Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenlib/intern/arithb.c')
-rw-r--r--source/blender/blenlib/intern/arithb.c3672
1 files changed, 3672 insertions, 0 deletions
diff --git a/source/blender/blenlib/intern/arithb.c b/source/blender/blenlib/intern/arithb.c
new file mode 100644
index 00000000000..721df3a1a0c
--- /dev/null
+++ b/source/blender/blenlib/intern/arithb.c
@@ -0,0 +1,3672 @@
+/* arithb.c
+ *
+ * simple math for blender code
+ *
+ * sort of cleaned up mar-01 nzc
+ *
+ * $Id$
+ *
+ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version. The Blender
+ * Foundation also sells licenses for use in proprietary software under
+ * the Blender License. See http://www.blender.org/BL/ for information
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL/BL DUAL LICENSE BLOCK *****
+ */
+
+/* ************************ FUNKTIES **************************** */
+
+#include <math.h>
+#include <sys/types.h>
+#include <string.h>
+#include <float.h>
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#if defined(__sun__) || defined( __sun ) || defined (__sparc) || defined (__sparc__)
+#include <strings.h>
+#endif
+
+#if !defined(__sgi) && !defined(WIN32)
+#include <sys/time.h>
+#include <unistd.h>
+#endif
+
+#include <stdio.h>
+#include "BLI_arithb.h"
+
+/* A few small defines. Keep'em local! */
+#define SMALL_NUMBER 1.e-8
+#define ABS(x) ((x) < 0 ? -(x) : (x))
+#define SWAP(type, a, b) { type sw_ap; sw_ap=(a); (a)=(b); (b)=sw_ap; }
+
+
+#if defined(WIN32) || defined(__APPLE__)
+#include <stdlib.h>
+#define M_PI 3.14159265358979323846
+#define M_SQRT2 1.41421356237309504880
+
+#endif /* defined(WIN32) || defined(__APPLE__) */
+
+
+float saacos(float fac)
+{
+ if(fac<= -1.0f) return (float)M_PI;
+ else if(fac>=1.0f) return 0.0;
+ else return (float)acos(fac);
+}
+
+float saasin(float fac)
+{
+ if(fac<= -1.0f) return (float)-M_PI/2.0f;
+ else if(fac>=1.0f) return (float)M_PI/2.0f;
+ else return (float)asin(fac);
+}
+
+float sasqrt(float fac)
+{
+ if(fac<=0.0) return 0.0;
+ return (float)sqrt(fac);
+}
+
+float Normalize(float *n)
+{
+ float d;
+
+ d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
+ /* A larger value causes normalize errors in a scaled down models with camera xtreme close */
+ if(d>1.0e-35F) {
+ d= (float)sqrt(d);
+
+ n[0]/=d;
+ n[1]/=d;
+ n[2]/=d;
+ } else {
+ n[0]=n[1]=n[2]= 0.0;
+ d= 0.0;
+ }
+ return d;
+}
+
+void Crossf(float *c, float *a, float *b)
+{
+ c[0] = a[1] * b[2] - a[2] * b[1];
+ c[1] = a[2] * b[0] - a[0] * b[2];
+ c[2] = a[0] * b[1] - a[1] * b[0];
+}
+
+/* Inpf returns the dot product, also called the scalar product and inner product */
+float Inpf( float *v1, float *v2)
+{
+ return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
+}
+
+/* Project v1 on v2 */
+void Projf(float *c, float *v1, float *v2)
+{
+ float mul;
+ mul = Inpf(v1, v2) / Inpf(v2, v2);
+
+ c[0] = mul * v2[0];
+ c[1] = mul * v2[1];
+ c[2] = mul * v2[2];
+}
+
+void Mat3Transp(float mat[][3])
+{
+ float t;
+
+ t = mat[0][1] ;
+ mat[0][1] = mat[1][0] ;
+ mat[1][0] = t;
+ t = mat[0][2] ;
+ mat[0][2] = mat[2][0] ;
+ mat[2][0] = t;
+ t = mat[1][2] ;
+ mat[1][2] = mat[2][1] ;
+ mat[2][1] = t;
+}
+
+void Mat4Transp(float mat[][4])
+{
+ float t;
+
+ t = mat[0][1] ;
+ mat[0][1] = mat[1][0] ;
+ mat[1][0] = t;
+ t = mat[0][2] ;
+ mat[0][2] = mat[2][0] ;
+ mat[2][0] = t;
+ t = mat[0][3] ;
+ mat[0][3] = mat[3][0] ;
+ mat[3][0] = t;
+
+ t = mat[1][2] ;
+ mat[1][2] = mat[2][1] ;
+ mat[2][1] = t;
+ t = mat[1][3] ;
+ mat[1][3] = mat[3][1] ;
+ mat[3][1] = t;
+
+ t = mat[2][3] ;
+ mat[2][3] = mat[3][2] ;
+ mat[3][2] = t;
+}
+
+
+/*
+ * invertmat -
+ * computes the inverse of mat and puts it in inverse. Returns
+ * TRUE on success (i.e. can always find a pivot) and FALSE on failure.
+ * Uses Gaussian Elimination with partial (maximal column) pivoting.
+ *
+ * Mark Segal - 1992
+ */
+
+int Mat4Invert(float inverse[][4], float mat[][4])
+{
+ int i, j, k;
+ double temp;
+ float tempmat[4][4];
+ float max;
+ int maxj;
+
+ /* Set inverse to identity */
+ for (i=0; i<4; i++)
+ for (j=0; j<4; j++)
+ inverse[i][j] = 0;
+ for (i=0; i<4; i++)
+ inverse[i][i] = 1;
+
+ /* Copy original matrix so we don't mess it up */
+ for(i = 0; i < 4; i++)
+ for(j = 0; j <4; j++)
+ tempmat[i][j] = mat[i][j];
+
+ for(i = 0; i < 4; i++) {
+ /* Look for row with max pivot */
+ max = ABS(tempmat[i][i]);
+ maxj = i;
+ for(j = i + 1; j < 4; j++) {
+ if(ABS(tempmat[j][i]) > max) {
+ max = ABS(tempmat[j][i]);
+ maxj = j;
+ }
+ }
+ /* Swap rows if necessary */
+ if (maxj != i) {
+ for( k = 0; k < 4; k++) {
+ SWAP(float, tempmat[i][k], tempmat[maxj][k]);
+ SWAP(float, inverse[i][k], inverse[maxj][k]);
+ }
+ }
+
+ temp = tempmat[i][i];
+ if (temp == 0)
+ return 0; /* No non-zero pivot */
+ for(k = 0; k < 4; k++) {
+ tempmat[i][k] = (float)(tempmat[i][k]/temp);
+ inverse[i][k] = (float)(inverse[i][k]/temp);
+ }
+ for(j = 0; j < 4; j++) {
+ if(j != i) {
+ temp = tempmat[j][i];
+ for(k = 0; k < 4; k++) {
+ tempmat[j][k] -= (float)(tempmat[i][k]*temp);
+ inverse[j][k] -= (float)(inverse[i][k]*temp);
+ }
+ }
+ }
+ }
+ return 1;
+}
+#ifdef TEST_ACTIVE
+void Mat4InvertSimp(float inverse[][4], float mat[][4])
+{
+ /* only for Matrices that have a rotation */
+ /* based at GG IV pag 205 */
+ float scale;
+
+ scale= mat[0][0]*mat[0][0] + mat[1][0]*mat[1][0] + mat[2][0]*mat[2][0];
+ if(scale==0.0) return;
+
+ scale= 1.0/scale;
+
+ /* transpose and scale */
+ inverse[0][0]= scale*mat[0][0];
+ inverse[1][0]= scale*mat[0][1];
+ inverse[2][0]= scale*mat[0][2];
+ inverse[0][1]= scale*mat[1][0];
+ inverse[1][1]= scale*mat[1][1];
+ inverse[2][1]= scale*mat[1][2];
+ inverse[0][2]= scale*mat[2][0];
+ inverse[1][2]= scale*mat[2][1];
+ inverse[2][2]= scale*mat[2][2];
+
+ inverse[3][0]= -(inverse[0][0]*mat[3][0] + inverse[1][0]*mat[3][1] + inverse[2][0]*mat[3][2]);
+ inverse[3][1]= -(inverse[0][1]*mat[3][0] + inverse[1][1]*mat[3][1] + inverse[2][1]*mat[3][2]);
+ inverse[3][2]= -(inverse[0][2]*mat[3][0] + inverse[1][2]*mat[3][1] + inverse[2][2]*mat[3][2]);
+
+ inverse[0][3]= inverse[1][3]= inverse[2][3]= 0.0;
+ inverse[3][3]= 1.0;
+}
+#endif
+/* struct Matrix4; */
+
+#ifdef TEST_ACTIVE
+/* this seems to be unused.. */
+
+void Mat4Inv(float *m1, float *m2)
+{
+
+/* This gets me into trouble: */
+ float mat1[3][3], mat2[3][3];
+
+/* void Mat3Inv(); */
+/* void Mat3CpyMat4(); */
+/* void Mat4CpyMat3(); */
+
+ Mat3CpyMat4((float*)mat2,m2);
+ Mat3Inv((float*)mat1, (float*) mat2);
+ Mat4CpyMat3(m1, mat1);
+
+}
+#endif
+
+
+float Det2x2(float a,float b,float c,float d)
+{
+
+ return a*d - b*c;
+}
+
+
+
+float Det3x3(float a1, float a2, float a3,
+ float b1, float b2, float b3,
+ float c1, float c2, float c3 )
+{
+ float ans;
+
+ ans = a1 * Det2x2( b2, b3, c2, c3 )
+ - b1 * Det2x2( a2, a3, c2, c3 )
+ + c1 * Det2x2( a2, a3, b2, b3 );
+
+ return ans;
+}
+
+float Det4x4(float m[][4])
+{
+ float ans;
+ float a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
+
+ a1= m[0][0];
+ b1= m[0][1];
+ c1= m[0][2];
+ d1= m[0][3];
+
+ a2= m[1][0];
+ b2= m[1][1];
+ c2= m[1][2];
+ d2= m[1][3];
+
+ a3= m[2][0];
+ b3= m[2][1];
+ c3= m[2][2];
+ d3= m[2][3];
+
+ a4= m[3][0];
+ b4= m[3][1];
+ c4= m[3][2];
+ d4= m[3][3];
+
+ ans = a1 * Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4)
+ - b1 * Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4)
+ + c1 * Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4)
+ - d1 * Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
+
+ return ans;
+}
+
+
+void Mat4Adj(float out[][4], float in[][4]) /* out = ADJ(in) */
+{
+ float a1, a2, a3, a4, b1, b2, b3, b4;
+ float c1, c2, c3, c4, d1, d2, d3, d4;
+
+ a1= in[0][0];
+ b1= in[0][1];
+ c1= in[0][2];
+ d1= in[0][3];
+
+ a2= in[1][0];
+ b2= in[1][1];
+ c2= in[1][2];
+ d2= in[1][3];
+
+ a3= in[2][0];
+ b3= in[2][1];
+ c3= in[2][2];
+ d3= in[2][3];
+
+ a4= in[3][0];
+ b4= in[3][1];
+ c4= in[3][2];
+ d4= in[3][3];
+
+
+ out[0][0] = Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
+ out[1][0] = - Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
+ out[2][0] = Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
+ out[3][0] = - Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
+
+ out[0][1] = - Det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
+ out[1][1] = Det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
+ out[2][1] = - Det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
+ out[3][1] = Det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
+
+ out[0][2] = Det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
+ out[1][2] = - Det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
+ out[2][2] = Det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
+ out[3][2] = - Det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
+
+ out[0][3] = - Det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
+ out[1][3] = Det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
+ out[2][3] = - Det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
+ out[3][3] = Det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
+}
+
+void Mat4InvGG(float out[][4], float in[][4]) /* from Graphic Gems I, out= INV(in) */
+{
+ int i, j;
+ float det;
+
+ /* calculate the adjoint matrix */
+
+ Mat4Adj(out,in);
+
+ det = Det4x4(out);
+
+ if ( fabs( det ) < SMALL_NUMBER) {
+ return;
+ }
+
+ /* scale the adjoint matrix to get the inverse */
+
+ for (i=0; i<4; i++)
+ for(j=0; j<4; j++)
+ out[i][j] = out[i][j] / det;
+
+ /* the last factor is not always 1. For that reason an extra division should be implemented? */
+}
+
+
+void Mat3Inv(float m1[][3], float m2[][3])
+{
+ short a,b;
+ float det;
+
+ /* calc adjoint */
+ Mat3Adj(m1,m2);
+
+ /* then determinant old matrix! */
+ det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
+ -m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
+ +m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
+
+ if(det==0) det=1;
+ det= 1/det;
+ for(a=0;a<3;a++) {
+ for(b=0;b<3;b++) {
+ m1[a][b]*=det;
+ }
+ }
+}
+
+void Mat3Adj(float m1[][3], float m[][3])
+{
+ m1[0][0]=m[1][1]*m[2][2]-m[1][2]*m[2][1];
+ m1[0][1]= -m[0][1]*m[2][2]+m[0][2]*m[2][1];
+ m1[0][2]=m[0][1]*m[1][2]-m[0][2]*m[1][1];
+
+ m1[1][0]= -m[1][0]*m[2][2]+m[1][2]*m[2][0];
+ m1[1][1]=m[0][0]*m[2][2]-m[0][2]*m[2][0];
+ m1[1][2]= -m[0][0]*m[1][2]+m[0][2]*m[1][0];
+
+ m1[2][0]=m[1][0]*m[2][1]-m[1][1]*m[2][0];
+ m1[2][1]= -m[0][0]*m[2][1]+m[0][1]*m[2][0];
+ m1[2][2]=m[0][0]*m[1][1]-m[0][1]*m[1][0];
+}
+
+void Mat4MulMat4(float m1[][4], float m2[][4], float m3[][4])
+{
+ /* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
+
+ m1[0][0] = m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0] + m2[0][3]*m3[3][0];
+ m1[0][1] = m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1] + m2[0][3]*m3[3][1];
+ m1[0][2] = m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2] + m2[0][3]*m3[3][2];
+ m1[0][3] = m2[0][0]*m3[0][3] + m2[0][1]*m3[1][3] + m2[0][2]*m3[2][3] + m2[0][3]*m3[3][3];
+
