Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenlib/intern/BLI_kdopbvh.c')
-rw-r--r--source/blender/blenlib/intern/BLI_kdopbvh.c1526
1 files changed, 1526 insertions, 0 deletions
diff --git a/source/blender/blenlib/intern/BLI_kdopbvh.c b/source/blender/blenlib/intern/BLI_kdopbvh.c
new file mode 100644
index 00000000000..30472beb3e6
--- /dev/null
+++ b/source/blender/blenlib/intern/BLI_kdopbvh.c
@@ -0,0 +1,1526 @@
+/**
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2006 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Daniel Genrich, Andre Pinto
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "math.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+
+#include "MEM_guardedalloc.h"
+
+#include "BKE_utildefines.h"
+
+#include "BLI_kdopbvh.h"
+#include "BLI_arithb.h"
+
+#ifdef _OPENMP
+#include <omp.h>
+#endif
+
+
+
+#define MAX_TREETYPE 32
+#define DEFAULT_FIND_NEAREST_HEAP_SIZE 1024
+
+typedef struct BVHNode
+{
+ struct BVHNode **children;
+ struct BVHNode *parent; // some user defined traversed need that
+ float *bv; // Bounding volume of all nodes, max 13 axis
+ int index; // face, edge, vertex index
+ char totnode; // how many nodes are used, used for speedup
+ char main_axis; // Axis used to split this node
+} BVHNode;
+
+struct BVHTree
+{
+ BVHNode **nodes;
+ BVHNode *nodearray; /* pre-alloc branch nodes */
+ BVHNode **nodechild; // pre-alloc childs for nodes
+ float *nodebv; // pre-alloc bounding-volumes for nodes
+ float epsilon; /* epslion is used for inflation of the k-dop */
+ int totleaf; // leafs
+ int totbranch;
+ char tree_type; // type of tree (4 => quadtree)
+ char axis; // kdop type (6 => OBB, 7 => AABB, ...)
+ char start_axis, stop_axis; // KDOP_AXES array indices according to axis
+};
+
+typedef struct BVHOverlapData
+{
+ BVHTree *tree1, *tree2;
+ BVHTreeOverlap *overlap;
+ int i, max_overlap; /* i is number of overlaps */
+ int start_axis, stop_axis;
+} BVHOverlapData;
+
+typedef struct BVHNearestData
+{
+ BVHTree *tree;
+ const float *co;
+ BVHTree_NearestPointCallback callback;
+ void *userdata;
+ float proj[13]; //coordinates projection over axis
+ BVHTreeNearest nearest;
+
+} BVHNearestData;
+
+typedef struct BVHRayCastData
+{
+ BVHTree *tree;
+
+ BVHTree_RayCastCallback callback;
+ void *userdata;
+
+
+ BVHTreeRay ray;
+ float ray_dot_axis[13];
+
+ BVHTreeRayHit hit;
+} BVHRayCastData;
+////////////////////////////////////////m
+
+
+////////////////////////////////////////////////////////////////////////
+// Bounding Volume Hierarchy Definition
+//
+// Notes: From OBB until 26-DOP --> all bounding volumes possible, just choose type below
+// Notes: You have to choose the type at compile time ITM
+// Notes: You can choose the tree type --> binary, quad, octree, choose below
+////////////////////////////////////////////////////////////////////////
+
+static float KDOP_AXES[13][3] =
+{ {1.0, 0, 0}, {0, 1.0, 0}, {0, 0, 1.0}, {1.0, 1.0, 1.0}, {1.0, -1.0, 1.0}, {1.0, 1.0, -1.0},
+{1.0, -1.0, -1.0}, {1.0, 1.0, 0}, {1.0, 0, 1.0}, {0, 1.0, 1.0}, {1.0, -1.0, 0}, {1.0, 0, -1.0},
+{0, 1.0, -1.0}
+};
+
+/*
+ * Generic push and pop heap
+ */
+#define PUSH_HEAP_BODY(HEAP_TYPE,PRIORITY,heap,heap_size) \
+{ \
+ HEAP_TYPE element = heap[heap_size-1]; \
+ int child = heap_size-1; \
+ while(child != 0) \
+ { \
+ int parent = (child-1) / 2; \
+ if(PRIORITY(element, heap[parent])) \
+ { \
+ heap[child] = heap[parent]; \
+ child = parent; \
+ } \
+ else break; \
+ } \
+ heap[child] = element; \
+}
+
+#define POP_HEAP_BODY(HEAP_TYPE, PRIORITY,heap,heap_size) \
+{ \
+ HEAP_TYPE element = heap[heap_size-1]; \
+ int parent = 0; \
+ while(parent < (heap_size-1)/2 ) \
+ { \
+ int child2 = (parent+1)*2; \
+ if(PRIORITY(heap[child2-1], heap[child2])) \
+ --child2; \
+ \
+ if(PRIORITY(element, heap[child2])) \
+ break; \
+ \
+ heap[parent] = heap[child2]; \
+ parent = child2; \
+ } \
+ heap[parent] = element; \
+}
+
+int ADJUST_MEMORY(void *local_memblock, void **memblock, int new_size, int *max_size, int size_per_item)
+{
+ int new_max_size = *max_size * 2;
+ void *new_memblock = NULL;
+
+ if(new_size <= *max_size)
+ return TRUE;
+
+ if(*memblock == local_memblock)
+ {
+ new_memblock = malloc( size_per_item * new_max_size );
+ memcpy( new_memblock, *memblock, size_per_item * *max_size );
+ }
+ else
+ new_memblock = realloc(*memblock, size_per_item * new_max_size );
+
+ if(new_memblock)
+ {
+ *memblock = new_memblock;
+ *max_size = new_max_size;
+ return TRUE;
+ }
+ else
+ return FALSE;
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////////
+// Introsort
