Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenlib')
-rw-r--r--source/blender/blenlib/BLI_arithb.h568
-rw-r--r--source/blender/blenlib/BLI_array.h91
-rw-r--r--source/blender/blenlib/BLI_cellalloc.h49
-rw-r--r--source/blender/blenlib/BLI_edgehash.h106
-rw-r--r--source/blender/blenlib/BLI_editVert.h3
-rw-r--r--source/blender/blenlib/BLI_ghash.h163
-rw-r--r--source/blender/blenlib/intern/BLI_cellalloc.c174
-rw-r--r--source/blender/blenlib/intern/BLI_ghash.c134
-rw-r--r--source/blender/blenlib/intern/BLI_mempool.c18
-rw-r--r--source/blender/blenlib/intern/arithb.c5537
-rw-r--r--source/blender/blenlib/intern/edgehash.c124
-rw-r--r--source/blender/blenlib/intern/scanfill.c47
12 files changed, 6768 insertions, 246 deletions
diff --git a/source/blender/blenlib/BLI_arithb.h b/source/blender/blenlib/BLI_arithb.h
new file mode 100644
index 00000000000..2658bcbd14f
--- /dev/null
+++ b/source/blender/blenlib/BLI_arithb.h
@@ -0,0 +1,568 @@
+#undef TEST_ACTIVE
+//#define ACTIVE 1
+/**
+ * blenlib/BLI_arithb.h mar 2001 Nzc
+ *
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ * */
+
+#ifndef BLI_ARITHB_H
+#define BLI_ARITHB_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifdef WIN32
+#define _USE_MATH_DEFINES
+#endif
+
+#include <math.h>
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+#ifndef M_PI_2
+#define M_PI_2 1.57079632679489661923
+#endif
+#ifndef M_SQRT2
+#define M_SQRT2 1.41421356237309504880
+#endif
+#ifndef M_SQRT1_2
+#define M_SQRT1_2 0.70710678118654752440
+#endif
+#ifndef M_1_PI
+#define M_1_PI 0.318309886183790671538
+#endif
+
+#ifndef M_E
+#define M_E 2.7182818284590452354
+#endif
+#ifndef M_LOG2E
+#define M_LOG2E 1.4426950408889634074
+#endif
+#ifndef M_LOG10E
+#define M_LOG10E 0.43429448190325182765
+#endif
+#ifndef M_LN2
+#define M_LN2 0.69314718055994530942
+#endif
+#ifndef M_LN10
+#define M_LN10 2.30258509299404568402
+#endif
+
+#ifndef sqrtf
+#define sqrtf(a) ((float)sqrt(a))
+#endif
+#ifndef powf
+#define powf(a, b) ((float)pow(a, b))
+#endif
+#ifndef cosf
+#define cosf(a) ((float)cos(a))
+#endif
+#ifndef sinf
+#define sinf(a) ((float)sin(a))
+#endif
+#ifndef acosf
+#define acosf(a) ((float)acos(a))
+#endif
+#ifndef asinf
+#define asinf(a) ((float)asin(a))
+#endif
+#ifndef atan2f
+#define atan2f(a, b) ((float)atan2(a, b))
+#endif
+#ifndef tanf
+#define tanf(a) ((float)tan(a))
+#endif
+#ifndef atanf
+#define atanf(a) ((float)atan(a))
+#endif
+#ifndef floorf
+#define floorf(a) ((float)floor(a))
+#endif
+#ifndef ceilf
+#define ceilf(a) ((float)ceil(a))
+#endif
+#ifndef fabsf
+#define fabsf(a) ((float)fabs(a))
+#endif
+#ifndef logf
+#define logf(a) ((float)log(a))
+#endif
+#ifndef expf
+#define expf(a) ((float)exp(a))
+#endif
+#ifndef fmodf
+#define fmodf(a, b) ((float)fmod(a, b))
+#endif
+
+#ifdef WIN32
+ #ifndef FREE_WINDOWS
+ #define isnan(n) _isnan(n)
+ #define finite _finite
+ #endif
+#endif
+
+#define MAT4_UNITY {{ 1.0, 0.0, 0.0, 0.0},\
+ { 0.0, 1.0, 0.0, 0.0},\
+ { 0.0, 0.0, 1.0, 0.0},\
+ { 0.0, 0.0, 0.0, 1.0}}
+
+#define MAT3_UNITY {{ 1.0, 0.0, 0.0},\
+ { 0.0, 1.0, 0.0},\
+ { 0.0, 0.0, 1.0}}
+
+
+void CalcCent3f(float *cent, float *v1, float *v2, float *v3);
+void CalcCent4f(float *cent, float *v1, float *v2, float *v3, float *v4);
+
+void Crossf(float *c, float *a, float *b);
+void Projf(float *c, float *v1, float *v2);
+
+float Inpf(float *v1, float *v2);
+float Inp2f(float *v1, float *v2);
+
+float Normalize(float *n);
+float Normalize2(float *n);
+
+float Sqrt3f(float f);
+double Sqrt3d(double d);
+
+float saacos(float fac);
+float saasin(float fac);
+float sasqrt(float fac);
+float saacosf(float fac);
+float saasinf(float fac);
+float sasqrtf(float fac);
+
+int FloatCompare(float *v1, float *v2, float limit);
+int FloatCompare4(float *v1, float *v2, float limit);
+float FloatLerpf(float target, float origin, float fac);
+
+float CalcNormFloat(float *v1, float *v2, float *v3, float *n);
+float CalcNormFloat4(float *v1, float *v2, float *v3, float *v4, float *n);
+
+void CalcNormLong(int *v1, int *v2, int *v3, float *n);
+/* CalcNormShort: is ook uitprodukt - (translates as 'is also out/cross product') */
+void CalcNormShort(short *v1, short *v2, short *v3, float *n);
+float power_of_2(float val);
+
+/**
+ * @section Euler conversion routines (With Custom Order)
+ */
+
+/* Defines for rotation orders
+ * WARNING: must match the eRotationModes in DNA_action_types.h
+ * order matters - types are saved to file!
+ */
+typedef enum eEulerRotationOrders {
+ EULER_ORDER_DEFAULT = 1, /* Blender 'default' (classic) is basically XYZ */
+ EULER_ORDER_XYZ = 1, /* Blender 'default' (classic) - must be as 1 to sync with PoseChannel rotmode */
+ EULER_ORDER_XZY,
+ EULER_ORDER_YXZ,
+ EULER_ORDER_YZX,
+ EULER_ORDER_ZXY,
+ EULER_ORDER_ZYX,
+ /* NOTE: there are about 6 more entries when including duplicated entries too */
+} eEulerRotationOrders;
+
+void EulOToQuat(float eul[3], short order, float quat[4]);
+void QuatToEulO(float quat[4], float eul[3], short order);
+
+void EulOToMat3(float eul[3], short order, float Mat[3][3]);
+void EulOToMat4(float eul[3], short order, float Mat[4][4]);
+
+void Mat3ToEulO(float Mat[3][3], float eul[3], short order);
+void Mat4ToEulO(float Mat[4][4], float eul[3], short order);
+
+void Mat3ToCompatibleEulO(float mat[3][3], float eul[3], float oldrot[3], short order);
+
+void eulerO_rot(float beul[3], float ang, char axis, short order);
+
+/**
+ * @section Euler conversion routines (Blender XYZ)
+ */
+
+void EulToMat3(float *eul, float mat[][3]);
+void EulToMat4(float *eul, float mat[][4]);
+
+void Mat3ToEul(float tmat[][3], float *eul);
+void Mat4ToEul(float tmat[][4],float *eul);
+
+void EulToQuat(float *eul, float *quat);
+
+void Mat3ToCompatibleEul(float mat[][3], float *eul, float *oldrot);
+void EulToGimbalAxis(float gmat[][3], float *eul, short order);
+
+
+void compatible_eul(float *eul, float *oldrot);
+void euler_rot(float *beul, float ang, char axis);
+
+
+/**
+ * @section Quaternion arithmetic routines
+ */
+
+int QuatIsNul(float *q);
+void QuatToEul(float *quat, float *eul);
+void QuatOne(float *);
+void QuatMul(float *, float *, float *);
+void QuatMulVecf(float *q, float *v);
+void QuatMulf(float *q, float f);
+void QuatMulFac(float *q, float fac);
+
+void NormalQuat(float *);
+void VecRotToQuat(float *vec, float phi, float *quat);
+
+void QuatSub(float *q, float *q1, float *q2);
+void QuatConj(float *q);
+void QuatInv(float *q);
+float QuatDot(float *q1, float *q2);
+void QuatCopy(float *q1, float *q2);
+
+void printquat(char *str, float q[4]);
+
+void QuatInterpol(float *result, float *quat1, float *quat2, float t);
+void QuatAdd(float *result, float *quat1, float *quat2, float t);
+
+void QuatToMat3(float *q, float m[][3]);
+void QuatToMat4(float *q, float m[][4]);
+
+/**
+ * @section matrix multiplication and copying routines
+ */
+
+void Mat3MulFloat(float *m, float f);
+void Mat4MulFloat(float *m, float f);
+void Mat4MulFloat3(float *m, float f);
+
+void Mat3Transp(float mat[][3]);
+void Mat4Transp(float mat[][4]);
+
+int Mat4Invert(float inverse[][4], float mat[][4]);
+void Mat4InvertSimp(float inverse[][4], float mat[][4]);
+void Mat4Inv(float *m1, float *m2);
+void Mat4InvGG(float out[][4], float in[][4]);
+void Mat3Inv(float m1[][3], float m2[][3]);
+
+void Mat3CpyMat4(float m1[][3],float m2[][4]);
+void Mat4CpyMat3(float m1[][4], float m2[][3]);
+
+void Mat3BlendMat3(float out[][3], float dst[][3], float src[][3], float srcweight);
+void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight);
+
+float Det2x2(float a,float b,float c, float d);
+
+float Det3x3(
+ float a1, float a2, float a3,
+ float b1, float b2, float b3,
+ float c1, float c2, float c3
+);
+
+float Det4x4(float m[][4]);
+
+void Mat3Adj(float m1[][3], float m[][3]);
+void Mat4Adj(float out[][4], float in[][4]);
+
+void Mat4MulMat4(float m1[][4], float m2[][4], float m3[][4]);
+void subMat4MulMat4(float *m1, float *m2, float *m3);
+#ifndef TEST_ACTIVE
+void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3]);
+#else
+void Mat3MulMat3(float *m1, float *m3, float *m2);
+#endif
+void Mat4MulMat34(float (*m1)[4], float (*m3)[3], float (*m2)[4]);
+void Mat4CpyMat4(float m1[][4], float m2[][4]);
+void Mat4SwapMat4(float m1[][4], float m2[][4]);
+void Mat3CpyMat3(float m1[][3], float m2[][3]);
+
+void Mat3MulSerie(float answ[][3],
+ float m1[][3], float m2[][3], float m3[][3],
+ float m4[][3], float m5[][3], float m6[][3],
+ float m7[][3], float m8[][3]
+);
+
+void Mat4MulSerie(float answ[][4], float m1[][4],
+ float m2[][4], float m3[][4], float m4[][4],
+ float m5[][4], float m6[][4], float m7[][4],
+ float m8[][4]
+);
+
+void Mat4Clr(float *m);
+void Mat3Clr(float *m);
+
+void Mat3One(float m[][3]);
+void Mat4One(float m[][4]);
+
+/* NOTE: These only normalise the matrix, they don't make it orthogonal */
+void Mat3Ortho(float mat[][3]);
+void Mat4Ortho(float mat[][4]);
+
+int IsMat3Orthogonal(float mat[][3]);
+void Mat3Orthogonal(float mat[][3], int axis); /* axis is the one to keep in place (assumes it is non-null) */
+int IsMat4Orthogonal(float mat[][4]);
+void Mat4Orthogonal(float mat[][4], int axis); /* axis is the one to keep in place (assumes it is non-null) */
+
+void VecMat4MulVecfl(float *in, float mat[][4], float *vec);
+void Mat4MulMat43(float (*m1)[4], float (*m3)[4], float (*m2)[3]);
+void Mat3IsMat3MulMat4(float m1[][3], float m2[][3], float m3[][4]);
+
+void Mat4MulVec(float mat[][4],int *vec);
+void Mat4MulVecfl(float mat[][4], float *vec);
+void Mat4Mul3Vecfl(float mat[][4], float *vec);
+void Mat4MulVec3Project(float mat[][4],float *vec);
+void Mat4MulVec4fl(float mat[][4], float *vec);
+void Mat3MulVec(float mat[][3],int *vec);
+void Mat3MulVecfl(float mat[][3], float *vec);
+void Mat3MulVecd(float mat[][3], double *vec);
+void Mat3TransMulVecfl(float mat[][3], float *vec);
+
+void Mat3AddMat3(float m1[][3], float m2[][3], float m3[][3]);
+void Mat4AddMat4(float m1[][4], float m2[][4], float m3[][4]);
+
+void VecUpMat3old(float *vec, float mat[][3], short axis);
+void VecUpMat3(float *vec, float mat[][3], short axis);
+
+void VecCopyf(float *v1, float *v2);
+int VecLen(int *v1, int *v2);
+float VecLenf(float v1[3], float v2[3]);
+float VecLength(float *v);
+void VecMulf(float *v1, float f);
+void VecNegf(float *v1);
+
+int VecLenCompare(float *v1, float *v2, float limit);
+int VecCompare(float *v1, float *v2, float limit);
+int VecEqual(float *v1, float *v2);
+int VecIsNull(float *v);
+
+void printvecf(char *str,float v[3]);
+void printvec4f(char *str, float v[4]);
+
+void VecAddf(float *v, float *v1, float *v2);
+void VecSubf(float *v, float *v1, float *v2);
+void VecMulVecf(float *v, float *v1, float *v2);
+void VecLerpf(float *target, const float *a, const float *b, const float t);
+void VecLerp3f(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3]);
+void VecMidf(float *v, float *v1, float *v2);
+
+void VecOrthoBasisf(float *v, float *v1, float *v2);
+
+float Vec2Lenf(float *v1, float *v2);
+float Vec2Length(float *v);
+void Vec2Mulf(float *v1, float f);
+void Vec2Addf(float *v, float *v1, float *v2);
+void Vec2Subf(float *v, float *v1, float *v2);
+void Vec2Copyf(float *v1, float *v2);
+void Vec2Lerpf(float *target, const float *a, const float *b, const float t);
+void Vec2Lerp3f(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3]);
+
+void AxisAngleToQuat(float q[4], float axis[3], float angle);
+void QuatToAxisAngle(float q[4], float axis[3], float *angle);
+void AxisAngleToEulO(float axis[3], float angle, float eul[3], short order);
+void EulOToAxisAngle(float eul[3], short order, float axis[3], float *angle);
+void AxisAngleToMat3(float axis[3], float angle, float mat[3][3]);
+void AxisAngleToMat4(float axis[3], float angle, float mat[4][4]);
+void Mat3ToAxisAngle(float mat[3][3], float axis[3], float *angle);
+void Mat4ToAxisAngle(float mat[4][4], float axis[3], float *angle);
+
+void Mat3ToVecRot(float mat[3][3], float axis[3], float *angle);
+void Mat4ToVecRot(float mat[4][4], float axis[3], float *angle);
+void VecRotToMat3(float *vec, float phi, float mat[][3]);
+void VecRotToMat4(float *vec, float phi, float mat[][4]);
+
+void RotationBetweenVectorsToQuat(float *q, float v1[3], float v2[3]);
+void vectoquat(float *vec, short axis, short upflag, float *q);
+void Mat3ToQuat_is_ok(float wmat[][3], float *q);
+
+void VecReflect(float *out, float *v1, float *v2);
+void VecBisect3(float *v, float *v1, float *v2, float *v3);
+float VecAngle2(float *v1, float *v2);
+float VecAngle3(float *v1, float *v2, float *v3);
+float NormalizedVecAngle2(float *v1, float *v2);
+
+float Vec2Angle3(float *v1, float *v2, float *v3);
+float NormalizedVecAngle2_2D(float *v1, float *v2);
+
+void NormalShortToFloat(float *out, short *in);
+void NormalFloatToShort(short *out, float *in);
+
+float DistVL2Dfl(float *v1, float *v2, float *v3);
+float PdistVL2Dfl(float *v1, float *v2, float *v3);
+float PdistVL3Dfl(float *v1, float *v2, float *v3);
+void PclosestVL3Dfl(float *closest, float v1[3], float v2[3], float v3[3]);
+float AreaF2Dfl(float *v1, float *v2, float *v3);
+float AreaQ3Dfl(float *v1, float *v2, float *v3, float *v4);
+float AreaT3Dfl(float *v1, float *v2, float *v3);
+float AreaPoly3Dfl(int nr, float *verts, float *normal);
+
+/* intersect Line-Line
+ return:
+ -1: colliniar
+ 0: no intersection of segments
+ 1: exact intersection of segments
+ 2: cross-intersection of segments
+*/
+extern short IsectLL2Df(float *v1, float *v2, float *v3, float *v4);
+extern short IsectLL2Ds(short *v1, short *v2, short *v3, short *v4);
+
+/*point in tri, 0 no intersection, 1 intersect */
+int IsectPT2Df(float pt[2], float v1[2], float v2[2], float v3[2]);
+/* point in quad, 0 no intersection, 1 intersect */
+int IsectPQ2Df(float pt[2], float v1[2], float v2[2], float v3[2], float v4[2]);
+
+/* interpolation weights of point in a triangle or quad, v4 may be NULL */
+void InterpWeightsQ3Dfl(float *v1, float *v2, float *v3, float *v4, float *co, float *w);
+/* interpolation weights of point in a polygon with >= 3 vertices */
+void MeanValueWeights(float v[][3], int n, float *co, float *w);
+
+void i_lookat(
+ float vx, float vy,
+ float vz, float px,
+ float py, float pz,
+ float twist, float mat[][4]
+);
+
+void i_window(
+ float left, float right,
+ float bottom, float top,
+ float nearClip, float farClip,
+ float mat[][4]
+);
+
+#define BLI_CS_SMPTE 0
+#define BLI_CS_REC709 1
+#define BLI_CS_CIE 2
+
+#define RAD2DEG(_rad) ((_rad)*(180.0/M_PI))
+#define DEG2RAD(_deg) ((_deg)*(M_PI/180.0))
+
+void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b);
+void hex_to_rgb(char *hexcol, float *r, float *g, float *b);
+void rgb_to_yuv(float r, float g, float b, float *ly, float *lu, float *lv);
+void yuv_to_rgb(float y, float u, float v, float *lr, float *lg, float *lb);
+void ycc_to_rgb(float y, float cb, float cr, float *lr, float *lg, float *lb);
+void rgb_to_ycc(float r, float g, float b, float *ly, float *lcb, float *lcr);
+void rgb_to_hsv(float r, float g, float b, float *lh, float *ls, float *lv);
+void xyz_to_rgb(float x, float y, float z, float *r, float *g, float *b, int colorspace);
+int constrain_rgb(float *r, float *g, float *b);
+unsigned int hsv_to_cpack(float h, float s, float v);
+unsigned int rgb_to_cpack(float r, float g, float b);
+void cpack_to_rgb(unsigned int col, float *r, float *g, float *b);
+void MinMaxRGB(short c[]);
+
+
+
+void VecStar(float mat[][3],float *vec);
+
+short EenheidsMat(float mat[][3]);
+
+void i_ortho(float left, float right, float bottom, float top, float nearClip, float farClip, float matrix[][4]);
+void i_polarview(float dist, float azimuth, float incidence, float twist, float Vm[][4]);
+void i_translate(float Tx, float Ty, float Tz, float mat[][4]);
+void i_multmatrix(float icand[][4], float Vm[][4]);
+void i_rotate(float angle, char axis, float mat[][4]);
+
+
+
+void MinMax3(float *min, float *max, float *vec);
+void SizeToMat3(float *size, float mat[][3]);
+void SizeToMat4(float *size, float mat[][4]);
+
+float Mat3ToScalef(float mat[][3]);
+float Mat4ToScalef(float mat[][4]);
+
+void printmatrix3(char *str, float m[][3]);
+void printmatrix4(char *str, float m[][4]);
+
+/* uit Sig.Proc.85 pag 253 */
+void Mat3ToQuat(float wmat[][3], float *q);
+void Mat4ToQuat(float m[][4], float *q);
+
+void Mat3ToSize(float mat[][3], float *size);
+void Mat4ToSize(float mat[][4], float *size);
+
+void triatoquat(float *v1, float *v2, float *v3, float *quat);
+
+void LocEulSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3]);
+void LocEulOSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3], short rotOrder);
+void LocQuatSizeToMat4(float mat[4][4], float loc[3], float quat[4], float size[3]);
+
+void tubemap(float x, float y, float z, float *u, float *v);
+void spheremap(float x, float y, float z, float *u, float *v);
+
+int LineIntersectLine(float v1[3], float v2[3], float v3[3], float v4[3], float i1[3], float i2[3]);
+int LineIntersectLineStrict(float v1[3], float v2[3], float v3[3], float v4[3], float vi[3], float *lambda);
+int LineIntersectsTriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv);
+int RayIntersectsTriangle(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv);
+int RayIntersectsTriangleThreshold(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv, float threshold);
+int SweepingSphereIntersectsTriangleUV(float p1[3], float p2[3], float radius, float v0[3], float v1[3], float v2[3], float *lambda, float *ipoint);
+int AxialLineIntersectsTriangle(int axis, float co1[3], float co2[3], float v0[3], float v1[3], float v2[3], float *lambda);
+int AabbIntersectAabb(float min1[3], float max1[3], float min2[3], float max2[3]);
+void VecfCubicInterpol(float *x1, float *v1, float *x2, float *v2, float t, float *x, float *v);
+void PointInQuad2DUV(float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv);
+void PointInFace2DUV(int isquad, float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv);
+int IsPointInTri2D(float v1[2], float v2[2], float v3[2], float pt[2]);
+int IsPointInTri2DInts(int x1, int y1, int x2, int y2, int a, int b);
+int point_in_tri_prism(float p[3], float v1[3], float v2[3], float v3[3]);
+
+float lambda_cp_line_ex(float p[3], float l1[3], float l2[3], float cp[3]);
+
+float AngleToLength(const float angle);
+
+typedef struct DualQuat {
+ float quat[4];
+ float trans[4];
+
+ float scale[4][4];
+ float scale_weight;
+} DualQuat;
+
+void Mat4ToDQuat(float basemat[][4], float mat[][4], DualQuat *dq);
+void DQuatToMat4(DualQuat *dq, float mat[][4]);
+void DQuatAddWeighted(DualQuat *dqsum, DualQuat *dq, float weight);
+void DQuatNormalize(DualQuat *dq, float totweight);
+void DQuatMulVecfl(DualQuat *dq, float *co, float mat[][3]);
+void DQuatCpyDQuat(DualQuat *dq1, DualQuat *dq2);
+
+/* Tangent stuff */
+typedef struct VertexTangent {
+ float tang[3], uv[2];
+ struct VertexTangent *next;
+} VertexTangent;
+
+void sum_or_add_vertex_tangent(void *arena, VertexTangent **vtang, float *tang, float *uv);
+float *find_vertex_tangent(VertexTangent *vtang, float *uv);
+void tangent_from_uv(float *uv1, float *uv2, float *uv3, float *co1, float *co2, float *co3, float *n, float *tang);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
diff --git a/source/blender/blenlib/BLI_array.h b/source/blender/blenlib/BLI_array.h
new file mode 100644
index 00000000000..c01d821cb8b
--- /dev/null
+++ b/source/blender/blenlib/BLI_array.h
@@ -0,0 +1,91 @@
+/**
+ * Array library
+ *
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2008 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Geoffrey Bantle.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/*
+this library needs to be changed to not use macros quite so heavily,
+and to be more of a complete array API. The way arrays are
+exposed to client code as normal C arrays is very useful though, imho.