+ m1[1][0] = m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0] + m2[1][3]*m3[3][0];
+ m1[1][1] = m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1] + m2[1][3]*m3[3][1];
+ m1[1][2] = m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2] + m2[1][3]*m3[3][2];
+ m1[1][3] = m2[1][0]*m3[0][3] + m2[1][1]*m3[1][3] + m2[1][2]*m3[2][3] + m2[1][3]*m3[3][3];
+
+ m1[2][0] = m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0] + m2[2][3]*m3[3][0];
+ m1[2][1] = m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1] + m2[2][3]*m3[3][1];
+ m1[2][2] = m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2] + m2[2][3]*m3[3][2];
+ m1[2][3] = m2[2][0]*m3[0][3] + m2[2][1]*m3[1][3] + m2[2][2]*m3[2][3] + m2[2][3]*m3[3][3];
+
+ m1[3][0] = m2[3][0]*m3[0][0] + m2[3][1]*m3[1][0] + m2[3][2]*m3[2][0] + m2[3][3]*m3[3][0];
+ m1[3][1] = m2[3][0]*m3[0][1] + m2[3][1]*m3[1][1] + m2[3][2]*m3[2][1] + m2[3][3]*m3[3][1];
+ m1[3][2] = m2[3][0]*m3[0][2] + m2[3][1]*m3[1][2] + m2[3][2]*m3[2][2] + m2[3][3]*m3[3][2];
+ m1[3][3] = m2[3][0]*m3[0][3] + m2[3][1]*m3[1][3] + m2[3][2]*m3[2][3] + m2[3][3]*m3[3][3];
+
+}
+#ifdef TEST_ACTIVE
+void subMat4MulMat4(float *m1, float *m2, float *m3)
+{
+
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
+ m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
+ m1+=4;
+ m2+=4;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
+ m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
+ m1+=4;
+ m2+=4;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
+ m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
+}
+#endif
+
+#ifndef TEST_ACTIVE
+void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3])
+#else
+void Mat3MulMat3(float *m1, float *m3, float *m2)
+#endif
+{
+ /* m1[i][j] = m2[i][k]*m3[k][j], args are flipped! */
+#ifndef TEST_ACTIVE
+ m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
+ m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
+ m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
+
+ m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
+ m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
+ m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
+
+ m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
+ m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
+ m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
+#else
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
+ m1+=3;
+ m2+=3;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
+ m1+=3;
+ m2+=3;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
+#endif
+} /* end of void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3]) */
+
+void Mat4MulMat43(float (*m1)[4], float (*m3)[4], float (*m2)[3])
+{
+ m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
+ m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
+ m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
+ m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
+ m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
+ m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
+ m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
+ m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
+ m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
+}
+/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3*/
+void Mat3IsMat3MulMat4(float m1[][3], float m2[][3], float m3[][4])
+{
+ /* m1[i][j] = m2[i][k] * m3[k][j] */
+ m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] +m2[0][2] * m3[2][0];
+ m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] +m2[0][2] * m3[2][1];
+ m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] +m2[0][2] * m3[2][2];
+
+ m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] +m2[1][2] * m3[2][0];
+ m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] +m2[1][2] * m3[2][1];
+ m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] +m2[1][2] * m3[2][2];
+
+ m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] +m2[2][2] * m3[2][0];
+ m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] +m2[2][2] * m3[2][1];
+ m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] +m2[2][2] * m3[2][2];
+}
+
+
+
+void Mat4MulMat34(float (*m1)[4], float (*m3)[3], float (*m2)[4])
+{
+ m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
+ m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
+ m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
+ m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
+ m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
+ m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
+ m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
+ m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
+ m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
+}
+
+void Mat4CpyMat4(float m1[][4], float m2[][4])
+{
+ memcpy(m1, m2, 4*4*sizeof(float));
+}
+
+void Mat4SwapMat4(float *m1, float *m2)
+{
+ float t;
+ int i;
+
+ for(i=0;i<16;i++) {
+ t= *m1;
+ *m1= *m2;
+ *m2= t;
+ m1++;
+ m2++;
+ }
+}
+
+typedef float Mat3Row[3];
+typedef float Mat4Row[4];
+
+#ifdef TEST_ACTIVE
+void Mat3CpyMat4(float *m1p, float *m2p)
+#else
+void Mat3CpyMat4(float m1[][3], float m2[][4])
+#endif
+{
+#ifdef TEST_ACTIVE
+ int i, j;
+ Mat3Row *m1= (Mat3Row *)m1p;
+ Mat4Row *m2= (Mat4Row *)m2p;
+ for ( i = 0; i++; i < 3) {
+ for (j = 0; j++; j < 3) {
+ m1p[3*i + j] = m2p[4*i + j];
+ }
+ }
+#endif
+ m1[0][0]= m2[0][0];
+ m1[0][1]= m2[0][1];
+ m1[0][2]= m2[0][2];
+
+ m1[1][0]= m2[1][0];
+ m1[1][1]= m2[1][1];
+ m1[1][2]= m2[1][2];
+
+ m1[2][0]= m2[2][0];
+ m1[2][1]= m2[2][1];
+ m1[2][2]= m2[2][2];
+}
+
+/* Butched. See .h for comment */
+/* void Mat4CpyMat3(float m1[][4], float m2[][3]) */
+#ifdef TEST_ACTIVE
+void Mat4CpyMat3(float* m1, float *m2)
+{
+ int i;
+ for (i = 0; i < 3; i++) {
+ m1[(4*i)] = m2[(3*i)];
+ m1[(4*i) + 1]= m2[(3*i) + 1];
+ m1[(4*i) + 2]= m2[(3*i) + 2];
+ m1[(4*i) + 3]= 0.0;
+ i++;
+ }
+
+ m1[12]=m1[13]= m1[14]= 0.0;
+ m1[15]= 1.0;
+}
+#else
+
+void Mat4CpyMat3(float m1[][4], float m2[][3]) /* no clear */
+{
+ m1[0][0]= m2[0][0];
+ m1[0][1]= m2[0][1];
+ m1[0][2]= m2[0][2];
+
+ m1[1][0]= m2[1][0];
+ m1[1][1]= m2[1][1];
+ m1[1][2]= m2[1][2];
+
+ m1[2][0]= m2[2][0];
+ m1[2][1]= m2[2][1];
+ m1[2][2]= m2[2][2];
+
+ /* Reevan's Bugfix */
+ m1[0][3]=0.0F;
+ m1[1][3]=0.0F;
+ m1[2][3]=0.0F;
+
+ m1[3][0]=0.0F;
+ m1[3][1]=0.0F;
+ m1[3][2]=0.0F;
+ m1[3][3]=1.0F;
+
+
+}
+#endif
+
+void Mat3CpyMat3(float m1[][3], float m2[][3])
+{
+ /* destination comes first: */
+ memcpy(&m1[0], &m2[0], 9*sizeof(float));
+}
+
+void Mat3MulSerie(float answ[][3],
+ float m1[][3], float m2[][3], float m3[][3],
+ float m4[][3], float m5[][3], float m6[][3],
+ float m7[][3], float m8[][3])
+{
+ float temp[3][3];
+
+ if(m1==0 || m2==0) return;
+
+
+ Mat3MulMat3(answ, m2, m1);
+ if(m3) {
+ Mat3MulMat3(temp, m3, answ);
+ if(m4) {
+ Mat3MulMat3(answ, m4, temp);
+ if(m5) {
+ Mat3MulMat3(temp, m5, answ);
+ if(m6) {
+ Mat3MulMat3(answ, m6, temp);
+ if(m7) {
+ Mat3MulMat3(temp, m7, answ);
+ if(m8) {
+ Mat3MulMat3(answ, m8, temp);
+ }
+ else Mat3CpyMat3(answ, temp);
+ }
+ }
+ else Mat3CpyMat3(answ, temp);
+ }
+ }
+ else Mat3CpyMat3(answ, temp);
+ }
+}
+
+void Mat4MulSerie(float answ[][4], float m1[][4],
+ float m2[][4], float m3[][4], float m4[][4],
+ float m5[][4], float m6[][4], float m7[][4],
+ float m8[][4])
+{
+ float temp[4][4];
+
+ if(m1==0 || m2==0) return;
+
+ Mat4MulMat4(answ, m2, m1);
+ if(m3) {
+ Mat4MulMat4(temp, m3, answ);
+ if(m4) {
+ Mat4MulMat4(answ, m4, temp);
+ if(m5) {
+ Mat4MulMat4(temp, m5, answ);
+ if(m6) {
+ Mat4MulMat4(answ, m6, temp);
+ if(m7) {
+ Mat4MulMat4(temp, m7, answ);
+ if(m8) {
+ Mat4MulMat4(answ, m8, temp);
+ }
+ else Mat4CpyMat4(answ, temp);
+ }
+ }
+ else Mat4CpyMat4(answ, temp);
+ }
+ }
+ else Mat4CpyMat4(answ, temp);
+ }
+}
+
+void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight)
+{
+ float squat[4], dquat[4], fquat[4];
+ float ssize[3], dsize[3], fsize[4];
+ float sloc[3], dloc[3], floc[3];
+
+ Mat4ToQuat(dst, dquat);
+ Mat4ToSize(dst, dsize);
+ VecCopyf(dloc, dst[3]);
+
+ Mat4ToQuat(src, squat);
+ Mat4ToSize(src, ssize);
+ VecCopyf(sloc, src[3]);
+
+ /* do blending */
+ VecLerpf(floc, dloc, sloc, srcweight);
+ QuatInterpol(fquat, dquat, squat, srcweight);
+ VecLerpf(fsize, dsize, ssize, srcweight);
+
+ /* compose new matrix */
+ LocQuatSizeToMat4(out, floc, fquat, fsize);
+}
+
+void Mat4Clr(float *m)
+{
+ memset(m, 0, 4*4*sizeof(float));
+}
+
+void Mat3Clr(float *m)
+{
+ memset(m, 0, 3*3*sizeof(float));
+}
+
+void Mat4One(float m[][4])
+{
+
+ m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
+ m[0][1]= m[0][2]= m[0][3]= 0.0;
+ m[1][0]= m[1][2]= m[1][3]= 0.0;
+ m[2][0]= m[2][1]= m[2][3]= 0.0;
+ m[3][0]= m[3][1]= m[3][2]= 0.0;
+}
+
+void Mat3One(float m[][3])
+{
+
+ m[0][0]= m[1][1]= m[2][2]= 1.0;
+ m[0][1]= m[0][2]= 0.0;
+ m[1][0]= m[1][2]= 0.0;
+ m[2][0]= m[2][1]= 0.0;
+}
+
+void Mat4MulVec( float mat[][4], int *vec)
+{
+ int x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]=(int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0]);
+ vec[1]=(int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1]);
+ vec[2]=(int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2]);
+}
+
+void Mat4MulVecfl( float mat[][4], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]=x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
+ vec[1]=x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
+ vec[2]=x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
+}
+
+void VecMat4MulVecfl(float *in, float mat[][4], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ in[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
+ in[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
+ in[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
+}
+
+void Mat4Mul3Vecfl( float mat[][4], float *vec)
+{
+ float x,y;
+
+ x= vec[0];
+ y= vec[1];
+ vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
+ vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
+ vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
+}
+
+void Mat4MulVec3Project(float mat[][4], float *vec)
+{
+ float w;
+
+ w = vec[0]*mat[0][3] + vec[1]*mat[1][3] + vec[2]*mat[2][3] + mat[3][3];
+ Mat4MulVecfl(mat, vec);
+
+ vec[0] /= w;
+ vec[1] /= w;
+ vec[2] /= w;
+}
+
+void Mat4MulVec4fl( float mat[][4], float *vec)
+{
+ float x,y,z;
+
+ x=vec[0];
+ y=vec[1];
+ z= vec[2];
+ vec[0]=x*mat[0][0] + y*mat[1][0] + z*mat[2][0] + mat[3][0]*vec[3];
+ vec[1]=x*mat[0][1] + y*mat[1][1] + z*mat[2][1] + mat[3][1]*vec[3];
+ vec[2]=x*mat[0][2] + y*mat[1][2] + z*mat[2][2] + mat[3][2]*vec[3];
+ vec[3]=x*mat[0][3] + y*mat[1][3] + z*mat[2][3] + mat[3][3]*vec[3];
+}
+
+void Mat3MulVec( float mat[][3], int *vec)
+{
+ int x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= (int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2]);
+ vec[1]= (int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2]);
+ vec[2]= (int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2]);
+}
+
+void Mat3MulVecfl( float mat[][3], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
+ vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
+ vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
+}
+
+void Mat3MulVecd( float mat[][3], double *vec)
+{
+ double x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
+ vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
+ vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
+}
+
+void Mat3TransMulVecfl( float mat[][3], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= x*mat[0][0] + y*mat[0][1] + mat[0][2]*vec[2];
+ vec[1]= x*mat[1][0] + y*mat[1][1] + mat[1][2]*vec[2];
+ vec[2]= x*mat[2][0] + y*mat[2][1] + mat[2][2]*vec[2];
+}
+
+void Mat3MulFloat(float *m, float f)
+{
+ int i;
+
+ for(i=0;i<9;i++) m[i]*=f;
+}
+
+void Mat4MulFloat(float *m, float f)
+{
+ int i;
+
+ for(i=0;i<16;i++) m[i]*=f; /* count to 12: without vector component */
+}
+
+
+void Mat4MulFloat3(float *m, float f) /* only scale component */
+{
+ int i,j;
+
+ for(i=0; i<3; i++) {
+ for(j=0; j<3; j++) {
+
+ m[4*i+j] *= f;
+ }
+ }
+}
+
+void Mat3AddMat3(float m1[][3], float m2[][3], float m3[][3])
+{
+ int i, j;
+
+ for(i=0;i<3;i++)
+ for(j=0;j<3;j++)
+ m1[i][j]= m2[i][j] + m3[i][j];
+}
+
+void Mat4AddMat4(float m1[][4], float m2[][4], float m3[][4])
+{
+ int i, j;
+
+ for(i=0;i<4;i++)
+ for(j=0;j<4;j++)
+ m1[i][j]= m2[i][j] + m3[i][j];
+}
+
+void VecStar(float mat[][3], float *vec)
+{
+
+ mat[0][0]= mat[1][1]= mat[2][2]= 0.0;
+ mat[0][1]= -vec[2];
+ mat[0][2]= vec[1];
+ mat[1][0]= vec[2];
+ mat[1][2]= -vec[0];
+ mat[2][0]= -vec[1];
+ mat[2][1]= vec[0];
+
+}
+#ifdef TEST_ACTIVE
+short EenheidsMat(float mat[][3])
+{
+
+ if(mat[0][0]==1.0 && mat[0][1]==0.0 && mat[0][2]==0.0)
+ if(mat[1][0]==0.0 && mat[1][1]==1.0 && mat[1][2]==0.0)
+ if(mat[2][0]==0.0 && mat[2][1]==0.0 && mat[2][2]==1.0)
+ return 1;
+ return 0;
+}
+#endif
+
+int FloatCompare( float *v1, float *v2, float limit)
+{
+
+ if( fabs(v1[0]-v2[0])<limit ) {
+ if( fabs(v1[1]-v2[1])<limit ) {
+ if( fabs(v1[2]-v2[2])<limit ) return 1;
+ }
+ }
+ return 0;
+}
+
+float FloatLerpf( float target, float origin, float fac)
+{
+ return (fac*target) + (1.0f-fac)*origin;
+}
+
+void printvecf( char *str, float v[3])
+{
+ printf("%s: %.3f %.3f %.3f\n", str, v[0], v[1], v[2]);
+
+}
+
+void printquat( char *str, float q[4])
+{
+ printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
+
+}
+
+void printvec4f( char *str, float v[4])
+{
+ printf("%s\n", str);
+ printf("%f %f %f %f\n",v[0],v[1],v[2], v[3]);
+ printf("\n");
+
+}
+
+void printmatrix4( char *str, float m[][4])
+{
+ printf("%s\n", str);
+ printf("%f %f %f %f\n",m[0][0],m[1][0],m[2][0],m[3][0]);
+ printf("%f %f %f %f\n",m[0][1],m[1][1],m[2][1],m[3][1]);
+ printf("%f %f %f %f\n",m[0][2],m[1][2],m[2][2],m[3][2]);
+ printf("%f %f %f %f\n",m[0][3],m[1][3],m[2][3],m[3][3]);
+ printf("\n");
+
+}
+
+void printmatrix3( char *str, float m[][3])
+{
+ printf("%s\n", str);
+ printf("%f %f %f\n",m[0][0],m[1][0],m[2][0]);
+ printf("%f %f %f\n",m[0][1],m[1][1],m[2][1]);
+ printf("%f %f %f\n",m[0][2],m[1][2],m[2][2]);
+ printf("\n");
+
+}
+
+/* **************** QUATERNIONS ********** */
+
+
+void QuatMul(float *q, float *q1, float *q2)
+{
+ float t0,t1,t2;
+
+ t0= q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3];
+ t1= q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2];
+ t2= q1[0]*q2[2]+q1[2]*q2[0]+q1[3]*q2[1]-q1[1]*q2[3];
+ q[3]= q1[0]*q2[3]+q1[3]*q2[0]+q1[1]*q2[2]-q1[2]*q2[1];
+ q[0]=t0;
+ q[1]=t1;
+ q[2]=t2;
+}
+
+/* Assumes a unit quaternion */
+void QuatMulVecf(float *q, float *v)
+{
+ float t0, t1, t2;
+
+ t0= -q[1]*v[0]-q[2]*v[1]-q[3]*v[2];
+ t1= q[0]*v[0]+q[2]*v[2]-q[3]*v[1];
+ t2= q[0]*v[1]+q[3]*v[0]-q[1]*v[2];
+ v[2]= q[0]*v[2]+q[1]*v[1]-q[2]*v[0];
+ v[0]=t1;
+ v[1]=t2;
+
+ t1= t0*-q[1]+v[0]*q[0]-v[1]*q[3]+v[2]*q[2];
+ t2= t0*-q[2]+v[1]*q[0]-v[2]*q[1]+v[0]*q[3];
+ v[2]= t0*-q[3]+v[2]*q[0]-v[0]*q[2]+v[1]*q[1];
+ v[0]=t1;
+ v[1]=t2;
+}
+
+void QuatConj(float *q)
+{
+ q[1] = -q[1];
+ q[2] = -q[2];
+ q[3] = -q[3];
+}
+
+float QuatDot(float *q1, float *q2)
+{
+ return q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2] + q1[3]*q2[3];
+}
+
+void QuatInv(float *q)
+{
+ float f = QuatDot(q, q);
+
+ if (f == 0.0f)
+ return;
+
+ QuatConj(q);
+ QuatMulf(q, 1.0f/f);
+}
+
+void QuatMulf(float *q, float f)
+{
+ q[0] *= f;
+ q[1] *= f;
+ q[2] *= f;
+ q[3] *= f;
+}
+
+void QuatSub(float *q, float *q1, float *q2)
+{
+ q2[0]= -q2[0];
+ QuatMul(q, q1, q2);
+ q2[0]= -q2[0];
+}
+
+
+void QuatToMat3( float *q, float m[][3])
+{
+ double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
+
+ q0= M_SQRT2 * q[0];
+ q1= M_SQRT2 * q[1];
+ q2= M_SQRT2 * q[2];
+ q3= M_SQRT2 * q[3];
+
+ qda= q0*q1;
+ qdb= q0*q2;
+ qdc= q0*q3;
+ qaa= q1*q1;
+ qab= q1*q2;
+ qac= q1*q3;
+ qbb= q2*q2;
+ qbc= q2*q3;
+ qcc= q3*q3;
+
+ m[0][0]= (float)(1.0-qbb-qcc);
+ m[0][1]= (float)(qdc+qab);
+ m[0][2]= (float)(-qdb+qac);
+
+ m[1][0]= (float)(-qdc+qab);
+ m[1][1]= (float)(1.0-qaa-qcc);
+ m[1][2]= (float)(qda+qbc);
+
+ m[2][0]= (float)(qdb+qac);
+ m[2][1]= (float)(-qda+qbc);
+ m[2][2]= (float)(1.0-qaa-qbb);
+}
+
+
+void QuatToMat4( float *q, float m[][4])
+{
+ double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
+
+ q0= M_SQRT2 * q[0];
+ q1= M_SQRT2 * q[1];
+ q2= M_SQRT2 * q[2];
+ q3= M_SQRT2 * q[3];
+
+ qda= q0*q1;
+ qdb= q0*q2;
+ qdc= q0*q3;
+ qaa= q1*q1;
+ qab= q1*q2;
+ qac= q1*q3;
+ qbb= q2*q2;
+ qbc= q2*q3;
+ qcc= q3*q3;
+
+ m[0][0]= (float)(1.0-qbb-qcc);
+ m[0][1]= (float)(qdc+qab);
+ m[0][2]= (float)(-qdb+qac);
+ m[0][3]= 0.0f;
+
+ m[1][0]= (float)(-qdc+qab);
+ m[1][1]= (float)(1.0-qaa-qcc);
+ m[1][2]= (float)(qda+qbc);
+ m[1][3]= 0.0f;
+
+ m[2][0]= (float)(qdb+qac);
+ m[2][1]= (float)(-qda+qbc);
+ m[2][2]= (float)(1.0-qaa-qbb);
+ m[2][3]= 0.0f;
+
+ m[3][0]= m[3][1]= m[3][2]= 0.0f;
+ m[3][3]= 1.0f;
+}
+
+void Mat3ToQuat( float wmat[][3], float *q) /* from Sig.Proc.85 pag 253 */
+{
+ double tr, s;
+ float mat[3][3];
+
+ /* work on a copy */
+ Mat3CpyMat3(mat, wmat);
+ Mat3Ortho(mat); /* this is needed AND a NormalQuat in the end */
+
+ tr= 0.25*(1.0+mat[0][0]+mat[1][1]+mat[2][2]);
+
+ if(tr>FLT_EPSILON) {
+ s= sqrt( tr);
+ q[0]= (float)s;
+ s*= 4.0;
+ q[1]= (float)((mat[1][2]-mat[2][1])/s);
+ q[2]= (float)((mat[2][0]-mat[0][2])/s);
+ q[3]= (float)((mat[0][1]-mat[1][0])/s);
+ }
+ else {
+ q[0]= 0.0f;
+ s= -0.5*(mat[1][1]+mat[2][2]);
+
+ if(s>FLT_EPSILON) {
+ s= sqrt(s);
+ q[1]= (float)s;
+ q[2]= (float)(mat[0][1]/(2*s));
+ q[3]= (float)(mat[0][2]/(2*s));
+ }
+ else {
+ q[1]= 0.0f;
+ s= 0.5*(1.0-mat[2][2]);
+
+ if(s>FLT_EPSILON) {
+ s= sqrt(s);
+ q[2]= (float)s;
+ q[3]= (float)(mat[1][2]/(2*s));
+ }
+ else {
+ q[2]= 0.0f;
+ q[3]= 1.0f;
+ }
+ }
+ }
+ NormalQuat(q);
+}
+
+void Mat3ToQuat_is_ok( float wmat[][3], float *q)
+{
+ float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
+
+ /* work on a copy */
+ Mat3CpyMat3(mat, wmat);
+ Mat3Ortho(mat);
+
+ /* rotate z-axis of matrix to z-axis */
+
+ nor[0] = mat[2][1]; /* cross product with (0,0,1) */
+ nor[1] = -mat[2][0];
+ nor[2] = 0.0;
+ Normalize(nor);
+
+ co= mat[2][2];
+ angle= 0.5f*saacos(co);
+
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q1[0]= co;
+ q1[1]= -nor[0]*si; /* negative here, but why? */
+ q1[2]= -nor[1]*si;
+ q1[3]= -nor[2]*si;
+
+ /* rotate back x-axis from mat, using inverse q1 */
+ QuatToMat3(q1, matr);
+ Mat3Inv(matn, matr);
+ Mat3MulVecfl(matn, mat[0]);
+
+ /* and align x-axes */
+ angle= (float)(0.5*atan2(mat[0][1], mat[0][0]));
+
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q2[0]= co;
+ q2[1]= 0.0f;
+ q2[2]= 0.0f;
+ q2[3]= si;
+
+ QuatMul(q, q1, q2);
+}
+
+
+void Mat4ToQuat( float m[][4], float *q)
+{
+ float mat[3][3];
+
+ Mat3CpyMat4(mat, m);
+ Mat3ToQuat(mat, q);
+
+}
+
+void QuatOne(float *q)
+{
+ q[0]= q[2]= q[3]= 0.0;
+ q[1]= 1.0;
+}
+
+void NormalQuat(float *q)
+{
+ float len;
+
+ len= (float)sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
+ if(len!=0.0) {
+ q[0]/= len;
+ q[1]/= len;
+ q[2]/= len;
+ q[3]/= len;
+ } else {
+ q[1]= 1.0f;
+ q[0]= q[2]= q[3]= 0.0f;
+ }
+}
+
+float *vectoquat( float *vec, short axis, short upflag)
+{
+ static float q1[4];
+ float q2[4], nor[3], *fp, mat[3][3], angle, si, co, x2, y2, z2, len1;
+
+ /* first rotate to axis */
+ if(axis>2) {
+ x2= vec[0] ; y2= vec[1] ; z2= vec[2];
+ axis-= 3;
+ }
+ else {
+ x2= -vec[0] ; y2= -vec[1] ; z2= -vec[2];
+ }
+
+ q1[0]=1.0;
+ q1[1]=q1[2]=q1[3]= 0.0;
+
+ len1= (float)sqrt(x2*x2+y2*y2+z2*z2);
+ if(len1 == 0.0) return(q1);
+
+ /* nasty! I need a good routine for this...
+ * problem is a rotation of an Y axis to the negative Y-axis for example.
+ */
+
+ if(axis==0) { /* x-axis */
+ nor[0]= 0.0;
+ nor[1]= -z2;
+ nor[2]= y2;
+
+ if( fabs(y2)+fabs(z2)<0.0001 ) {
+ nor[1]= 1.0;
+ }
+
+ co= x2;
+ }
+ else if(axis==1) { /* y-axis */
+ nor[0]= z2;
+ nor[1]= 0.0;
+ nor[2]= -x2;
+
+ if( fabs(x2)+fabs(z2)<0.0001 ) {
+ nor[2]= 1.0;
+ }
+
+ co= y2;
+ }
+ else { /* z-axis */
+ nor[0]= -y2;
+ nor[1]= x2;
+ nor[2]= 0.0;
+
+ if( fabs(x2)+fabs(y2)<0.0001 ) {
+ nor[0]= 1.0;
+ }
+
+ co= z2;
+ }
+ co/= len1;
+
+ Normalize(nor);
+
+ angle= 0.5f*saacos(co);
+ si= (float)sin(angle);
+ q1[0]= (float)cos(angle);
+ q1[1]= nor[0]*si;
+ q1[2]= nor[1]*si;
+ q1[3]= nor[2]*si;
+
+ if(axis!=upflag) {
+ QuatToMat3(q1, mat);
+
+ fp= mat[2];
+ if(axis==0) {
+ if(upflag==1) angle= (float)(0.5*atan2(fp[2], fp[1]));
+ else angle= (float)(-0.5*atan2(fp[1], fp[2]));
+ }
+ else if(axis==1) {
+ if(upflag==0) angle= (float)(-0.5*atan2(fp[2], fp[0]));
+ else angle= (float)(0.5*atan2(fp[0], fp[2]));
+ }
+ else {
+ if(upflag==0) angle= (float)(0.5*atan2(-fp[1], -fp[0]));
+ else angle= (float)(-0.5*atan2(-fp[0], -fp[1]));
+ }
+
+ co= (float)cos(angle);
+ si= (float)(sin(angle)/len1);
+ q2[0]= co;
+ q2[1]= x2*si;
+ q2[2]= y2*si;
+ q2[3]= z2*si;
+
+ QuatMul(q1,q2,q1);
+ }
+
+ return(q1);
+}
+
+void VecUpMat3old( float *vec, float mat[][3], short axis)
+{
+ float inp, up[3];
+ short cox = 0, coy = 0, coz = 0;
+
+ /* using different up's is not useful, infact there is no real 'up'!
+ */
+
+ up[0]= 0.0;
+ up[1]= 0.0;
+ up[2]= 1.0;
+
+ if(axis==0) {
+ cox= 0; coy= 1; coz= 2; /* Y up Z tr */
+ }
+ if(axis==1) {
+ cox= 1; coy= 2; coz= 0; /* Z up X tr */
+ }
+ if(axis==2) {
+ cox= 2; coy= 0; coz= 1; /* X up Y tr */
+ }
+ if(axis==3) {
+ cox= 0; coy= 2; coz= 1; /* */
+ }
+ if(axis==4) {
+ cox= 1; coy= 0; coz= 2; /* */
+ }
+ if(axis==5) {
+ cox= 2; coy= 1; coz= 0; /* Y up X tr */
+ }
+
+ mat[coz][0]= vec[0];
+ mat[coz][1]= vec[1];
+ mat[coz][2]= vec[2];
+ Normalize((float *)mat[coz]);
+
+ inp= mat[coz][0]*up[0] + mat[coz][1]*up[1] + mat[coz][2]*up[2];
+ mat[coy][0]= up[0] - inp*mat[coz][0];
+ mat[coy][1]= up[1] - inp*mat[coz][1];
+ mat[coy][2]= up[2] - inp*mat[coz][2];
+
+ Normalize((float *)mat[coy]);
+
+ Crossf(mat[cox], mat[coy], mat[coz]);
+
+}
+
+void VecUpMat3(float *vec, float mat[][3], short axis)
+{
+ float inp;
+ short cox = 0, coy = 0, coz = 0;
+
+ /* using different up's is not useful, infact there is no real 'up'!