+// with permission deriven from the following Java code:
+// http://ralphunden.net/content/tutorials/a-guide-to-introsort/
+// and he derived it from the SUN STL
+//////////////////////////////////////////////////////////////////////////////////////////////////////
+static int size_threshold = 16;
+/*
+* Common methods for all algorithms
+*/
+static int floor_lg(int a)
+{
+ return (int)(floor(log(a)/log(2)));
+}
+
+/*
+* Insertion sort algorithm
+*/
+static void bvh_insertionsort(BVHNode **a, int lo, int hi, int axis)
+{
+ int i,j;
+ BVHNode *t;
+ for (i=lo; i < hi; i++)
+ {
+ j=i;
+ t = a[i];
+ while((j!=lo) && (t->bv[axis] < (a[j-1])->bv[axis]))
+ {
+ a[j] = a[j-1];
+ j--;
+ }
+ a[j] = t;
+ }
+}
+
+static int bvh_partition(BVHNode **a, int lo, int hi, BVHNode * x, int axis)
+{
+ int i=lo, j=hi;
+ while (1)
+ {
+ while ((a[i])->bv[axis] < x->bv[axis]) i++;
+ j--;
+ while (x->bv[axis] < (a[j])->bv[axis]) j--;
+ if(!(i < j))
+ return i;
+ SWAP( BVHNode* , a[i], a[j]);
+ i++;
+ }
+}
+
+/*
+* Heapsort algorithm
+*/
+static void bvh_downheap(BVHNode **a, int i, int n, int lo, int axis)
+{
+ BVHNode * d = a[lo+i-1];
+ int child;
+ while (i<=n/2)
+ {
+ child = 2*i;
+ if ((child < n) && ((a[lo+child-1])->bv[axis] < (a[lo+child])->bv[axis]))
+ {
+ child++;
+ }
+ if (!(d->bv[axis] < (a[lo+child-1])->bv[axis])) break;
+ a[lo+i-1] = a[lo+child-1];
+ i = child;
+ }
+ a[lo+i-1] = d;
+}
+
+static void bvh_heapsort(BVHNode **a, int lo, int hi, int axis)
+{
+ int n = hi-lo, i;
+ for (i=n/2; i>=1; i=i-1)
+ {
+ bvh_downheap(a, i,n,lo, axis);
+ }
+ for (i=n; i>1; i=i-1)
+ {
+ SWAP(BVHNode*, a[lo],a[lo+i-1]);
+ bvh_downheap(a, 1,i-1,lo, axis);
+ }
+}
+
+static BVHNode *bvh_medianof3(BVHNode **a, int lo, int mid, int hi, int axis) // returns Sortable
+{
+ if ((a[mid])->bv[axis] < (a[lo])->bv[axis])
+ {
+ if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
+ return a[mid];
+ else
+ {
+ if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
+ return a[hi];
+ else
+ return a[lo];
+ }
+ }
+ else
+ {
+ if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
+ {
+ if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
+ return a[lo];
+ else
+ return a[hi];
+ }
+ else
+ return a[mid];
+ }
+}
+/*
+* Quicksort algorithm modified for Introsort
+*/
+static void bvh_introsort_loop (BVHNode **a, int lo, int hi, int depth_limit, int axis)
+{
+ int p;
+
+ while (hi-lo > size_threshold)
+ {
+ if (depth_limit == 0)
+ {
+ bvh_heapsort(a, lo, hi, axis);
+ return;
+ }
+ depth_limit=depth_limit-1;
+ p=bvh_partition(a, lo, hi, bvh_medianof3(a, lo, lo+((hi-lo)/2)+1, hi-1, axis), axis);
+ bvh_introsort_loop(a, p, hi, depth_limit, axis);
+ hi=p;
+ }
+}
+
+static void sort(BVHNode **a0, int begin, int end, int axis)
+{
+ if (begin < end)
+ {
+ BVHNode **a=a0;
+ bvh_introsort_loop(a, begin, end, 2*floor_lg(end-begin), axis);
+ bvh_insertionsort(a, begin, end, axis);
+ }
+}
+void sort_along_axis(BVHTree *tree, int start, int end, int axis)
+{
+ sort(tree->nodes, start, end, axis);
+}
+
+//after a call to this function you can expect one of:
+// every node to left of a[n] are smaller or equal to it
+// every node to the right of a[n] are greater or equal to it
+int partition_nth_element(BVHNode **a, int _begin, int _end, int n, int axis){
+ int begin = _begin, end = _end, cut;
+ while(end-begin > 3)
+ {
+ cut = bvh_partition(a, begin, end, bvh_medianof3(a, begin, (begin+end)/2, end-1, axis), axis );
+ if(cut <= n)
+ begin = cut;
+ else
+ end = cut;
+ }
+ bvh_insertionsort(a, begin, end, axis);
+
+ return n;
+}
+
+//////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/*
+ * BVHTree bounding volumes functions
+ */
+static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoints, int moving)
+{
+ float newminmax;
+ float *bv = node->bv;
+ int i, k;
+
+ // don't init boudings for the moving case
+ if(!moving)
+ {
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ bv[2*i] = FLT_MAX;
+ bv[2*i + 1] = -FLT_MAX;
+ }
+ }
+
+ for(k = 0; k < numpoints; k++)
+ {
+ // for all Axes.
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ newminmax = INPR(&co[k * 3], KDOP_AXES[i]);
+ if (newminmax < bv[2 * i])
+ bv[2 * i] = newminmax;
+ if (newminmax > bv[(2 * i) + 1])
+ bv[(2 * i) + 1] = newminmax;
+ }
+ }
+}
+
+// depends on the fact that the BVH's for each face is already build
+static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
+{
+ float newmin,newmax;
+ int i, j;
+ float *bv = node->bv;
+
+
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ bv[2*i] = FLT_MAX;
+ bv[2*i + 1] = -FLT_MAX;
+ }
+
+ for (j = start; j < end; j++)
+ {
+// for all Axes.