+it does require some use of macros, however.
+
+anyway, it's used a bit too heavily to simply rewrite as a
+more "correct" solution without macros entirely. I originally wrote this
+to be very easy to use, without the normal pain of most array libraries.
+This was especially helpful when it came to the massive refactors necessary for
+bmesh, and really helped to speed the process up. - joeedh
+
+little array macro library. example of usage:
+
+int *arr = NULL;
+BLI_array_declare(arr);
+int i;
+
+for (i=0; i<10; i++) {
+ BLI_array_growone(arr);
+ arr[i] = something;
+}
+BLI_array_free(arr);
+
+arrays are buffered, using double-buffering (so on each reallocation,
+the array size is doubled). supposedly this should give good Big Oh
+behaviour, though it may not be the best in practice.
+*/
+
+#define BLI_array_declare(arr) int _##arr##_count=0; void *_##arr##_tmp
+
+/*this returns the entire size of the array, including any buffering.*/
+#define BLI_array_totalsize(arr) ((signed int)((arr)==NULL ? 0 : MEM_allocN_len(arr) / sizeof(*arr)))
+
+/*this returns the logical size of the array, not including buffering.*/
+#define BLI_array_count(arr) _##arr##_count
+
+/*grow the array by one. zeroes the new elements.*/
+#define BLI_array_growone(arr) \
+ BLI_array_totalsize(arr) > _##arr##_count ? _##arr##_count++ : \
+ ((_##arr##_tmp = MEM_callocN(sizeof(*arr)*(_##arr##_count*2+2), #arr " " __FILE__ " ")),\
+ (arr && memcpy(_##arr##_tmp, arr, sizeof(*arr) * _##arr##_count)),\
+ (arr && (MEM_freeN(arr),1)),\
+ (arr = _##arr##_tmp),\
+ _##arr##_count++)
+
+/*appends an item to the array and returns a pointer to the item in the array.
+ item is not a pointer, but actual data value.*/
+#define BLI_array_append(arr, item) (BLI_array_growone(arr), arr[_##arr##_count] = item, (arr+_##arr##_count))
+
+/*grow an array by a specified number of items.*/
+#define BLI_array_growitems(arr, num) {int _i; for (_i=0; _i<(num); _i++) {BLI_array_growone(arr);}}
+#define BLI_array_free(arr) if (arr) MEM_freeN(arr)
+
+/*resets the logical size of an array to zero, but doesn't
+ free the memory.*/
+#define BLI_array_empty(arr) _##arr##_count=0
+
+/*set the count of the array, doesn't actually increase the allocated array
+ size. don't use this unless you know what your doing.*/
+#define BLI_array_set_length(arr, count) _##arr##_count = (count)
diff --git a/source/blender/blenlib/BLI_cellalloc.h b/source/blender/blenlib/BLI_cellalloc.h
new file mode 100644
index 00000000000..cd10e9febe8
--- /dev/null
+++ b/source/blender/blenlib/BLI_cellalloc.h
@@ -0,0 +1,49 @@
+/**
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2008 by Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/*
+ I wrote this as a hack so vgroups won't be quite so slow. I really
+ should replace it with something else, but I need to spend some time
+ thinking as to what the proper solution would be (other then totally
+ rewriting vgroups, of course).
+
+ this is just a simple allocator that spawns mempools for unique size
+ requests. hardly ideal, I know. *something* like this may be
+ unavoidable, but it should certainly be possible to make it
+ non-global and internal to the vgroup code.
+
+ -joeedh sep. 17 2009
+*/
+
+//BMESH_TODO: kill this library before merging with trunk
+void *BLI_cellalloc_malloc(long size, char *tag);
+void *BLI_cellalloc_calloc(long size, char *tag);
+void BLI_cellalloc_free(void *mem);
+void BLI_cellalloc_printleaks(void);
+int BLI_cellalloc_get_totblock(void);
+void BLI_cellalloc_destroy(void);
diff --git a/source/blender/blenlib/BLI_edgehash.h b/source/blender/blenlib/BLI_edgehash.h
index abbd17c3635..85b0b9023ec 100644
--- a/source/blender/blenlib/BLI_edgehash.h
+++ b/source/blender/blenlib/BLI_edgehash.h
@@ -32,6 +32,10 @@
#ifndef BLI_EDGEHASH_H
#define BLI_EDGEHASH_H
+#include "MEM_guardedalloc.h"
+#include "BKE_utildefines.h"
+#include "BLI_mempool.h"
+
struct EdgeHash;
struct EdgeHashIterator;
typedef struct EdgeHash EdgeHash;
@@ -45,22 +49,22 @@ void BLI_edgehash_free (EdgeHash *eh, EdgeHashFreeFP valfreefp);
/* Insert edge (v0,v1) into hash with given value, does
* not check for duplicates.
*/
-void BLI_edgehash_insert (EdgeHash *eh, int v0, int v1, void *val);
+//void BLI_edgehash_insert (EdgeHash *eh, int v0, int v1, void *val);
/* Return value for given edge (v0,v1), or NULL if
* if key does not exist in hash. (If need exists
* to differentiate between key-value being NULL and
* lack of key then see BLI_edgehash_lookup_p().
*/
-void* BLI_edgehash_lookup (EdgeHash *eh, int v0, int v1);
+//void* BLI_edgehash_lookup (EdgeHash *eh, int v0, int v1);
/* Return pointer to value for given edge (v0,v1),
* or NULL if key does not exist in hash.
*/
-void** BLI_edgehash_lookup_p (EdgeHash *eh, int v0, int v1);
+//void** BLI_edgehash_lookup_p (EdgeHash *eh, int v0, int v1);
/* Return boolean true/false if edge (v0,v1) in hash. */
-int BLI_edgehash_haskey (EdgeHash *eh, int v0, int v1);
+//int BLI_edgehash_haskey (EdgeHash *eh, int v0, int v1);
/* Return number of keys in hash. */
int BLI_edgehash_size (EdgeHash *eh);
@@ -95,5 +99,99 @@ void BLI_edgehashIterator_step (EdgeHashIterator *ehi);
/* Determine if an iterator is done. */
int BLI_edgehashIterator_isDone (EdgeHashIterator *ehi);
+/**************inlined code************/
+static unsigned int _ehash_hashsizes[]= {
+ 1, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209,
+ 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169,
+ 4194319, 8388617, 16777259, 33554467, 67108879, 134217757,
+ 268435459
+};
+
+#define EDGEHASH(v0,v1) ((v0*39)^(v1*31))
+
+/***/
+
+typedef struct EdgeEntry EdgeEntry;
+struct EdgeEntry {
+ EdgeEntry *next;
+ int v0, v1;
+ void *val;
+};
+
+struct EdgeHash {
+ EdgeEntry **buckets;
+ BLI_mempool *epool;
+ int nbuckets, nentries, cursize;
+};
+
+
+BM_INLINE void BLI_edgehash_insert(EdgeHash *eh, int v0, int v1, void *val) {
+ unsigned int hash;
+ EdgeEntry *e= BLI_mempool_alloc(eh->epool);
+
+ if (v1<v0) {
+ v0 ^= v1;
+ v1 ^= v0;
+ v0 ^= v1;
+ }
+ hash = EDGEHASH(v0,v1)%eh->nbuckets;
+
+ e->v0 = v0;
+ e->v1 = v1;
+ e->val = val;
+ e->next= eh->buckets[hash];
+ eh->buckets[hash]= e;
+
+ if (++eh->nentries>eh->nbuckets*3) {
+ EdgeEntry *e, **old= eh->buckets;
+ int i, nold= eh->nbuckets;
+
+ eh->nbuckets= _ehash_hashsizes[++eh->cursize];
+ eh->buckets= MEM_mallocN(eh->nbuckets*sizeof(*eh->buckets), "eh buckets");
+ BMEMSET(eh->buckets, 0, eh->nbuckets*sizeof(*eh->buckets));
+
+ for (i=0; i<nold; i++) {
+ for (e= old[i]; e;) {
+ EdgeEntry *n= e->next;
+
+ hash= EDGEHASH(e->v0,e->v1)%eh->nbuckets;
+ e->next= eh->buckets[hash];
+ eh->buckets[hash]= e;
+
+ e= n;
+ }
+ }
+
+ MEM_freeN(old);
+ }
+}
+
+BM_INLINE void** BLI_edgehash_lookup_p(EdgeHash *eh, int v0, int v1) {
+ unsigned int hash;
+ EdgeEntry *e;
+
+ if (v1<v0) {
+ v0 ^= v1;
+ v1 ^= v0;
+ v0 ^= v1;
+ }
+ hash = EDGEHASH(v0,v1)%eh->nbuckets;
+ for (e= eh->buckets[hash]; e; e= e->next)
+ if (v0==e->v0 && v1==e->v1)
+ return &e->val;
+
+ return NULL;
+}
+
+BM_INLINE void* BLI_edgehash_lookup(EdgeHash *eh, int v0, int v1) {
+ void **value_p = BLI_edgehash_lookup_p(eh,v0,v1);
+
+ return value_p?*value_p:NULL;
+}
+
+BM_INLINE int BLI_edgehash_haskey(EdgeHash *eh, int v0, int v1) {
+ return BLI_edgehash_lookup_p(eh, v0, v1)!=NULL;
+}
+
#endif
diff --git a/source/blender/blenlib/BLI_editVert.h b/source/blender/blenlib/BLI_editVert.h
index 35081086783..22a9b5edcaf 100644
--- a/source/blender/blenlib/BLI_editVert.h
+++ b/source/blender/blenlib/BLI_editVert.h
@@ -42,6 +42,7 @@
struct DerivedMesh;
struct RetopoPaintData;
+struct BLI_mempool;
/* note; changing this also might affect the undo copy in editmesh.c */
typedef struct EditVert
@@ -154,6 +155,8 @@ typedef struct EditMesh
HashEdge *hashedgetab;
/* this is for the editmesh_fastmalloc */
+ struct BLI_mempool *vertpool, *edgepool, *facepool;
+
EditVert *allverts, *curvert;
EditEdge *alledges, *curedge;
EditFace *allfaces, *curface;
diff --git a/source/blender/blenlib/BLI_ghash.h b/source/blender/blenlib/BLI_ghash.h
index c9a8b1b841f..703115630fe 100644
--- a/source/blender/blenlib/BLI_ghash.h
+++ b/source/blender/blenlib/BLI_ghash.h
@@ -32,31 +32,48 @@
#ifndef BLI_GHASH_H
#define BLI_GHASH_H
-#ifdef __cplusplus
-extern "C" {
-#endif
+#include "stdio.h"
+#include "stdlib.h"
+#include "string.h"
-struct GHash;
-typedef struct GHash GHash;
+#include "BKE_utildefines.h"
-typedef struct GHashIterator {
- GHash *gh;
- int curBucket;
- struct Entry *curEntry;
-} GHashIterator;
+#include "BLI_mempool.h"
+#include "BLI_blenlib.h"
typedef unsigned int (*GHashHashFP) (void *key);
typedef int (*GHashCmpFP) (void *a, void *b);
typedef void (*GHashKeyFreeFP) (void *key);
typedef void (*GHashValFreeFP) (void *val);
+typedef struct Entry {
+ struct Entry *next;
+
+ void *key, *val;
+} Entry;
+
+typedef struct GHash {
+ GHashHashFP hashfp;
+ GHashCmpFP cmpfp;
+
+ Entry **buckets;
+ struct BLI_mempool *entrypool;
+ int nbuckets, nentries, cursize;
+} GHash;
+
+typedef struct GHashIterator {
+ GHash *gh;
+ int curBucket;
+ struct Entry *curEntry;
+} GHashIterator;
+
GHash* BLI_ghash_new (GHashHashFP hashfp, GHashCmpFP cmpfp);
void BLI_ghash_free (GHash *gh, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp);
-void BLI_ghash_insert (GHash *gh, void *key, void *val);
-int BLI_ghash_remove (GHash *gh, void *key, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp);
-void* BLI_ghash_lookup (GHash *gh, void *key);
-int BLI_ghash_haskey (GHash *gh, void *key);
+//BM_INLINE void BLI_ghash_insert (GHash *gh, void *key, void *val);
+//BM_INLINE int BLI_ghash_remove (GHash *gh, void *key, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp);
+//BM_INLINE void* BLI_ghash_lookup (GHash *gh, void *key);
+//BM_INLINE int BLI_ghash_haskey (GHash *gh, void *key);
int BLI_ghash_size (GHash *gh);
@@ -129,9 +146,121 @@ int BLI_ghashutil_strcmp (void *a, void *b);
unsigned int BLI_ghashutil_inthash (void *ptr);
int BLI_ghashutil_intcmp(void *a, void *b);
-#ifdef __cplusplus
-}
-#endif
+/*begin of macro-inlined functions*/
+extern unsigned int hashsizes[];
+#if 0
+#define BLI_ghash_insert(gh, _k, _v){\
+ unsigned int _hash= (gh)->hashfp(_k)%gh->nbuckets;\
+ Entry *_e= BLI_mempool_alloc((gh)->entrypool);\
+ _e->key= _k;\
+ _e->val= _v;\
+ _e->next= (gh)->buckets[_hash];\
+ (gh)->buckets[_hash]= _e;\
+ if (++(gh)->nentries>(gh)->nbuckets*3) {\
+ Entry *_e, **_old= (gh)->buckets;\
+ int _i, _nold= (gh)->nbuckets;\
+ (gh)->nbuckets= hashsizes[++(gh)->cursize];\
+ (gh)->buckets= malloc((gh)->nbuckets*sizeof(*(gh)->buckets));\
+ memset((gh)->buckets, 0, (gh)->nbuckets*sizeof(*(gh)->buckets));\
+ for (_i=0; _i<_nold; _i++) {\
+ for (_e= _old[_i]; _e;) {\
+ Entry *_n= _e->next;\
+ _hash= (gh)->hashfp(_e->key)%(gh)->nbuckets;\
+ _e->next= (gh)->buckets[_hash];\
+ (gh)->buckets[_hash]= _e;\
+ _e= _n;\
+ }\
+ }\
+ free(_old); } }
#endif
+/*---------inlined functions---------*/
+BM_INLINE void BLI_ghash_insert(GHash *gh, void *key, void *val) {
+ unsigned int hash= gh->hashfp(key)%gh->nbuckets;
+ Entry *e= (Entry*) BLI_mempool_alloc(gh->entrypool);
+
+ e->key= key;
+ e->val= val;
+ e->next= gh->buckets[hash];
+ gh->buckets[hash]= e;
+
+ if (++gh->nentries>gh->nbuckets*3) {
+ Entry *e, **old= gh->buckets;
+ int i, nold= gh->nbuckets;
+
+ gh->nbuckets= hashsizes[++gh->cursize];
+ gh->buckets= (Entry**)malloc(gh->nbuckets*sizeof(*gh->buckets));
+ memset(gh->buckets, 0, gh->nbuckets*sizeof(*gh->buckets));
+
+ for (i=0; i<nold; i++) {
+ for (e= old[i]; e;) {
+ Entry *n= e->next;
+
+ hash= gh->hashfp(e->key)%gh->nbuckets;
+ e->next= gh->buckets[hash];
+ gh->buckets[hash]= e;
+
+ e= n;
+ }
+ }
+
+ free(old);
+ }
+}
+
+BM_INLINE void* BLI_ghash_lookup(GHash *gh, void *key)
+{
+ if(gh) {
+ unsigned int hash= gh->hashfp(key)%gh->nbuckets;
+ Entry *e;
+
+ for (e= gh->buckets[hash]; e; e= e->next)
+ if (gh->cmpfp(key, e->key)==0)
+ return e->val;
+ }
+ return NULL;
+}
+
+BM_INLINE int BLI_ghash_remove (GHash *gh, void *key, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp)
+{
+ unsigned int hash= gh->hashfp(key)%gh->nbuckets;
+ Entry *e;
+ Entry *p = 0;
+
+ for (e= gh->buckets[hash]; e; e= e->next) {
+ if (gh->cmpfp(key, e->key)==0) {
+ Entry *n= e->next;
+
+ if (keyfreefp) keyfreefp(e->key);
+ if (valfreefp) valfreefp(e->val);
+ BLI_mempool_free(gh->entrypool, e);
+
+
+ e= n;
+ if (p)
+ p->next = n;
+ else
+ gh->buckets[hash] = n;
+
+ --gh->nentries;
+ return 1;
+ }
+ p = e;
+ }
+
+ return 0;
+}
+
+BM_INLINE int BLI_ghash_haskey(GHash *gh, void *key) {
+ unsigned int hash= gh->hashfp(key)%gh->nbuckets;
+ Entry *e;
+
+ for (e= gh->buckets[hash]; e; e= e->next)
+ if (gh->cmpfp(key, e->key)==0)
+ return 1;
+
+ return 0;
+}
+
+#endif
diff --git a/source/blender/blenlib/intern/BLI_cellalloc.c b/source/blender/blenlib/intern/BLI_cellalloc.c
new file mode 100644
index 00000000000..efed99011d0
--- /dev/null
+++ b/source/blender/blenlib/intern/BLI_cellalloc.c
@@ -0,0 +1,174 @@
+/**
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2008 by Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Joseph Eagar
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/*
+ Simple, fast memory allocator that uses many BLI_mempools for allocation.
+ this is meant to be used by lots of relatively small objects.
+
+ this is a temporary and inperfect fix for performance issues caused
+ by vgroups. it needs to be replaced with something better, preferably
+ integrated into guardedalloc.
+*/
+
+#include "MEM_guardedalloc.h"
+
+#include "BKE_utildefines.h"
+
+#include "BLI_blenlib.h"
+#include "BLI_linklist.h"
+
+#include "DNA_listBase.h"
+#include "BLI_mempool.h"
+
+#include <string.h>
+
+static BLI_mempool **pools;
+static int totpool = 0;
+ListBase active_mem = {NULL, NULL};
+static int celltotblock = 0;
+
+#define MEMIDCHECK ('a' | ('b' << 4) | ('c' << 8) | ('d' << 12))
+
+typedef struct MemHeader {
+ struct MemHeader *next, *prev;
+
+ int size;
+ char *tag;
+ int idcheck;
+} MemHeader;
+
+//#define USE_GUARDEDALLOC
+
+void *BLI_cellalloc_malloc(long size, char *tag)
+{
+ MemHeader *memh;
+ int slot = size + sizeof(MemHeader);
+
+#ifdef USE_GUARDEDALLOC
+ return MEM_mallocN(size, tag);
+#endif
+ if (!slot)
+ return NULL;
+
+ /*stupid optimization trick.
+ round up to nearest 16 bytes boundary.
+ this is to reduce the number of potential
+ pools. hopefully it'll help.*/
+ slot += 16 - (slot & 15);
+
+ if (slot >= totpool) {
+ void *tmp;
+
+ tmp = calloc(1, sizeof(void*)*(slot+1));
+ if (pools) {
+ memcpy(tmp, pools, totpool*sizeof(void*));
+ }
+
+ pools = tmp;
+ totpool = slot+1;
+ }
+
+ if (!pools[slot]) {
+ pools[slot] = BLI_mempool_create(slot, 1, 128);
+ }
+
+ memh = BLI_mempool_alloc(pools[slot]);
+ memh->size = size;
+ memh->idcheck = MEMIDCHECK;
+ memh->tag = tag;
+ BLI_addtail(&active_mem, memh);
+ celltotblock++;
+
+ return memh + 1;
+}
+
+void *BLI_cellalloc_calloc(long size, char *tag)
+{
+ void *mem = BLI_cellalloc_malloc(size, tag);
+ BMEMSET(mem, 0, size);
+
+ return mem;
+}
+
+void BLI_cellalloc_free(void *mem)
+{
+ MemHeader *memh = mem;
+ int slot;
+
+#ifdef USE_GUARDEDALLOC
+ MEM_freeN(mem);
+ return;
+#endif
+ if (!memh)
+ return;
+
+ memh--;
+ if (memh->idcheck != MEMIDCHECK) {
+ printf("Error in BLI_cellalloc: attempt to free invalid block.\n");
+ return;
+ }
+
+ slot = memh->size + sizeof(MemHeader);
+ slot += 16 - (slot & 15);
+
+ if (memh->size > 0 && slot < totpool) {
+ BLI_remlink(&active_mem, memh);
+ BLI_mempool_free(pools[slot], memh);
+ celltotblock--;
+ } else {
+ printf("Error in BLI_cellalloc: attempt to free corrupted block.\n");
+ }
+}
+
+void BLI_cellalloc_printleaks(void)
+{
+ MemHeader *memh;
+
+ if (!active_mem.first) return;
+
+ for (memh=active_mem.first; memh; memh=memh->next) {
+ printf("%s %d %p\n", memh->tag, memh->size, memh+1);
+ }
+}
+
+int BLI_cellalloc_get_totblock(void)
+{
+ return celltotblock;
+}
+
+void BLI_cellalloc_destroy(void)
+{
+ int i;
+
+ for (i=0; i<totpool; i++) {
+ if (pools[i]) {
+ BLI_mempool_destroy(pools[i]);
+ pools[i] = NULL;
+ }
+ }
+} \ No newline at end of file
diff --git a/source/blender/blenlib/intern/BLI_ghash.c b/source/blender/blenlib/intern/BLI_ghash.c
index 80cd507520c..c8918b11368 100644
--- a/source/blender/blenlib/intern/BLI_ghash.c
+++ b/source/blender/blenlib/intern/BLI_ghash.c
@@ -33,16 +33,19 @@
#include "MEM_guardedalloc.h"
#include "BLI_ghash.h"
+#include "BLI_mempool.h"
#include "BLO_sys_types.h" // for intptr_t support
+#include "BKE_utildefines.h"
+
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/***/
-static unsigned int hashsizes[]= {
+unsigned int hashsizes[]= {
1, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209,
16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169,
4194319, 8388617, 16777259, 33554467, 67108879, 134217757,
@@ -51,28 +54,14 @@ static unsigned int hashsizes[]= {
/***/
-typedef struct Entry Entry;
-struct Entry {
- Entry *next;
-
- void *key, *val;
-};
-
-struct GHash {
- GHashHashFP hashfp;
- GHashCmpFP cmpfp;
-
- Entry **buckets;
- int nbuckets, nentries, cursize;
-};
-
/***/
GHash *BLI_ghash_new(GHashHashFP hashfp, GHashCmpFP cmpfp) {
GHash *gh= MEM_mallocN(sizeof(*gh), "GHash");
gh->hashfp= hashfp;
gh->cmpfp= cmpfp;
-
+ gh->entrypool = BLI_mempool_create(sizeof(Entry), 1024, 1024);
+
gh->cursize= 0;
gh->nentries= 0;
gh->nbuckets= hashsizes[gh->cursize];
@@ -83,92 +72,9 @@ GHash *BLI_ghash_new(GHashHashFP hashfp, GHashCmpFP cmpfp) {
return gh;
}
-void BLI_ghash_insert(GHash *gh, void *key, void *val) {
- unsigned int hash= gh->hashfp(key)%gh->nbuckets;
- Entry *e= malloc(sizeof(*e));
-
- e->key= key;
- e->val= val;
- e->next= gh->buckets[hash];
- gh->buckets[hash]= e;
-
- if (++gh->nentries>gh->nbuckets*3) {
- Entry *e, **old= gh->buckets;
- int i, nold= gh->nbuckets;
-
- gh->nbuckets= hashsizes[++gh->cursize];
- gh->buckets= malloc(gh->nbuckets*sizeof(*gh->buckets));
- memset(gh->buckets, 0, gh->nbuckets*sizeof(*gh->buckets));
-
- for (i=0; i<nold; i++) {
- for (e= old[i]; e;) {
- Entry *n= e->next;
-
- hash= gh->hashfp(e->key)%gh->nbuckets;
- e->next= gh->buckets[hash];
- gh->buckets[hash]= e;
-
- e= n;
- }
- }
-
- free(old);
- }
-}
-
-void* BLI_ghash_lookup(GHash *gh, void *key)
-{
- if(gh) {
- unsigned int hash= gh->hashfp(key)%gh->nbuckets;
- Entry *e;
-
- for (e= gh->buckets[hash]; e; e= e->next)
- if (gh->cmpfp(key, e->key)==0)
- return e->val;
- }
- return NULL;
-}
-
-int BLI_ghash_remove (GHash *gh, void *key, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp)
-{
- unsigned int hash= gh->hashfp(key)%gh->nbuckets;
- Entry *e;
- Entry *p = 0;
-
- for (e= gh->buckets[hash]; e; e= e->next) {
- if (gh->cmpfp(key, e->key)==0) {
- Entry *n= e->next;
-
- if (keyfreefp) keyfreefp(e->key);
- if (valfreefp) valfreefp(e->val);
- free(e);
-
-
- e= n;
- if (p)
- p->next = n;
- else
- gh->buckets[hash] = n;
-
- --gh->nentries;
- return 1;
- }
- p = e;
- }
-
- return 0;
-}
-
-int BLI_ghash_haskey(GHash *gh, void *key) {
- unsigned int hash= gh->hashfp(key)%gh->nbuckets;
- Entry *e;
-
- for (e= gh->buckets[hash]; e; e= e->next)
- if (gh->cmpfp(key, e->key)==0)
- return 1;
-
- return 0;
-}
+#ifdef BLI_ghash_insert
+#undef BLI_ghash_insert
+#endif
int BLI_ghash_size(GHash *gh) {
return gh->nentries;
@@ -177,21 +83,23 @@ int BLI_ghash_size(GHash *gh) {
void BLI_ghash_free(GHash *gh, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp) {
int i;
- for (i=0; i<gh->nbuckets; i++) {
- Entry *e;
-
- for (e= gh->buckets[i]; e; ) {
- Entry *n= e->next;
-
- if (keyfreefp) keyfreefp(e->key);
- if (valfreefp) valfreefp(e->val);
- free(e);
+ if (keyfreefp || valfreefp) {
+ for (i=0; i<gh->nbuckets; i++) {
+ Entry *e;
- e= n;
+ for (e= gh->buckets[i]; e; ) {
+ Entry *n= e->next;
+
+ if (keyfreefp) keyfreefp(e->key);
+ if (valfreefp) valfreefp(e->val);
+
+ e= n;
+ }
}
}
free(gh->buckets);
+ BLI_mempool_destroy(gh->entrypool);
gh->buckets = 0;
gh->nentries = 0;
gh->nbuckets = 0;
diff --git a/source/blender/blenlib/intern/BLI_mempool.c b/source/blender/blenlib/intern/BLI_mempool.c
index 485ba7cbd08..9c4113bb13a 100644
--- a/source/blender/blenlib/intern/BLI_mempool.c
+++ b/source/blender/blenlib/intern/BLI_mempool.c
@@ -21,7 +21,7 @@
*
* The Original Code is: all of this file.