+ */
+
+ if(axis==0) {
+ cox= 0; coy= 1; coz= 2; /* Y up Z tr */
+ }
+ if(axis==1) {
+ cox= 1; coy= 2; coz= 0; /* Z up X tr */
+ }
+ if(axis==2) {
+ cox= 2; coy= 0; coz= 1; /* X up Y tr */
+ }
+ if(axis==3) {
+ cox= 0; coy= 1; coz= 2; /* Y op -Z tr */
+ vec[0]= -vec[0];
+ vec[1]= -vec[1];
+ vec[2]= -vec[2];
+ }
+ if(axis==4) {
+ cox= 1; coy= 0; coz= 2; /* */
+ }
+ if(axis==5) {
+ cox= 2; coy= 1; coz= 0; /* Y up X tr */
+ }
+
+ mat[coz][0]= vec[0];
+ mat[coz][1]= vec[1];
+ mat[coz][2]= vec[2];
+ Normalize((float *)mat[coz]);
+
+ inp= mat[coz][2];
+ mat[coy][0]= - inp*mat[coz][0];
+ mat[coy][1]= - inp*mat[coz][1];
+ mat[coy][2]= 1.0f - inp*mat[coz][2];
+
+ Normalize((float *)mat[coy]);
+
+ Crossf(mat[cox], mat[coy], mat[coz]);
+
+}
+
+/* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
+void QuatInterpolW(float *, float *, float *, float );
+
+void QuatInterpolW(float *result, float *quat1, float *quat2, float t)
+{
+ float omega, cosom, sinom, sc1, sc2;
+
+ cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
+
+ /* rotate around shortest angle */
+ if ((1.0 + cosom) > 0.0001) {
+
+ if ((1.0 - cosom) > 0.0001) {
+ omega = acos(cosom);
+ sinom = sin(omega);
+ sc1 = sin((1.0 - t) * omega) / sinom;
+ sc2 = sin(t * omega) / sinom;
+ }
+ else {
+ sc1 = 1.0 - t;
+ sc2 = t;
+ }
+ result[0] = sc1*quat1[0] + sc2*quat2[0];
+ result[1] = sc1*quat1[1] + sc2*quat2[1];
+ result[2] = sc1*quat1[2] + sc2*quat2[2];
+ result[3] = sc1*quat1[3] + sc2*quat2[3];
+ }
+ else {
+ result[0] = quat2[3];
+ result[1] = -quat2[2];
+ result[2] = quat2[1];
+ result[3] = -quat2[0];
+
+ sc1 = sin((1.0 - t)*M_PI_2);
+ sc2 = sin(t*M_PI_2);
+
+ result[0] = sc1*quat1[0] + sc2*result[0];
+ result[1] = sc1*quat1[1] + sc2*result[1];
+ result[2] = sc1*quat1[2] + sc2*result[2];
+ result[3] = sc1*quat1[3] + sc2*result[3];
+ }
+}
+
+void QuatInterpol(float *result, float *quat1, float *quat2, float t)
+{
+ float quat[4], omega, cosom, sinom, sc1, sc2;
+
+ cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
+
+ /* rotate around shortest angle */
+ if (cosom < 0.0) {
+ cosom = -cosom;
+ quat[0]= -quat1[0];
+ quat[1]= -quat1[1];
+ quat[2]= -quat1[2];
+ quat[3]= -quat1[3];
+ }
+ else {
+ quat[0]= quat1[0];
+ quat[1]= quat1[1];
+ quat[2]= quat1[2];
+ quat[3]= quat1[3];
+ }
+
+ if ((1.0 - cosom) > 0.0001) {
+ omega = acos(cosom);
+ sinom = sin(omega);
+ sc1 = sin((1 - t) * omega) / sinom;
+ sc2 = sin(t * omega) / sinom;
+ } else {
+ sc1= 1.0 - t;
+ sc2= t;
+ }
+
+ result[0] = sc1 * quat[0] + sc2 * quat2[0];
+ result[1] = sc1 * quat[1] + sc2 * quat2[1];
+ result[2] = sc1 * quat[2] + sc2 * quat2[2];
+ result[3] = sc1 * quat[3] + sc2 * quat2[3];
+}
+
+void QuatAdd(float *result, float *quat1, float *quat2, float t)
+{
+ result[0]= quat1[0] + t*quat2[0];
+ result[1]= quat1[1] + t*quat2[1];
+ result[2]= quat1[2] + t*quat2[2];
+ result[3]= quat1[3] + t*quat2[3];
+}
+
+void QuatCopy(float *q1, float *q2)
+{
+ q1[0]= q2[0];
+ q1[1]= q2[1];
+ q1[2]= q2[2];
+ q1[3]= q2[3];
+}
+
+/* **************** DUAL QUATERNIONS ************** */
+
+/*
+ Conversion routines between (regular quaternion, translation) and
+ dual quaternion.
+
+ Version 1.0.0, February 7th, 2007
+
+ Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
+ Reserved
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the author(s) be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ Author: Ladislav Kavan, kavanl@cs.tcd.ie
+
+ Changes for Blender:
+ - renaming, style changes and optimizations
+ - added support for scaling
+*/
+
+void Mat4ToDQuat(float basemat[][4], float mat[][4], DualQuat *dq)
+{
+ float *t, *q, dscale[3], scale[3], basequat[4];
+ float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
+ float R[4][4], S[4][4];
+
+ /* split scaling and rotation, there is probably a faster way to do
+ this, it's done like this now to correctly get negative scaling */
+ Mat4MulMat4(baseRS, basemat, mat);
+ Mat4ToSize(baseRS, scale);
+
+ VecCopyf(dscale, scale);
+ dscale[0] -= 1.0f; dscale[1] -= 1.0f; dscale[2] -= 1.0f;
+
+ if((Det4x4(mat) < 0.0f) || VecLength(dscale) > 1e-4) {
+ /* extract R and S */
+ Mat4ToQuat(baseRS, basequat);
+ QuatToMat4(basequat, baseR);
+ VecCopyf(baseR[3], baseRS[3]);
+
+ Mat4Invert(baseinv, basemat);
+ Mat4MulMat4(R, baseinv, baseR);
+
+ Mat4Invert(baseRinv, baseR);
+ Mat4MulMat4(S, baseRS, baseRinv);
+
+ /* set scaling part */
+ Mat4MulSerie(dq->scale, basemat, S, baseinv, 0, 0, 0, 0, 0);
+ dq->scale_weight= 1.0f;
+ }
+ else {
+ /* matrix does not contain scaling */
+ Mat4CpyMat4(R, mat);
+ dq->scale_weight= 0.0f;
+ }
+
+ /* non-dual part */
+ Mat4ToQuat(R, dq->quat);
+
+ /* dual part */
+ t= R[3];
+ q= dq->quat;
+ dq->trans[0]= -0.5f*( t[0]*q[1] + t[1]*q[2] + t[2]*q[3]);
+ dq->trans[1]= 0.5f*( t[0]*q[0] + t[1]*q[3] - t[2]*q[2]);
+ dq->trans[2]= 0.5f*(-t[0]*q[3] + t[1]*q[0] + t[2]*q[1]);
+ dq->trans[3]= 0.5f*( t[0]*q[2] - t[1]*q[1] + t[2]*q[0]);
+}
+
+void DQuatToMat4(DualQuat *dq, float mat[][4])
+{
+ float len, *t, q0[4];
+
+ /* regular quaternion */
+ QuatCopy(q0, dq->quat);
+
+ /* normalize */
+ len= sqrt(QuatDot(q0, q0));
+ if(len != 0.0f)
+ QuatMulf(q0, 1.0f/len);
+
+ /* rotation */
+ QuatToMat4(q0, mat);
+
+ /* translation */
+ t= dq->trans;
+ mat[3][0]= 2.0*(-t[0]*q0[1] + t[1]*q0[0] - t[2]*q0[3] + t[3]*q0[2]);
+ mat[3][1]= 2.0*(-t[0]*q0[2] + t[1]*q0[3] + t[2]*q0[0] - t[3]*q0[1]);
+ mat[3][2]= 2.0*(-t[0]*q0[3] - t[1]*q0[2] + t[2]*q0[1] + t[3]*q0[0]);
+
+ /* note: this does not handle scaling */
+}
+
+void DQuatAddWeighted(DualQuat *dqsum, DualQuat *dq, float weight)
+{
+ /* make sure we interpolate quats in the right direction */
+ if (QuatDot(dq->quat, dqsum->quat) < 0)
+ weight = -weight;
+
+ /* interpolate rotation and translation */
+ dqsum->quat[0] += weight*dq->quat[0];
+ dqsum->quat[1] += weight*dq->quat[1];
+ dqsum->quat[2] += weight*dq->quat[2];
+ dqsum->quat[3] += weight*dq->quat[3];
+
+ dqsum->trans[0] += weight*dq->trans[0];
+ dqsum->trans[1] += weight*dq->trans[1];
+ dqsum->trans[2] += weight*dq->trans[2];
+ dqsum->trans[3] += weight*dq->trans[3];
+
+ /* interpolate scale - but only if needed */
+ if (dq->scale_weight) {
+ float wmat[4][4];
+
+ Mat4CpyMat4(wmat, dq->scale);
+ Mat4MulFloat((float*)wmat, weight);
+ Mat4AddMat4(dqsum->scale, dqsum->scale, wmat);
+ dqsum->scale_weight += weight;
+ }
+}
+
+void DQuatNormalize(DualQuat *dq, float totweight, float factor)
+{
+ float scale= factor/totweight;
+
+ QuatMulf(dq->quat, scale);
+ QuatMulf(dq->trans, scale);
+
+ if(dq->scale_weight) {
+ float addweight= totweight - dq->scale_weight;
+
+ if(addweight) {
+ dq->scale[0][0] += addweight;
+ dq->scale[1][1] += addweight;
+ dq->scale[2][2] += addweight;
+ dq->scale[3][3] += addweight;
+ }
+
+ Mat4MulFloat((float*)dq->scale, scale);
+ dq->scale_weight= 1.0f;
+ }
+}
+
+void DQuatMulVecfl(DualQuat *dq, float *co, float mat[][3])
+{
+ float M[3][3], t[3], scalemat[3][3], len2;
+ float w= dq->quat[0], x= dq->quat[1], y= dq->quat[2], z= dq->quat[3];
+ float t0= dq->trans[0], t1= dq->trans[1], t2= dq->trans[2], t3= dq->trans[3];
+
+ /* rotation matrix */
+ M[0][0]= w*w + x*x - y*y - z*z;
+ M[1][0]= 2*(x*y - w*z);
+ M[2][0]= 2*(x*z + w*y);
+
+ M[0][1]= 2*(x*y + w*z);
+ M[1][1]= w*w + y*y - x*x - z*z;
+ M[2][1]= 2*(y*z - w*x);
+
+ M[0][2]= 2*(x*z - w*y);
+ M[1][2]= 2*(y*z + w*x);
+ M[2][2]= w*w + z*z - x*x - y*y;
+
+ len2= QuatDot(dq->quat, dq->quat);
+ if(len2 > 0.0f)
+ len2= 1.0f/len2;
+
+ /* translation */
+ t[0]= 2*(-t0*x + w*t1 - t2*z + y*t3);
+ t[1]= 2*(-t0*y + t1*z - x*t3 + w*t2);
+ t[2]= 2*(-t0*z + x*t2 + w*t3 - t1*y);
+
+ /* apply scaling */
+ if(dq->scale_weight)
+ Mat4MulVecfl(dq->scale, co);
+
+ /* apply rotation and translation */
+ Mat3MulVecfl(M, co);
+ co[0]= (co[0] + t[0])*len2;
+ co[1]= (co[1] + t[1])*len2;
+ co[2]= (co[2] + t[2])*len2;
+
+ /* compute crazyspace correction mat */
+ if(mat) {
+ if(dq->scale_weight) {
+ Mat3CpyMat4(scalemat, dq->scale);
+ Mat3MulMat3(mat, M, scalemat);
+ }
+ else
+ Mat3CpyMat3(mat, M);
+ Mat3MulFloat((float*)mat, len2);
+ }
+}
+
+void DQuatCpyDQuat(DualQuat *dq1, DualQuat *dq2)
+{
+ memcpy(dq1, dq2, sizeof(DualQuat));
+}
+
+/* **************** VIEW / PROJECTION ******************************** */
+
+
+void i_ortho(
+ float left, float right,
+ float bottom, float top,
+ float nearClip, float farClip,
+ float matrix[][4]
+){
+ float Xdelta, Ydelta, Zdelta;
+
+ Xdelta = right - left;
+ Ydelta = top - bottom;
+ Zdelta = farClip - nearClip;
+ if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
+ return;
+ }
+ Mat4One(matrix);
+ matrix[0][0] = 2.0f/Xdelta;
+ matrix[3][0] = -(right + left)/Xdelta;
+ matrix[1][1] = 2.0f/Ydelta;
+ matrix[3][1] = -(top + bottom)/Ydelta;
+ matrix[2][2] = -2.0f/Zdelta; /* note: negate Z */
+ matrix[3][2] = -(farClip + nearClip)/Zdelta;
+}
+
+void i_window(
+ float left, float right,
+ float bottom, float top,
+ float nearClip, float farClip,
+ float mat[][4]
+){
+ float Xdelta, Ydelta, Zdelta;
+
+ Xdelta = right - left;
+ Ydelta = top - bottom;
+ Zdelta = farClip - nearClip;
+
+ if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
+ return;
+ }
+ mat[0][0] = nearClip * 2.0f/Xdelta;
+ mat[1][1] = nearClip * 2.0f/Ydelta;
+ mat[2][0] = (right + left)/Xdelta; /* note: negate Z */
+ mat[2][1] = (top + bottom)/Ydelta;
+ mat[2][2] = -(farClip + nearClip)/Zdelta;
+ mat[2][3] = -1.0f;
+ mat[3][2] = (-2.0f * nearClip * farClip)/Zdelta;
+ mat[0][1] = mat[0][2] = mat[0][3] =
+ mat[1][0] = mat[1][2] = mat[1][3] =
+ mat[3][0] = mat[3][1] = mat[3][3] = 0.0;
+
+}
+
+void i_translate(float Tx, float Ty, float Tz, float mat[][4])
+{