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ newmin = tree->nodes[j]->bv[(2 * i)];
+ if ((newmin < bv[(2 * i)]))
+ bv[(2 * i)] = newmin;
+
+ newmax = tree->nodes[j]->bv[(2 * i) + 1];
+ if ((newmax > bv[(2 * i) + 1]))
+ bv[(2 * i) + 1] = newmax;
+ }
+ }
+
+}
+
+// only supports x,y,z axis in the moment
+// but we should use a plain and simple function here for speed sake
+static char get_largest_axis(float *bv)
+{
+ float middle_point[3];
+
+ middle_point[0] = (bv[1]) - (bv[0]); // x axis
+ middle_point[1] = (bv[3]) - (bv[2]); // y axis
+ middle_point[2] = (bv[5]) - (bv[4]); // z axis
+ if (middle_point[0] > middle_point[1])
+ {
+ if (middle_point[0] > middle_point[2])
+ return 1; // max x axis
+ else
+ return 5; // max z axis
+ }
+ else
+ {
+ if (middle_point[1] > middle_point[2])
+ return 3; // max y axis
+ else
+ return 5; // max z axis
+ }
+}
+
+// bottom-up update of bvh node BV
+// join the children on the parent BV
+static void node_join(BVHTree *tree, BVHNode *node)
+{
+ int i, j;
+
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ node->bv[2*i] = FLT_MAX;
+ node->bv[2*i + 1] = -FLT_MAX;
+ }
+
+ for (i = 0; i < tree->tree_type; i++)
+ {
+ if (node->children[i])
+ {
+ for (j = tree->start_axis; j < tree->stop_axis; j++)
+ {
+ // update minimum
+ if (node->children[i]->bv[(2 * j)] < node->bv[(2 * j)])
+ node->bv[(2 * j)] = node->children[i]->bv[(2 * j)];
+
+ // update maximum
+ if (node->children[i]->bv[(2 * j) + 1] > node->bv[(2 * j) + 1])
+ node->bv[(2 * j) + 1] = node->children[i]->bv[(2 * j) + 1];
+ }
+ }
+ else
+ break;
+ }
+}
+
+/*
+ * Debug and information functions
+ */
+static void bvhtree_print_tree(BVHTree *tree, BVHNode *node, int depth)
+{
+ int i;
+ for(i=0; i<depth; i++) printf(" ");
+ printf(" - %d (%ld): ", node->index, node - tree->nodearray);
+ for(i=2*tree->start_axis; i<2*tree->stop_axis; i++)
+ printf("%.3f ", node->bv[i]);
+ printf("\n");
+
+ for(i=0; i<tree->tree_type; i++)
+ if(node->children[i])
+ bvhtree_print_tree(tree, node->children[i], depth+1);
+}
+
+static void bvhtree_info(BVHTree *tree)
+{
+ printf("BVHTree info\n");
+ printf("tree_type = %d, axis = %d, epsilon = %f\n", tree->tree_type, tree->axis, tree->epsilon);
+ printf("nodes = %d, branches = %d, leafs = %d\n", tree->totbranch + tree->totleaf, tree->totbranch, tree->totleaf);
+ printf("Memory per node = %ldbytes\n", sizeof(BVHNode) + sizeof(BVHNode*)*tree->tree_type + sizeof(float)*tree->axis);
+ printf("BV memory = %dbytes\n", MEM_allocN_len(tree->nodebv));
+
+ printf("Total memory = %ldbytes\n", sizeof(BVHTree)
+ + MEM_allocN_len(tree->nodes)
+ + MEM_allocN_len(tree->nodearray)
+ + MEM_allocN_len(tree->nodechild)
+ + MEM_allocN_len(tree->nodebv)
+ );
+
+// bvhtree_print_tree(tree, tree->nodes[tree->totleaf], 0);
+}
+
+#if 0
+
+
+static void verify_tree(BVHTree *tree)
+{
+ int i, j, check = 0;
+
+ // check the pointer list
+ for(i = 0; i < tree->totleaf; i++)
+ {
+ if(tree->nodes[i]->parent == NULL)
+ printf("Leaf has no parent: %d\n", i);
+ else
+ {
+ for(j = 0; j < tree->tree_type; j++)
+ {
+ if(tree->nodes[i]->parent->children[j] == tree->nodes[i])
+ check = 1;
+ }
+ if(!check)
+ {
+ printf("Parent child relationship doesn't match: %d\n", i);
+ }
+ check = 0;
+ }
+ }
+
+ // check the leaf list
+ for(i = 0; i < tree->totleaf; i++)
+ {
+ if(tree->nodearray[i].parent == NULL)
+ printf("Leaf has no parent: %d\n", i);
+ else
+ {
+ for(j = 0; j < tree->tree_type; j++)
+ {
+ if(tree->nodearray[i].parent->children[j] == &tree->nodearray[i])
+ check = 1;
+ }
+ if(!check)
+ {
+ printf("Parent child relationship doesn't match: %d\n", i);
+ }
+ check = 0;
+ }
+ }
+
+ printf("branches: %d, leafs: %d, total: %d\n", tree->totbranch, tree->totleaf, tree->totbranch + tree->totleaf);
+}
+#endif
+
+//Helper data and structures to build a min-leaf generalized implicit tree
+//This code can be easily reduced (basicly this is only method to calculate pow(k, n) in O(1).. and stuff like that)
+typedef struct BVHBuildHelper
+{
+ int tree_type; //
+ int totleafs; //
+
+ int leafs_per_child [32]; //Min number of leafs that are archievable from a node at depth N
+ int branches_on_level[32]; //Number of nodes at depth N (tree_type^N)
+
+ int remain_leafs; //Number of leafs that are placed on the level that is not 100% filled
+
+} BVHBuildHelper;
+
+static void build_implicit_tree_helper(BVHTree *tree, BVHBuildHelper *data)
+{
+ int depth = 0;
+ int remain;
+ int nnodes;
+
+ data->totleafs = tree->totleaf;
+ data->tree_type= tree->tree_type;
+
+ //Calculate the smallest tree_type^n such that tree_type^n >= num_leafs
+ for(
+ data->leafs_per_child[0] = 1;
+ data->leafs_per_child[0] < data->totleafs;
+ data->leafs_per_child[0] *= data->tree_type
+ );
+
+ data->branches_on_level[0] = 1;
+
+ //We could stop the loop first (but I am lazy to find out when)
+ for(depth = 1; depth < 32; depth++)
+ {
+ data->branches_on_level[depth] = data->branches_on_level[depth-1] * data->tree_type;
+ data->leafs_per_child [depth] = data->leafs_per_child [depth-1] / data->tree_type;
+ }
+
+ remain = data->totleafs - data->leafs_per_child[1];
+ nnodes = (remain + data->tree_type - 2) / (data->tree_type - 1);
+ data->remain_leafs = remain + nnodes;
+}
+
+// return the min index of all the leafs archivable with the given branch
+static int implicit_leafs_index(BVHBuildHelper *data, int depth, int child_index)
+{
+ int min_leaf_index = child_index * data->leafs_per_child[depth-1];
+ if(min_leaf_index <= data->remain_leafs)
+ return min_leaf_index;
+ else if(data->leafs_per_child[depth])
+ return data->totleafs - (data->branches_on_level[depth-1] - child_index) * data->leafs_per_child[depth];
+ else
+ return data->remain_leafs;
+}
+
+/**
+ * Generalized implicit tree build
+ *
+ * An implicit tree is a tree where its structure is implied, thus there is no need to store child pointers or indexs.