*
- * Contributor(s): none yet.
+ * Contributor(s): Geoffery Bantle
*
* ***** END GPL LICENSE BLOCK *****
*/
@@ -31,9 +31,14 @@
*/
#include "MEM_guardedalloc.h"
+
+#include "BKE_utildefines.h"
+
#include "BLI_blenlib.h"
-#include "DNA_listBase.h"
#include "BLI_linklist.h"
+
+#include "DNA_listBase.h"
+
#include <string.h>
typedef struct BLI_freenode{
@@ -60,6 +65,9 @@ BLI_mempool *BLI_mempool_create(int esize, int tote, int pchunk)
if (esize < sizeof(void*))
esize = sizeof(void*);
+ if (esize < sizeof(void*))
+ esize = sizeof(void*);
+
/*allocate the pool structure*/
pool = MEM_mallocN(sizeof(BLI_mempool),"memory pool");
pool->esize = esize;
@@ -68,7 +76,8 @@ BLI_mempool *BLI_mempool_create(int esize, int tote, int pchunk)
pool->chunks.first = pool->chunks.last = NULL;
maxchunks = tote / pchunk;
-
+ if (maxchunks==0) maxchunks = 1;
+
/*allocate the actual chunks*/
for(i=0; i < maxchunks; i++){
BLI_mempool_chunk *mpchunk = MEM_mallocN(sizeof(BLI_mempool_chunk), "BLI_Mempool Chunk");
@@ -88,6 +97,7 @@ BLI_mempool *BLI_mempool_create(int esize, int tote, int pchunk)
/*set the end of this chunks memoryy to the new tail for next iteration*/
lasttail = curnode;
}
+
/*terminate the list*/
curnode->next = NULL;
return pool;
@@ -123,7 +133,7 @@ void *BLI_mempool_alloc(BLI_mempool *pool){
void *BLI_mempool_calloc(BLI_mempool *pool){
void *retval=NULL;
retval = BLI_mempool_alloc(pool);
- memset(retval, 0, pool->esize);
+ BMEMSET(retval, 0, pool->esize);
return retval;
}
diff --git a/source/blender/blenlib/intern/arithb.c b/source/blender/blenlib/intern/arithb.c
new file mode 100644
index 00000000000..c98f4a14fea
--- /dev/null
+++ b/source/blender/blenlib/intern/arithb.c
@@ -0,0 +1,5537 @@
+/* arithb.c
+ *
+ * simple math for blender code
+ *
+ * sort of cleaned up mar-01 nzc
+ *
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/* ************************ FUNKTIES **************************** */
+
+#include <stdlib.h>
+#include <math.h>
+#include <sys/types.h>
+#include <string.h>
+#include <float.h>
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#if defined(__sun__) || defined( __sun ) || defined (__sparc) || defined (__sparc__)
+#include <strings.h>
+#endif
+
+#if !defined(__sgi) && !defined(WIN32)
+#include <sys/time.h>
+#include <unistd.h>
+#endif
+
+#include <stdio.h>
+#include "BLI_arithb.h"
+#include "BLI_memarena.h"
+
+/* A few small defines. Keep'em local! */
+#define SMALL_NUMBER 1.e-8
+#define ABS(x) ((x) < 0 ? -(x) : (x))
+#define SWAP(type, a, b) { type sw_ap; sw_ap=(a); (a)=(b); (b)=sw_ap; }
+#define CLAMP(a, b, c) if((a)<(b)) (a)=(b); else if((a)>(c)) (a)=(c)
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+#ifndef M_SQRT2
+#define M_SQRT2 1.41421356237309504880
+#endif
+
+
+float saacos(float fac)
+{
+ if(fac<= -1.0f) return (float)M_PI;
+ else if(fac>=1.0f) return 0.0;
+ else return (float)acos(fac);
+}
+
+float saasin(float fac)
+{
+ if(fac<= -1.0f) return (float)-M_PI/2.0f;
+ else if(fac>=1.0f) return (float)M_PI/2.0f;
+ else return (float)asin(fac);
+}
+
+float sasqrt(float fac)
+{
+ if(fac<=0.0) return 0.0;
+ return (float)sqrt(fac);
+}
+
+float saacosf(float fac)
+{
+ if(fac<= -1.0f) return (float)M_PI;
+ else if(fac>=1.0f) return 0.0f;
+ else return (float)acosf(fac);
+}
+
+float saasinf(float fac)
+{
+ if(fac<= -1.0f) return (float)-M_PI/2.0f;
+ else if(fac>=1.0f) return (float)M_PI/2.0f;
+ else return (float)asinf(fac);
+}
+
+float sasqrtf(float fac)
+{
+ if(fac<=0.0) return 0.0;
+ return (float)sqrtf(fac);
+}
+
+float Normalize(float *n)
+{
+ float d;
+
+ d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
+ /* A larger value causes normalize errors in a scaled down models with camera xtreme close */
+ if(d>1.0e-35f) {
+ d= (float)sqrt(d);
+
+ n[0]/=d;
+ n[1]/=d;
+ n[2]/=d;
+ } else {
+ n[0]=n[1]=n[2]= 0.0f;
+ d= 0.0f;
+ }
+ return d;
+}
+
+/*original function from shadeoutput.c*/
+double Normalize_d(double *n)
+{
+ double d;
+
+ d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
+
+ if(d>0.00000000000000001) {
+ d= sqrt(d);
+
+ n[0]/=d;
+ n[1]/=d;
+ n[2]/=d;
+ } else {
+ n[0]=n[1]=n[2]= 0.0;
+ d= 0.0;
+ }
+ return d;
+}
+
+/* Crossf stores the cross product c = a x b */
+void Crossf(float *c, float *a, float *b)
+{
+ c[0] = a[1] * b[2] - a[2] * b[1];
+ c[1] = a[2] * b[0] - a[0] * b[2];
+ c[2] = a[0] * b[1] - a[1] * b[0];
+}
+
+void Crossd(double *c, double *a, double *b)
+{
+ c[0] = a[1] * b[2] - a[2] * b[1];
+ c[1] = a[2] * b[0] - a[0] * b[2];
+ c[2] = a[0] * b[1] - a[1] * b[0];
+}
+
+/* Inpf returns the dot product, also called the scalar product and inner product */
+float Inpf( float *v1, float *v2)
+{
+ return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
+}
+
+/* Project v1 on v2 */
+void Projf(float *c, float *v1, float *v2)
+{
+ float mul;
+ mul = Inpf(v1, v2) / Inpf(v2, v2);
+
+ c[0] = mul * v2[0];
+ c[1] = mul * v2[1];
+ c[2] = mul * v2[2];
+}
+
+void Mat3Transp(float mat[][3])
+{
+ float t;
+
+ t = mat[0][1] ;
+ mat[0][1] = mat[1][0] ;
+ mat[1][0] = t;
+ t = mat[0][2] ;
+ mat[0][2] = mat[2][0] ;
+ mat[2][0] = t;
+ t = mat[1][2] ;
+ mat[1][2] = mat[2][1] ;
+ mat[2][1] = t;
+}
+
+void Mat4Transp(float mat[][4])
+{
+ float t;
+
+ t = mat[0][1] ;
+ mat[0][1] = mat[1][0] ;
+ mat[1][0] = t;
+ t = mat[0][2] ;
+ mat[0][2] = mat[2][0] ;
+ mat[2][0] = t;
+ t = mat[0][3] ;
+ mat[0][3] = mat[3][0] ;
+ mat[3][0] = t;
+
+ t = mat[1][2] ;
+ mat[1][2] = mat[2][1] ;
+ mat[2][1] = t;
+ t = mat[1][3] ;
+ mat[1][3] = mat[3][1] ;
+ mat[3][1] = t;
+
+ t = mat[2][3] ;
+ mat[2][3] = mat[3][2] ;
+ mat[3][2] = t;
+}
+
+
+/*
+ * invertmat -
+ * computes the inverse of mat and puts it in inverse. Returns
+ * TRUE on success (i.e. can always find a pivot) and FALSE on failure.
+ * Uses Gaussian Elimination with partial (maximal column) pivoting.
+ *
+ * Mark Segal - 1992
+ */
+
+int Mat4Invert(float inverse[][4], float mat[][4])
+{
+ int i, j, k;
+ double temp;
+ float tempmat[4][4];
+ float max;
+ int maxj;
+
+ /* Set inverse to identity */
+ for (i=0; i<4; i++)
+ for (j=0; j<4; j++)
+ inverse[i][j] = 0;
+ for (i=0; i<4; i++)
+ inverse[i][i] = 1;
+
+ /* Copy original matrix so we don't mess it up */
+ for(i = 0; i < 4; i++)
+ for(j = 0; j <4; j++)
+ tempmat[i][j] = mat[i][j];
+
+ for(i = 0; i < 4; i++) {
+ /* Look for row with max pivot */
+ max = ABS(tempmat[i][i]);
+ maxj = i;
+ for(j = i + 1; j < 4; j++) {
+ if(ABS(tempmat[j][i]) > max) {
+ max = ABS(tempmat[j][i]);
+ maxj = j;
+ }
+ }
+ /* Swap rows if necessary */
+ if (maxj != i) {
+ for( k = 0; k < 4; k++) {
+ SWAP(float, tempmat[i][k], tempmat[maxj][k]);
+ SWAP(float, inverse[i][k], inverse[maxj][k]);
+ }
+ }
+
+ temp = tempmat[i][i];
+ if (temp == 0)
+ return 0; /* No non-zero pivot */
+ for(k = 0; k < 4; k++) {
+ tempmat[i][k] = (float)(tempmat[i][k]/temp);
+ inverse[i][k] = (float)(inverse[i][k]/temp);
+ }
+ for(j = 0; j < 4; j++) {
+ if(j != i) {
+ temp = tempmat[j][i];
+ for(k = 0; k < 4; k++) {
+ tempmat[j][k] -= (float)(tempmat[i][k]*temp);
+ inverse[j][k] -= (float)(inverse[i][k]*temp);
+ }
+ }
+ }
+ }
+ return 1;
+}
+#ifdef TEST_ACTIVE
+void Mat4InvertSimp(float inverse[][4], float mat[][4])
+{
+ /* only for Matrices that have a rotation */
+ /* based at GG IV pag 205 */
+ float scale;
+
+ scale= mat[0][0]*mat[0][0] + mat[1][0]*mat[1][0] + mat[2][0]*mat[2][0];
+ if(scale==0.0) return;
+
+ scale= 1.0/scale;
+
+ /* transpose and scale */
+ inverse[0][0]= scale*mat[0][0];
+ inverse[1][0]= scale*mat[0][1];
+ inverse[2][0]= scale*mat[0][2];
+ inverse[0][1]= scale*mat[1][0];
+ inverse[1][1]= scale*mat[1][1];
+ inverse[2][1]= scale*mat[1][2];
+ inverse[0][2]= scale*mat[2][0];
+ inverse[1][2]= scale*mat[2][1];
+ inverse[2][2]= scale*mat[2][2];
+
+ inverse[3][0]= -(inverse[0][0]*mat[3][0] + inverse[1][0]*mat[3][1] + inverse[2][0]*mat[3][2]);
+ inverse[3][1]= -(inverse[0][1]*mat[3][0] + inverse[1][1]*mat[3][1] + inverse[2][1]*mat[3][2]);
+ inverse[3][2]= -(inverse[0][2]*mat[3][0] + inverse[1][2]*mat[3][1] + inverse[2][2]*mat[3][2]);
+
+ inverse[0][3]= inverse[1][3]= inverse[2][3]= 0.0;
+ inverse[3][3]= 1.0;
+}
+#endif
+/* struct Matrix4; */
+
+#ifdef TEST_ACTIVE
+/* this seems to be unused.. */
+
+void Mat4Inv(float *m1, float *m2)
+{
+
+/* This gets me into trouble: */
+ float mat1[3][3], mat2[3][3];
+
+/* void Mat3Inv(); */
+/* void Mat3CpyMat4(); */
+/* void Mat4CpyMat3(); */
+
+ Mat3CpyMat4((float*)mat2,m2);
+ Mat3Inv((float*)mat1, (float*) mat2);
+ Mat4CpyMat3(m1, mat1);
+
+}
+#endif
+
+
+float Det2x2(float a,float b,float c,float d)
+{
+
+ return a*d - b*c;
+}
+
+
+
+float Det3x3(float a1, float a2, float a3,
+ float b1, float b2, float b3,
+ float c1, float c2, float c3 )
+{
+ float ans;
+
+ ans = a1 * Det2x2( b2, b3, c2, c3 )
+ - b1 * Det2x2( a2, a3, c2, c3 )
+ + c1 * Det2x2( a2, a3, b2, b3 );
+
+ return ans;
+}
+
+float Det4x4(float m[][4])
+{
+ float ans;
+ float a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
+
+ a1= m[0][0];
+ b1= m[0][1];
+ c1= m[0][2];
+ d1= m[0][3];
+
+ a2= m[1][0];
+ b2= m[1][1];
+ c2= m[1][2];
+ d2= m[1][3];
+
+ a3= m[2][0];
+ b3= m[2][1];
+ c3= m[2][2];
+ d3= m[2][3];
+
+ a4= m[3][0];
+ b4= m[3][1];
+ c4= m[3][2];
+ d4= m[3][3];
+
+ ans = a1 * Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4)
+ - b1 * Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4)
+ + c1 * Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4)
+ - d1 * Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
+
+ return ans;
+}
+
+
+void Mat4Adj(float out[][4], float in[][4]) /* out = ADJ(in) */
+{
+ float a1, a2, a3, a4, b1, b2, b3, b4;
+ float c1, c2, c3, c4, d1, d2, d3, d4;
+
+ a1= in[0][0];
+ b1= in[0][1];
+ c1= in[0][2];
+ d1= in[0][3];
+
+ a2= in[1][0];
+ b2= in[1][1];
+ c2= in[1][2];
+ d2= in[1][3];
+
+ a3= in[2][0];
+ b3= in[2][1];
+ c3= in[2][2];
+ d3= in[2][3];
+
+ a4= in[3][0];
+ b4= in[3][1];
+ c4= in[3][2];
+ d4= in[3][3];
+
+
+ out[0][0] = Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
+ out[1][0] = - Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
+ out[2][0] = Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
+ out[3][0] = - Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
+
+ out[0][1] = - Det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
+ out[1][1] = Det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
+ out[2][1] = - Det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
+ out[3][1] = Det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
+
+ out[0][2] = Det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
+ out[1][2] = - Det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
+ out[2][2] = Det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
+ out[3][2] = - Det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
+
+ out[0][3] = - Det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
+ out[1][3] = Det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
+ out[2][3] = - Det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
+ out[3][3] = Det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
+}
+
+void Mat4InvGG(float out[][4], float in[][4]) /* from Graphic Gems I, out= INV(in) */
+{
+ int i, j;
+ float det;
+
+ /* calculate the adjoint matrix */
+
+ Mat4Adj(out,in);
+
+ det = Det4x4(out);
+
+ if ( fabs( det ) < SMALL_NUMBER) {
+ return;
+ }
+
+ /* scale the adjoint matrix to get the inverse */
+
+ for (i=0; i<4; i++)
+ for(j=0; j<4; j++)
+ out[i][j] = out[i][j] / det;
+
+ /* the last factor is not always 1. For that reason an extra division should be implemented? */
+}
+
+
+void Mat3Inv(float m1[][3], float m2[][3])
+{
+ short a,b;
+ float det;
+
+ /* calc adjoint */
+ Mat3Adj(m1,m2);
+
+ /* then determinant old matrix! */
+ det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
+ -m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
+ +m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
+
+ if(det==0) det=1;
+ det= 1/det;
+ for(a=0;a<3;a++) {
+ for(b=0;b<3;b++) {
+ m1[a][b]*=det;
+ }
+ }
+}
+
+void Mat3Adj(float m1[][3], float m[][3])
+{
+ m1[0][0]=m[1][1]*m[2][2]-m[1][2]*m[2][1];
+ m1[0][1]= -m[0][1]*m[2][2]+m[0][2]*m[2][1];
+ m1[0][2]=m[0][1]*m[1][2]-m[0][2]*m[1][1];
+
+ m1[1][0]= -m[1][0]*m[2][2]+m[1][2]*m[2][0];
+ m1[1][1]=m[0][0]*m[2][2]-m[0][2]*m[2][0];
+ m1[1][2]= -m[0][0]*m[1][2]+m[0][2]*m[1][0];
+
+ m1[2][0]=m[1][0]*m[2][1]-m[1][1]*m[2][0];
+ m1[2][1]= -m[0][0]*m[2][1]+m[0][1]*m[2][0];
+ m1[2][2]=m[0][0]*m[1][1]-m[0][1]*m[1][0];
+}
+
+void Mat4MulMat4(float m1[][4], float m2[][4], float m3[][4])
+{
+ /* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
+
+ m1[0][0] = m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0] + m2[0][3]*m3[3][0];
+ m1[0][1] = m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1] + m2[0][3]*m3[3][1];
+ m1[0][2] = m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2] + m2[0][3]*m3[3][2];
+ m1[0][3] = m2[0][0]*m3[0][3] + m2[0][1]*m3[1][3] + m2[0][2]*m3[2][3] + m2[0][3]*m3[3][3];
+
+ m1[1][0] = m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0] + m2[1][3]*m3[3][0];
+ m1[1][1] = m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1] + m2[1][3]*m3[3][1];
+ m1[1][2] = m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2] + m2[1][3]*m3[3][2];
+ m1[1][3] = m2[1][0]*m3[0][3] + m2[1][1]*m3[1][3] + m2[1][2]*m3[2][3] + m2[1][3]*m3[3][3];
+
+ m1[2][0] = m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0] + m2[2][3]*m3[3][0];
+ m1[2][1] = m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1] + m2[2][3]*m3[3][1];
+ m1[2][2] = m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2] + m2[2][3]*m3[3][2];
+ m1[2][3] = m2[2][0]*m3[0][3] + m2[2][1]*m3[1][3] + m2[2][2]*m3[2][3] + m2[2][3]*m3[3][3];
+
+ m1[3][0] = m2[3][0]*m3[0][0] + m2[3][1]*m3[1][0] + m2[3][2]*m3[2][0] + m2[3][3]*m3[3][0];
+ m1[3][1] = m2[3][0]*m3[0][1] + m2[3][1]*m3[1][1] + m2[3][2]*m3[2][1] + m2[3][3]*m3[3][1];
+ m1[3][2] = m2[3][0]*m3[0][2] + m2[3][1]*m3[1][2] + m2[3][2]*m3[2][2] + m2[3][3]*m3[3][2];
+ m1[3][3] = m2[3][0]*m3[0][3] + m2[3][1]*m3[1][3] + m2[3][2]*m3[2][3] + m2[3][3]*m3[3][3];
+
+}
+#ifdef TEST_ACTIVE
+void subMat4MulMat4(float *m1, float *m2, float *m3)
+{
+
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
+ m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
+ m1+=4;
+ m2+=4;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
+ m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
+ m1+=4;
+ m2+=4;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
+ m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
+}
+#endif
+
+#ifndef TEST_ACTIVE
+void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3])
+#else
+void Mat3MulMat3(float *m1, float *m3, float *m2)
+#endif
+{
+ /* m1[i][j] = m2[i][k]*m3[k][j], args are flipped! */
+#ifndef TEST_ACTIVE
+ m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
+ m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
+ m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
+
+ m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
+ m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
+ m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
+
+ m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
+ m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
+ m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
+#else
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
+ m1+=3;
+ m2+=3;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
+ m1+=3;
+ m2+=3;
+ m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
+ m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
+ m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
+#endif
+} /* end of void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3]) */
+
+void Mat4MulMat43(float (*m1)[4], float (*m3)[4], float (*m2)[3])
+{
+ m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
+ m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
+ m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
+ m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
+ m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
+ m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
+ m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
+ m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
+ m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
+}
+/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3*/
+void Mat3IsMat3MulMat4(float m1[][3], float m2[][3], float m3[][4])
+{
+ /* m1[i][j] = m2[i][k] * m3[k][j] */
+ m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] +m2[0][2] * m3[2][0];
+ m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] +m2[0][2] * m3[2][1];
+ m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] +m2[0][2] * m3[2][2];
+
+ m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] +m2[1][2] * m3[2][0];
+ m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] +m2[1][2] * m3[2][1];
+ m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] +m2[1][2] * m3[2][2];
+
+ m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] +m2[2][2] * m3[2][0];
+ m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] +m2[2][2] * m3[2][1];
+ m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] +m2[2][2] * m3[2][2];
+}
+
+
+
+void Mat4MulMat34(float (*m1)[4], float (*m3)[3], float (*m2)[4])
+{
+ m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
+ m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
+ m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
+ m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
+ m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
+ m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