+ mat[3][0] += (Tx*mat[0][0] + Ty*mat[1][0] + Tz*mat[2][0]);
+ mat[3][1] += (Tx*mat[0][1] + Ty*mat[1][1] + Tz*mat[2][1]);
+ mat[3][2] += (Tx*mat[0][2] + Ty*mat[1][2] + Tz*mat[2][2]);
+}
+
+void i_multmatrix( float icand[][4], float Vm[][4])
+{
+ int row, col;
+ float temp[4][4];
+
+ for(row=0 ; row<4 ; row++)
+ for(col=0 ; col<4 ; col++)
+ temp[row][col] = icand[row][0] * Vm[0][col]
+ + icand[row][1] * Vm[1][col]
+ + icand[row][2] * Vm[2][col]
+ + icand[row][3] * Vm[3][col];
+ Mat4CpyMat4(Vm, temp);
+}
+
+void i_rotate(float angle, char axis, float mat[][4])
+{
+ int col;
+ float temp[4];
+ float cosine, sine;
+
+ for(col=0; col<4 ; col++) /* init temp to zero matrix */
+ temp[col] = 0;
+
+ angle = (float)(angle*(3.1415926535/180.0));
+ cosine = (float)cos(angle);
+ sine = (float)sin(angle);
+ switch(axis){
+ case 'x':
+ case 'X':
+ for(col=0 ; col<4 ; col++)
+ temp[col] = cosine*mat[1][col] + sine*mat[2][col];
+ for(col=0 ; col<4 ; col++) {
+ mat[2][col] = - sine*mat[1][col] + cosine*mat[2][col];
+ mat[1][col] = temp[col];
+ }
+ break;
+
+ case 'y':
+ case 'Y':
+ for(col=0 ; col<4 ; col++)
+ temp[col] = cosine*mat[0][col] - sine*mat[2][col];
+ for(col=0 ; col<4 ; col++) {
+ mat[2][col] = sine*mat[0][col] + cosine*mat[2][col];
+ mat[0][col] = temp[col];
+ }
+ break;
+
+ case 'z':
+ case 'Z':
+ for(col=0 ; col<4 ; col++)
+ temp[col] = cosine*mat[0][col] + sine*mat[1][col];
+ for(col=0 ; col<4 ; col++) {
+ mat[1][col] = - sine*mat[0][col] + cosine*mat[1][col];
+ mat[0][col] = temp[col];
+ }
+ break;
+ }
+}
+
+void i_polarview(float dist, float azimuth, float incidence, float twist, float Vm[][4])
+{
+
+ Mat4One(Vm);
+
+ i_translate(0.0, 0.0, -dist, Vm);
+ i_rotate(-twist,'z', Vm);
+ i_rotate(-incidence,'x', Vm);
+ i_rotate(-azimuth,'z', Vm);
+}
+
+void i_lookat(float vx, float vy, float vz, float px, float py, float pz, float twist, float mat[][4])
+{
+ float sine, cosine, hyp, hyp1, dx, dy, dz;
+ float mat1[4][4];
+
+ Mat4One(mat);
+ Mat4One(mat1);
+
+ i_rotate(-twist,'z', mat);
+
+ dx = px - vx;
+ dy = py - vy;
+ dz = pz - vz;
+ hyp = dx * dx + dz * dz; /* hyp squared */
+ hyp1 = (float)sqrt(dy*dy + hyp);
+ hyp = (float)sqrt(hyp); /* the real hyp */
+
+ if (hyp1 != 0.0) { /* rotate X */
+ sine = -dy / hyp1;
+ cosine = hyp /hyp1;
+ } else {
+ sine = 0;
+ cosine = 1.0f;
+ }
+ mat1[1][1] = cosine;
+ mat1[1][2] = sine;
+ mat1[2][1] = -sine;
+ mat1[2][2] = cosine;
+
+ i_multmatrix(mat1, mat);
+
+ mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
+ mat1[1][2] = mat1[2][1] = 0.0; /* those modified by the last */
+
+ /* paragraph */
+ if (hyp != 0.0f) { /* rotate Y */
+ sine = dx / hyp;
+ cosine = -dz / hyp;
+ } else {
+ sine = 0;
+ cosine = 1.0f;
+ }
+ mat1[0][0] = cosine;
+ mat1[0][2] = -sine;
+ mat1[2][0] = sine;
+ mat1[2][2] = cosine;
+
+ i_multmatrix(mat1, mat);
+ i_translate(-vx,-vy,-vz, mat); /* translate viewpoint to origin */
+}
+
+
+
+
+
+/* ************************************************ */
+
+void Mat3Ortho(float mat[][3])
+{
+ Normalize(mat[0]);
+ Normalize(mat[1]);
+ Normalize(mat[2]);
+}
+
+void Mat4Ortho(float mat[][4])
+{
+ float len;
+
+ len= Normalize(mat[0]);
+ if(len!=0.0) mat[0][3]/= len;
+ len= Normalize(mat[1]);
+ if(len!=0.0) mat[1][3]/= len;
+ len= Normalize(mat[2]);
+ if(len!=0.0) mat[2][3]/= len;
+}
+
+void VecCopyf(float *v1, float *v2)
+{
+ v1[0]= v2[0];
+ v1[1]= v2[1];
+ v1[2]= v2[2];
+}
+
+int VecLen( int *v1, int *v2)
+{
+ float x,y,z;
+
+ x=(float)(v1[0]-v2[0]);
+ y=(float)(v1[1]-v2[1]);
+ z=(float)(v1[2]-v2[2]);
+ return (int)floor(sqrt(x*x+y*y+z*z));
+}
+
+float VecLenf( float *v1, float *v2)
+{
+ float x,y,z;
+
+ x=v1[0]-v2[0];
+ y=v1[1]-v2[1];
+ z=v1[2]-v2[2];
+ return (float)sqrt(x*x+y*y+z*z);
+}
+
+float VecLength(float *v)
+{
+ return (float) sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
+}
+
+void VecAddf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]+ v2[0];
+ v[1]= v1[1]+ v2[1];
+ v[2]= v1[2]+ v2[2];
+}
+
+void VecSubf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]- v2[0];
+ v[1]= v1[1]- v2[1];
+ v[2]= v1[2]- v2[2];
+}
+
+void VecLerpf(float *target, float *a, float *b, float t)
+{
+ float s = 1.0f-t;
+
+ target[0]= s*a[0] + t*b[0];
+ target[1]= s*a[1] + t*b[1];
+ target[2]= s*a[2] + t*b[2];
+}
+
+void VecMidf(float *v, float *v1, float *v2)
+{
+ v[0]= 0.5f*(v1[0]+ v2[0]);
+ v[1]= 0.5f*(v1[1]+ v2[1]);
+ v[2]= 0.5f*(v1[2]+ v2[2]);
+}
+
+void VecMulf(float *v1, float f)
+{
+
+ v1[0]*= f;
+ v1[1]*= f;
+ v1[2]*= f;
+}
+
+void VecOrthoBasisf(float *v, float *v1, float *v2)
+{
+ if (v[0] == 0.0f && v[1] == 0.0f)
+ {
+ // degenerate case
+ v1[0] = 0.0f; v1[1] = 1.0f; v1[2] = 0.0f;
+ if (v[2] > 0.0f) {
+ v2[0] = 1.0f; v2[1] = v2[2] = 0.0f;
+ }
+ else {
+ v2[0] = -1.0f; v2[1] = v2[2] = 0.0f;
+ }
+ }
+ else
+ {
+ float f = 1.0f/sqrt(v[0]*v[0] + v[1]*v[1]);
+ v1[0] = v[1]*f;
+ v1[1] = -v[0]*f;
+ v1[2] = 0.0f;
+
+ Crossf(v2, v, v1);
+ }
+}
+
+int VecLenCompare(float *v1, float *v2, float limit)
+{
+ float x,y,z;
+
+ x=v1[0]-v2[0];
+ y=v1[1]-v2[1];
+ z=v1[2]-v2[2];
+
+ return ((x*x + y*y + z*z) < (limit*limit));
+}
+
+int VecCompare( float *v1, float *v2, float limit)
+{
+ if( fabs(v1[0]-v2[0])<limit )
+ if( fabs(v1[1]-v2[1])<limit )
+ if( fabs(v1[2]-v2[2])<limit ) return 1;
+ return 0;
+}
+
+int VecEqual(float *v1, float *v2)
+{
+ return ((v1[0]==v2[0]) && (v1[1]==v2[1]) && (v1[2]==v2[2]));
+}
+
+void CalcNormShort( short *v1, short *v2, short *v3, float *n) /* is also cross product */
+{
+ float n1[3],n2[3];
+
+ n1[0]= (float)(v1[0]-v2[0]);
+ n2[0]= (float)(v2[0]-v3[0]);
+ n1[1]= (float)(v1[1]-v2[1]);
+ n2[1]= (float)(v2[1]-v3[1]);
+ n1[2]= (float)(v1[2]-v2[2]);
+ n2[2]= (float)(v2[2]-v3[2]);
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+ Normalize(n);
+}
+
+void CalcNormLong( int* v1, int*v2, int*v3, float *n)
+{
+ float n1[3],n2[3];
+
+ n1[0]= (float)(v1[0]-v2[0]);
+ n2[0]= (float)(v2[0]-v3[0]);
+ n1[1]= (float)(v1[1]-v2[1]);
+ n2[1]= (float)(v2[1]-v3[1]);
+ n1[2]= (float)(v1[2]-v2[2]);
+ n2[2]= (float)(v2[2]-v3[2]);
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+ Normalize(n);
+}
+
+float CalcNormFloat( float *v1, float *v2, float *v3, float *n)
+{
+ float n1[3],n2[3];
+
+ n1[0]= v1[0]-v2[0];
+ n2[0]= v2[0]-v3[0];
+ n1[1]= v1[1]-v2[1];
+ n2[1]= v2[1]-v3[1];
+ n1[2]= v1[2]-v2[2];
+ n2[2]= v2[2]-v3[2];
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+ return Normalize(n);
+}
+
+float CalcNormFloat4( float *v1, float *v2, float *v3, float *v4, float *n)
+{
+ /* real cross! */
+ float n1[3],n2[3];
+
+ n1[0]= v1[0]-v3[0];
+ n1[1]= v1[1]-v3[1];
+ n1[2]= v1[2]-v3[2];
+
+ n2[0]= v2[0]-v4[0];
+ n2[1]= v2[1]-v4[1];
+ n2[2]= v2[2]-v4[2];
+
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+
+ return Normalize(n);
+}
+
+
+void CalcCent3f(float *cent, float *v1, float *v2, float *v3)
+{
+
+ cent[0]= 0.33333f*(v1[0]+v2[0]+v3[0]);
+ cent[1]= 0.33333f*(v1[1]+v2[1]+v3[1]);
+ cent[2]= 0.33333f*(v1[2]+v2[2]+v3[2]);
+}
+
+void CalcCent4f(float *cent, float *v1, float *v2, float *v3, float *v4)
+{
+
+ cent[0]= 0.25f*(v1[0]+v2[0]+v3[0]+v4[0]);
+ cent[1]= 0.25f*(v1[1]+v2[1]+v3[1]+v4[1]);
+ cent[2]= 0.25f*(v1[2]+v2[2]+v3[2]+v4[2]);
+}
+
+float Sqrt3f(float f)
+{
+ if(f==0.0) return 0;
+ if(f<0) return (float)(-exp(log(-f)/3));
+ else return (float)(exp(log(f)/3));
+}
+
+double Sqrt3d(double d)
+{
+ if(d==0.0) return 0;
+ if(d<0) return -exp(log(-d)/3);
+ else return exp(log(d)/3);
+}
+
+/* distance v1 to line v2-v3 */
+/* using Hesse formula, NO LINE PIECE! */
+float DistVL2Dfl( float *v1, float *v2, float *v3) {
+ float a[2],deler;
+
+ a[0]= v2[1]-v3[1];
+ a[1]= v3[0]-v2[0];
+ deler= (float)sqrt(a[0]*a[0]+a[1]*a[1]);
+ if(deler== 0.0f) return 0;
+
+ return (float)(fabs((v1[0]-v2[0])*a[0]+(v1[1]-v2[1])*a[1])/deler);
+
+}
+
+/* distance v1 to line-piece v2-v3 */
+float PdistVL2Dfl( float *v1, float *v2, float *v3)
+{
+ float labda, rc[2], pt[2], len;
+
+ rc[0]= v3[0]-v2[0];
+ rc[1]= v3[1]-v2[1];
+ len= rc[0]*rc[0]+ rc[1]*rc[1];
+ if(len==0.0) {
+ rc[0]= v1[0]-v2[0];
+ rc[1]= v1[1]-v2[1];
+ return (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
+ }
+
+ labda= ( rc[0]*(v1[0]-v2[0]) + rc[1]*(v1[1]-v2[1]) )/len;
+ if(labda<=0.0) {
+ pt[0]= v2[0];
+ pt[1]= v2[1];
+ }
+ else if(labda>=1.0) {
+ pt[0]= v3[0];
+ pt[1]= v3[1];
+ }
+ else {
+ pt[0]= labda*rc[0]+v2[0];
+ pt[1]= labda*rc[1]+v2[1];
+ }
+
+ rc[0]= pt[0]-v1[0];
+ rc[1]= pt[1]-v1[1];
+ return (float)sqrt(rc[0]*rc[0]+ rc[1]*rc[1]);
+}
+
+float AreaF2Dfl( float *v1, float *v2, float *v3)
+{
+ return (float)(0.5*fabs( (v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]) ));
+}
+
+
+float AreaQ3Dfl( float *v1, float *v2, float *v3, float *v4) /* only convex Quadrilaterals */
+{
+ float len, vec1[3], vec2[3], n[3];
+
+ VecSubf(vec1, v2, v1);
+ VecSubf(vec2, v4, v1);
+ Crossf(n, vec1, vec2);
+ len= Normalize(n);
+
+ VecSubf(vec1, v4, v3);
+ VecSubf(vec2, v2, v3);
+ Crossf(n, vec1, vec2);
+ len+= Normalize(n);
+
+ return (len/2.0f);
+}
+
+float AreaT3Dfl( float *v1, float *v2, float *v3) /* Triangles */
+{
+ float len, vec1[3], vec2[3], n[3];
+
+ VecSubf(vec1, v3, v2);
+ VecSubf(vec2, v1, v2);
+ Crossf(n, vec1, vec2);
+ len= Normalize(n);
+
+ return (len/2.0f);
+}
+
+#define MAX2(x,y) ( (x)>(y) ? (x) : (y) )
+#define MAX3(x,y,z) MAX2( MAX2((x),(y)) , (z) )
+
+
+float AreaPoly3Dfl(int nr, float *verts, float *normal)
+{
+ float x, y, z, area, max;
+ float *cur, *prev;
+ int a, px=0, py=1;
+
+ /* first: find dominant axis: 0==X, 1==Y, 2==Z */
+ x= (float)fabs(normal[0]);
+ y= (float)fabs(normal[1]);
+ z= (float)fabs(normal[2]);
+ max = MAX3(x, y, z);
+ if(max==y) py=2;
+ else if(max==x) {