+ * Its possible to find the position of the child or the parent with simple maths (multiplication and adittion). This type
+ * of tree is for example used on heaps.. where node N has its childs at indexs N*2 and N*2+1.
+ *
+ * Altought in this case the tree type is general.. and not know until runtime.
+ * tree_type stands for the maximum number of childs that a tree node can have.
+ * All tree types >= 2 are supported.
+ *
+ * Advantages of the used trees include:
+ * - No need to store child/parent relations (they are implicit);
+ * - Any node child always has an index greater than the parent;
+ * - Brother nodes are sequencial in memory;
+ *
+ *
+ * Some math relations derived for general implicit trees:
+ *
+ * K = tree_type, ( 2 <= K )
+ * ROOT = 1
+ * N child of node A = A * K + (2 - K) + N, (0 <= N < K)
+ *
+ * Util methods:
+ * TODO...
+ * (looping elements, knowing if its a leaf or not.. etc...)
+ */
+
+// This functions returns the number of branches needed to have the requested number of leafs.
+static int implicit_needed_branches(int tree_type, int leafs)
+{
+ return MAX2(1, (leafs + tree_type - 3) / (tree_type-1) );
+}
+
+/*
+ * This function handles the problem of "sorting" the leafs (along the split_axis).
+ *
+ * It arranges the elements in the given partitions such that:
+ * - any element in partition N is less or equal to any element in partition N+1.
+ * - if all elements are diferent all partition will get the same subset of elements
+ * as if the array was sorted.
+ *
+ * partition P is described as the elements in the range ( nth[P] , nth[P+1] ]
+ *
+ * TODO: This can be optimized a bit by doing a specialized nth_element instead of K nth_elements
+ */
+static void split_leafs(BVHNode **leafs_array, int *nth, int partitions, int split_axis)
+{
+ int i;
+ for(i=0; i < partitions-1; i++)
+ {
+ if(nth[i] >= nth[partitions])
+ break;
+
+ partition_nth_element(leafs_array, nth[i], nth[partitions], nth[i+1], split_axis);
+ }
+}
+
+/*
+ * This functions builds an optimal implicit tree from the given leafs.
+ * Where optimal stands for:
+ * - The resulting tree will have the smallest number of branches;
+ * - At most only one branch will have NULL childs;
+ * - All leafs will be stored at level N or N+1.
+ *
+ * This function creates an implicit tree on branches_array, the leafs are given on the leafs_array.
+ *
+ * The tree is built per depth levels. First branchs at depth 1.. then branches at depth 2.. etc..
+ * The reason is that we can build level N+1 from level N witouth any data dependencies.. thus it allows
+ * to use multithread building.
+ *
+ * To archieve this is necessary to find how much leafs are accessible from a certain branch, BVHBuildHelper
+ * implicit_needed_branches and implicit_leafs_index are auxiliar functions to solve that "optimal-split".
+ */
+static void non_recursive_bvh_div_nodes(BVHTree *tree, BVHNode *branches_array, BVHNode **leafs_array, int num_leafs)
+{
+ int i;
+
+ const int tree_type = tree->tree_type;
+ const int tree_offset = 2 - tree->tree_type; //this value is 0 (on binary trees) and negative on the others
+ const int num_branches= implicit_needed_branches(tree_type, num_leafs);
+
+ BVHBuildHelper data;
+ int depth;
+
+ // set parent from root node to NULL
+ BVHNode *tmp = branches_array+0;
+ tmp->parent = NULL;
+
+ //Most of bvhtree code relies on 1-leaf trees having at least one branch
+ //We handle that special case here
+ if(num_leafs == 1)
+ {
+ BVHNode *root = branches_array+0;
+ refit_kdop_hull(tree, root, 0, num_leafs);
+ root->main_axis = get_largest_axis(root->bv) / 2;
+ root->totnode = 1;
+ root->children[0] = leafs_array[0];
+ root->children[0]->parent = root;
+ return;
+ }
+
+ branches_array--; //Implicit trees use 1-based indexs
+
+ build_implicit_tree_helper(tree, &data);
+
+ //Loop tree levels (log N) loops
+ for(i=1, depth = 1; i <= num_branches; i = i*tree_type + tree_offset, depth++)
+ {
+ const int first_of_next_level = i*tree_type + tree_offset;
+ const int end_j = MIN2(first_of_next_level, num_branches + 1); //index of last branch on this level
+ int j;
+
+ //Loop all branches on this level
+#pragma omp parallel for private(j) schedule(static)
+ for(j = i; j < end_j; j++)
+ {
+ int k;
+ const int parent_level_index= j-i;
+ BVHNode* parent = branches_array + j;
+ int nth_positions[ MAX_TREETYPE + 1];
+ char split_axis;
+
+ int parent_leafs_begin = implicit_leafs_index(&data, depth, parent_level_index);
+ int parent_leafs_end = implicit_leafs_index(&data, depth, parent_level_index+1);
+
+ //This calculates the bounding box of this branch
+ //and chooses the largest axis as the axis to divide leafs
+ refit_kdop_hull(tree, parent, parent_leafs_begin, parent_leafs_end);
+ split_axis = get_largest_axis(parent->bv);
+
+ //Save split axis (this can be used on raytracing to speedup the query time)
+ parent->main_axis = split_axis / 2;
+
+ //Split the childs along the split_axis, note: its not needed to sort the whole leafs array
+ //Only to assure that the elements are partioned on a way that each child takes the elements
+ //it would take in case the whole array was sorted.