+ m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
+ m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
+ m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
+}
+
+void Mat4CpyMat4(float m1[][4], float m2[][4])
+{
+ memcpy(m1, m2, 4*4*sizeof(float));
+}
+
+void Mat4SwapMat4(float m1[][4], float m2[][4])
+{
+ float t;
+ int i, j;
+
+ for(i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ t = m1[i][j];
+ m1[i][j] = m2[i][j];
+ m2[i][j] = t;
+ }
+ }
+}
+
+typedef float Mat3Row[3];
+typedef float Mat4Row[4];
+
+#ifdef TEST_ACTIVE
+void Mat3CpyMat4(float *m1p, float *m2p)
+#else
+void Mat3CpyMat4(float m1[][3], float m2[][4])
+#endif
+{
+#ifdef TEST_ACTIVE
+ int i, j;
+ Mat3Row *m1= (Mat3Row *)m1p;
+ Mat4Row *m2= (Mat4Row *)m2p;
+ for ( i = 0; i++; i < 3) {
+ for (j = 0; j++; j < 3) {
+ m1p[3*i + j] = m2p[4*i + j];
+ }
+ }
+#endif
+ m1[0][0]= m2[0][0];
+ m1[0][1]= m2[0][1];
+ m1[0][2]= m2[0][2];
+
+ m1[1][0]= m2[1][0];
+ m1[1][1]= m2[1][1];
+ m1[1][2]= m2[1][2];
+
+ m1[2][0]= m2[2][0];
+ m1[2][1]= m2[2][1];
+ m1[2][2]= m2[2][2];
+}
+
+/* Butched. See .h for comment */
+/* void Mat4CpyMat3(float m1[][4], float m2[][3]) */
+#ifdef TEST_ACTIVE
+void Mat4CpyMat3(float* m1, float *m2)
+{
+ int i;
+ for (i = 0; i < 3; i++) {
+ m1[(4*i)] = m2[(3*i)];
+ m1[(4*i) + 1]= m2[(3*i) + 1];
+ m1[(4*i) + 2]= m2[(3*i) + 2];
+ m1[(4*i) + 3]= 0.0;
+ i++;
+ }
+
+ m1[12]=m1[13]= m1[14]= 0.0;
+ m1[15]= 1.0;
+}
+#else
+
+void Mat4CpyMat3(float m1[][4], float m2[][3]) /* no clear */
+{
+ m1[0][0]= m2[0][0];
+ m1[0][1]= m2[0][1];
+ m1[0][2]= m2[0][2];
+
+ m1[1][0]= m2[1][0];
+ m1[1][1]= m2[1][1];
+ m1[1][2]= m2[1][2];
+
+ m1[2][0]= m2[2][0];
+ m1[2][1]= m2[2][1];
+ m1[2][2]= m2[2][2];
+
+ /* Reevan's Bugfix */
+ m1[0][3]=0.0F;
+ m1[1][3]=0.0F;
+ m1[2][3]=0.0F;
+
+ m1[3][0]=0.0F;
+ m1[3][1]=0.0F;
+ m1[3][2]=0.0F;
+ m1[3][3]=1.0F;
+
+
+}
+#endif
+
+void Mat3CpyMat3(float m1[][3], float m2[][3])
+{
+ /* destination comes first: */
+ memcpy(&m1[0], &m2[0], 9*sizeof(float));
+}
+
+void Mat3MulSerie(float answ[][3],
+ float m1[][3], float m2[][3], float m3[][3],
+ float m4[][3], float m5[][3], float m6[][3],
+ float m7[][3], float m8[][3])
+{
+ float temp[3][3];
+
+ if(m1==0 || m2==0) return;
+
+
+ Mat3MulMat3(answ, m2, m1);
+ if(m3) {
+ Mat3MulMat3(temp, m3, answ);
+ if(m4) {
+ Mat3MulMat3(answ, m4, temp);
+ if(m5) {
+ Mat3MulMat3(temp, m5, answ);
+ if(m6) {
+ Mat3MulMat3(answ, m6, temp);
+ if(m7) {
+ Mat3MulMat3(temp, m7, answ);
+ if(m8) {
+ Mat3MulMat3(answ, m8, temp);
+ }
+ else Mat3CpyMat3(answ, temp);
+ }
+ }
+ else Mat3CpyMat3(answ, temp);
+ }
+ }
+ else Mat3CpyMat3(answ, temp);
+ }
+}
+
+void Mat4MulSerie(float answ[][4], float m1[][4],
+ float m2[][4], float m3[][4], float m4[][4],
+ float m5[][4], float m6[][4], float m7[][4],
+ float m8[][4])
+{
+ float temp[4][4];
+
+ if(m1==0 || m2==0) return;
+
+ Mat4MulMat4(answ, m2, m1);
+ if(m3) {
+ Mat4MulMat4(temp, m3, answ);
+ if(m4) {
+ Mat4MulMat4(answ, m4, temp);
+ if(m5) {
+ Mat4MulMat4(temp, m5, answ);
+ if(m6) {
+ Mat4MulMat4(answ, m6, temp);
+ if(m7) {
+ Mat4MulMat4(temp, m7, answ);
+ if(m8) {
+ Mat4MulMat4(answ, m8, temp);
+ }
+ else Mat4CpyMat4(answ, temp);
+ }
+ }
+ else Mat4CpyMat4(answ, temp);
+ }
+ }
+ else Mat4CpyMat4(answ, temp);
+ }
+}
+
+void Mat3BlendMat3(float out[][3], float dst[][3], float src[][3], float srcweight)
+{
+ float squat[4], dquat[4], fquat[4];
+ float ssize[3], dsize[3], fsize[4];
+ float rmat[3][3], smat[3][3];
+
+ Mat3ToQuat(dst, dquat);
+ Mat3ToSize(dst, dsize);
+
+ Mat3ToQuat(src, squat);
+ Mat3ToSize(src, ssize);
+
+ /* do blending */
+ QuatInterpol(fquat, dquat, squat, srcweight);
+ VecLerpf(fsize, dsize, ssize, srcweight);
+
+ /* compose new matrix */
+ QuatToMat3(fquat, rmat);
+ SizeToMat3(fsize, smat);
+ Mat3MulMat3(out, rmat, smat);
+}
+
+void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight)
+{
+ float squat[4], dquat[4], fquat[4];
+ float ssize[3], dsize[3], fsize[4];
+ float sloc[3], dloc[3], floc[3];
+
+ Mat4ToQuat(dst, dquat);
+ Mat4ToSize(dst, dsize);
+ VecCopyf(dloc, dst[3]);
+
+ Mat4ToQuat(src, squat);
+ Mat4ToSize(src, ssize);
+ VecCopyf(sloc, src[3]);
+
+ /* do blending */
+ VecLerpf(floc, dloc, sloc, srcweight);
+ QuatInterpol(fquat, dquat, squat, srcweight);
+ VecLerpf(fsize, dsize, ssize, srcweight);
+
+ /* compose new matrix */
+ LocQuatSizeToMat4(out, floc, fquat, fsize);
+}
+
+void Mat4Clr(float *m)
+{
+ memset(m, 0, 4*4*sizeof(float));
+}
+
+void Mat3Clr(float *m)
+{
+ memset(m, 0, 3*3*sizeof(float));
+}
+
+void Mat4One(float m[][4])
+{
+
+ m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
+ m[0][1]= m[0][2]= m[0][3]= 0.0;
+ m[1][0]= m[1][2]= m[1][3]= 0.0;
+ m[2][0]= m[2][1]= m[2][3]= 0.0;
+ m[3][0]= m[3][1]= m[3][2]= 0.0;
+}
+
+void Mat3One(float m[][3])
+{
+
+ m[0][0]= m[1][1]= m[2][2]= 1.0;
+ m[0][1]= m[0][2]= 0.0;
+ m[1][0]= m[1][2]= 0.0;
+ m[2][0]= m[2][1]= 0.0;
+}
+
+void Mat4Scale(float m[][4], float scale)
+{
+
+ m[0][0]= m[1][1]= m[2][2]= scale;
+ m[3][3]= 1.0;
+ m[0][1]= m[0][2]= m[0][3]= 0.0;
+ m[1][0]= m[1][2]= m[1][3]= 0.0;
+ m[2][0]= m[2][1]= m[2][3]= 0.0;
+ m[3][0]= m[3][1]= m[3][2]= 0.0;
+}
+
+void Mat3Scale(float m[][3], float scale)
+{
+
+ m[0][0]= m[1][1]= m[2][2]= scale;
+ m[0][1]= m[0][2]= 0.0;
+ m[1][0]= m[1][2]= 0.0;
+ m[2][0]= m[2][1]= 0.0;
+}
+
+void Mat4MulVec( float mat[][4], int *vec)
+{
+ int x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]=(int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0]);
+ vec[1]=(int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1]);
+ vec[2]=(int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2]);
+}
+
+void Mat4MulVecfl(float mat[][4], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]=x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
+ vec[1]=x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
+ vec[2]=x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
+}
+
+void VecMat4MulVecfl(float *in, float mat[][4], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ in[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
+ in[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
+ in[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
+}
+
+void Mat4Mul3Vecfl( float mat[][4], float *vec)
+{
+ float x,y;
+
+ x= vec[0];
+ y= vec[1];
+ vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
+ vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
+ vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
+}
+
+void Mat4MulVec3Project(float mat[][4], float *vec)
+{
+ float w;
+
+ w = vec[0]*mat[0][3] + vec[1]*mat[1][3] + vec[2]*mat[2][3] + mat[3][3];
+ Mat4MulVecfl(mat, vec);
+
+ vec[0] /= w;
+ vec[1] /= w;
+ vec[2] /= w;
+}
+
+void Mat4MulVec4fl( float mat[][4], float *vec)
+{
+ float x,y,z;
+
+ x=vec[0];
+ y=vec[1];
+ z= vec[2];
+ vec[0]=x*mat[0][0] + y*mat[1][0] + z*mat[2][0] + mat[3][0]*vec[3];
+ vec[1]=x*mat[0][1] + y*mat[1][1] + z*mat[2][1] + mat[3][1]*vec[3];
+ vec[2]=x*mat[0][2] + y*mat[1][2] + z*mat[2][2] + mat[3][2]*vec[3];
+ vec[3]=x*mat[0][3] + y*mat[1][3] + z*mat[2][3] + mat[3][3]*vec[3];
+}
+
+void Mat3MulVec( float mat[][3], int *vec)
+{
+ int x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= (int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2]);
+ vec[1]= (int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2]);
+ vec[2]= (int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2]);
+}
+
+void Mat3MulVecfl( float mat[][3], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
+ vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
+ vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
+}
+
+void Mat3MulVecd( float mat[][3], double *vec)
+{
+ double x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
+ vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
+ vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
+}
+
+void Mat3TransMulVecfl( float mat[][3], float *vec)
+{
+ float x,y;
+
+ x=vec[0];
+ y=vec[1];
+ vec[0]= x*mat[0][0] + y*mat[0][1] + mat[0][2]*vec[2];
+ vec[1]= x*mat[1][0] + y*mat[1][1] + mat[1][2]*vec[2];
+ vec[2]= x*mat[2][0] + y*mat[2][1] + mat[2][2]*vec[2];
+}
+
+void Mat3MulFloat(float *m, float f)
+{
+ int i;
+
+ for(i=0;i<9;i++) m[i]*=f;
+}
+
+void Mat4MulFloat(float *m, float f)
+{
+ int i;
+
+ for(i=0;i<16;i++) m[i]*=f; /* count to 12: without vector component */
+}
+
+
+void Mat4MulFloat3(float *m, float f) /* only scale component */
+{
+ int i,j;
+
+ for(i=0; i<3; i++) {
+ for(j=0; j<3; j++) {
+
+ m[4*i+j] *= f;
+ }
+ }
+}
+
+void Mat3AddMat3(float m1[][3], float m2[][3], float m3[][3])
+{
+ int i, j;
+
+ for(i=0;i<3;i++)
+ for(j=0;j<3;j++)
+ m1[i][j]= m2[i][j] + m3[i][j];
+}
+
+void Mat4AddMat4(float m1[][4], float m2[][4], float m3[][4])
+{
+ int i, j;
+
+ for(i=0;i<4;i++)
+ for(j=0;j<4;j++)
+ m1[i][j]= m2[i][j] + m3[i][j];
+}
+
+void VecStar(float mat[][3], float *vec)
+{
+
+ mat[0][0]= mat[1][1]= mat[2][2]= 0.0;
+ mat[0][1]= -vec[2];
+ mat[0][2]= vec[1];
+ mat[1][0]= vec[2];
+ mat[1][2]= -vec[0];
+ mat[2][0]= -vec[1];
+ mat[2][1]= vec[0];
+
+}
+#ifdef TEST_ACTIVE
+short EenheidsMat(float mat[][3])
+{
+
+ if(mat[0][0]==1.0 && mat[0][1]==0.0 && mat[0][2]==0.0)
+ if(mat[1][0]==0.0 && mat[1][1]==1.0 && mat[1][2]==0.0)
+ if(mat[2][0]==0.0 && mat[2][1]==0.0 && mat[2][2]==1.0)
+ return 1;
+ return 0;
+}
+#endif
+
+int FloatCompare( float *v1, float *v2, float limit)
+{
+
+ if( fabs(v1[0]-v2[0])<limit ) {
+ if( fabs(v1[1]-v2[1])<limit ) {
+ if( fabs(v1[2]-v2[2])<limit ) return 1;
+ }
+ }
+ return 0;
+}
+
+int FloatCompare4( float *v1, float *v2, float limit)
+{
+
+ if( fabs(v1[0]-v2[0])<limit ) {
+ if( fabs(v1[1]-v2[1])<limit ) {
+ if( fabs(v1[2]-v2[2])<limit ) {
+ if( fabs(v1[3]-v2[3])<limit ) return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+float FloatLerpf( float target, float origin, float fac)
+{
+ return (fac*target) + (1.0f-fac)*origin;
+}
+
+void printvecf( char *str, float v[3])
+{
+ printf("%s: %.3f %.3f %.3f\n", str, v[0], v[1], v[2]);
+
+}
+
+void printquat( char *str, float q[4])
+{
+ printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
+
+}
+
+void printvec4f( char *str, float v[4])
+{
+ printf("%s\n", str);
+ printf("%f %f %f %f\n",v[0],v[1],v[2], v[3]);
+ printf("\n");
+
+}
+
+void printmatrix4( char *str, float m[][4])
+{
+ printf("%s\n", str);
+ printf("%f %f %f %f\n",m[0][0],m[1][0],m[2][0],m[3][0]);
+ printf("%f %f %f %f\n",m[0][1],m[1][1],m[2][1],m[3][1]);
+ printf("%f %f %f %f\n",m[0][2],m[1][2],m[2][2],m[3][2]);
+ printf("%f %f %f %f\n",m[0][3],m[1][3],m[2][3],m[3][3]);
+ printf("\n");
+
+}
+
+void printmatrix3( char *str, float m[][3])
+{
+ printf("%s\n", str);
+ printf("%f %f %f\n",m[0][0],m[1][0],m[2][0]);
+ printf("%f %f %f\n",m[0][1],m[1][1],m[2][1]);
+ printf("%f %f %f\n",m[0][2],m[1][2],m[2][2]);
+ printf("\n");
+
+}
+
+/* **************** QUATERNIONS ********** */
+
+int QuatIsNul(float *q)
+{
+ return (q[0] == 0 && q[1] == 0 && q[2] == 0 && q[3] == 0);
+}
+
+void QuatMul(float *q, float *q1, float *q2)
+{
+ float t0,t1,t2;
+
+ t0= q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3];
+ t1= q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2];
+ t2= q1[0]*q2[2]+q1[2]*q2[0]+q1[3]*q2[1]-q1[1]*q2[3];
+ q[3]= q1[0]*q2[3]+q1[3]*q2[0]+q1[1]*q2[2]-q1[2]*q2[1];
+ q[0]=t0;
+ q[1]=t1;
+ q[2]=t2;
+}
+
+/* Assumes a unit quaternion */
+void QuatMulVecf(float *q, float *v)
+{
+ float t0, t1, t2;
+
+ t0= -q[1]*v[0]-q[2]*v[1]-q[3]*v[2];
+ t1= q[0]*v[0]+q[2]*v[2]-q[3]*v[1];
+ t2= q[0]*v[1]+q[3]*v[0]-q[1]*v[2];
+ v[2]= q[0]*v[2]+q[1]*v[1]-q[2]*v[0];
+ v[0]=t1;
+ v[1]=t2;
+
+ t1= t0*-q[1]+v[0]*q[0]-v[1]*q[3]+v[2]*q[2];
+ t2= t0*-q[2]+v[1]*q[0]-v[2]*q[1]+v[0]*q[3];
+ v[2]= t0*-q[3]+v[2]*q[0]-v[0]*q[2]+v[1]*q[1];
+ v[0]=t1;
+ v[1]=t2;
+}
+
+void QuatConj(float *q)
+{
+ q[1] = -q[1];
+ q[2] = -q[2];
+ q[3] = -q[3];
+}
+
+float QuatDot(float *q1, float *q2)
+{
+ return q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2] + q1[3]*q2[3];
+}
+
+void QuatInv(float *q)
+{
+ float f = QuatDot(q, q);
+
+ if (f == 0.0f)
+ return;
+
+ QuatConj(q);
+ QuatMulf(q, 1.0f/f);
+}
+
+/* simple mult */
+void QuatMulf(float *q, float f)
+{
+ q[0] *= f;
+ q[1] *= f;
+ q[2] *= f;
+ q[3] *= f;
+}
+
+void QuatSub(float *q, float *q1, float *q2)
+{
+ q2[0]= -q2[0];
+ QuatMul(q, q1, q2);
+ q2[0]= -q2[0];
+}
+
+/* angular mult factor */
+void QuatMulFac(float *q, float fac)
+{
+ float angle= fac*saacos(q[0]); /* quat[0]= cos(0.5*angle), but now the 0.5 and 2.0 rule out */
+
+ float co= (float)cos(angle);
+ float si= (float)sin(angle);
+ q[0]= co;
+ Normalize(q+1);
+ q[1]*= si;
+ q[2]*= si;
+ q[3]*= si;
+
+}
+
+void QuatToMat3( float *q, float m[][3])
+{
+ double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
+
+ q0= M_SQRT2 * q[0];
+ q1= M_SQRT2 * q[1];
+ q2= M_SQRT2 * q[2];
+ q3= M_SQRT2 * q[3];
+
+ qda= q0*q1;
+ qdb= q0*q2;
+ qdc= q0*q3;
+ qaa= q1*q1;
+ qab= q1*q2;
+ qac= q1*q3;
+ qbb= q2*q2;
+ qbc= q2*q3;
+ qcc= q3*q3;
+
+ m[0][0]= (float)(1.0-qbb-qcc);
+ m[0][1]= (float)(qdc+qab);
+ m[0][2]= (float)(-qdb+qac);
+
+ m[1][0]= (float)(-qdc+qab);
+ m[1][1]= (float)(1.0-qaa-qcc);
+ m[1][2]= (float)(qda+qbc);
+
+ m[2][0]= (float)(qdb+qac);
+ m[2][1]= (float)(-qda+qbc);
+ m[2][2]= (float)(1.0-qaa-qbb);
+}
+
+
+void QuatToMat4( float *q, float m[][4])
+{
+ double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
+
+ q0= M_SQRT2 * q[0];
+ q1= M_SQRT2 * q[1];
+ q2= M_SQRT2 * q[2];
+ q3= M_SQRT2 * q[3];
+
+ qda= q0*q1;
+ qdb= q0*q2;
+ qdc= q0*q3;
+ qaa= q1*q1;
+ qab= q1*q2;
+ qac= q1*q3;
+ qbb= q2*q2;
+ qbc= q2*q3;
+ qcc= q3*q3;
+
+ m[0][0]= (float)(1.0-qbb-qcc);
+ m[0][1]= (float)(qdc+qab);
+ m[0][2]= (float)(-qdb+qac);
+ m[0][3]= 0.0f;
+
+ m[1][0]= (float)(-qdc+qab);
+ m[1][1]= (float)(1.0-qaa-qcc);
+ m[1][2]= (float)(qda+qbc);
+ m[1][3]= 0.0f;
+
+ m[2][0]= (float)(qdb+qac);
+ m[2][1]= (float)(-qda+qbc);
+ m[2][2]= (float)(1.0-qaa-qbb);
+ m[2][3]= 0.0f;
+
+ m[3][0]= m[3][1]= m[3][2]= 0.0f;
+ m[3][3]= 1.0f;
+}
+
+void Mat3ToQuat(float wmat[][3], float *q)
+{
+ double tr, s;
+ float mat[3][3];
+
+ /* work on a copy */
+ Mat3CpyMat3(mat, wmat);
+ Mat3Ortho(mat); /* this is needed AND a NormalQuat in the end */
+
+ tr= 0.25*(1.0+mat[0][0]+mat[1][1]+mat[2][2]);
+
+ if(tr>FLT_EPSILON) {
+ s= sqrt( tr);
+ q[0]= (float)s;
+ s= 1.0/(4.0*s);
+ q[1]= (float)((mat[1][2]-mat[2][1])*s);
+ q[2]= (float)((mat[2][0]-mat[0][2])*s);
+ q[3]= (float)((mat[0][1]-mat[1][0])*s);
+ }
+ else {
+ if(mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) {
+ s= 2.0*sqrtf(1.0 + mat[0][0] - mat[1][1] - mat[2][2]);
+ q[1]= (float)(0.25*s);
+
+ s= 1.0/s;
+ q[0]= (float)((mat[2][1] - mat[1][2])*s);
+ q[2]= (float)((mat[1][0] + mat[0][1])*s);
+ q[3]= (float)((mat[2][0] + mat[0][2])*s);
+ }
+ else if(mat[1][1] > mat[2][2]) {
+ s= 2.0*sqrtf(1.0 + mat[1][1] - mat[0][0] - mat[2][2]);
+ q[2]= (float)(0.25*s);
+
+ s= 1.0/s;
+ q[0]= (float)((mat[2][0] - mat[0][2])*s);
+ q[1]= (float)((mat[1][0] + mat[0][1])*s);
+ q[3]= (float)((mat[2][1] + mat[1][2])*s);
+ }
+ else {
+ s= 2.0*sqrtf(1.0 + mat[2][2] - mat[0][0] - mat[1][1]);
+ q[3]= (float)(0.25*s);
+
+ s= 1.0/s;
+ q[0]= (float)((mat[1][0] - mat[0][1])*s);
+ q[1]= (float)((mat[2][0] + mat[0][2])*s);
+ q[2]= (float)((mat[2][1] + mat[1][2])*s);
+ }
+ }
+ NormalQuat(q);
+}
+
+void Mat3ToQuat_is_ok( float wmat[][3], float *q)
+{
+ float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
+
+ /* work on a copy */
+ Mat3CpyMat3(mat, wmat);
+ Mat3Ortho(mat);
+
+ /* rotate z-axis of matrix to z-axis */
+
+ nor[0] = mat[2][1]; /* cross product with (0,0,1) */
+ nor[1] = -mat[2][0];
+ nor[2] = 0.0;
+ Normalize(nor);
+
+ co= mat[2][2];
+ angle= 0.5f*saacos(co);
+
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q1[0]= co;
+ q1[1]= -nor[0]*si; /* negative here, but why? */
+ q1[2]= -nor[1]*si;
+ q1[3]= -nor[2]*si;
+
+ /* rotate back x-axis from mat, using inverse q1 */
+ QuatToMat3(q1, matr);
+ Mat3Inv(matn, matr);
+ Mat3MulVecfl(matn, mat[0]);
+
+ /* and align x-axes */
+ angle= (float)(0.5*atan2(mat[0][1], mat[0][0]));
+
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q2[0]= co;
+ q2[1]= 0.0f;
+ q2[2]= 0.0f;
+ q2[3]= si;
+
+ QuatMul(q, q1, q2);
+}
+
+
+void Mat4ToQuat( float m[][4], float *q)
+{
+ float mat[3][3];
+
+ Mat3CpyMat4(mat, m);
+ Mat3ToQuat(mat, q);
+
+}
+
+void QuatOne(float *q)
+{
+ q[0]= 1.0;
+ q[1]= q[2]= q[3]= 0.0;
+}
+
+void NormalQuat(float *q)
+{
+ float len;
+
+ len= (float)sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
+ if(len!=0.0) {
+ q[0]/= len;
+ q[1]/= len;
+ q[2]/= len;
+ q[3]/= len;
+ } else {
+ q[1]= 1.0f;
+ q[0]= q[2]= q[3]= 0.0f;
+ }
+}
+
+void RotationBetweenVectorsToQuat(float *q, float v1[3], float v2[3])
+{
+ float axis[3];
+ float angle;
+
+ Crossf(axis, v1, v2);
+
+ angle = NormalizedVecAngle2(v1, v2);
+
+ AxisAngleToQuat(q, axis, angle);
+}
+
+void AxisAngleToQuatd(float *q, float *axis, double angle)
+{
+ double nor[3];
+ double si, l;
+
+ nor[0] = axis[0];
+ nor[1] = axis[1];
+ nor[2] = axis[2];
+
+ l = sqrt(nor[0]*nor[0] + nor[1]*nor[1] + nor[2]*nor[2]);
+ nor[0] /= l;
+ nor[1] /= l;
+ nor[2] /= l;
+
+ angle /= 2;
+ si = sin(angle);
+ q[0] = cos(angle);
+ q[1] = nor[0] * si;
+ q[2] = nor[1] * si;
+ q[3] = nor[2] * si;
+}
+
+void vectoquat(float *vec, short axis, short upflag, float *q)
+{
+ float q2[4], nor[3], *fp, mat[3][3], angle, si, co, x2, y2, z2, len1;
+
+ /* first rotate to axis */
+ if(axis>2) {
+ x2= vec[0] ; y2= vec[1] ; z2= vec[2];
+ axis-= 3;
+ }
+ else {
+ x2= -vec[0] ; y2= -vec[1] ; z2= -vec[2];
+ }
+
+ q[0]=1.0;
+ q[1]=q[2]=q[3]= 0.0;
+
+ len1= (float)sqrt(x2*x2+y2*y2+z2*z2);
+ if(len1 == 0.0) return;
+
+ /* nasty! I need a good routine for this...