+ px=1;
+ py= 2;
+ }
+
+ /* The Trapezium Area Rule */
+ prev= verts+3*(nr-1);
+ cur= verts;
+ area= 0;
+ for(a=0; a<nr; a++) {
+ area+= (cur[px]-prev[px])*(cur[py]+prev[py]);
+ prev= cur;
+ cur+=3;
+ }
+
+ return (float)fabs(0.5*area/max);
+}
+
+/* intersect Line-Line, shorts */
+short IsectLL2Ds(short *v1, short *v2, short *v3, short *v4)
+{
+ /* return:
+ -1: colliniar
+ 0: no intersection of segments
+ 1: exact intersection of segments
+ 2: cross-intersection of segments
+ */
+ float div, labda, mu;
+
+ div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
+ if(div==0.0) return -1;
+
+ labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
+
+ mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
+
+ if(labda>=0.0 && labda<=1.0 && mu>=0.0 && mu<=1.0) {
+ if(labda==0.0 || labda==1.0 || mu==0.0 || mu==1.0) return 1;
+ return 2;
+ }
+ return 0;
+}
+
+/* intersect Line-Line, floats */
+short IsectLL2Df(float *v1, float *v2, float *v3, float *v4)
+{
+ /* return:
+ -1: colliniar
+0: no intersection of segments
+1: exact intersection of segments
+2: cross-intersection of segments
+ */
+ float div, labda, mu;
+
+ div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
+ if(div==0.0) return -1;
+
+ labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
+
+ mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
+
+ if(labda>=0.0 && labda<=1.0 && mu>=0.0 && mu<=1.0) {
+ if(labda==0.0 || labda==1.0 || mu==0.0 || mu==1.0) return 1;
+ return 2;
+ }
+ return 0;
+}
+
+void MinMax3(float *min, float *max, float *vec)
+{
+ if(min[0]>vec[0]) min[0]= vec[0];
+ if(min[1]>vec[1]) min[1]= vec[1];
+ if(min[2]>vec[2]) min[2]= vec[2];
+
+ if(max[0]<vec[0]) max[0]= vec[0];
+ if(max[1]<vec[1]) max[1]= vec[1];
+ if(max[2]<vec[2]) max[2]= vec[2];
+}
+
+static float TriSignedArea(float *v1, float *v2, float *v3, int i, int j)
+{
+ return 0.5f*((v1[i]-v2[i])*(v2[j]-v3[j]) + (v1[j]-v2[j])*(v3[i]-v2[i]));
+}
+
+static int BarycentricWeights(float *v1, float *v2, float *v3, float *co, float *n, float *w)
+{
+ float xn, yn, zn, a1, a2, a3, asum;
+ short i, j;
+
+ /* find best projection of face XY, XZ or YZ: barycentric weights of
+ the 2d projected coords are the same and faster to compute */
+ xn= fabs(n[0]);
+ yn= fabs(n[1]);
+ zn= fabs(n[2]);
+ if(zn>=xn && zn>=yn) {i= 0; j= 1;}
+ else if(yn>=xn && yn>=zn) {i= 0; j= 2;}
+ else {i= 1; j= 2;}
+
+ a1= TriSignedArea(v2, v3, co, i, j);
+ a2= TriSignedArea(v3, v1, co, i, j);
+ a3= TriSignedArea(v1, v2, co, i, j);
+
+ asum= a1 + a2 + a3;
+
+ if (fabs(asum) < FLT_EPSILON) {
+ /* zero area triangle */
+ w[0]= w[1]= w[2]= 1.0f/3.0f;
+ return 1;
+ }
+
+ asum= 1.0f/asum;
+ w[0]= a1*asum;
+ w[1]= a2*asum;
+ w[2]= a3*asum;
+
+ return 0;
+}
+
+void InterpWeightsQ3Dfl(float *v1, float *v2, float *v3, float *v4, float *co, float *w)
+{
+ float w2[3];
+
+ w[0]= w[1]= w[2]= w[3]= 0.0f;
+
+ /* first check for exact match */
+ if(VecEqual(co, v1))
+ w[0]= 1.0f;
+ else if(VecEqual(co, v2))
+ w[1]= 1.0f;
+ else if(VecEqual(co, v3))
+ w[2]= 1.0f;
+ else if(v4 && VecEqual(co, v4))
+ w[3]= 1.0f;
+ else {
+ /* otherwise compute barycentric interpolation weights */
+ float n1[3], n2[3], n[3];
+ int degenerate;
+
+ VecSubf(n1, v1, v3);
+ if (v4) {
+ VecSubf(n2, v2, v4);
+ }
+ else {
+ VecSubf(n2, v2, v3);
+ }
+ Crossf(n, n1, n2);
+
+ /* OpenGL seems to split this way, so we do too */
+ if (v4) {
+ degenerate= BarycentricWeights(v1, v2, v4, co, n, w);
+ SWAP(float, w[2], w[3]);
+
+ if(degenerate || (w[0] < 0.0f)) {
+ /* if w[1] is negative, co is on the other side of the v1-v3 edge,
+ so we interpolate using the other triangle */
+ degenerate= BarycentricWeights(v2, v3, v4, co, n, w2);
+
+ if(!degenerate) {
+ w[0]= 0.0f;
+ w[1]= w2[0];
+ w[2]= w2[1];
+ w[3]= w2[2];
+ }
+ }
+ }
+ else
+ BarycentricWeights(v1, v2, v3, co, n, w);
+ }
+}
+
+/* Mean value weights - smooth interpolation weights for polygons with
+ * more than 3 vertices */
+static float MeanValueHalfTan(float *v1, float *v2, float *v3)
+{
+ float d2[3], d3[3], cross[3], area, dot, len;
+
+ VecSubf(d2, v2, v1);
+ VecSubf(d3, v3, v1);
+ Crossf(cross, d2, d3);
+
+ area= VecLength(cross);
+ dot= Inpf(d2, d3);
+ len= VecLength(d2)*VecLength(d3);
+
+ if(area == 0.0f)
+ return 0.0f;
+ else
+ return (len - dot)/area;
+}
+
+void MeanValueWeights(float v[][3], int n, float *co, float *w)
+{
+ float totweight, t1, t2, len, *vmid, *vprev, *vnext;
+ int i;
+
+ totweight= 0.0f;
+
+ for(i=0; i<n; i++) {
+ vmid= v[i];
+ vprev= (i == 0)? v[n-1]: v[i-1];
+ vnext= (i == n-1)? v[0]: v[i+1];
+
+ t1= MeanValueHalfTan(co, vprev, vmid);
+ t2= MeanValueHalfTan(co, vmid, vnext);
+
+ len= VecLenf(co, vmid);
+ w[i]= (t1+t2)/len;
+ totweight += w[i];
+ }
+
+ if(totweight != 0.0f)
+ for(i=0; i<n; i++)
+ w[i] /= totweight;
+}
+
+
+/* ************ EULER *************** */
+
+void EulToMat3( float *eul, float mat[][3])
+{
+ double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+
+ ci = cos(eul[0]);
+ cj = cos(eul[1]);
+ ch = cos(eul[2]);
+ si = sin(eul[0]);
+ sj = sin(eul[1]);
+ sh = sin(eul[2]);
+ cc = ci*ch;
+ cs = ci*sh;
+ sc = si*ch;
+ ss = si*sh;
+
+ mat[0][0] = (float)(cj*ch);
+ mat[1][0] = (float)(sj*sc-cs);
+ mat[2][0] = (float)(sj*cc+ss);
+ mat[0][1] = (float)(cj*sh);
+ mat[1][1] = (float)(sj*ss+cc);
+ mat[2][1] = (float)(sj*cs-sc);
+ mat[0][2] = (float)-sj;
+ mat[1][2] = (float)(cj*si);
+ mat[2][2] = (float)(cj*ci);
+
+}
+
+void EulToMat4( float *eul,float mat[][4])
+{
+ double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+
+ ci = cos(eul[0]);
+ cj = cos(eul[1]);
+ ch = cos(eul[2]);
+ si = sin(eul[0]);
+ sj = sin(eul[1]);
+ sh = sin(eul[2]);
+ cc = ci*ch;
+ cs = ci*sh;
+ sc = si*ch;
+ ss = si*sh;
+
+ mat[0][0] = (float)(cj*ch);
+ mat[1][0] = (float)(sj*sc-cs);
+ mat[2][0] = (float)(sj*cc+ss);
+ mat[0][1] = (float)(cj*sh);
+ mat[1][1] = (float)(sj*ss+cc);
+ mat[2][1] = (float)(sj*cs-sc);
+ mat[0][2] = (float)-sj;
+ mat[1][2] = (float)(cj*si);
+ mat[2][2] = (float)(cj*ci);
+
+
+ mat[3][0]= mat[3][1]= mat[3][2]= mat[0][3]= mat[1][3]= mat[2][3]= 0.0f;
+ mat[3][3]= 1.0f;
+}
+
+/* returns two euler calculation methods, so we can pick the best */
+static void mat3_to_eul2(float tmat[][3], float *eul1, float *eul2)
+{
+ float cy, quat[4], mat[3][3];
+
+ Mat3ToQuat(tmat, quat);
+ QuatToMat3(quat, mat);
+ Mat3CpyMat3(mat, tmat);
+ Mat3Ortho(mat);
+
+ cy = (float)sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]);
+
+ if (cy > 16.0*FLT_EPSILON) {
+
+ eul1[0] = (float)atan2(mat[1][2], mat[2][2]);
+ eul1[1] = (float)atan2(-mat[0][2], cy);
+ eul1[2] = (float)atan2(mat[0][1], mat[0][0]);
+
+ eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]);
+ eul2[1] = (float)atan2(-mat[0][2], -cy);
+ eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]);
+
+ } else {
+ eul1[0] = (float)atan2(-mat[2][1], mat[1][1]);
+ eul1[1] = (float)atan2(-mat[0][2], cy);
+ eul1[2] = 0.0f;
+
+ VecCopyf(eul2, eul1);
+ }
+}
+
+void Mat3ToEul(float tmat[][3], float *eul)
+{
+ float eul1[3], eul2[3];
+
+ mat3_to_eul2(tmat, eul1, eul2);
+
+ /* return best, which is just the one with lowest values it in */
+ if( fabs(eul1[0])+fabs(eul1[1])+fabs(eul1[2]) > fabs(eul2[0])+fabs(eul2[1])+fabs(eul2[2])) {
+ VecCopyf(eul, eul2);
+ }
+ else {
+ VecCopyf(eul, eul1);
+ }
+}
+
+void Mat4ToEul(float tmat[][4], float *eul)
+{
+ float tempMat[3][3];
+
+ Mat3CpyMat4 (tempMat, tmat);
+ Mat3Ortho(tempMat);
+ Mat3ToEul(tempMat, eul);
+}
+
+void QuatToEul( float *quat, float *eul)
+{
+ float mat[3][3];
+
+ QuatToMat3(quat, mat);
+ Mat3ToEul(mat, eul);
+}
+
+
+void EulToQuat( float *eul, float *quat)
+{
+ float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+
+ ti = eul[0]*0.5f; tj = eul[1]*0.5f; th = eul[2]*0.5f;
+ ci = (float)cos(ti); cj = (float)cos(tj); ch = (float)cos(th);
+ si = (float)sin(ti); sj = (float)sin(tj); sh = (float)sin(th);
+ cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh;
+
+ quat[0] = cj*cc + sj*ss;
+ quat[1] = cj*sc - sj*cs;
+ quat[2] = cj*ss + sj*cc;
+ quat[3] = cj*cs - sj*sc;
+}
+
+void VecRotToMat3( float *vec, float phi, float mat[][3])
+{
+ /* rotation of phi radials around vec */
+ float vx, vx2, vy, vy2, vz, vz2, co, si;
+
+ vx= vec[0];
+ vy= vec[1];
+ vz= vec[2];
+ vx2= vx*vx;
+ vy2= vy*vy;
+ vz2= vz*vz;
+ co= (float)cos(phi);
+ si= (float)sin(phi);
+
+ mat[0][0]= vx2+co*(1.0f-vx2);
+ mat[0][1]= vx*vy*(1.0f-co)+vz*si;
+ mat[0][2]= vz*vx*(1.0f-co)-vy*si;
+ mat[1][0]= vx*vy*(1.0f-co)-vz*si;
+ mat[1][1]= vy2+co*(1.0f-vy2);
+ mat[1][2]= vy*vz*(1.0f-co)+vx*si;
+ mat[2][0]= vz*vx*(1.0f-co)+vy*si;
+ mat[2][1]= vy*vz*(1.0f-co)-vx*si;
+ mat[2][2]= vz2+co*(1.0f-vz2);
+
+}
+
+void VecRotToMat4( float *vec, float phi, float mat[][4])
+{
+ float tmat[3][3];
+
+ VecRotToMat3(vec, phi, tmat);
+ Mat4One(mat);
+ Mat4CpyMat3(mat, tmat);
+}
+
+void VecRotToQuat( float *vec, float phi, float *quat)
+{
+ /* rotation of phi radials around vec */
+ float si;
+
+ quat[1]= vec[0];
+ quat[2]= vec[1];
+ quat[3]= vec[2];
+
+ if( Normalize(quat+1) == 0.0) {
+ QuatOne(quat);
+ }
+ else {
+ quat[0]= (float)cos( phi/2.0 );
+ si= (float)sin( phi/2.0 );
+ quat[1] *= si;
+ quat[2] *= si;
+ quat[3] *= si;
+ }
+}
+
+/* Return the angle in degrees between vecs 1-2 and 2-3 in degrees
+ If v1 is a shoulder, v2 is the elbow and v3 is the hand,
+ this would return the angle at the elbow */
+float VecAngle3(float *v1, float *v2, float *v3)
+{
+ float vec1[3], vec2[3];
+
+ VecSubf(vec1, v2, v1);
+ VecSubf(vec2, v2, v3);
+ Normalize(vec1);
+ Normalize(vec2);
+
+ return NormalizedVecAngle2(vec1, vec2) * 180.0/M_PI;
+}
+
+/* Return the shortest angle in degrees between the 2 vectors */