+ //Split_leafs takes care of that "sort" problem.
+ nth_positions[ 0] = parent_leafs_begin;
+ nth_positions[tree_type] = parent_leafs_end;
+ for(k = 1; k < tree_type; k++)
+ {
+ int child_index = j * tree_type + tree_offset + k;
+ int child_level_index = child_index - first_of_next_level; //child level index
+ nth_positions[k] = implicit_leafs_index(&data, depth+1, child_level_index);
+ }
+
+ split_leafs(leafs_array, nth_positions, tree_type, split_axis);
+
+
+ //Setup children and totnode counters
+ //Not really needed but currently most of BVH code relies on having an explicit children structure
+ for(k = 0; k < tree_type; k++)
+ {
+ int child_index = j * tree_type + tree_offset + k;
+ int child_level_index = child_index - first_of_next_level; //child level index
+
+ int child_leafs_begin = implicit_leafs_index(&data, depth+1, child_level_index);
+ int child_leafs_end = implicit_leafs_index(&data, depth+1, child_level_index+1);
+
+ if(child_leafs_end - child_leafs_begin > 1)
+ {
+ parent->children[k] = branches_array + child_index;
+ parent->children[k]->parent = parent;
+ }
+ else if(child_leafs_end - child_leafs_begin == 1)
+ {
+ parent->children[k] = leafs_array[ child_leafs_begin ];
+ parent->children[k]->parent = parent;
+ }
+ else
+ break;
+
+ parent->totnode = k+1;
+ }
+ }
+ }
+}
+
+
+/*
+ * BLI_bvhtree api
+ */
+BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
+{
+ BVHTree *tree;
+ int numnodes, i;
+
+ // theres not support for trees below binary-trees :P
+ if(tree_type < 2)
+ return NULL;
+
+ if(tree_type > MAX_TREETYPE)
+ return NULL;
+
+ tree = (BVHTree *)MEM_callocN(sizeof(BVHTree), "BVHTree");
+
+ //tree epsilon must be >= FLT_EPSILON
+ //so that tangent rays can still hit a bounding volume..
+ //this bug would show up when casting a ray aligned with a kdop-axis and with an edge of 2 faces
+ epsilon = MAX2(FLT_EPSILON, epsilon);
+
+ if(tree)
+ {
+ tree->epsilon = epsilon;
+ tree->tree_type = tree_type;
+ tree->axis = axis;
+
+ if(axis == 26)
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 13;
+ }
+ else if(axis == 18)
+ {
+ tree->start_axis = 7;
+ tree->stop_axis = 13;
+ }
+ else if(axis == 14)
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 7;
+ }
+ else if(axis == 8) // AABB
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 4;
+ }
+ else if(axis == 6) // OBB
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 3;
+ }
+ else
+ {
+ MEM_freeN(tree);
+ return NULL;
+ }
+
+
+ //Allocate arrays
+ numnodes = maxsize + implicit_needed_branches(tree_type, maxsize) + tree_type;
+
+ tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*numnodes, "BVHNodes");
+
+ if(!tree->nodes)
+ {
+ MEM_freeN(tree);
+ return NULL;
+ }
+
+ tree->nodebv = (float*)MEM_callocN(sizeof(float)* axis * numnodes, "BVHNodeBV");
+ if(!tree->nodebv)
+ {
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree);
+ }
+
+ tree->nodechild = (BVHNode**)MEM_callocN(sizeof(BVHNode*) * tree_type * numnodes, "BVHNodeBV");
+ if(!tree->nodechild)
+ {
+ MEM_freeN(tree->nodebv);
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree);
+ }
+
+ tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)* numnodes, "BVHNodeArray");
+
+ if(!tree->nodearray)
+ {
+ MEM_freeN(tree->nodechild);
+ MEM_freeN(tree->nodebv);
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree);
+ return NULL;
+ }
+
+ //link the dynamic bv and child links
+ for(i=0; i< numnodes; i++)
+ {
+ tree->nodearray[i].bv = tree->nodebv + i * axis;
+ tree->nodearray[i].children = tree->nodechild + i * tree_type;
+ }
+
+ }
+
+ return tree;
+}
+
+void BLI_bvhtree_free(BVHTree *tree)
+{
+ if(tree)
+ {
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree->nodearray);
+ MEM_freeN(tree->nodebv);
+ MEM_freeN(tree->nodechild);
+ MEM_freeN(tree);
+ }
+}
+
+void BLI_bvhtree_balance(BVHTree *tree)
+{
+ int i;
+
+ BVHNode* branches_array = tree->nodearray + tree->totleaf;
+ BVHNode** leafs_array = tree->nodes;
+
+ //This function should only be called once (some big bug goes here if its being called more than once per tree)
+ assert(tree->totbranch == 0);
+
+ //Build the implicit tree
+ non_recursive_bvh_div_nodes(tree, branches_array, leafs_array, tree->totleaf);
+
+ //current code expects the branches to be linked to the nodes array
+ //we perform that linkage here
+ tree->totbranch = implicit_needed_branches(tree->tree_type, tree->totleaf);
+ for(i = 0; i < tree->totbranch; i++)
+ tree->nodes[tree->totleaf + i] = branches_array + i;
+
+ //bvhtree_info(tree);
+}
+
+int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
+{
+ int i;
+ BVHNode *node = NULL;
+
+ // insert should only possible as long as tree->totbranch is 0
+ if(tree->totbranch > 0)
+ return 0;
+
+ if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes)/sizeof(*(tree->nodes)))
+ return 0;
+
+ // TODO check if have enough nodes in array
+
+ node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
+ tree->totleaf++;
+
+ create_kdop_hull(tree, node, co, numpoints, 0);
+ node->index= index;
+
+ // inflate the bv with some epsilon
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ node->bv[(2 * i)] -= tree->epsilon; // minimum