+ * problem is a rotation of an Y axis to the negative Y-axis for example.
+ */
+
+ if(axis==0) { /* x-axis */
+ nor[0]= 0.0;
+ nor[1]= -z2;
+ nor[2]= y2;
+
+ if(fabs(y2)+fabs(z2)<0.0001)
+ nor[1]= 1.0;
+
+ co= x2;
+ }
+ else if(axis==1) { /* y-axis */
+ nor[0]= z2;
+ nor[1]= 0.0;
+ nor[2]= -x2;
+
+ if(fabs(x2)+fabs(z2)<0.0001)
+ nor[2]= 1.0;
+
+ co= y2;
+ }
+ else { /* z-axis */
+ nor[0]= -y2;
+ nor[1]= x2;
+ nor[2]= 0.0;
+
+ if(fabs(x2)+fabs(y2)<0.0001)
+ nor[0]= 1.0;
+
+ co= z2;
+ }
+ co/= len1;
+
+ Normalize(nor);
+
+ angle= 0.5f*saacos(co);
+ si= (float)sin(angle);
+ q[0]= (float)cos(angle);
+ q[1]= nor[0]*si;
+ q[2]= nor[1]*si;
+ q[3]= nor[2]*si;
+
+ if(axis!=upflag) {
+ QuatToMat3(q, mat);
+
+ fp= mat[2];
+ if(axis==0) {
+ if(upflag==1) angle= (float)(0.5*atan2(fp[2], fp[1]));
+ else angle= (float)(-0.5*atan2(fp[1], fp[2]));
+ }
+ else if(axis==1) {
+ if(upflag==0) angle= (float)(-0.5*atan2(fp[2], fp[0]));
+ else angle= (float)(0.5*atan2(fp[0], fp[2]));
+ }
+ else {
+ if(upflag==0) angle= (float)(0.5*atan2(-fp[1], -fp[0]));
+ else angle= (float)(-0.5*atan2(-fp[0], -fp[1]));
+ }
+
+ co= (float)cos(angle);
+ si= (float)(sin(angle)/len1);
+ q2[0]= co;
+ q2[1]= x2*si;
+ q2[2]= y2*si;
+ q2[3]= z2*si;
+
+ QuatMul(q,q2,q);
+ }
+}
+
+void VecUpMat3old( float *vec, float mat[][3], short axis)
+{
+ float inp, up[3];
+ short cox = 0, coy = 0, coz = 0;
+
+ /* using different up's is not useful, infact there is no real 'up'!
+ */
+
+ up[0]= 0.0;
+ up[1]= 0.0;
+ up[2]= 1.0;
+
+ if(axis==0) {
+ cox= 0; coy= 1; coz= 2; /* Y up Z tr */
+ }
+ if(axis==1) {
+ cox= 1; coy= 2; coz= 0; /* Z up X tr */
+ }
+ if(axis==2) {
+ cox= 2; coy= 0; coz= 1; /* X up Y tr */
+ }
+ if(axis==3) {
+ cox= 0; coy= 2; coz= 1; /* */
+ }
+ if(axis==4) {
+ cox= 1; coy= 0; coz= 2; /* */
+ }
+ if(axis==5) {
+ cox= 2; coy= 1; coz= 0; /* Y up X tr */
+ }
+
+ mat[coz][0]= vec[0];
+ mat[coz][1]= vec[1];
+ mat[coz][2]= vec[2];
+ Normalize((float *)mat[coz]);
+
+ inp= mat[coz][0]*up[0] + mat[coz][1]*up[1] + mat[coz][2]*up[2];
+ mat[coy][0]= up[0] - inp*mat[coz][0];
+ mat[coy][1]= up[1] - inp*mat[coz][1];
+ mat[coy][2]= up[2] - inp*mat[coz][2];
+
+ Normalize((float *)mat[coy]);
+
+ Crossf(mat[cox], mat[coy], mat[coz]);
+
+}
+
+void VecUpMat3(float *vec, float mat[][3], short axis)
+{
+ float inp;
+ short cox = 0, coy = 0, coz = 0;
+
+ /* using different up's is not useful, infact there is no real 'up'!
+ */
+
+ if(axis==0) {
+ cox= 0; coy= 1; coz= 2; /* Y up Z tr */
+ }
+ if(axis==1) {
+ cox= 1; coy= 2; coz= 0; /* Z up X tr */
+ }
+ if(axis==2) {
+ cox= 2; coy= 0; coz= 1; /* X up Y tr */
+ }
+ if(axis==3) {
+ cox= 0; coy= 1; coz= 2; /* Y op -Z tr */
+ vec[0]= -vec[0];
+ vec[1]= -vec[1];
+ vec[2]= -vec[2];
+ }
+ if(axis==4) {
+ cox= 1; coy= 0; coz= 2; /* */
+ }
+ if(axis==5) {
+ cox= 2; coy= 1; coz= 0; /* Y up X tr */
+ }
+
+ mat[coz][0]= vec[0];
+ mat[coz][1]= vec[1];
+ mat[coz][2]= vec[2];
+ Normalize((float *)mat[coz]);
+
+ inp= mat[coz][2];
+ mat[coy][0]= - inp*mat[coz][0];
+ mat[coy][1]= - inp*mat[coz][1];
+ mat[coy][2]= 1.0f - inp*mat[coz][2];
+
+ Normalize((float *)mat[coy]);
+
+ Crossf(mat[cox], mat[coy], mat[coz]);
+
+}
+
+/* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
+void QuatInterpolW(float *, float *, float *, float ); // XXX why this?
+
+void QuatInterpolW(float *result, float *quat1, float *quat2, float t)
+{
+ float omega, cosom, sinom, sc1, sc2;
+
+ cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
+
+ /* rotate around shortest angle */
+ if ((1.0f + cosom) > 0.0001f) {
+
+ if ((1.0f - cosom) > 0.0001f) {
+ omega = (float)acos(cosom);
+ sinom = (float)sin(omega);
+ sc1 = (float)sin((1.0 - t) * omega) / sinom;
+ sc2 = (float)sin(t * omega) / sinom;
+ }
+ else {
+ sc1 = 1.0f - t;
+ sc2 = t;
+ }
+ result[0] = sc1*quat1[0] + sc2*quat2[0];
+ result[1] = sc1*quat1[1] + sc2*quat2[1];
+ result[2] = sc1*quat1[2] + sc2*quat2[2];
+ result[3] = sc1*quat1[3] + sc2*quat2[3];
+ }
+ else {
+ result[0] = quat2[3];
+ result[1] = -quat2[2];
+ result[2] = quat2[1];
+ result[3] = -quat2[0];
+
+ sc1 = (float)sin((1.0 - t)*M_PI_2);
+ sc2 = (float)sin(t*M_PI_2);
+
+ result[0] = sc1*quat1[0] + sc2*result[0];
+ result[1] = sc1*quat1[1] + sc2*result[1];
+ result[2] = sc1*quat1[2] + sc2*result[2];
+ result[3] = sc1*quat1[3] + sc2*result[3];
+ }
+}
+
+void QuatInterpol(float *result, float *quat1, float *quat2, float t)
+{
+ float quat[4], omega, cosom, sinom, sc1, sc2;
+
+ cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
+
+ /* rotate around shortest angle */
+ if (cosom < 0.0f) {
+ cosom = -cosom;
+ quat[0]= -quat1[0];
+ quat[1]= -quat1[1];
+ quat[2]= -quat1[2];
+ quat[3]= -quat1[3];
+ }
+ else {
+ quat[0]= quat1[0];
+ quat[1]= quat1[1];
+ quat[2]= quat1[2];
+ quat[3]= quat1[3];
+ }
+
+ if ((1.0f - cosom) > 0.0001f) {
+ omega = (float)acos(cosom);
+ sinom = (float)sin(omega);
+ sc1 = (float)sin((1 - t) * omega) / sinom;
+ sc2 = (float)sin(t * omega) / sinom;
+ } else {
+ sc1= 1.0f - t;
+ sc2= t;
+ }
+
+ result[0] = sc1 * quat[0] + sc2 * quat2[0];
+ result[1] = sc1 * quat[1] + sc2 * quat2[1];
+ result[2] = sc1 * quat[2] + sc2 * quat2[2];
+ result[3] = sc1 * quat[3] + sc2 * quat2[3];
+}
+
+void QuatAdd(float *result, float *quat1, float *quat2, float t)
+{
+ result[0]= quat1[0] + t*quat2[0];
+ result[1]= quat1[1] + t*quat2[1];
+ result[2]= quat1[2] + t*quat2[2];
+ result[3]= quat1[3] + t*quat2[3];
+}
+
+void QuatCopy(float *q1, float *q2)
+{
+ q1[0]= q2[0];
+ q1[1]= q2[1];
+ q1[2]= q2[2];
+ q1[3]= q2[3];
+}
+
+/* **************** DUAL QUATERNIONS ************** */
+
+/*
+ Conversion routines between (regular quaternion, translation) and
+ dual quaternion.
+
+ Version 1.0.0, February 7th, 2007
+
+ Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
+ Reserved
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the author(s) be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ Author: Ladislav Kavan, kavanl@cs.tcd.ie
+
+ Changes for Blender:
+ - renaming, style changes and optimizations
+ - added support for scaling
+*/
+
+void Mat4ToDQuat(float basemat[][4], float mat[][4], DualQuat *dq)
+{
+ float *t, *q, dscale[3], scale[3], basequat[4];
+ float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
+ float R[4][4], S[4][4];
+
+ /* split scaling and rotation, there is probably a faster way to do
+ this, it's done like this now to correctly get negative scaling */
+ Mat4MulMat4(baseRS, basemat, mat);
+ Mat4ToSize(baseRS, scale);
+
+ VecCopyf(dscale, scale);
+ dscale[0] -= 1.0f; dscale[1] -= 1.0f; dscale[2] -= 1.0f;
+
+ if((Det4x4(mat) < 0.0f) || VecLength(dscale) > 1e-4) {
+ /* extract R and S */
+ Mat4ToQuat(baseRS, basequat);
+ QuatToMat4(basequat, baseR);
+ VecCopyf(baseR[3], baseRS[3]);
+
+ Mat4Invert(baseinv, basemat);
+ Mat4MulMat4(R, baseinv, baseR);
+
+ Mat4Invert(baseRinv, baseR);
+ Mat4MulMat4(S, baseRS, baseRinv);
+
+ /* set scaling part */
+ Mat4MulSerie(dq->scale, basemat, S, baseinv, 0, 0, 0, 0, 0);
+ dq->scale_weight= 1.0f;
+ }
+ else {
+ /* matrix does not contain scaling */
+ Mat4CpyMat4(R, mat);
+ dq->scale_weight= 0.0f;
+ }
+
+ /* non-dual part */
+ Mat4ToQuat(R, dq->quat);
+
+ /* dual part */
+ t= R[3];
+ q= dq->quat;
+ dq->trans[0]= -0.5f*( t[0]*q[1] + t[1]*q[2] + t[2]*q[3]);
+ dq->trans[1]= 0.5f*( t[0]*q[0] + t[1]*q[3] - t[2]*q[2]);
+ dq->trans[2]= 0.5f*(-t[0]*q[3] + t[1]*q[0] + t[2]*q[1]);
+ dq->trans[3]= 0.5f*( t[0]*q[2] - t[1]*q[1] + t[2]*q[0]);
+}
+
+void DQuatToMat4(DualQuat *dq, float mat[][4])
+{
+ float len, *t, q0[4];
+
+ /* regular quaternion */
+ QuatCopy(q0, dq->quat);
+
+ /* normalize */
+ len= (float)sqrt(QuatDot(q0, q0));
+ if(len != 0.0f)
+ QuatMulf(q0, 1.0f/len);
+
+ /* rotation */
+ QuatToMat4(q0, mat);
+
+ /* translation */
+ t= dq->trans;
+ mat[3][0]= 2.0f*(-t[0]*q0[1] + t[1]*q0[0] - t[2]*q0[3] + t[3]*q0[2]);
+ mat[3][1]= 2.0f*(-t[0]*q0[2] + t[1]*q0[3] + t[2]*q0[0] - t[3]*q0[1]);
+ mat[3][2]= 2.0f*(-t[0]*q0[3] - t[1]*q0[2] + t[2]*q0[1] + t[3]*q0[0]);
+
+ /* note: this does not handle scaling */
+}
+
+void DQuatAddWeighted(DualQuat *dqsum, DualQuat *dq, float weight)
+{
+ int flipped= 0;
+
+ /* make sure we interpolate quats in the right direction */
+ if (QuatDot(dq->quat, dqsum->quat) < 0) {
+ flipped= 1;
+ weight= -weight;
+ }
+
+ /* interpolate rotation and translation */
+ dqsum->quat[0] += weight*dq->quat[0];
+ dqsum->quat[1] += weight*dq->quat[1];
+ dqsum->quat[2] += weight*dq->quat[2];
+ dqsum->quat[3] += weight*dq->quat[3];
+
+ dqsum->trans[0] += weight*dq->trans[0];
+ dqsum->trans[1] += weight*dq->trans[1];
+ dqsum->trans[2] += weight*dq->trans[2];
+ dqsum->trans[3] += weight*dq->trans[3];
+
+ /* interpolate scale - but only if needed */
+ if (dq->scale_weight) {
+ float wmat[4][4];
+
+ if(flipped) /* we don't want negative weights for scaling */
+ weight= -weight;
+
+ Mat4CpyMat4(wmat, dq->scale);
+ Mat4MulFloat((float*)wmat, weight);
+ Mat4AddMat4(dqsum->scale, dqsum->scale, wmat);
+ dqsum->scale_weight += weight;
+ }
+}
+
+void DQuatNormalize(DualQuat *dq, float totweight)
+{
+ float scale= 1.0f/totweight;
+
+ QuatMulf(dq->quat, scale);
+ QuatMulf(dq->trans, scale);
+
+ if(dq->scale_weight) {
+ float addweight= totweight - dq->scale_weight;
+
+ if(addweight) {
+ dq->scale[0][0] += addweight;
+ dq->scale[1][1] += addweight;
+ dq->scale[2][2] += addweight;
+ dq->scale[3][3] += addweight;
+ }
+
+ Mat4MulFloat((float*)dq->scale, scale);
+ dq->scale_weight= 1.0f;
+ }
+}
+
+void DQuatMulVecfl(DualQuat *dq, float *co, float mat[][3])
+{
+ float M[3][3], t[3], scalemat[3][3], len2;
+ float w= dq->quat[0], x= dq->quat[1], y= dq->quat[2], z= dq->quat[3];
+ float t0= dq->trans[0], t1= dq->trans[1], t2= dq->trans[2], t3= dq->trans[3];
+
+ /* rotation matrix */
+ M[0][0]= w*w + x*x - y*y - z*z;
+ M[1][0]= 2*(x*y - w*z);
+ M[2][0]= 2*(x*z + w*y);
+
+ M[0][1]= 2*(x*y + w*z);
+ M[1][1]= w*w + y*y - x*x - z*z;
+ M[2][1]= 2*(y*z - w*x);
+
+ M[0][2]= 2*(x*z - w*y);
+ M[1][2]= 2*(y*z + w*x);
+ M[2][2]= w*w + z*z - x*x - y*y;
+
+ len2= QuatDot(dq->quat, dq->quat);
+ if(len2 > 0.0f)
+ len2= 1.0f/len2;
+
+ /* translation */
+ t[0]= 2*(-t0*x + w*t1 - t2*z + y*t3);
+ t[1]= 2*(-t0*y + t1*z - x*t3 + w*t2);
+ t[2]= 2*(-t0*z + x*t2 + w*t3 - t1*y);
+
+ /* apply scaling */
+ if(dq->scale_weight)
+ Mat4MulVecfl(dq->scale, co);
+
+ /* apply rotation and translation */
+ Mat3MulVecfl(M, co);
+ co[0]= (co[0] + t[0])*len2;
+ co[1]= (co[1] + t[1])*len2;
+ co[2]= (co[2] + t[2])*len2;
+
+ /* compute crazyspace correction mat */
+ if(mat) {
+ if(dq->scale_weight) {
+ Mat3CpyMat4(scalemat, dq->scale);
+ Mat3MulMat3(mat, M, scalemat);
+ }
+ else
+ Mat3CpyMat3(mat, M);
+ Mat3MulFloat((float*)mat, len2);
+ }
+}
+
+void DQuatCpyDQuat(DualQuat *dq1, DualQuat *dq2)
+{
+ memcpy(dq1, dq2, sizeof(DualQuat));
+}
+
+/* **************** VIEW / PROJECTION ******************************** */
+
+
+void i_ortho(
+ float left, float right,
+ float bottom, float top,
+ float nearClip, float farClip,
+ float matrix[][4]
+){
+ float Xdelta, Ydelta, Zdelta;
+
+ Xdelta = right - left;
+ Ydelta = top - bottom;
+ Zdelta = farClip - nearClip;
+ if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
+ return;
+ }
+ Mat4One(matrix);
+ matrix[0][0] = 2.0f/Xdelta;
+ matrix[3][0] = -(right + left)/Xdelta;
+ matrix[1][1] = 2.0f/Ydelta;
+ matrix[3][1] = -(top + bottom)/Ydelta;
+ matrix[2][2] = -2.0f/Zdelta; /* note: negate Z */
+ matrix[3][2] = -(farClip + nearClip)/Zdelta;
+}
+
+void i_window(
+ float left, float right,
+ float bottom, float top,
+ float nearClip, float farClip,
+ float mat[][4]
+){
+ float Xdelta, Ydelta, Zdelta;
+
+ Xdelta = right - left;
+ Ydelta = top - bottom;
+ Zdelta = farClip - nearClip;
+
+ if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
+ return;
+ }
+ mat[0][0] = nearClip * 2.0f/Xdelta;
+ mat[1][1] = nearClip * 2.0f/Ydelta;
+ mat[2][0] = (right + left)/Xdelta; /* note: negate Z */
+ mat[2][1] = (top + bottom)/Ydelta;
+ mat[2][2] = -(farClip + nearClip)/Zdelta;
+ mat[2][3] = -1.0f;
+ mat[3][2] = (-2.0f * nearClip * farClip)/Zdelta;
+ mat[0][1] = mat[0][2] = mat[0][3] =
+ mat[1][0] = mat[1][2] = mat[1][3] =
+ mat[3][0] = mat[3][1] = mat[3][3] = 0.0;
+
+}
+
+void i_translate(float Tx, float Ty, float Tz, float mat[][4])
+{
+ mat[3][0] += (Tx*mat[0][0] + Ty*mat[1][0] + Tz*mat[2][0]);
+ mat[3][1] += (Tx*mat[0][1] + Ty*mat[1][1] + Tz*mat[2][1]);
+ mat[3][2] += (Tx*mat[0][2] + Ty*mat[1][2] + Tz*mat[2][2]);
+}
+
+void i_multmatrix( float icand[][4], float Vm[][4])
+{
+ int row, col;
+ float temp[4][4];
+
+ for(row=0 ; row<4 ; row++)
+ for(col=0 ; col<4 ; col++)
+ temp[row][col] = icand[row][0] * Vm[0][col]
+ + icand[row][1] * Vm[1][col]
+ + icand[row][2] * Vm[2][col]
+ + icand[row][3] * Vm[3][col];
+ Mat4CpyMat4(Vm, temp);
+}
+
+void i_rotate(float angle, char axis, float mat[][4])
+{
+ int col;
+ float temp[4];
+ float cosine, sine;
+
+ for(col=0; col<4 ; col++) /* init temp to zero matrix */
+ temp[col] = 0;
+
+ angle = (float)(angle*(3.1415926535/180.0));
+ cosine = (float)cos(angle);
+ sine = (float)sin(angle);
+ switch(axis){
+ case 'x':
+ case 'X':
+ for(col=0 ; col<4 ; col++)
+ temp[col] = cosine*mat[1][col] + sine*mat[2][col];
+ for(col=0 ; col<4 ; col++) {
+ mat[2][col] = - sine*mat[1][col] + cosine*mat[2][col];
+ mat[1][col] = temp[col];
+ }
+ break;
+
+ case 'y':
+ case 'Y':
+ for(col=0 ; col<4 ; col++)
+ temp[col] = cosine*mat[0][col] - sine*mat[2][col];
+ for(col=0 ; col<4 ; col++) {
+ mat[2][col] = sine*mat[0][col] + cosine*mat[2][col];
+ mat[0][col] = temp[col];
+ }
+ break;
+
+ case 'z':
+ case 'Z':
+ for(col=0 ; col<4 ; col++)
+ temp[col] = cosine*mat[0][col] + sine*mat[1][col];
+ for(col=0 ; col<4 ; col++) {
+ mat[1][col] = - sine*mat[0][col] + cosine*mat[1][col];
+ mat[0][col] = temp[col];
+ }
+ break;
+ }
+}
+
+void i_polarview(float dist, float azimuth, float incidence, float twist, float Vm[][4])
+{
+
+ Mat4One(Vm);
+
+ i_translate(0.0, 0.0, -dist, Vm);
+ i_rotate(-twist,'z', Vm);
+ i_rotate(-incidence,'x', Vm);
+ i_rotate(-azimuth,'z', Vm);
+}
+
+void i_lookat(float vx, float vy, float vz, float px, float py, float pz, float twist, float mat[][4])
+{
+ float sine, cosine, hyp, hyp1, dx, dy, dz;
+ float mat1[4][4];
+
+ Mat4One(mat);
+ Mat4One(mat1);
+
+ i_rotate(-twist,'z', mat);
+
+ dx = px - vx;
+ dy = py - vy;
+ dz = pz - vz;
+ hyp = dx * dx + dz * dz; /* hyp squared */
+ hyp1 = (float)sqrt(dy*dy + hyp);
+ hyp = (float)sqrt(hyp); /* the real hyp */
+
+ if (hyp1 != 0.0) { /* rotate X */
+ sine = -dy / hyp1;
+ cosine = hyp /hyp1;
+ } else {
+ sine = 0;
+ cosine = 1.0f;
+ }
+ mat1[1][1] = cosine;
+ mat1[1][2] = sine;
+ mat1[2][1] = -sine;
+ mat1[2][2] = cosine;
+
+ i_multmatrix(mat1, mat);
+
+ mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
+ mat1[1][2] = mat1[2][1] = 0.0; /* those modified by the last */
+
+ /* paragraph */
+ if (hyp != 0.0f) { /* rotate Y */
+ sine = dx / hyp;
+ cosine = -dz / hyp;
+ } else {
+ sine = 0;
+ cosine = 1.0f;
+ }
+ mat1[0][0] = cosine;
+ mat1[0][2] = -sine;
+ mat1[2][0] = sine;
+ mat1[2][2] = cosine;
+
+ i_multmatrix(mat1, mat);
+ i_translate(-vx,-vy,-vz, mat); /* translate viewpoint to origin */
+}
+
+
+
+
+
+/* ************************************************ */
+
+void Mat3Orthogonal(float mat[][3], int axis)
+{
+ float size[3];
+ size[0] = VecLength(mat[0]);
+ size[1] = VecLength(mat[1]);
+ size[2] = VecLength(mat[2]);
+ Normalize(mat[axis]);
+ switch(axis)
+ {
+ case 0:
+ if (Inpf(mat[0], mat[1]) < 1) {
+ Crossf(mat[2], mat[0], mat[1]);
+ Normalize(mat[2]);
+ Crossf(mat[1], mat[2], mat[0]);
+ } else if (Inpf(mat[0], mat[2]) < 1) {
+ Crossf(mat[1], mat[2], mat[0]);
+ Normalize(mat[1]);
+ Crossf(mat[2], mat[0], mat[1]);
+ } else {
+ float vec[3] = {mat[0][1], mat[0][2], mat[0][0]};
+
+ Crossf(mat[2], mat[0], vec);
+ Normalize(mat[2]);
+ Crossf(mat[1], mat[2], mat[0]);
+ }
+ case 1:
+ if (Inpf(mat[1], mat[0]) < 1) {
+ Crossf(mat[2], mat[0], mat[1]);
+ Normalize(mat[2]);
+ Crossf(mat[0], mat[1], mat[2]);
+ } else if (Inpf(mat[0], mat[2]) < 1) {
+ Crossf(mat[0], mat[1], mat[2]);
+ Normalize(mat[0]);
+ Crossf(mat[2], mat[0], mat[1]);
+ } else {
+ float vec[3] = {mat[1][1], mat[1][2], mat[1][0]};
+
+ Crossf(mat[0], mat[1], vec);
+ Normalize(mat[0]);
+ Crossf(mat[2], mat[0], mat[1]);
+ }
+ case 2:
+ if (Inpf(mat[2], mat[0]) < 1) {
+ Crossf(mat[1], mat[2], mat[0]);
+ Normalize(mat[1]);
+ Crossf(mat[0], mat[1], mat[2]);
+ } else if (Inpf(mat[2], mat[1]) < 1) {
+ Crossf(mat[0], mat[1], mat[2]);
+ Normalize(mat[0]);
+ Crossf(mat[1], mat[2], mat[0]);
+ } else {
+ float vec[3] = {mat[2][1], mat[2][2], mat[2][0]};
+
+ Crossf(mat[0], vec, mat[2]);
+ Normalize(mat[0]);
+ Crossf(mat[1], mat[2], mat[0]);
+ }
+ }
+ VecMulf(mat[0], size[0]);
+ VecMulf(mat[1], size[1]);
+ VecMulf(mat[2], size[2]);
+}
+