+float VecAngle2(float *v1, float *v2)
+{
+ float vec1[3], vec2[3];
+
+ VecCopyf(vec1, v1);
+ VecCopyf(vec2, v2);
+ Normalize(vec1);
+ Normalize(vec2);
+
+ return NormalizedVecAngle2(vec1, vec2)* 180.0/M_PI;
+}
+
+float NormalizedVecAngle2(float *v1, float *v2)
+{
+ /* this is the same as acos(Inpf(v1, v2)), but more accurate */
+ if (Inpf(v1, v2) < 0.0f) {
+ float vec[3];
+
+ vec[0]= -v2[0];
+ vec[1]= -v2[1];
+ vec[2]= -v2[2];
+
+ return (float)M_PI - 2.0f*saasin(VecLenf(vec, v1)/2.0f);
+ }
+ else
+ return 2.0f*saasin(VecLenf(v2, v1)/2.0);
+}
+
+void euler_rot(float *beul, float ang, char axis)
+{
+ float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
+
+ eul[0]= eul[1]= eul[2]= 0.0;
+ if(axis=='x') eul[0]= ang;
+ else if(axis=='y') eul[1]= ang;
+ else eul[2]= ang;
+
+ EulToMat3(eul, mat1);
+ EulToMat3(beul, mat2);
+
+ Mat3MulMat3(totmat, mat2, mat1);
+
+ Mat3ToEul(totmat, beul);
+
+}
+
+/* exported to transform.c */
+void compatible_eul(float *eul, float *oldrot)
+{
+ float dx, dy, dz;
+
+ /* correct differences of about 360 degrees first */
+
+ dx= eul[0] - oldrot[0];
+ dy= eul[1] - oldrot[1];
+ dz= eul[2] - oldrot[2];
+
+ while( fabs(dx) > 5.1) {
+ if(dx > 0.0) eul[0] -= 2.0*M_PI; else eul[0]+= 2.0*M_PI;
+ dx= eul[0] - oldrot[0];
+ }
+ while( fabs(dy) > 5.1) {
+ if(dy > 0.0) eul[1] -= 2.0*M_PI; else eul[1]+= 2.0*M_PI;
+ dy= eul[1] - oldrot[1];
+ }
+ while( fabs(dz) > 5.1 ) {
+ if(dz > 0.0) eul[2] -= 2.0*M_PI; else eul[2]+= 2.0*M_PI;
+ dz= eul[2] - oldrot[2];
+ }
+
+ /* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
+ if( fabs(dx) > 3.2 && fabs(dy)<1.6 && fabs(dz)<1.6 ) {
+ if(dx > 0.0) eul[0] -= 2.0*M_PI; else eul[0]+= 2.0*M_PI;
+ }
+ if( fabs(dy) > 3.2 && fabs(dz)<1.6 && fabs(dx)<1.6 ) {
+ if(dy > 0.0) eul[1] -= 2.0*M_PI; else eul[1]+= 2.0*M_PI;
+ }
+ if( fabs(dz) > 3.2 && fabs(dx)<1.6 && fabs(dy)<1.6 ) {
+ if(dz > 0.0) eul[2] -= 2.0*M_PI; else eul[2]+= 2.0*M_PI;
+ }
+
+ /* the method below was there from ancient days... but why! probably because the code sucks :)
+ */
+#if 0
+ /* calc again */
+ dx= eul[0] - oldrot[0];
+ dy= eul[1] - oldrot[1];
+ dz= eul[2] - oldrot[2];
+
+ /* special case, tested for x-z */
+
+ if( (fabs(dx) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dz) > 3.1 ) ) {
+ if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
+ if(eul[1] > 0.0) eul[1]= M_PI - eul[1]; else eul[1]= -M_PI - eul[1];
+ if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
+
+ }
+ else if( (fabs(dx) > 3.1 && fabs(dy) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dy) > 3.1 ) ) {
+ if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
+ if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
+ if(eul[2] > 0.0) eul[2]= M_PI - eul[2]; else eul[2]= -M_PI - eul[2];
+ }
+ else if( (fabs(dy) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dy) > 1.5 && fabs(dz) > 3.1 ) ) {
+ if(eul[0] > 0.0) eul[0]= M_PI - eul[0]; else eul[0]= -M_PI - eul[0];
+ if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
+ if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
+ }
+#endif
+}
+
+/* uses 2 methods to retrieve eulers, and picks the closest */
+void Mat3ToCompatibleEul(float mat[][3], float *eul, float *oldrot)
+{
+ float eul1[3], eul2[3];
+ float d1, d2;
+
+ mat3_to_eul2(mat, eul1, eul2);
+
+ compatible_eul(eul1, oldrot);
+ compatible_eul(eul2, oldrot);
+
+ d1= fabs(eul1[0]-oldrot[0]) + fabs(eul1[1]-oldrot[1]) + fabs(eul1[2]-oldrot[2]);
+ d2= fabs(eul2[0]-oldrot[0]) + fabs(eul2[1]-oldrot[1]) + fabs(eul2[2]-oldrot[2]);
+
+ /* return best, which is just the one with lowest difference */
+ if( d1 > d2) {
+ VecCopyf(eul, eul2);
+ }
+ else {
+ VecCopyf(eul, eul1);
+ }
+
+}
+
+/* ******************************************** */
+
+void SizeToMat3( float *size, float mat[][3])
+{
+ mat[0][0]= size[0];
+ mat[0][1]= 0.0;
+ mat[0][2]= 0.0;
+ mat[1][1]= size[1];
+ mat[1][0]= 0.0;
+ mat[1][2]= 0.0;
+ mat[2][2]= size[2];
+ mat[2][1]= 0.0;
+ mat[2][0]= 0.0;
+}
+
+void SizeToMat4( float *size, float mat[][4])
+{
+ float tmat[3][3];
+
+ SizeToMat3(size, tmat);
+ Mat4One(mat);
+ Mat4CpyMat3(mat, tmat);
+}
+
+void Mat3ToSize( float mat[][3], float *size)
+{
+ size[0]= VecLength(mat[0]);
+ size[1]= VecLength(mat[1]);
+ size[2]= VecLength(mat[2]);
+}
+
+void Mat4ToSize( float mat[][4], float *size)
+{
+ size[0]= VecLength(mat[0]);
+ size[1]= VecLength(mat[1]);
+ size[2]= VecLength(mat[2]);
+}
+
+/* this gets the average scale of a matrix, only use when your scaling
+ * data that has no idea of scale axis, examples are bone-envelope-radius
+ * and curve radius */
+float Mat3ToScalef(float mat[][3])
+{
+ /* unit length vector */
+ float unit_vec[3] = {0.577350269189626, 0.577350269189626, 0.577350269189626};
+ Mat3MulVecfl(mat, unit_vec);
+ return VecLength(unit_vec);
+}
+
+float Mat4ToScalef(float mat[][4])
+{
+ float tmat[3][3];
+ Mat3CpyMat4(tmat, mat);
+ return Mat3ToScalef(tmat);
+}
+
+
+/* ************* SPECIALS ******************* */
+
+void triatoquat( float *v1, float *v2, float *v3, float *quat)
+{
+ /* imaginary x-axis, y-axis triangle is being rotated */
+ float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
+
+ /* move z-axis to face-normal */
+ CalcNormFloat(v1, v2, v3, vec);
+
+ n[0]= vec[1];
+ n[1]= -vec[0];
+ n[2]= 0.0;
+ Normalize(n);
+
+ if(n[0]==0.0 && n[1]==0.0) n[0]= 1.0;
+
+ angle= -0.5f*saacos(vec[2]);
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q1[0]= co;
+ q1[1]= n[0]*si;
+ q1[2]= n[1]*si;
+ q1[3]= 0.0f;
+
+ /* rotate back line v1-v2 */
+ QuatToMat3(q1, mat);
+ Mat3Inv(imat, mat);
+ VecSubf(vec, v2, v1);
+ Mat3MulVecfl(imat, vec);
+
+ /* what angle has this line with x-axis? */
+ vec[2]= 0.0;
+ Normalize(vec);
+
+ angle= (float)(0.5*atan2(vec[1], vec[0]));
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q2[0]= co;
+ q2[1]= 0.0f;
+ q2[2]= 0.0f;
+ q2[3]= si;
+
+ QuatMul(quat, q1, q2);
+}
+
+void MinMaxRGB(short c[])
+{
+ if(c[0]>255) c[0]=255;
+ else if(c[0]<0) c[0]=0;
+ if(c[1]>255) c[1]=255;
+ else if(c[1]<0) c[1]=0;
+ if(c[2]>255) c[2]=255;
+ else if(c[2]<0) c[2]=0;
+}
+
+float Vec2Lenf(float *v1, float *v2)
+{
+ float x, y;
+
+ x = v1[0]-v2[0];
+ y = v1[1]-v2[1];
+ return (float)sqrt(x*x+y*y);
+}
+
+void Vec2Mulf(float *v1, float f)
+{
+ v1[0]*= f;
+ v1[1]*= f;
+}
+
+void Vec2Addf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]+ v2[0];
+ v[1]= v1[1]+ v2[1];
+}
+
+void Vec2Subf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]- v2[0];
+ v[1]= v1[1]- v2[1];
+}
+
+void Vec2Copyf(float *v1, float *v2)
+{
+ v1[0]= v2[0];
+ v1[1]= v2[1];
+}
+
+float Inp2f(float *v1, float *v2)
+{
+ return v1[0]*v2[0]+v1[1]*v2[1];
+}
+
+float Normalize2(float *n)
+{
+ float d;
+
+ d= n[0]*n[0]+n[1]*n[1];
+
+ if(d>1.0e-35F) {
+ d= (float)sqrt(d);
+
+ n[0]/=d;
+ n[1]/=d;
+ } else {
+ n[0]=n[1]= 0.0;
+ d= 0.0;
+ }
+ return d;
+}
+
+void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b)
+{
+ int i;
+ float f, p, q, t;
+
+ h *= 360.0f;
+
+ if(s==0.0) {
+ *r = v;
+ *g = v;
+ *b = v;
+ }
+ else {
+ if(h==360) h = 0;
+
+ h /= 60;
+ i = (int)floor(h);
+ f = h - i;
+ p = v*(1.0f-s);
+ q = v*(1.0f-(s*f));
+ t = v*(1.0f-(s*(1.0f-f)));
+
+ switch (i) {
+ case 0 :
+ *r = v;
+ *g = t;
+ *b = p;
+ break;
+ case 1 :
+ *r = q;
+ *g = v;
+ *b = p;
+ break;
+ case 2 :
+ *r = p;
+ *g = v;
+ *b = t;
+ break;
+ case 3 :
+ *r = p;
+ *g = q;
+ *b = v;
+ break;
+ case 4 :
+ *r = t;
+ *g = p;
+ *b = v;
+ break;
+ case 5 :
+ *r = v;
+ *g = p;
+ *b = q;
+ break;
+ }
+ }
+}
+
+void rgb_to_yuv(float r, float g, float b, float *ly, float *lu, float *lv)
+{
+ float y, u, v;
+ y= 0.299*r + 0.587*g + 0.114*b;
+ u=-0.147*r - 0.289*g + 0.436*b;
+ v= 0.615*r - 0.515*g - 0.100*b;
+
+ *ly=y;
+ *lu=u;
+ *lv=v;
+}
+
+void yuv_to_rgb(float y, float u, float v, float *lr, float *lg, float *lb)
+{
+ float r, g, b;
+ r=y+1.140*v;
+ g=y-0.394*u - 0.581*v;
+ b=y+2.032*u;
+
+ *lr=r;
+ *lg=g;
+ *lb=b;
+}
+
+void rgb_to_ycc(float r, float g, float b, float *ly, float *lcb, float *lcr)
+{
+ float sr,sg, sb;
+ float y, cr, cb;
+
+ sr=255.0*r;
+ sg=255.0*g;
+ sb=255.0*b;
+
+
+ y=(0.257*sr)+(0.504*sg)+(0.098*sb)+16.0;
+ cb=(-0.148*sr)-(0.291*sg)+(0.439*sb)+128.0;
+ cr=(0.439*sr)-(0.368*sg)-(0.071*sb)+128.0;
+
+ *ly=y;
+ *lcb=cb;
+ *lcr=cr;
+}
+
+void ycc_to_rgb(float y, float cb, float cr, float *lr, float *lg, float *lb)
+{
+ float r,g,b;
+
+ r=1.164*(y-16)+1.596*(cr-128);
+ g=1.164*(y-16)-0.813*(cr-128)-0.392*(cb-128);
+ b=1.164*(y-16)+2.017*(cb-128);
+
+ *lr=r/255.0;
+ *lg=g/255.0;
+ *lb=b/255.0;
+}
+
+void hex_to_rgb(char *hexcol, float *r, float *g, float *b)
+{
+ unsigned int ri, gi, bi;
+
+ if (hexcol[0] == '#') hexcol++;
+
+ if (sscanf(hexcol, "%02x%02x%02x", &ri, &gi, &bi)) {
+ *r = ri / 255.0;
+ *g = gi / 255.0;
+ *b = bi / 255.0;
+ }
+}
+
+void rgb_to_hsv(float r, float g, float b, float *lh, float *ls, float *lv)
+{
+ float h, s, v;
+ float cmax, cmin, cdelta;
+ float rc, gc, bc;
+
+ cmax = r;
+ cmin = r;
+ cmax = (g>cmax ? g:cmax);
+ cmin = (g<cmin ? g:cmin);
+ cmax = (b>cmax ? b:cmax);
+ cmin = (b<cmin ? b:cmin);
+
+ v = cmax; /* value */
+ if (cmax!=0.0)
+ s = (cmax - cmin)/cmax;
+ else {
+ s = 0.0;
+ h = 0.0;
+ }
+ if (s == 0.0)
+ h = -1.0;
+ else {
+ cdelta = cmax-cmin;
+ rc = (cmax-r)/cdelta;
+ gc = (cmax-g)/cdelta;
+ bc = (cmax-b)/cdelta;
+ if (r==cmax)
+ h = bc-gc;
+ else
+ if (g==cmax)
+ h = 2.0f+rc-bc;
+ else
+ h = 4.0f+gc-rc;
+ h = h*60.0f;
+ if (h<0.0f)
+ h += 360.0f;
+ }
+
+ *ls = s;
+ *lh = h/360.0f;
+ if( *lh < 0.0) *lh= 0.0;
+ *lv = v;
+}
+
+
+/* we define a 'cpack' here as a (3 byte color code) number that can be expressed like 0xFFAA66 or so.