+ node->bv[(2 * i) + 1] += tree->epsilon; // maximum
+ }
+
+ return 1;
+}
+
+
+// call before BLI_bvhtree_update_tree()
+int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_moving, int numpoints)
+{
+ int i;
+ BVHNode *node= NULL;
+
+ // check if index exists
+ if(index > tree->totleaf)
+ return 0;
+
+ node = tree->nodearray + index;
+
+ create_kdop_hull(tree, node, co, numpoints, 0);
+
+ if(co_moving)
+ create_kdop_hull(tree, node, co_moving, numpoints, 1);
+
+ // inflate the bv with some epsilon
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ node->bv[(2 * i)] -= tree->epsilon; // minimum
+ node->bv[(2 * i) + 1] += tree->epsilon; // maximum
+ }
+
+ return 1;
+}
+
+// call BLI_bvhtree_update_node() first for every node/point/triangle
+void BLI_bvhtree_update_tree(BVHTree *tree)
+{
+ //Update bottom=>top
+ //TRICKY: the way we build the tree all the childs have an index greater than the parent
+ //This allows us todo a bottom up update by starting on the biger numbered branch
+
+ BVHNode** root = tree->nodes + tree->totleaf;
+ BVHNode** index = tree->nodes + tree->totleaf + tree->totbranch-1;
+
+ for (; index >= root; index--)
+ node_join(tree, *index);
+}
+
+float BLI_bvhtree_getepsilon(BVHTree *tree)
+{
+ return tree->epsilon;
+}
+
+
+/*
+ * BLI_bvhtree_overlap
+ */
+// overlap - is it possbile for 2 bv's to collide ?
+static int tree_overlap(BVHNode *node1, BVHNode *node2, int start_axis, int stop_axis)
+{
+ float *bv1 = node1->bv;
+ float *bv2 = node2->bv;
+
+ float *bv1_end = bv1 + (stop_axis<<1);
+
+ bv1 += start_axis<<1;
+ bv2 += start_axis<<1;
+
+ // test all axis if min + max overlap
+ for (; bv1 != bv1_end; bv1+=2, bv2+=2)
+ {
+ if ((*(bv1) > *(bv2 + 1)) || (*(bv2) > *(bv1 + 1)))
+ return 0;
+ }
+
+ return 1;
+}
+
+static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
+{
+ int j;
+
+ if(tree_overlap(node1, node2, data->start_axis, data->stop_axis))
+ {
+ // check if node1 is a leaf
+ if(!node1->totnode)
+ {
+ // check if node2 is a leaf
+ if(!node2->totnode)
+ {
+
+ if(node1 == node2)
+ {
+ return;
+ }
+
+ if(data->i >= data->max_overlap)
+ {
+ // try to make alloc'ed memory bigger
+ data->overlap = realloc(data->overlap, sizeof(BVHTreeOverlap)*data->max_overlap*2);
+
+ if(!data->overlap)
+ {
+ printf("Out of Memory in traverse\n");
+ return;
+ }
+ data->max_overlap *= 2;
+ }
+
+ // both leafs, insert overlap!
+ data->overlap[data->i].indexA = node1->index;
+ data->overlap[data->i].indexB = node2->index;
+
+ data->i++;
+ }
+ else
+ {
+ for(j = 0; j < data->tree2->tree_type; j++)
+ {
+ if(node2->children[j])
+ traverse(data, node1, node2->children[j]);
+ }
+ }
+ }
+ else
+ {
+
+ for(j = 0; j < data->tree2->tree_type; j++)
+ {
+ if(node1->children[j])
+ traverse(data, node1->children[j], node2);
+ }
+ }
+ }
+ return;
+}
+
+BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
+{
+ int j, total = 0;
+ BVHTreeOverlap *overlap = NULL, *to = NULL;
+ BVHOverlapData **data;
+
+ // check for compatibility of both trees (can't compare 14-DOP with 18-DOP)
+ if((tree1->axis != tree2->axis) && (tree1->axis == 14 || tree2->axis == 14) && (tree1->axis == 18 || tree2->axis == 18))
+ return 0;
+
+ // fast check root nodes for collision before doing big splitting + traversal
+ if(!tree_overlap(tree1->nodes[tree1->totleaf], tree2->nodes[tree2->totleaf], MIN2(tree1->start_axis, tree2->start_axis), MIN2(tree1->stop_axis, tree2->stop_axis)))
+ return 0;
+
+ data = MEM_callocN(sizeof(BVHOverlapData *)* tree1->tree_type, "BVHOverlapData_star");
+
+ for(j = 0; j < tree1->tree_type; j++)
+ {
+ data[j] = (BVHOverlapData *)MEM_callocN(sizeof(BVHOverlapData), "BVHOverlapData");
+
+ // init BVHOverlapData
+ data[j]->overlap = (BVHTreeOverlap *)malloc(sizeof(BVHTreeOverlap)*MAX2(tree1->totleaf, tree2->totleaf));
+ data[j]->tree1 = tree1;
+ data[j]->tree2 = tree2;
+ data[j]->max_overlap = MAX2(tree1->totleaf, tree2->totleaf);
+ data[j]->i = 0;
+ data[j]->start_axis = MIN2(tree1->start_axis, tree2->start_axis);
+ data[j]->stop_axis = MIN2(tree1->stop_axis, tree2->stop_axis );
+ }
+
+#pragma omp parallel for private(j) schedule(static)
+ for(j = 0; j < MIN2(tree1->tree_type, tree1->nodes[tree1->totleaf]->totnode); j++)
+ {
+ traverse(data[j], tree1->nodes[tree1->totleaf]->children[j], tree2->nodes[tree2->totleaf]);
+ }
+
+ for(j = 0; j < tree1->tree_type; j++)
+ total += data[j]->i;
+
+ to = overlap = (BVHTreeOverlap *)MEM_callocN(sizeof(BVHTreeOverlap)*total, "BVHTreeOverlap");
+
+ for(j = 0; j < tree1->tree_type; j++)
+ {
+ memcpy(to, data[j]->overlap, data[j]->i*sizeof(BVHTreeOverlap));
+ to+=data[j]->i;
+ }
+
+ for(j = 0; j < tree1->tree_type; j++)
+ {
+ free(data[j]->overlap);
+ MEM_freeN(data[j]);
+ }
+ MEM_freeN(data);
+
+ (*result) = total;
+ return overlap;
+}
+
+
+/*
+ * Nearest neighbour - BLI_bvhtree_find_nearest
+ */
+static float squared_dist(const float *a, const float *b)
+{
+ float tmp[3];
+ VECSUB(tmp, a, b);
+ return INPR(tmp, tmp);
+}
+
+//Determines the nearest point of the given node BV. Returns the squared distance to that point.
