resize(segments.size() - n);
+ update();
+ }
+
+ private:
+ bool need_update;
+
+ Float _dot(Vector a, Vector b)
+ {
+ Float sum = 0.0;
+
+ for (int i = 0; i < axes; i++) {
+ sum += a[i] * b[i];
+ }
+
+ return sum;
+ }
+
+ Float clamp_s(Float s)
+ {
+ s = s < 0.0 ? 0.0 : s;
+ s = s >= length ? length * 0.999999 : s;
+
+ return s;
+ }
+
+ Segment *get_segment(Float s)
+ {
+ // printf("\n");
+
+ for (Segment &seg : segments) {
+ // printf("s: %f %f\n", seg.start, seg.start + seg.bezier.length);
+
+ if (s >= seg.start && s < seg.start + seg.bezier.length) {
+ return &seg;
+ }
+ }
+
+ // printf("\n");
+
+ return nullptr;
+ }
+};
+
+using BezierSpline2f = BezierSpline<float, 2>;
+using BezierSpline3f = BezierSpline<float, 3>;
+} // namespace blender