+void Mat4Orthogonal(float mat[][4], int axis)
+{
+ float size[3];
+ size[0] = VecLength(mat[0]);
+ size[1] = VecLength(mat[1]);
+ size[2] = VecLength(mat[2]);
+ Normalize(mat[axis]);
+ switch(axis)
+ {
+ case 0:
+ if (Inpf(mat[0], mat[1]) < 1) {
+ Crossf(mat[2], mat[0], mat[1]);
+ Normalize(mat[2]);
+ Crossf(mat[1], mat[2], mat[0]);
+ } else if (Inpf(mat[0], mat[2]) < 1) {
+ Crossf(mat[1], mat[2], mat[0]);
+ Normalize(mat[1]);
+ Crossf(mat[2], mat[0], mat[1]);
+ } else {
+ float vec[3] = {mat[0][1], mat[0][2], mat[0][0]};
+
+ Crossf(mat[2], mat[0], vec);
+ Normalize(mat[2]);
+ Crossf(mat[1], mat[2], mat[0]);
+ }
+ case 1:
+ Normalize(mat[0]);
+ if (Inpf(mat[1], mat[0]) < 1) {
+ Crossf(mat[2], mat[0], mat[1]);
+ Normalize(mat[2]);
+ Crossf(mat[0], mat[1], mat[2]);
+ } else if (Inpf(mat[0], mat[2]) < 1) {
+ Crossf(mat[0], mat[1], mat[2]);
+ Normalize(mat[0]);
+ Crossf(mat[2], mat[0], mat[1]);
+ } else {
+ float vec[3] = {mat[1][1], mat[1][2], mat[1][0]};
+
+ Crossf(mat[0], mat[1], vec);
+ Normalize(mat[0]);
+ Crossf(mat[2], mat[0], mat[1]);
+ }
+ case 2:
+ if (Inpf(mat[2], mat[0]) < 1) {
+ Crossf(mat[1], mat[2], mat[0]);
+ Normalize(mat[1]);
+ Crossf(mat[0], mat[1], mat[2]);
+ } else if (Inpf(mat[2], mat[1]) < 1) {
+ Crossf(mat[0], mat[1], mat[2]);
+ Normalize(mat[0]);
+ Crossf(mat[1], mat[2], mat[0]);
+ } else {
+ float vec[3] = {mat[2][1], mat[2][2], mat[2][0]};
+
+ Crossf(mat[0], vec, mat[2]);
+ Normalize(mat[0]);
+ Crossf(mat[1], mat[2], mat[0]);
+ }
+ }
+ VecMulf(mat[0], size[0]);
+ VecMulf(mat[1], size[1]);
+ VecMulf(mat[2], size[2]);
+}
+
+int IsMat3Orthogonal(float mat[][3])
+{
+ if (fabs(Inpf(mat[0], mat[1])) > 1.5 * FLT_EPSILON)
+ return 0;
+
+ if (fabs(Inpf(mat[1], mat[2])) > 1.5 * FLT_EPSILON)
+ return 0;
+
+ if (fabs(Inpf(mat[0], mat[2])) > 1.5 * FLT_EPSILON)
+ return 0;
+
+ return 1;
+}
+
+int IsMat4Orthogonal(float mat[][4])
+{
+ if (fabs(Inpf(mat[0], mat[1])) > 1.5 * FLT_EPSILON)
+ return 0;
+
+ if (fabs(Inpf(mat[1], mat[2])) > 1.5 * FLT_EPSILON)
+ return 0;
+
+ if (fabs(Inpf(mat[0], mat[2])) > 1.5 * FLT_EPSILON)
+ return 0;
+
+ return 1;
+}
+
+void Mat3Ortho(float mat[][3])
+{
+ Normalize(mat[0]);
+ Normalize(mat[1]);
+ Normalize(mat[2]);
+}
+
+void Mat4Ortho(float mat[][4])
+{
+ float len;
+
+ len= Normalize(mat[0]);
+ if(len!=0.0) mat[0][3]/= len;
+ len= Normalize(mat[1]);
+ if(len!=0.0) mat[1][3]/= len;
+ len= Normalize(mat[2]);
+ if(len!=0.0) mat[2][3]/= len;
+}
+
+void VecCopyf(float *v1, float *v2)
+{
+ v1[0]= v2[0];
+ v1[1]= v2[1];
+ v1[2]= v2[2];
+}
+
+int VecLen( int *v1, int *v2)
+{
+ float x,y,z;
+
+ x=(float)(v1[0]-v2[0]);
+ y=(float)(v1[1]-v2[1]);
+ z=(float)(v1[2]-v2[2]);
+ return (int)floor(sqrt(x*x+y*y+z*z));
+}
+
+float VecLenf(float v1[3], float v2[3])
+{
+ float x,y,z;
+
+ x=v1[0]-v2[0];
+ y=v1[1]-v2[1];
+ z=v1[2]-v2[2];
+ return (float)sqrt(x*x+y*y+z*z);
+}
+
+float VecLength(float *v)
+{
+ return (float) sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
+}
+
+void VecAddf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]+ v2[0];
+ v[1]= v1[1]+ v2[1];
+ v[2]= v1[2]+ v2[2];
+}
+
+void VecSubf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]- v2[0];
+ v[1]= v1[1]- v2[1];
+ v[2]= v1[2]- v2[2];
+}
+
+void VecMulVecf(float *v, float *v1, float *v2)
+{
+ v[0] = v1[0] * v2[0];
+ v[1] = v1[1] * v2[1];
+ v[2] = v1[2] * v2[2];
+}
+
+void VecLerpf(float *target, const float *a, const float *b, const float t)
+{
+ const float s = 1.0f-t;
+
+ target[0]= s*a[0] + t*b[0];
+ target[1]= s*a[1] + t*b[1];
+ target[2]= s*a[2] + t*b[2];
+}
+
+void Vec2Lerpf(float *target, const float *a, const float *b, const float t)
+{
+ const float s = 1.0f-t;
+
+ target[0]= s*a[0] + t*b[0];
+ target[1]= s*a[1] + t*b[1];
+}
+
+/* weight 3 vectors, (VecWeightf in 2.4x)
+ * 'w' must be unit length but is not a vector, just 3 weights */
+void VecLerp3f(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3])
+{
+ p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
+ p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
+ p[2] = v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2];
+}
+
+/* weight 3 2D vectors, (Vec2Weightf in 2.4x)
+ * 'w' must be unit length but is not a vector, just 3 weights */
+void Vec2Lerp3f(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3])
+{
+ p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
+ p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
+}
+
+void VecMidf(float *v, float *v1, float *v2)
+{
+ v[0]= 0.5f*(v1[0]+ v2[0]);
+ v[1]= 0.5f*(v1[1]+ v2[1]);
+ v[2]= 0.5f*(v1[2]+ v2[2]);
+}
+
+void VecMulf(float *v1, float f)
+{
+
+ v1[0]*= f;
+ v1[1]*= f;
+ v1[2]*= f;
+}
+
+void VecNegf(float *v1)
+{
+ v1[0] = -v1[0];
+ v1[1] = -v1[1];
+ v1[2] = -v1[2];
+}
+
+void VecOrthoBasisf(float *v, float *v1, float *v2)
+{
+ const float f = (float)sqrt(v[0]*v[0] + v[1]*v[1]);
+
+ if (f < 1e-35f) {
+ // degenerate case
+ v1[0] = (v[2] < 0.0f) ? -1.0f : 1.0f;
+ v1[1] = v1[2] = v2[0] = v2[2] = 0.0f;
+ v2[1] = 1.0f;
+ }
+ else {
+ const float d= 1.0f/f;
+
+ v1[0] = v[1]*d;
+ v1[1] = -v[0]*d;
+ v1[2] = 0.0f;
+ v2[0] = -v[2]*v1[1];
+ v2[1] = v[2]*v1[0];
+ v2[2] = v[0]*v1[1] - v[1]*v1[0];
+ }
+}
+
+int VecLenCompare(float *v1, float *v2, float limit)
+{
+ float x,y,z;
+
+ x=v1[0]-v2[0];
+ y=v1[1]-v2[1];
+ z=v1[2]-v2[2];
+
+ return ((x*x + y*y + z*z) < (limit*limit));
+}
+
+int VecCompare( float *v1, float *v2, float limit)
+{
+ if( fabs(v1[0]-v2[0])<limit )
+ if( fabs(v1[1]-v2[1])<limit )
+ if( fabs(v1[2]-v2[2])<limit ) return 1;
+ return 0;
+}
+
+int VecEqual(float *v1, float *v2)
+{
+ return ((v1[0]==v2[0]) && (v1[1]==v2[1]) && (v1[2]==v2[2]));
+}
+
+int VecIsNull(float *v)
+{
+ return (v[0] == 0 && v[1] == 0 && v[2] == 0);
+}
+
+void CalcNormShort( short *v1, short *v2, short *v3, float *n) /* is also cross product */
+{
+ float n1[3],n2[3];
+
+ n1[0]= (float)(v1[0]-v2[0]);
+ n2[0]= (float)(v2[0]-v3[0]);
+ n1[1]= (float)(v1[1]-v2[1]);
+ n2[1]= (float)(v2[1]-v3[1]);
+ n1[2]= (float)(v1[2]-v2[2]);
+ n2[2]= (float)(v2[2]-v3[2]);
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+ Normalize(n);
+}
+
+void CalcNormLong( int* v1, int*v2, int*v3, float *n)
+{
+ float n1[3],n2[3];
+
+ n1[0]= (float)(v1[0]-v2[0]);
+ n2[0]= (float)(v2[0]-v3[0]);
+ n1[1]= (float)(v1[1]-v2[1]);
+ n2[1]= (float)(v2[1]-v3[1]);
+ n1[2]= (float)(v1[2]-v2[2]);
+ n2[2]= (float)(v2[2]-v3[2]);
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+ Normalize(n);
+}
+
+float CalcNormFloat( float *v1, float *v2, float *v3, float *n)
+{
+ float n1[3],n2[3];
+
+ n1[0]= v1[0]-v2[0];
+ n2[0]= v2[0]-v3[0];
+ n1[1]= v1[1]-v2[1];
+ n2[1]= v2[1]-v3[1];
+ n1[2]= v1[2]-v2[2];
+ n2[2]= v2[2]-v3[2];
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+ return Normalize(n);
+}
+
+float CalcNormFloat4( float *v1, float *v2, float *v3, float *v4, float *n)
+{
+ /* real cross! */
+ float n1[3],n2[3];
+
+ n1[0]= v1[0]-v3[0];
+ n1[1]= v1[1]-v3[1];
+ n1[2]= v1[2]-v3[2];
+
+ n2[0]= v2[0]-v4[0];
+ n2[1]= v2[1]-v4[1];
+ n2[2]= v2[2]-v4[2];
+
+ n[0]= n1[1]*n2[2]-n1[2]*n2[1];
+ n[1]= n1[2]*n2[0]-n1[0]*n2[2];
+ n[2]= n1[0]*n2[1]-n1[1]*n2[0];
+
+ return Normalize(n);
+}
+
+
+void CalcCent3f(float *cent, float *v1, float *v2, float *v3)
+{
+
+ cent[0]= 0.33333f*(v1[0]+v2[0]+v3[0]);
+ cent[1]= 0.33333f*(v1[1]+v2[1]+v3[1]);
+ cent[2]= 0.33333f*(v1[2]+v2[2]+v3[2]);
+}
+
+void CalcCent4f(float *cent, float *v1, float *v2, float *v3, float *v4)
+{
+
+ cent[0]= 0.25f*(v1[0]+v2[0]+v3[0]+v4[0]);
+ cent[1]= 0.25f*(v1[1]+v2[1]+v3[1]+v4[1]);
+ cent[2]= 0.25f*(v1[2]+v2[2]+v3[2]+v4[2]);
+}
+
+float Sqrt3f(float f)
+{
+ if(f==0.0) return 0;
+ if(f<0) return (float)(-exp(log(-f)/3));
+ else return (float)(exp(log(f)/3));
+}
+
+double Sqrt3d(double d)
+{
+ if(d==0.0) return 0;
+ if(d<0) return -exp(log(-d)/3);
+ else return exp(log(d)/3);
+}
+
+void NormalShortToFloat(float *out, short *in)
+{
+ out[0] = in[0] / 32767.0f;
+ out[1] = in[1] / 32767.0f;
+ out[2] = in[2] / 32767.0f;
+}
+
+void NormalFloatToShort(short *out, float *in)
+{
+ out[0] = (short)(in[0] * 32767.0);
+ out[1] = (short)(in[1] * 32767.0);
+ out[2] = (short)(in[2] * 32767.0);
+}
+
+/* distance v1 to line v2-v3 */
+/* using Hesse formula, NO LINE PIECE! */
+float DistVL2Dfl( float *v1, float *v2, float *v3) {
+ float a[2],deler;
+
+ a[0]= v2[1]-v3[1];
+ a[1]= v3[0]-v2[0];
+ deler= (float)sqrt(a[0]*a[0]+a[1]*a[1]);
+ if(deler== 0.0f) return 0;
+
+ return (float)(fabs((v1[0]-v2[0])*a[0]+(v1[1]-v2[1])*a[1])/deler);
+
+}
+
+/* distance v1 to line-piece v2-v3 */
+float PdistVL2Dfl( float *v1, float *v2, float *v3)
+{
+ float labda, rc[2], pt[2], len;
+
+ rc[0]= v3[0]-v2[0];
+ rc[1]= v3[1]-v2[1];
+ len= rc[0]*rc[0]+ rc[1]*rc[1];
+ if(len==0.0) {
+ rc[0]= v1[0]-v2[0];
+ rc[1]= v1[1]-v2[1];
+ return (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
+ }
+
+ labda= ( rc[0]*(v1[0]-v2[0]) + rc[1]*(v1[1]-v2[1]) )/len;
+ if(labda<=0.0) {
+ pt[0]= v2[0];
+ pt[1]= v2[1];
+ }
+ else if(labda>=1.0) {
+ pt[0]= v3[0];
+ pt[1]= v3[1];
+ }
+ else {
+ pt[0]= labda*rc[0]+v2[0];
+ pt[1]= labda*rc[1]+v2[1];
+ }
+
+ rc[0]= pt[0]-v1[0];
+ rc[1]= pt[1]-v1[1];
+ return (float)sqrt(rc[0]*rc[0]+ rc[1]*rc[1]);
+}
+
+float AreaF2Dfl( float *v1, float *v2, float *v3)
+{
+ return (float)(0.5*fabs( (v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]) ));
+}
+
+
+float AreaQ3Dfl( float *v1, float *v2, float *v3, float *v4) /* only convex Quadrilaterals */
+{
+ float len, vec1[3], vec2[3], n[3];
+
+ VecSubf(vec1, v2, v1);
+ VecSubf(vec2, v4, v1);
+ Crossf(n, vec1, vec2);
+ len= Normalize(n);
+
+ VecSubf(vec1, v4, v3);
+ VecSubf(vec2, v2, v3);
+ Crossf(n, vec1, vec2);
+ len+= Normalize(n);
+
+ return (len/2.0f);
+}
+
+float AreaT3Dfl( float *v1, float *v2, float *v3) /* Triangles */
+{
+ float len, vec1[3], vec2[3], n[3];
+
+ VecSubf(vec1, v3, v2);
+ VecSubf(vec2, v1, v2);
+ Crossf(n, vec1, vec2);
+ len= Normalize(n);
+
+ return (len/2.0f);
+}
+
+#define MAX2(x,y) ( (x)>(y) ? (x) : (y) )
+#define MAX3(x,y,z) MAX2( MAX2((x),(y)) , (z) )
+
+
+float AreaPoly3Dfl(int nr, float *verts, float *normal)
+{
+ float x, y, z, area, max;
+ float *cur, *prev;
+ int a, px=0, py=1;
+
+ /* first: find dominant axis: 0==X, 1==Y, 2==Z */
+ x= (float)fabs(normal[0]);
+ y= (float)fabs(normal[1]);
+ z= (float)fabs(normal[2]);
+ max = MAX3(x, y, z);
+ if(max==y) py=2;
+ else if(max==x) {
+ px=1;
+ py= 2;
+ }
+
+ /* The Trapezium Area Rule */
+ prev= verts+3*(nr-1);
+ cur= verts;
+ area= 0;
+ for(a=0; a<nr; a++) {
+ area+= (cur[px]-prev[px])*(cur[py]+prev[py]);
+ prev= cur;
+ cur+=3;
+ }
+
+ return (float)fabs(0.5*area/max);
+}
+
+/* intersect Line-Line, shorts */
+short IsectLL2Ds(short *v1, short *v2, short *v3, short *v4)
+{
+ /* return:
+ -1: colliniar
+ 0: no intersection of segments
+ 1: exact intersection of segments
+ 2: cross-intersection of segments
+ */
+ float div, labda, mu;
+
+ div= (float)((v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]));
+ if(div==0.0f) return -1;
+
+ labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
+
+ mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
+
+ if(labda>=0.0f && labda<=1.0f && mu>=0.0f && mu<=1.0f) {
+ if(labda==0.0f || labda==1.0f || mu==0.0f || mu==1.0f) return 1;
+ return 2;
+ }
+ return 0;
+}
+
+/* intersect Line-Line, floats */
+short IsectLL2Df(float *v1, float *v2, float *v3, float *v4)
+{
+ /* return:
+ -1: colliniar
+0: no intersection of segments
+1: exact intersection of segments
+2: cross-intersection of segments
+ */
+ float div, labda, mu;
+
+ div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
+ if(div==0.0) return -1;
+
+ labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
+
+ mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
+
+ if(labda>=0.0 && labda<=1.0 && mu>=0.0 && mu<=1.0) {
+ if(labda==0.0 || labda==1.0 || mu==0.0 || mu==1.0) return 1;
+ return 2;
+ }
+ return 0;
+}
+
+/*
+-1: colliniar
+ 1: intersection
+
+*/
+static short IsectLLPt2Df(float x0,float y0,float x1,float y1,
+ float x2,float y2,float x3,float y3, float *xi,float *yi)
+
+{
+ /*
+ this function computes the intersection of the sent lines
+ and returns the intersection point, note that the function assumes
+ the lines intersect. the function can handle vertical as well
+ as horizontal lines. note the function isn't very clever, it simply
+ applies the math, but we don't need speed since this is a
+ pre-processing step
+ */
+ float c1,c2, // constants of linear equations
+ det_inv, // the inverse of the determinant of the coefficient
+ m1,m2; // the slopes of each line
+ /*
+ compute slopes, note the cludge for infinity, however, this will
+ be close enough
+ */
+ if ( fabs( x1-x0 ) > 0.000001 )
+ m1 = ( y1-y0 ) / ( x1-x0 );
+ else
+ return -1; /*m1 = ( float ) 1e+10;*/ // close enough to infinity
+
+ if ( fabs( x3-x2 ) > 0.000001 )
+ m2 = ( y3-y2 ) / ( x3-x2 );
+ else
+ return -1; /*m2 = ( float ) 1e+10;*/ // close enough to infinity
+
+ if (fabs(m1-m2) < 0.000001)
+ return -1; /* paralelle lines */
+
+// compute constants
+
+ c1 = ( y0-m1*x0 );
+ c2 = ( y2-m2*x2 );
+
+// compute the inverse of the determinate
+
+ det_inv = 1.0f / ( -m1 + m2 );
+
+// use Kramers rule to compute xi and yi
+
+ *xi= ( ( -c2 + c1 ) *det_inv );
+ *yi= ( ( m2*c1 - m1*c2 ) *det_inv );
+
+ return 1;
+} // end Intersect_Lines
+
+#define SIDE_OF_LINE(pa,pb,pp) ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1]))
+/* point in tri */
+int IsectPT2Df(float pt[2], float v1[2], float v2[2], float v3[2])
+{
+ if (SIDE_OF_LINE(v1,v2,pt)>=0.0) {
+ if (SIDE_OF_LINE(v2,v3,pt)>=0.0) {
+ if (SIDE_OF_LINE(v3,v1,pt)>=0.0) {
+ return 1;
+ }
+ }
+ } else {
+ if (! (SIDE_OF_LINE(v2,v3,pt)>=0.0) ) {
+ if (! (SIDE_OF_LINE(v3,v1,pt)>=0.0)) {
+ return -1;
+ }
+ }
+ }
+
+ return 0;
+}
+/* point in quad - only convex quads */
+int IsectPQ2Df(float pt[2], float v1[2], float v2[2], float v3[2], float v4[2])
+{
+ if (SIDE_OF_LINE(v1,v2,pt)>=0.0) {
+ if (SIDE_OF_LINE(v2,v3,pt)>=0.0) {
+ if (SIDE_OF_LINE(v3,v4,pt)>=0.0) {
+ if (SIDE_OF_LINE(v4,v1,pt)>=0.0) {
+ return 1;
+ }
+ }
+ }
+ } else {
+ if (! (SIDE_OF_LINE(v2,v3,pt)>=0.0) ) {
+ if (! (SIDE_OF_LINE(v3,v4,pt)>=0.0)) {
+ if (! (SIDE_OF_LINE(v4,v1,pt)>=0.0)) {
+ return -1;
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+/**
+ *
+ * @param min
+ * @param max
+ * @param vec
+ */
+void MinMax3(float *min, float *max, float *vec)
+{
+ if(min[0]>vec[0]) min[0]= vec[0];
+ if(min[1]>vec[1]) min[1]= vec[1];
+ if(min[2]>vec[2]) min[2]= vec[2];
+
+ if(max[0]<vec[0]) max[0]= vec[0];
+ if(max[1]<vec[1]) max[1]= vec[1];
+ if(max[2]<vec[2]) max[2]= vec[2];
+}
+
+static float TriSignedArea(float *v1, float *v2, float *v3, int i, int j)
+{
+ return 0.5f*((v1[i]-v2[i])*(v2[j]-v3[j]) + (v1[j]-v2[j])*(v3[i]-v2[i]));
+}
+
+static int BarycentricWeights(float *v1, float *v2, float *v3, float *co, float *n, float *w)
+{
+ float xn, yn, zn, a1, a2, a3, asum;
+ short i, j;
+
+ /* find best projection of face XY, XZ or YZ: barycentric weights of
+ the 2d projected coords are the same and faster to compute */
+ xn= (float)fabs(n[0]);
+ yn= (float)fabs(n[1]);
+ zn= (float)fabs(n[2]);
+ if(zn>=xn && zn>=yn) {i= 0; j= 1;}
+ else if(yn>=xn && yn>=zn) {i= 0; j= 2;}
+ else {i= 1; j= 2;}
+
+ a1= TriSignedArea(v2, v3, co, i, j);
+ a2= TriSignedArea(v3, v1, co, i, j);
+ a3= TriSignedArea(v1, v2, co, i, j);
+
+ asum= a1 + a2 + a3;
+
+ if (fabs(asum) < FLT_EPSILON) {
+ /* zero area triangle */
+ w[0]= w[1]= w[2]= 1.0f/3.0f;
+ return 1;
+ }
+
+ asum= 1.0f/asum;
+ w[0]= a1*asum;
+ w[1]= a2*asum;
+ w[2]= a3*asum;
+
+ return 0;
+}
+
+void InterpWeightsQ3Dfl(float *v1, float *v2, float *v3, float *v4, float *co, float *w)
+{
+ float w2[3];
+
+ w[0]= w[1]= w[2]= w[3]= 0.0f;
+
+ /* first check for exact match */
+ if(VecEqual(co, v1))
+ w[0]= 1.0f;
+ else if(VecEqual(co, v2))
+ w[1]= 1.0f;
+ else if(VecEqual(co, v3))
+ w[2]= 1.0f;
+ else if(v4 && VecEqual(co, v4))
+ w[3]= 1.0f;
+ else {
+ /* otherwise compute barycentric interpolation weights */
+ float n1[3], n2[3], n[3];
+ int degenerate;
+
+ VecSubf(n1, v1, v3);
+ if (v4) {
+ VecSubf(n2, v2, v4);
+ }
+ else {
+ VecSubf(n2, v2, v3);
+ }
+ Crossf(n, n1, n2);
+
+ /* OpenGL seems to split this way, so we do too */
+ if (v4) {
+ degenerate= BarycentricWeights(v1, v2, v4, co, n, w);
+ SWAP(float, w[2], w[3]);
+
+ if(degenerate || (w[0] < 0.0f)) {
+ /* if w[1] is negative, co is on the other side of the v1-v3 edge,
+ so we interpolate using the other triangle */
+ degenerate= BarycentricWeights(v2, v3, v4, co, n, w2);
+
+ if(!degenerate) {
+ w[0]= 0.0f;
+ w[1]= w2[0];
+ w[2]= w2[1];
+ w[3]= w2[2];
+ }
+ }
+ }
+ else
+ BarycentricWeights(v1, v2, v3, co, n, w);
+ }
+}
+
+/* Mean value weights - smooth interpolation weights for polygons with
+ * more than 3 vertices */