+static float calc_nearest_point(BVHNearestData *data, BVHNode *node, float *nearest)
+{
+ int i;
+ const float *bv = node->bv;
+
+ //nearest on AABB hull
+ for(i=0; i != 3; i++, bv += 2)
+ {
+ if(bv[0] > data->proj[i])
+ nearest[i] = bv[0];
+ else if(bv[1] < data->proj[i])
+ nearest[i] = bv[1];
+ else
+ nearest[i] = data->proj[i];
+ }
+
+/*
+ //nearest on a general hull
+ VECCOPY(nearest, data->co);
+ for(i = data->tree->start_axis; i != data->tree->stop_axis; i++, bv+=2)
+ {
+ float proj = INPR( nearest, KDOP_AXES[i]);
+ float dl = bv[0] - proj;
+ float du = bv[1] - proj;
+
+ if(dl > 0)
+ {
+ VECADDFAC(nearest, nearest, KDOP_AXES[i], dl);
+ }
+ else if(du < 0)
+ {
+ VECADDFAC(nearest, nearest, KDOP_AXES[i], du);
+ }
+ }
+*/
+ return squared_dist(data->co, nearest);
+}
+
+
+typedef struct NodeDistance
+{
+ BVHNode *node;
+ float dist;
+
+} NodeDistance;
+
+#define NodeDistance_priority(a,b) ( (a).dist < (b).dist )
+
+// TODO: use a priority queue to reduce the number of nodes looked on
+static void dfs_find_nearest_dfs(BVHNearestData *data, BVHNode *node)
+{
+ if(node->totnode == 0)
+ {
+ if(data->callback)
+ data->callback(data->userdata , node->index, data->co, &data->nearest);
+ else
+ {
+ data->nearest.index = node->index;
+ data->nearest.dist = calc_nearest_point(data, node, data->nearest.co);
+ }
+ }
+ else
+ {
+ //Better heuristic to pick the closest node to dive on
+ int i;
+ float nearest[3];
+
+ if(data->proj[ node->main_axis ] <= node->children[0]->bv[node->main_axis*2+1])
+ {
+
+ for(i=0; i != node->totnode; i++)
+ {
+ if( calc_nearest_point(data, node->children[i], nearest) >= data->nearest.dist) continue;
+ dfs_find_nearest_dfs(data, node->children[i]);
+ }
+ }
+ else
+ {
+ for(i=node->totnode-1; i >= 0 ; i--)
+ {
+ if( calc_nearest_point(data, node->children[i], nearest) >= data->nearest.dist) continue;
+ dfs_find_nearest_dfs(data, node->children[i]);
+ }
+ }
+ }
+}
+
+static void dfs_find_nearest_begin(BVHNearestData *data, BVHNode *node)
+{
+ float nearest[3], sdist;
+ sdist = calc_nearest_point(data, node, nearest);
+ if(sdist >= data->nearest.dist) return;
+ dfs_find_nearest_dfs(data, node);
+}
+
+
+static void NodeDistance_push_heap(NodeDistance *heap, int heap_size)
+PUSH_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size)
+
+static void NodeDistance_pop_heap(NodeDistance *heap, int heap_size)
+POP_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size)
+
+//NN function that uses an heap.. this functions leads to an optimal number of min-distance
+//but for normal tri-faces and BV 6-dop.. a simple dfs with local heuristics (as implemented
+//in source/blender/blenkernel/intern/shrinkwrap.c) works faster.