+ for that reason it is sensitive for endianness... with this function it works correctly
+*/
+
+unsigned int hsv_to_cpack(float h, float s, float v)
+{
+ short r, g, b;
+ float rf, gf, bf;
+ unsigned int col;
+
+ hsv_to_rgb(h, s, v, &rf, &gf, &bf);
+
+ r= (short)(rf*255.0f);
+ g= (short)(gf*255.0f);
+ b= (short)(bf*255.0f);
+
+ col= ( r + (g*256) + (b*256*256) );
+ return col;
+}
+
+
+unsigned int rgb_to_cpack(float r, float g, float b)
+{
+ int ir, ig, ib;
+
+ ir= (int)floor(255.0*r);
+ if(ir<0) ir= 0; else if(ir>255) ir= 255;
+ ig= (int)floor(255.0*g);
+ if(ig<0) ig= 0; else if(ig>255) ig= 255;
+ ib= (int)floor(255.0*b);
+ if(ib<0) ib= 0; else if(ib>255) ib= 255;
+
+ return (ir+ (ig*256) + (ib*256*256));
+}
+
+void cpack_to_rgb(unsigned int col, float *r, float *g, float *b)
+{
+
+ *r= (float)((col)&0xFF);
+ *r /= 255.0f;
+
+ *g= (float)(((col)>>8)&0xFF);
+ *g /= 255.0f;
+
+ *b= (float)(((col)>>16)&0xFF);
+ *b /= 255.0f;
+}
+
+
+/* *************** PROJECTIONS ******************* */
+
+void tubemap(float x, float y, float z, float *u, float *v)
+{
+ float len;
+
+ *v = (z + 1.0) / 2.0;
+
+ len= sqrt(x*x+y*y);
+ if(len>0) {
+ *u = (1.0 - (atan2(x/len,y/len) / M_PI)) / 2.0;
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+
+void spheremap(float x, float y, float z, float *u, float *v)
+{
+ float len;
+
+ len= sqrt(x*x+y*y+z*z);
+ if(len>0.0) {
+
+ if(x==0.0 && y==0.0) *u= 0.0; /* othwise domain error */
+ else *u = (1.0 - atan2(x,y)/M_PI )/2.0;
+
+ z/=len;
+ *v = 1.0- saacos(z)/M_PI;
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+
+/* ***************** m1 = m2 ***************** */
+void cpy_m3_m3(float m1[][3], float m2[][3])
+{
+ memcpy(m1[0], m2[0], 9*sizeof(float));
+}
+
+/* ***************** m1 = m2 ***************** */
+void cpy_m4_m4(float m1[][4], float m2[][4])
+{
+ memcpy(m1[0], m2[0], 16*sizeof(float));
+}
+
+/* ***************** identity matrix ***************** */
+void ident_m4(float m[][4])
+{
+
+ m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
+ m[0][1]= m[0][2]= m[0][3]= 0.0;
+ m[1][0]= m[1][2]= m[1][3]= 0.0;
+ m[2][0]= m[2][1]= m[2][3]= 0.0;
+ m[3][0]= m[3][1]= m[3][2]= 0.0;
+}
+
+
+/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
+void mul_m3_m3m3(float m1[][3], float m2[][3], float m3[][3])
+{
+ float m[3][3];
+
+ m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2];
+ m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2];
+ m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2];
+
+ m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2];
+ m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2];
+ m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2];
+
+ m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2];
+ m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2];
+ m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2];
+
+ cpy_m3_m3(m1, m2);
+}
+
+/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
+void mul_m4_m4m4(float m1[][4], float m2[][4], float m3[][4])
+{
+ float m[4][4];
+
+ m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2] + m2[3][0]*m3[0][3];
+ m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2] + m2[3][1]*m3[0][3];
+ m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2] + m2[3][2]*m3[0][3];
+ m[0][3]= m2[0][3]*m3[0][0] + m2[1][3]*m3[0][1] + m2[2][3]*m3[0][2] + m2[3][3]*m3[0][3];
+
+ m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2] + m2[3][0]*m3[1][3];
+ m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2] + m2[3][1]*m3[1][3];
+ m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2] + m2[3][2]*m3[1][3];
+ m[1][3]= m2[0][3]*m3[1][0] + m2[1][3]*m3[1][1] + m2[2][3]*m3[1][2] + m2[3][3]*m3[1][3];
+
+ m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2] + m2[3][0]*m3[2][3];
+ m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2] + m2[3][1]*m3[2][3];
+ m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2] + m2[3][2]*m3[2][3];
+ m[2][3]= m2[0][3]*m3[2][0] + m2[1][3]*m3[2][1] + m2[2][3]*m3[2][2] + m2[3][3]*m3[2][3];
+
+ m[3][0]= m2[0][0]*m3[3][0] + m2[1][0]*m3[3][1] + m2[2][0]*m3[3][2] + m2[3][0]*m3[3][3];
+ m[3][1]= m2[0][1]*m3[3][0] + m2[1][1]*m3[3][1] + m2[2][1]*m3[3][2] + m2[3][1]*m3[3][3];
+ m[3][2]= m2[0][2]*m3[3][0] + m2[1][2]*m3[3][1] + m2[2][2]*m3[3][2] + m2[3][2]*m3[3][3];
+ m[3][3]= m2[0][3]*m3[3][0] + m2[1][3]*m3[3][1] + m2[2][3]*m3[3][2] + m2[3][3]*m3[3][3];
+
+ cpy_m4_m4(m1, m2);
+}
+
+/* ***************** m1 = inverse(m2) ***************** */
+void inv_m3_m3(float m1[][3], float m2[][3])
+{
+ short a,b;
+ float det;
+
+ /* calc adjoint */
+ Mat3Adj(m1, m2);
+
+ /* then determinant old matrix! */
+ det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
+ -m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
+ +m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
+
+ if(det==0.0f) det=1.0f;
+ det= 1.0f/det;
+ for(a=0;a<3;a++) {
+ for(b=0;b<3;b++) {
+ m1[a][b]*=det;
+ }
+ }
+}
+
+/* ***************** m1 = inverse(m2) ***************** */
+int inv_m4_m4(float inverse[][4], float mat[][4])
+{
+ int i, j, k;
+ double temp;
+ float tempmat[4][4];
+ float max;
+ int maxj;
+
+ /* Set inverse to identity */
+ ident_m4(inverse);
+
+ /* Copy original matrix so we don't mess it up */
+ cpy_m4_m4(tempmat, mat);
+
+ for(i = 0; i < 4; i++) {
+ /* Look for row with max pivot */
+ max = ABS(tempmat[i][i]);
+ maxj = i;
+ for(j = i + 1; j < 4; j++) {
+ if(ABS(tempmat[j][i]) > max) {
+ max = ABS(tempmat[j][i]);
+ maxj = j;
+ }
+ }
+ /* Swap rows if necessary */
+ if (maxj != i) {
+ for( k = 0; k < 4; k++) {
+ SWAP(float, tempmat[i][k], tempmat[maxj][k]);
+ SWAP(float, inverse[i][k], inverse[maxj][k]);
+ }
+ }
+
+ temp = tempmat[i][i];
+ if (temp == 0)
+ return 0; /* No non-zero pivot */
+ for(k = 0; k < 4; k++) {
+ tempmat[i][k] = (float)(tempmat[i][k]/temp);
+ inverse[i][k] = (float)(inverse[i][k]/temp);
+ }
+ for(j = 0; j < 4; j++) {
+ if(j != i) {
+ temp = tempmat[j][i];
+ for(k = 0; k < 4; k++) {
+ tempmat[j][k] -= (float)(tempmat[i][k]*temp);
+ inverse[j][k] -= (float)(inverse[i][k]*temp);
+ }
+ }
+ }
+ }
+ return 1;
+}
+
+/* ***************** v1 = v2 * mat ***************** */
+void mul_v3_v3m4(float *v1, float *v2, float mat[][4])
+{
+ float x, y;
+
+ x= v2[0]; /* work with a copy, v1 can be same as v2 */
+ y= v2[1];
+ v1[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*v2[2] + mat[3][0];
+ v1[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*v2[2] + mat[3][1];
+ v1[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*v2[2] + mat[3][2];
+
+}
+
+/* moved from effect.c
+ test if the line starting at p1 ending at p2 intersects the triangle v0..v2
+ return non zero if it does
+*/
+int LineIntersectsTriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda)
+{
+
+ float p[3], s[3], d[3], e1[3], e2[3], q[3];
+ float a, f, u, v;
+
+ VecSubf(e1, v1, v0);
+ VecSubf(e2, v2, v0);
+ VecSubf(d, p2, p1);
+
+ Crossf(p, d, e2);
+ a = Inpf(e1, p);
+ if ((a > -0.000001) && (a < 0.000001)) return 0;
+ f = 1.0f/a;
+
+ VecSubf(s, p1, v0);
+
+ Crossf(q, s, e1);
+ *lambda = f * Inpf(e2, q);
+ if ((*lambda < 0.0)||(*lambda > 1.0)) return 0;
+
+ u = f * Inpf(s, p);
+ if ((u < 0.0)||(u > 1.0)) return 0;
+
+ v = f * Inpf(d, q);
+ if ((v < 0.0)||((u + v) > 1.0)) return 0;
+
+ return 1;
+}
+
+
+/*
+find closest point to p on line through l1,l2
+and return lambda, where (0 <= lambda <= 1) when cp is in the line segement l1,l2
+*/
+float lambda_cp_line_ex(float p[3], float l1[3], float l2[3], float cp[3])
+{
+ float h[3],u[3],lambda;
+ VecSubf(u, l2, l1);
+ VecSubf(h, p, l1);
+ lambda =Inpf(u,h)/Inpf(u,u);
+ cp[0] = l1[0] + u[0] * lambda;
+ cp[1] = l1[1] + u[1] * lambda;
+ cp[2] = l1[2] + u[2] * lambda;
+ return lambda;
+}
+/* little sister we only need to know lambda */
+float lambda_cp_line(float p[3], float l1[3], float l2[3])
+{
+ float h[3],u[3];
+ VecSubf(u, l2, l1);
+ VecSubf(h, p, l1);
+ return(Inpf(u,h)/Inpf(u,u));
+}
+
+
+
+int point_in_slice(float p[3], float v1[3], float l1[3], float l2[3])
+{
+/*
+what is a slice ?
+some maths:
+a line including l1,l2 and a point not on the line
+define a subset of R3 delimeted by planes parallel to the line and orthogonal
+to the (point --> line) distance vector,one plane on the line one on the point,
+the room inside usually is rather small compared to R3 though still infinte
+useful for restricting (speeding up) searches
+e.g. all points of triangular prism are within the intersection of 3 'slices'
+onother trivial case : cube
+but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too
+*/
+ float h,rp[3],cp[3],q[3];
+
+ lambda_cp_line_ex(v1,l1,l2,cp);
+ VecSubf(q,cp,v1);
+
+ VecSubf(rp,p,v1);
+ h=Inpf(q,rp)/Inpf(q,q);
+ if (h < 0.0f || h > 1.0f) return 0;
+ return 1;
+}
+
+/*adult sister defining the slice planes by the origin and the normal
+NOTE |normal| may not be 1 but defining the thickness of the slice*/
+int point_in_slice_as(float p[3],float origin[3],float normal[3])
+{
+ float h,rp[3];
+ VecSubf(rp,p,origin);
+ h=Inpf(normal,rp)/Inpf(normal,normal);
+ if (h < 0.0f || h > 1.0f) return 0;
+ return 1;
+}
+
+/*mama (knowing the squared lenght of the normal)*/
+int point_in_slice_m(float p[3],float origin[3],float normal[3],float lns)
+{
+ float h,rp[3];
+ VecSubf(rp,p,origin);
+ h=Inpf(normal,rp)/lns;
+ if (h < 0.0f || h > 1.0f) return 0;
+ return 1;
+}
+
+
+int point_in_tri_prism(float p[3], float v1[3], float v2[3], float v3[3])
+{
+ if(!point_in_slice(p,v1,v2,v3)) return 0;
+ if(!point_in_slice(p,v2,v3,v1)) return 0;
+ if(!point_in_slice(p,v3,v1,v2)) return 0;
+ return 1;
+}
+
+/* point closest to v1 on line v2-v3 in 3D */
+void PclosestVL3Dfl(float *closest, float *v1, float *v2, float *v3)
+{
+ float lambda, cp[3];
+
+ lambda= lambda_cp_line_ex(v1, v2, v3, cp);
+
+ if(lambda <= 0.0f)
+ VecCopyf(closest, v2);
+ else if(lambda >= 1.0f)
+ VecCopyf(closest, v3);
+ else
+ VecCopyf(closest, cp);
+}
+
+/* distance v1 to line-piece v2-v3 in 3D */
+float PdistVL3Dfl(float *v1, float *v2, float *v3)
+{
+ float closest[3];
+
+ PclosestVL3Dfl(closest, v1, v2, v3);
+
+ return VecLenf(closest, v1);
+}
+
+/********************************************************/
+
+/* make a 4x4 matrix out of 3 transform components */
+/* matrices are made in the order: scale * rot * loc */
+void LocEulSizeToMat4(float mat[][4], float loc[3], float eul[3], float size[3])
+{
+ float rmat[3][3], smat[3][3], tmat[3][3];
+
+ /* initialise new matrix */
+ Mat4One(mat);
+
+ /* make rotation + scaling part */
+ EulToMat3(eul, rmat);
+ SizeToMat3(size, smat);
+ Mat3MulMat3(tmat, rmat, smat);
+
+ /* copy rot/scale part to output matrix*/
+ Mat4CpyMat3(mat, tmat);
+
+ /* copy location to matrix */
+ mat[3][0] = loc[0];
+ mat[3][1] = loc[1];
+ mat[3][2] = loc[2];
+}
+
+/* make a 4x4 matrix out of 3 transform components */
+/* matrices are made in the order: scale * rot * loc */
+void LocQuatSizeToMat4(float mat[][4], float loc[3], float quat[4], float size[3])
+{
+ float rmat[3][3], smat[3][3], tmat[3][3];
+
+ /* initialise new matrix */
+ Mat4One(mat);
+
+ /* make rotation + scaling part */
+ QuatToMat3(quat, rmat);
+ SizeToMat3(size, smat);
+ Mat3MulMat3(tmat, rmat, smat);
+
+ /* copy rot/scale part to output matrix*/
+ Mat4CpyMat3(mat, tmat);
+
+ /* copy location to matrix */
+ mat[3][0] = loc[0];
+ mat[3][1] = loc[1];
+ mat[3][2] = loc[2];
+}