+static float MeanValueHalfTan(float *v1, float *v2, float *v3)
+{
+ float d2[3], d3[3], cross[3], area, dot, len;
+
+ VecSubf(d2, v2, v1);
+ VecSubf(d3, v3, v1);
+ Crossf(cross, d2, d3);
+
+ area= VecLength(cross);
+ dot= Inpf(d2, d3);
+ len= VecLength(d2)*VecLength(d3);
+
+ if(area == 0.0f)
+ return 0.0f;
+ else
+ return (len - dot)/area;
+}
+
+void MeanValueWeights(float v[][3], int n, float *co, float *w)
+{
+ float totweight, t1, t2, len, *vmid, *vprev, *vnext;
+ int i;
+
+ totweight= 0.0f;
+
+ for(i=0; i<n; i++) {
+ vmid= v[i];
+ vprev= (i == 0)? v[n-1]: v[i-1];
+ vnext= (i == n-1)? v[0]: v[i+1];
+
+ t1= MeanValueHalfTan(co, vprev, vmid);
+ t2= MeanValueHalfTan(co, vmid, vnext);
+
+ len= VecLenf(co, vmid);
+ w[i]= (t1+t2)/len;
+ totweight += w[i];
+ }
+
+ if(totweight != 0.0f)
+ for(i=0; i<n; i++)
+ w[i] /= totweight;
+}
+
+
+/* ************ EULER *************** */
+
+/* Euler Rotation Order Code:
+ * was adapted from
+ ANSI C code from the article
+ "Euler Angle Conversion"
+ by Ken Shoemake, shoemake@graphics.cis.upenn.edu
+ in "Graphics Gems IV", Academic Press, 1994
+ * for use in Blender
+ */
+
+/* Type for rotation order info - see wiki for derivation details */
+typedef struct RotOrderInfo {
+ short axis[3];
+ short parity; /* parity of axis permutation (even=0, odd=1) - 'n' in original code */
+} RotOrderInfo;
+
+/* Array of info for Rotation Order calculations
+ * WARNING: must be kept in same order as eEulerRotationOrders
+ */
+static RotOrderInfo rotOrders[]= {
+ /* i, j, k, n */
+ {{0, 1, 2}, 0}, // XYZ
+ {{0, 2, 1}, 1}, // XZY
+ {{1, 0, 2}, 1}, // YXZ
+ {{1, 2, 0}, 0}, // YZX
+ {{2, 0, 1}, 0}, // ZXY
+ {{2, 1, 0}, 1} // ZYZ
+};
+
+/* Get relevant pointer to rotation order set from the array
+ * NOTE: since we start at 1 for the values, but arrays index from 0,
+ * there is -1 factor involved in this process...
+ */
+#define GET_ROTATIONORDER_INFO(order) (((order)>=1) ? &rotOrders[(order)-1] : &rotOrders[0])
+
+/* Construct quaternion from Euler angles (in radians). */
+void EulOToQuat(float e[3], short order, float q[4])
+{
+ RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
+ short i=R->axis[0], j=R->axis[1], k=R->axis[2];
+ double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+ double a[3];
+
+ ti = e[i]/2; tj = e[j]/2; th = e[k]/2;
+
+ if (R->parity) e[j] = -e[j];
+
+ ci = cos(ti); cj = cos(tj); ch = cos(th);
+ si = sin(ti); sj = sin(tj); sh = sin(th);
+
+ cc = ci*ch; cs = ci*sh;
+ sc = si*ch; ss = si*sh;
+
+ a[i] = cj*sc - sj*cs;
+ a[j] = cj*ss + sj*cc;
+ a[k] = cj*cs - sj*sc;
+
+ q[0] = cj*cc + sj*ss;
+ q[1] = a[0];
+ q[2] = a[1];
+ q[3] = a[2];
+
+ if (R->parity) q[j] = -q[j];
+}
+
+/* Convert quaternion to Euler angles (in radians). */
+void QuatToEulO(float q[4], float e[3], short order)
+{
+ float M[3][3];
+
+ QuatToMat3(q, M);
+ Mat3ToEulO(M, e, order);
+}
+
+/* Construct 3x3 matrix from Euler angles (in radians). */
+void EulOToMat3(float e[3], short order, float M[3][3])
+{
+ RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
+ short i=R->axis[0], j=R->axis[1], k=R->axis[2];
+ double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+
+ if (R->parity) {
+ ti = -e[i]; tj = -e[j]; th = -e[k];
+ }
+ else {
+ ti = e[i]; tj = e[j]; th = e[k];
+ }
+
+ ci = cos(ti); cj = cos(tj); ch = cos(th);
+ si = sin(ti); sj = sin(tj); sh = sin(th);
+
+ cc = ci*ch; cs = ci*sh;
+ sc = si*ch; ss = si*sh;
+
+ M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss;
+ M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc;
+ M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci;
+}
+
+/* Construct 4x4 matrix from Euler angles (in radians). */
+void EulOToMat4(float e[3], short order, float M[4][4])
+{
+ float m[3][3];
+
+ /* for now, we'll just do this the slow way (i.e. copying matrices) */
+ Mat3Ortho(m);
+ EulOToMat3(e, order, m);
+ Mat4CpyMat3(M, m);
+}
+
+/* Convert 3x3 matrix to Euler angles (in radians). */
+void Mat3ToEulO(float M[3][3], float e[3], short order)
+{
+ RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
+ short i=R->axis[0], j=R->axis[1], k=R->axis[2];
+ double cy = sqrt(M[i][i]*M[i][i] + M[i][j]*M[i][j]);
+
+ if (cy > 16*FLT_EPSILON) {
+ e[i] = atan2(M[j][k], M[k][k]);
+ e[j] = atan2(-M[i][k], cy);
+ e[k] = atan2(M[i][j], M[i][i]);
+ }
+ else {
+ e[i] = atan2(-M[k][j], M[j][j]);
+ e[j] = atan2(-M[i][k], cy);
+ e[k] = 0;
+ }
+
+ if (R->parity) {
+ e[0] = -e[0];
+ e[1] = -e[1];
+ e[2] = -e[2];
+ }
+}
+
+/* Convert 4x4 matrix to Euler angles (in radians). */
+void Mat4ToEulO(float M[4][4], float e[3], short order)
+{
+ float m[3][3];
+
+ /* for now, we'll just do this the slow way (i.e. copying matrices) */
+ Mat3CpyMat4(m, M);
+ Mat3Ortho(m);
+ Mat3ToEulO(m, e, order);
+}
+
+/* returns two euler calculation methods, so we can pick the best */
+static void mat3_to_eulo2(float M[3][3], float *e1, float *e2, short order)
+{
+ RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
+ short i=R->axis[0], j=R->axis[1], k=R->axis[2];
+ float m[3][3];
+ double cy;
+
+ /* process the matrix first */
+ Mat3CpyMat3(m, M);
+ Mat3Ortho(m);
+
+ cy= sqrt(m[i][i]*m[i][i] + m[i][j]*m[i][j]);
+
+ if (cy > 16*FLT_EPSILON) {
+ e1[i] = atan2(m[j][k], m[k][k]);
+ e1[j] = atan2(-m[i][k], cy);
+ e1[k] = atan2(m[i][j], m[i][i]);
+
+ e2[i] = atan2(-m[j][k], -m[k][k]);
+ e2[j] = atan2(-m[i][k], -cy);
+ e2[k] = atan2(-m[i][j], -m[i][i]);
+ }
+ else {
+ e1[i] = atan2(-m[k][j], m[j][j]);
+ e1[j] = atan2(-m[i][k], cy);
+ e1[k] = 0;
+
+ VecCopyf(e2, e1);
+ }
+
+ if (R->parity) {
+ e1[0] = -e1[0];
+ e1[1] = -e1[1];
+ e1[2] = -e1[2];
+
+ e2[0] = -e2[0];
+ e2[1] = -e2[1];
+ e2[2] = -e2[2];
+ }
+}
+
+/* uses 2 methods to retrieve eulers, and picks the closest */
+void Mat3ToCompatibleEulO(float mat[3][3], float eul[3], float oldrot[3], short order)
+{
+ float eul1[3], eul2[3];
+ float d1, d2;
+
+ mat3_to_eulo2(mat, eul1, eul2, order);
+
+ compatible_eul(eul1, oldrot);
+ compatible_eul(eul2, oldrot);
+
+ d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]);
+ d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]);
+
+ /* return best, which is just the one with lowest difference */
+ if (d1 > d2)
+ VecCopyf(eul, eul2);
+ else
+ VecCopyf(eul, eul1);
+}
+
+/* rotate the given euler by the given angle on the specified axis */
+// NOTE: is this safe to do with different axis orders?
+void eulerO_rot(float beul[3], float ang, char axis, short order)
+{
+ float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
+
+ eul[0]= eul[1]= eul[2]= 0.0f;
+ if (axis=='x')
+ eul[0]= ang;
+ else if (axis=='y')
+ eul[1]= ang;
+ else
+ eul[2]= ang;
+
+ EulOToMat3(eul, order, mat1);
+ EulOToMat3(beul, order, mat2);
+
+ Mat3MulMat3(totmat, mat2, mat1);
+
+ Mat3ToEulO(totmat, beul, order);
+}
+
+/* ************ EULER (old XYZ) *************** */
+
+/* XYZ order */
+void EulToMat3( float *eul, float mat[][3])
+{
+ double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+
+ ci = cos(eul[0]);
+ cj = cos(eul[1]);
+ ch = cos(eul[2]);
+ si = sin(eul[0]);
+ sj = sin(eul[1]);
+ sh = sin(eul[2]);
+ cc = ci*ch;
+ cs = ci*sh;
+ sc = si*ch;
+ ss = si*sh;
+
+ mat[0][0] = (float)(cj*ch);
+ mat[1][0] = (float)(sj*sc-cs);
+ mat[2][0] = (float)(sj*cc+ss);
+ mat[0][1] = (float)(cj*sh);
+ mat[1][1] = (float)(sj*ss+cc);
+ mat[2][1] = (float)(sj*cs-sc);
+ mat[0][2] = (float)-sj;
+ mat[1][2] = (float)(cj*si);
+ mat[2][2] = (float)(cj*ci);
+
+}
+
+/* XYZ order */
+void EulToMat4( float *eul,float mat[][4])
+{
+ double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+
+ ci = cos(eul[0]);
+ cj = cos(eul[1]);
+ ch = cos(eul[2]);
+ si = sin(eul[0]);
+ sj = sin(eul[1]);
+ sh = sin(eul[2]);
+ cc = ci*ch;
+ cs = ci*sh;
+ sc = si*ch;
+ ss = si*sh;
+
+ mat[0][0] = (float)(cj*ch);
+ mat[1][0] = (float)(sj*sc-cs);
+ mat[2][0] = (float)(sj*cc+ss);
+ mat[0][1] = (float)(cj*sh);
+ mat[1][1] = (float)(sj*ss+cc);
+ mat[2][1] = (float)(sj*cs-sc);
+ mat[0][2] = (float)-sj;
+ mat[1][2] = (float)(cj*si);
+ mat[2][2] = (float)(cj*ci);
+
+
+ mat[3][0]= mat[3][1]= mat[3][2]= mat[0][3]= mat[1][3]= mat[2][3]= 0.0f;
+ mat[3][3]= 1.0f;
+}
+
+/* returns two euler calculation methods, so we can pick the best */
+/* XYZ order */
+static void mat3_to_eul2(float tmat[][3], float *eul1, float *eul2)
+{
+ float cy, quat[4], mat[3][3];
+
+ Mat3ToQuat(tmat, quat);
+ QuatToMat3(quat, mat);
+ Mat3CpyMat3(mat, tmat);
+ Mat3Ortho(mat);
+
+ cy = (float)sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]);
+
+ if (cy > 16.0*FLT_EPSILON) {
+
+ eul1[0] = (float)atan2(mat[1][2], mat[2][2]);
+ eul1[1] = (float)atan2(-mat[0][2], cy);
+ eul1[2] = (float)atan2(mat[0][1], mat[0][0]);
+
+ eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]);
+ eul2[1] = (float)atan2(-mat[0][2], -cy);
+ eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]);
+
+ } else {
+ eul1[0] = (float)atan2(-mat[2][1], mat[1][1]);
+ eul1[1] = (float)atan2(-mat[0][2], cy);
+ eul1[2] = 0.0f;
+
+ VecCopyf(eul2, eul1);
+ }
+}
+
+/* XYZ order */
+void Mat3ToEul(float tmat[][3], float *eul)
+{
+ float eul1[3], eul2[3];
+
+ mat3_to_eul2(tmat, eul1, eul2);
+
+ /* return best, which is just the one with lowest values it in */
+ if( fabs(eul1[0])+fabs(eul1[1])+fabs(eul1[2]) > fabs(eul2[0])+fabs(eul2[1])+fabs(eul2[2])) {
+ VecCopyf(eul, eul2);
+ }
+ else {
+ VecCopyf(eul, eul1);
+ }
+}
+
+/* XYZ order */
+void Mat4ToEul(float tmat[][4], float *eul)
+{
+ float tempMat[3][3];
+
+ Mat3CpyMat4(tempMat, tmat);
+ Mat3Ortho(tempMat);
+ Mat3ToEul(tempMat, eul);
+}
+
+/* XYZ order */
+void QuatToEul(float *quat, float *eul)
+{
+ float mat[3][3];
+
+ QuatToMat3(quat, mat);
+ Mat3ToEul(mat, eul);
+}
+
+/* XYZ order */
+void EulToQuat(float *eul, float *quat)
+{
+ float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
+
+ ti = eul[0]*0.5f; tj = eul[1]*0.5f; th = eul[2]*0.5f;
+ ci = (float)cos(ti); cj = (float)cos(tj); ch = (float)cos(th);
+ si = (float)sin(ti); sj = (float)sin(tj); sh = (float)sin(th);
+ cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh;
+
+ quat[0] = cj*cc + sj*ss;
+ quat[1] = cj*sc - sj*cs;
+ quat[2] = cj*ss + sj*cc;
+ quat[3] = cj*cs - sj*sc;
+}
+
+/* XYZ order */
+void euler_rot(float *beul, float ang, char axis)
+{
+ float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
+
+ eul[0]= eul[1]= eul[2]= 0.0f;
+ if(axis=='x') eul[0]= ang;
+ else if(axis=='y') eul[1]= ang;
+ else eul[2]= ang;
+
+ EulToMat3(eul, mat1);
+ EulToMat3(beul, mat2);
+
+ Mat3MulMat3(totmat, mat2, mat1);
+
+ Mat3ToEul(totmat, beul);
+
+}
+
+/* exported to transform.c */
+/* order independent! */
+void compatible_eul(float *eul, float *oldrot)
+{
+ float dx, dy, dz;
+
+ /* correct differences of about 360 degrees first */
+ dx= eul[0] - oldrot[0];
+ dy= eul[1] - oldrot[1];
+ dz= eul[2] - oldrot[2];
+
+ while(fabs(dx) > 5.1) {
+ if(dx > 0.0f) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI;
+ dx= eul[0] - oldrot[0];
+ }
+ while(fabs(dy) > 5.1) {
+ if(dy > 0.0f) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI;
+ dy= eul[1] - oldrot[1];
+ }
+ while(fabs(dz) > 5.1) {
+ if(dz > 0.0f) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI;
+ dz= eul[2] - oldrot[2];
+ }
+
+ /* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
+ if( fabs(dx) > 3.2 && fabs(dy)<1.6 && fabs(dz)<1.6 ) {
+ if(dx > 0.0) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI;
+ }
+ if( fabs(dy) > 3.2 && fabs(dz)<1.6 && fabs(dx)<1.6 ) {
+ if(dy > 0.0) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI;
+ }
+ if( fabs(dz) > 3.2 && fabs(dx)<1.6 && fabs(dy)<1.6 ) {
+ if(dz > 0.0) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI;
+ }
+
+ /* the method below was there from ancient days... but why! probably because the code sucks :)
+ */
+#if 0
+ /* calc again */
+ dx= eul[0] - oldrot[0];
+ dy= eul[1] - oldrot[1];
+ dz= eul[2] - oldrot[2];
+
+ /* special case, tested for x-z */
+
+ if( (fabs(dx) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dz) > 3.1 ) ) {
+ if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
+ if(eul[1] > 0.0) eul[1]= M_PI - eul[1]; else eul[1]= -M_PI - eul[1];
+ if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
+
+ }
+ else if( (fabs(dx) > 3.1 && fabs(dy) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dy) > 3.1 ) ) {
+ if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
+ if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
+ if(eul[2] > 0.0) eul[2]= M_PI - eul[2]; else eul[2]= -M_PI - eul[2];
+ }
+ else if( (fabs(dy) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dy) > 1.5 && fabs(dz) > 3.1 ) ) {
+ if(eul[0] > 0.0) eul[0]= M_PI - eul[0]; else eul[0]= -M_PI - eul[0];
+ if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
+ if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
+ }
+#endif
+}
+
+/* uses 2 methods to retrieve eulers, and picks the closest */
+/* XYZ order */
+void Mat3ToCompatibleEul(float mat[][3], float *eul, float *oldrot)
+{
+ float eul1[3], eul2[3];
+ float d1, d2;
+
+ mat3_to_eul2(mat, eul1, eul2);
+
+ compatible_eul(eul1, oldrot);
+ compatible_eul(eul2, oldrot);
+
+ d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]);
+ d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]);
+
+ /* return best, which is just the one with lowest difference */
+ if( d1 > d2) {
+ VecCopyf(eul, eul2);
+ }
+ else {
+ VecCopyf(eul, eul1);
+ }
+
+}
+
+/* the matrix is written to as 3 axis vectors */
+void EulToGimbalAxis(float gmat[][3], float *eul, short order)
+{
+ RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
+
+ float mat[3][3];
+ float teul[3];
+
+ /* first axis is local */
+ EulOToMat3(eul, order, mat);
+ VecCopyf(gmat[R->axis[0]], mat[R->axis[0]]);
+
+ /* second axis is local minus first rotation */
+ VecCopyf(teul, eul);
+ teul[R->axis[0]] = 0;
+ EulOToMat3(teul, order, mat);
+ VecCopyf(gmat[R->axis[1]], mat[R->axis[1]]);
+
+
+ /* Last axis is global */
+ gmat[R->axis[2]][0] = 0;
+ gmat[R->axis[2]][1] = 0;
+ gmat[R->axis[2]][2] = 0;
+ gmat[R->axis[2]][R->axis[2]] = 1;
+}
+
+/* ************ AXIS ANGLE *************** */
+
+/* Axis angle to Quaternions */
+void AxisAngleToQuat(float q[4], float axis[3], float angle)
+{
+ float nor[3];
+ float si;
+
+ VecCopyf(nor, axis);
+ Normalize(nor);
+
+ angle /= 2;
+ si = (float)sin(angle);
+ q[0] = (float)cos(angle);
+ q[1] = nor[0] * si;
+ q[2] = nor[1] * si;
+ q[3] = nor[2] * si;
+}
+
+/* Quaternions to Axis Angle */
+void QuatToAxisAngle(float q[4], float axis[3], float *angle)
+{
+ float ha, si;
+
+ /* calculate angle/2, and sin(angle/2) */
+ ha= (float)acos(q[0]);
+ si= (float)sin(ha);
+
+ /* from half-angle to angle */
+ *angle= ha * 2;
+
+ /* prevent division by zero for axis conversion */
+ if (fabs(si) < 0.0005)
+ si= 1.0f;
+
+ axis[0]= q[1] / si;
+ axis[1]= q[2] / si;
+ axis[2]= q[3] / si;
+}
+
+/* Axis Angle to Euler Rotation */
+void AxisAngleToEulO(float axis[3], float angle, float eul[3], short order)
+{
+ float q[4];
+
+ /* use quaternions as intermediate representation for now... */
+ AxisAngleToQuat(q, axis, angle);
+ QuatToEulO(q, eul, order);
+}
+
+/* Euler Rotation to Axis Angle */
+void EulOToAxisAngle(float eul[3], short order, float axis[3], float *angle)
+{
+ float q[4];
+
+ /* use quaternions as intermediate representation for now... */
+ EulOToQuat(eul, order, q);
+ QuatToAxisAngle(q, axis, angle);
+}
+
+/* axis angle to 3x3 matrix - safer version (normalisation of axis performed) */
+void AxisAngleToMat3(float axis[3], float angle, float mat[3][3])
+{
+ float nor[3], nsi[3], co, si, ico;
+
+ /* normalise the axis first (to remove unwanted scaling) */
+ VecCopyf(nor, axis);
+ Normalize(nor);
+
+ /* now convert this to a 3x3 matrix */
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+
+ ico= (1.0f - co);
+ nsi[0]= nor[0]*si;
+ nsi[1]= nor[1]*si;
+ nsi[2]= nor[2]*si;
+
+ mat[0][0] = ((nor[0] * nor[0]) * ico) + co;
+ mat[0][1] = ((nor[0] * nor[1]) * ico) + nsi[2];
+ mat[0][2] = ((nor[0] * nor[2]) * ico) - nsi[1];
+ mat[1][0] = ((nor[0] * nor[1]) * ico) - nsi[2];
+ mat[1][1] = ((nor[1] * nor[1]) * ico) + co;
+ mat[1][2] = ((nor[1] * nor[2]) * ico) + nsi[0];
+ mat[2][0] = ((nor[0] * nor[2]) * ico) + nsi[1];
+ mat[2][1] = ((nor[1] * nor[2]) * ico) - nsi[0];
+ mat[2][2] = ((nor[2] * nor[2]) * ico) + co;
+}
+
+/* axis angle to 4x4 matrix - safer version (normalisation of axis performed) */
+void AxisAngleToMat4(float axis[3], float angle, float mat[4][4])
+{
+ float tmat[3][3];
+
+ AxisAngleToMat3(axis, angle, tmat);
+ Mat4One(mat);
+ Mat4CpyMat3(mat, tmat);
+}
+
+/* 3x3 matrix to axis angle (see Mat4ToVecRot too) */
+void Mat3ToAxisAngle(float mat[3][3], float axis[3], float *angle)
+{
+ float q[4];
+
+ /* use quaternions as intermediate representation */
+ // TODO: it would be nicer to go straight there...