+//
+//It may make sense to use this function if the callback queries are very slow.. or if its impossible
+//to get a nice heuristic
+//
+//this function uses "malloc/free" instead of the MEM_* because it intends to be openmp safe
+static void bfs_find_nearest(BVHNearestData *data, BVHNode *node)
+{
+ int i;
+ NodeDistance default_heap[DEFAULT_FIND_NEAREST_HEAP_SIZE];
+ NodeDistance *heap=default_heap, current;
+ int heap_size = 0, max_heap_size = sizeof(default_heap)/sizeof(default_heap[0]);
+ float nearest[3];
+
+ int callbacks = 0, push_heaps = 0;
+
+ if(node->totnode == 0)
+ {
+ dfs_find_nearest_dfs(data, node);
+ return;
+ }
+
+ current.node = node;
+ current.dist = calc_nearest_point(data, node, nearest);
+
+ while(current.dist < data->nearest.dist)
+ {
+// printf("%f : %f\n", current.dist, data->nearest.dist);
+ for(i=0; i< current.node->totnode; i++)
+ {
+ BVHNode *child = current.node->children[i];
+ if(child->totnode == 0)
+ {
+ callbacks++;
+ dfs_find_nearest_dfs(data, child);
+ }
+ else
+ {
+ //adjust heap size
+ if(heap_size >= max_heap_size
+ && ADJUST_MEMORY(default_heap, (void**)&heap, heap_size+1, &max_heap_size, sizeof(heap[0])) == FALSE)
+ {
+ printf("WARNING: bvh_find_nearest got out of memory\n");
+
+ if(heap != default_heap)
+ free(heap);
+
+ return;
+ }
+
+ heap[heap_size].node = current.node->children[i];
+ heap[heap_size].dist = calc_nearest_point(data, current.node->children[i], nearest);
+
+ if(heap[heap_size].dist >= data->nearest.dist) continue;
+ heap_size++;
+
+ NodeDistance_push_heap(heap, heap_size);
+ // PUSH_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size);
+ push_heaps++;
+ }
+ }
+
+ if(heap_size == 0) break;
+
+ current = heap[0];
+ NodeDistance_pop_heap(heap, heap_size);
+// POP_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size);
+ heap_size--;
+ }
+
+// printf("hsize=%d, callbacks=%d, pushs=%d\n", heap_size, callbacks, push_heaps);
+
+ if(heap != default_heap)
+ free(heap);
+}
+
+
+int BLI_bvhtree_find_nearest(BVHTree *tree, const float *co, BVHTreeNearest *nearest, BVHTree_NearestPointCallback callback, void *userdata)
+{
+ int i;
+
+ BVHNearestData data;
+ BVHNode* root = tree->nodes[tree->totleaf];
+
+ //init data to search
+ data.tree = tree;
+ data.co = co;
+
+ data.callback = callback;
+ data.userdata = userdata;
+
+ for(i = data.tree->start_axis; i != data.tree->stop_axis; i++)
+ {
+ data.proj[i] = INPR(data.co, KDOP_AXES[i]);
+ }
+
+ if(nearest)
+ {
+ memcpy( &data.nearest , nearest, sizeof(*nearest) );
+ }
+ else
+ {
+ data.nearest.index = -1;
+ data.nearest.dist = FLT_MAX;
+ }
+
+ //dfs search
+ if(root)
+ dfs_find_nearest_begin(&data, root);
+
+ //copy back results
+ if(nearest)
+ {
+ memcpy(nearest, &data.nearest, sizeof(*nearest));
+ }
+
+ return data.nearest.index;
+}
+
+
+/*
+ * Raycast - BLI_bvhtree_ray_cast
+ *
+ * raycast is done by performing a DFS on the BVHTree and saving the closest hit
+ */
+
+//Determines the distance that the ray must travel to hit the bounding volume of the given node
+static float ray_nearest_hit(BVHRayCastData *data, BVHNode *node)
+{
+ int i;
+ const float *bv = node->bv;
+
+ float low = 0, upper = data->hit.dist;
+
+ for(i=0; i != 3; i++, bv += 2)
+ {
+ if(data->ray_dot_axis[i] == 0.0f)
+ {
+ //axis aligned ray
+ if(data->ray.origin[i] < bv[0] - data->ray.radius
+ || data->ray.origin[i] > bv[1] + data->ray.radius)
+ return FLT_MAX;
+ }
+ else
+ {
+ float ll = (bv[0] - data->ray.radius - data->ray.origin[i]) / data->ray_dot_axis[i];
+ float lu = (bv[1] + data->ray.radius - data->ray.origin[i]) / data->ray_dot_axis[i];
+
+ if(data->ray_dot_axis[i] > 0.0f)
+ {
+ if(ll > low) low = ll;
+ if(lu < upper) upper = lu;
+ }
+ else
+ {
+ if(lu > low) low = lu;
+ if(ll < upper) upper = ll;
+ }
+
+ if(low > upper) return FLT_MAX;
+ }
+ }
+ return low;
+}
+
+static void dfs_raycast(BVHRayCastData *data, BVHNode *node)
+{
+ int i;
+
+ //ray-bv is really fast.. and simple tests revealed its worth to test it
+ //before calling the ray-primitive functions
+ float dist = ray_nearest_hit(data, node);
+ if(dist >= data->hit.dist) return;
+
+ if(node->totnode == 0)
+ {
+ if(data->callback)
+ data->callback(data->userdata, node->index, &data->ray, &data->hit);
+ else
+ {
+ data->hit.index = node->index;
+ data->hit.dist = dist;
+ VECADDFAC(data->hit.co, data->ray.origin, data->ray.direction, dist);
+ }
+ }
+ else
+ {
+ //pick loop direction to dive into the tree (based on ray direction and split axis)
+ if(data->ray_dot_axis[ node->main_axis ] > 0.0f)
+ {
+ for(i=0; i != node->totnode; i++)
+ {
+ dfs_raycast(data, node->children[i]);
+ }
+ }
+ else
+ {
+ for(i=node->totnode-1; i >= 0; i--)
+ {
+ dfs_raycast(data, node->children[i]);
+ }
+ }
+ }
+}
+
+int BLI_bvhtree_ray_cast(BVHTree *tree, const float *co, const float *dir, float radius, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata)
+{
+ int i;
+ BVHRayCastData data;
+ BVHNode * root = tree->nodes[tree->totleaf];
+
+ data.tree = tree;
+
+ data.callback = callback;
+ data.userdata = userdata;
+
+ VECCOPY(data.ray.origin, co);
+ VECCOPY(data.ray.direction, dir);
+ data.ray.radius = radius;
+
+ Normalize(data.ray.direction);
+
+ for(i=0; i<3; i++)
+ {
+ data.ray_dot_axis[i] = INPR( data.ray.direction, KDOP_AXES[i]);
+
+ if(fabs(data.ray_dot_axis[i]) < FLT_EPSILON)
+ data.ray_dot_axis[i] = 0.0;
+ }
+
+
+ if(hit)
+ memcpy( &data.hit, hit, sizeof(*hit) );
+ else
+ {
+ data.hit.index = -1;
+ data.hit.dist = FLT_MAX;
+ }
+
+ if(root)
+ dfs_raycast(&data, root);
+
+
+ if(hit)
+ memcpy( hit, &data.hit, sizeof(*hit) );
+
+ return data.hit.index;
+}
+