+ Mat3ToQuat(mat, q);
+ QuatToAxisAngle(q, axis, angle);
+}
+
+/* 4x4 matrix to axis angle (see Mat4ToVecRot too) */
+void Mat4ToAxisAngle(float mat[4][4], float axis[3], float *angle)
+{
+ float q[4];
+
+ /* use quaternions as intermediate representation */
+ // TODO: it would be nicer to go straight there...
+ Mat4ToQuat(mat, q);
+ QuatToAxisAngle(q, axis, angle);
+}
+
+/* ************ AXIS ANGLE (unchecked) *************** */
+// TODO: the following calls should probably be depreceated sometime
+
+/* 3x3 matrix to axis angle */
+void Mat3ToVecRot(float mat[3][3], float axis[3], float *angle)
+{
+ float q[4];
+
+ /* use quaternions as intermediate representation */
+ // TODO: it would be nicer to go straight there...
+ Mat3ToQuat(mat, q);
+ QuatToAxisAngle(q, axis, angle);
+}
+
+/* 4x4 matrix to axis angle */
+void Mat4ToVecRot(float mat[4][4], float axis[3], float *angle)
+{
+ float q[4];
+
+ /* use quaternions as intermediate representation */
+ // TODO: it would be nicer to go straight there...
+ Mat4ToQuat(mat, q);
+ QuatToAxisAngle(q, axis, angle);
+}
+
+/* axis angle to 3x3 matrix */
+void VecRotToMat3(float *vec, float phi, float mat[][3])
+{
+ /* rotation of phi radials around vec */
+ float vx, vx2, vy, vy2, vz, vz2, co, si;
+
+ vx= vec[0];
+ vy= vec[1];
+ vz= vec[2];
+ vx2= vx*vx;
+ vy2= vy*vy;
+ vz2= vz*vz;
+ co= (float)cos(phi);
+ si= (float)sin(phi);
+
+ mat[0][0]= vx2+co*(1.0f-vx2);
+ mat[0][1]= vx*vy*(1.0f-co)+vz*si;
+ mat[0][2]= vz*vx*(1.0f-co)-vy*si;
+ mat[1][0]= vx*vy*(1.0f-co)-vz*si;
+ mat[1][1]= vy2+co*(1.0f-vy2);
+ mat[1][2]= vy*vz*(1.0f-co)+vx*si;
+ mat[2][0]= vz*vx*(1.0f-co)+vy*si;
+ mat[2][1]= vy*vz*(1.0f-co)-vx*si;
+ mat[2][2]= vz2+co*(1.0f-vz2);
+}
+
+/* axis angle to 4x4 matrix */
+void VecRotToMat4(float *vec, float phi, float mat[][4])
+{
+ float tmat[3][3];
+
+ VecRotToMat3(vec, phi, tmat);
+ Mat4One(mat);
+ Mat4CpyMat3(mat, tmat);
+}
+
+/* axis angle to quaternion */
+void VecRotToQuat(float *vec, float phi, float *quat)
+{
+ /* rotation of phi radials around vec */
+ float si;
+
+ quat[1]= vec[0];
+ quat[2]= vec[1];
+ quat[3]= vec[2];
+
+ if( Normalize(quat+1) == 0.0f) {
+ QuatOne(quat);
+ }
+ else {
+ quat[0]= (float)cos( phi/2.0 );
+ si= (float)sin( phi/2.0 );
+ quat[1] *= si;
+ quat[2] *= si;
+ quat[3] *= si;
+ }
+}
+
+/* ************ VECTORS *************** */
+
+/* Returns a vector bisecting the angle at v2 formed by v1, v2 and v3 */
+void VecBisect3(float *out, float *v1, float *v2, float *v3)
+{
+ float d_12[3], d_23[3];
+ VecSubf(d_12, v2, v1);
+ VecSubf(d_23, v3, v2);
+ Normalize(d_12);
+ Normalize(d_23);
+ VecAddf(out, d_12, d_23);
+ Normalize(out);
+}
+
+/* Returns a reflection vector from a vector and a normal vector
+reflect = vec - ((2 * DotVecs(vec, mirror)) * mirror)
+*/
+void VecReflect(float *out, float *v1, float *v2)
+{
+ float vec[3], normal[3];
+ float reflect[3] = {0.0f, 0.0f, 0.0f};
+ float dot2;
+
+ VecCopyf(vec, v1);
+ VecCopyf(normal, v2);
+
+ Normalize(normal);
+
+ dot2 = 2 * Inpf(vec, normal);
+
+ reflect[0] = vec[0] - (dot2 * normal[0]);
+ reflect[1] = vec[1] - (dot2 * normal[1]);
+ reflect[2] = vec[2] - (dot2 * normal[2]);
+
+ VecCopyf(out, reflect);
+}
+
+/* Return the angle in degrees between vecs 1-2 and 2-3 in degrees
+ If v1 is a shoulder, v2 is the elbow and v3 is the hand,
+ this would return the angle at the elbow */
+float VecAngle3(float *v1, float *v2, float *v3)
+{
+ float vec1[3], vec2[3];
+
+ VecSubf(vec1, v2, v1);
+ VecSubf(vec2, v2, v3);
+ Normalize(vec1);
+ Normalize(vec2);
+
+ return NormalizedVecAngle2(vec1, vec2);
+}
+
+float Vec2Angle3(float *v1, float *v2, float *v3)
+{
+ float vec1[2], vec2[2];
+
+ vec1[0] = v2[0]-v1[0];
+ vec1[1] = v2[1]-v1[1];
+
+ vec2[0] = v2[0]-v3[0];
+ vec2[1] = v2[1]-v3[1];
+
+ Normalize2(vec1);
+ Normalize2(vec2);
+
+ return NormalizedVecAngle2_2D(vec1, vec2);
+}
+
+/* Return the shortest angle in degrees between the 2 vectors */
+float VecAngle2(float *v1, float *v2)
+{
+ float vec1[3], vec2[3];
+
+ VecCopyf(vec1, v1);
+ VecCopyf(vec2, v2);
+ Normalize(vec1);
+ Normalize(vec2);
+
+ return NormalizedVecAngle2(vec1, vec2);
+}
+
+float NormalizedVecAngle2(float *v1, float *v2)
+{
+ /* this is the same as acos(Inpf(v1, v2)), but more accurate */
+ if (Inpf(v1, v2) < 0.0f) {
+ float vec[3];
+
+ vec[0]= -v2[0];
+ vec[1]= -v2[1];
+ vec[2]= -v2[2];
+
+ return (float)M_PI - 2.0f*(float)saasin(VecLenf(vec, v1)/2.0f);
+ }
+ else
+ return 2.0f*(float)saasin(VecLenf(v2, v1)/2.0f);
+}
+
+float NormalizedVecAngle2_2D(float *v1, float *v2)
+{
+ /* this is the same as acos(Inpf(v1, v2)), but more accurate */
+ if (Inp2f(v1, v2) < 0.0f) {
+ float vec[2];
+
+ vec[0]= -v2[0];
+ vec[1]= -v2[1];
+
+ return (float)M_PI - 2.0f*saasin(Vec2Lenf(vec, v1)/2.0f);
+ }
+ else
+ return 2.0f*(float)saasin(Vec2Lenf(v2, v1)/2.0f);
+}
+
+/* ******************************************** */
+
+void SizeToMat3( float *size, float mat[][3])
+{
+ mat[0][0]= size[0];
+ mat[0][1]= 0.0f;
+ mat[0][2]= 0.0f;
+ mat[1][1]= size[1];
+ mat[1][0]= 0.0f;
+ mat[1][2]= 0.0f;
+ mat[2][2]= size[2];
+ mat[2][1]= 0.0f;
+ mat[2][0]= 0.0f;
+}
+
+void SizeToMat4( float *size, float mat[][4])
+{
+ float tmat[3][3];
+
+ SizeToMat3(size, tmat);
+ Mat4One(mat);
+ Mat4CpyMat3(mat, tmat);
+}
+
+void Mat3ToSize( float mat[][3], float *size)
+{
+ size[0]= VecLength(mat[0]);
+ size[1]= VecLength(mat[1]);
+ size[2]= VecLength(mat[2]);
+}
+
+void Mat4ToSize( float mat[][4], float *size)
+{
+ size[0]= VecLength(mat[0]);
+ size[1]= VecLength(mat[1]);
+ size[2]= VecLength(mat[2]);
+}
+
+/* this gets the average scale of a matrix, only use when your scaling
+ * data that has no idea of scale axis, examples are bone-envelope-radius
+ * and curve radius */
+float Mat3ToScalef(float mat[][3])
+{
+ /* unit length vector */
+ float unit_vec[3] = {0.577350269189626f, 0.577350269189626f, 0.577350269189626f};
+ Mat3MulVecfl(mat, unit_vec);
+ return VecLength(unit_vec);
+}
+
+float Mat4ToScalef(float mat[][4])
+{
+ float tmat[3][3];
+ Mat3CpyMat4(tmat, mat);
+ return Mat3ToScalef(tmat);
+}
+
+
+/* ************* SPECIALS ******************* */
+
+void triatoquat( float *v1, float *v2, float *v3, float *quat)
+{
+ /* imaginary x-axis, y-axis triangle is being rotated */
+ float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
+
+ /* move z-axis to face-normal */
+ CalcNormFloat(v1, v2, v3, vec);
+
+ n[0]= vec[1];
+ n[1]= -vec[0];
+ n[2]= 0.0f;
+ Normalize(n);
+
+ if(n[0]==0.0f && n[1]==0.0f) n[0]= 1.0f;
+
+ angle= -0.5f*(float)saacos(vec[2]);
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q1[0]= co;
+ q1[1]= n[0]*si;
+ q1[2]= n[1]*si;
+ q1[3]= 0.0f;
+
+ /* rotate back line v1-v2 */
+ QuatToMat3(q1, mat);
+ Mat3Inv(imat, mat);
+ VecSubf(vec, v2, v1);
+ Mat3MulVecfl(imat, vec);
+
+ /* what angle has this line with x-axis? */
+ vec[2]= 0.0f;
+ Normalize(vec);
+
+ angle= (float)(0.5*atan2(vec[1], vec[0]));
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q2[0]= co;
+ q2[1]= 0.0f;
+ q2[2]= 0.0f;
+ q2[3]= si;
+
+ QuatMul(quat, q1, q2);
+}
+
+void MinMaxRGB(short c[])
+{
+ if(c[0]>255) c[0]=255;
+ else if(c[0]<0) c[0]=0;
+ if(c[1]>255) c[1]=255;
+ else if(c[1]<0) c[1]=0;
+ if(c[2]>255) c[2]=255;
+ else if(c[2]<0) c[2]=0;
+}
+
+float Vec2Lenf(float *v1, float *v2)
+{
+ float x, y;
+
+ x = v1[0]-v2[0];
+ y = v1[1]-v2[1];
+ return (float)sqrt(x*x+y*y);
+}
+
+float Vec2Length(float *v)
+{
+ return (float)sqrt(v[0]*v[0] + v[1]*v[1]);
+}
+
+void Vec2Mulf(float *v1, float f)
+{
+ v1[0]*= f;
+ v1[1]*= f;
+}
+
+void Vec2Addf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]+ v2[0];
+ v[1]= v1[1]+ v2[1];
+}
+
+void Vec2Subf(float *v, float *v1, float *v2)
+{
+ v[0]= v1[0]- v2[0];
+ v[1]= v1[1]- v2[1];
+}
+
+void Vec2Copyf(float *v1, float *v2)
+{
+ v1[0]= v2[0];
+ v1[1]= v2[1];
+}
+
+float Inp2f(float *v1, float *v2)
+{
+ return v1[0]*v2[0]+v1[1]*v2[1];
+}
+
+float Normalize2(float *n)
+{
+ float d;
+
+ d= n[0]*n[0]+n[1]*n[1];
+
+ if(d>1.0e-35f) {
+ d= (float)sqrt(d);
+ n[0]/=d;
+ n[1]/=d;
+ } else {
+ n[0]=n[1]= 0.0f;
+ d= 0.0f;
+ }
+ return d;
+}
+
+void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b)
+{
+ int i;
+ float f, p, q, t;
+
+ h *= 360.0f;
+
+ if(s==0.0f) {
+ *r = v;
+ *g = v;
+ *b = v;
+ }
+ else {
+ if(h== 360.0f) h = 0.0f;
+
+ h /= 60.0f;
+ i = (int)floor(h);
+ f = h - i;
+ p = v*(1.0f-s);
+ q = v*(1.0f-(s*f));
+ t = v*(1.0f-(s*(1.0f-f)));
+
+ switch (i) {
+ case 0 :
+ *r = v;
+ *g = t;
+ *b = p;
+ break;
+ case 1 :
+ *r = q;
+ *g = v;
+ *b = p;
+ break;
+ case 2 :
+ *r = p;
+ *g = v;
+ *b = t;
+ break;
+ case 3 :
+ *r = p;
+ *g = q;
+ *b = v;
+ break;
+ case 4 :
+ *r = t;
+ *g = p;
+ *b = v;
+ break;
+ case 5 :
+ *r = v;
+ *g = p;
+ *b = q;
+ break;
+ }
+ }
+}
+
+void rgb_to_yuv(float r, float g, float b, float *ly, float *lu, float *lv)
+{
+ float y, u, v;
+ y= 0.299f*r + 0.587f*g + 0.114f*b;
+ u=-0.147f*r - 0.289f*g + 0.436f*b;
+ v= 0.615f*r - 0.515f*g - 0.100f*b;
+
+ *ly=y;
+ *lu=u;
+ *lv=v;
+}
+
+void yuv_to_rgb(float y, float u, float v, float *lr, float *lg, float *lb)
+{
+ float r, g, b;
+ r=y+1.140f*v;
+ g=y-0.394f*u - 0.581f*v;
+ b=y+2.032f*u;
+
+ *lr=r;
+ *lg=g;
+ *lb=b;
+}
+
+void rgb_to_ycc(float r, float g, float b, float *ly, float *lcb, float *lcr)
+{
+ float sr,sg, sb;
+ float y, cr, cb;
+
+ sr=255.0f*r;
+ sg=255.0f*g;
+ sb=255.0f*b;
+
+
+ y=(0.257f*sr)+(0.504f*sg)+(0.098f*sb)+16.0f;
+ cb=(-0.148f*sr)-(0.291f*sg)+(0.439f*sb)+128.0f;
+ cr=(0.439f*sr)-(0.368f*sg)-(0.071f*sb)+128.0f;
+
+ *ly=y;
+ *lcb=cb;
+ *lcr=cr;
+}
+
+void ycc_to_rgb(float y, float cb, float cr, float *lr, float *lg, float *lb)
+{
+ float r,g,b;
+
+ r=1.164f*(y-16.0f)+1.596f*(cr-128.0f);
+ g=1.164f*(y-16.0f)-0.813f*(cr-128.0f)-0.392f*(cb-128.0f);
+ b=1.164f*(y-16.0f)+2.017f*(cb-128.0f);
+
+ *lr=r/255.0f;
+ *lg=g/255.0f;
+ *lb=b/255.0f;
+}
+
+void hex_to_rgb(char *hexcol, float *r, float *g, float *b)
+{
+ unsigned int ri, gi, bi;
+
+ if (hexcol[0] == '#') hexcol++;
+
+ if (sscanf(hexcol, "%02x%02x%02x", &ri, &gi, &bi)) {
+ *r = ri / 255.0f;
+ *g = gi / 255.0f;
+ *b = bi / 255.0f;
+ }
+}
+
+void rgb_to_hsv(float r, float g, float b, float *lh, float *ls, float *lv)
+{
+ float h, s, v;
+ float cmax, cmin, cdelta;
+ float rc, gc, bc;
+
+ cmax = r;
+ cmin = r;
+ cmax = (g>cmax ? g:cmax);
+ cmin = (g<cmin ? g:cmin);
+ cmax = (b>cmax ? b:cmax);
+ cmin = (b<cmin ? b:cmin);
+
+ v = cmax; /* value */
+ if (cmax != 0.0f)
+ s = (cmax - cmin)/cmax;
+ else {
+ s = 0.0f;
+ h = 0.0f;
+ }
+ if (s == 0.0f)
+ h = -1.0f;
+ else {
+ cdelta = cmax-cmin;
+ rc = (cmax-r)/cdelta;
+ gc = (cmax-g)/cdelta;
+ bc = (cmax-b)/cdelta;
+ if (r==cmax)
+ h = bc-gc;
+ else
+ if (g==cmax)
+ h = 2.0f+rc-bc;
+ else
+ h = 4.0f+gc-rc;
+ h = h*60.0f;
+ if (h < 0.0f)
+ h += 360.0f;
+ }
+
+ *ls = s;
+ *lh = h / 360.0f;
+ if(*lh < 0.0f) *lh= 0.0f;
+ *lv = v;
+}
+
+/*http://brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */
+
+void xyz_to_rgb(float xc, float yc, float zc, float *r, float *g, float *b, int colorspace)
+{
+ switch (colorspace) {
+ case BLI_CS_SMPTE:
+ *r = (3.50570f * xc) + (-1.73964f * yc) + (-0.544011f * zc);
+ *g = (-1.06906f * xc) + (1.97781f * yc) + (0.0351720f * zc);
+ *b = (0.0563117f * xc) + (-0.196994f * yc) + (1.05005f * zc);
+ break;
+ case BLI_CS_REC709:
+ *r = (3.240476f * xc) + (-1.537150f * yc) + (-0.498535f * zc);
+ *g = (-0.969256f * xc) + (1.875992f * yc) + (0.041556f * zc);
+ *b = (0.055648f * xc) + (-0.204043f * yc) + (1.057311f * zc);
+ break;
+ case BLI_CS_CIE:
+ *r = (2.28783848734076f * xc) + (-0.833367677835217f * yc) + (-0.454470795871421f * zc);
+ *g = (-0.511651380743862f * xc) + (1.42275837632178f * yc) + (0.0888930017552939f * zc);
+ *b = (0.00572040983140966f * xc) + (-0.0159068485104036f * yc) + (1.0101864083734f * zc);
+ break;
+ }
+}
+
+/*If the requested RGB shade contains a negative weight for
+ one of the primaries, it lies outside the colour gamut
+ accessible from the given triple of primaries. Desaturate
+ it by adding white, equal quantities of R, G, and B, enough
+ to make RGB all positive. The function returns 1 if the
+ components were modified, zero otherwise.*/
+int constrain_rgb(float *r, float *g, float *b)
+{
+ float w;
+
+ /* Amount of white needed is w = - min(0, *r, *g, *b) */
+
+ w = (0 < *r) ? 0 : *r;
+ w = (w < *g) ? w : *g;
+ w = (w < *b) ? w : *b;
+ w = -w;
+
+ /* Add just enough white to make r, g, b all positive. */
+
+ if (w > 0) {
+ *r += w; *g += w; *b += w;
+ return 1; /* Color modified to fit RGB gamut */
+ }
+
+ return 0; /* Color within RGB gamut */
+}
+
+
+/* we define a 'cpack' here as a (3 byte color code) number that can be expressed like 0xFFAA66 or so.
+ for that reason it is sensitive for endianness... with this function it works correctly
+*/
+
+unsigned int hsv_to_cpack(float h, float s, float v)
+{
+ short r, g, b;
+ float rf, gf, bf;
+ unsigned int col;
+
+ hsv_to_rgb(h, s, v, &rf, &gf, &bf);
+
+ r= (short)(rf*255.0f);
+ g= (short)(gf*255.0f);
+ b= (short)(bf*255.0f);
+
+ col= ( r + (g*256) + (b*256*256) );
+ return col;
+}
+
+
+unsigned int rgb_to_cpack(float r, float g, float b)
+{
+ int ir, ig, ib;
+
+ ir= (int)floor(255.0*r);
+ if(ir<0) ir= 0; else if(ir>255) ir= 255;
+ ig= (int)floor(255.0*g);
+ if(ig<0) ig= 0; else if(ig>255) ig= 255;
+ ib= (int)floor(255.0*b);
+ if(ib<0) ib= 0; else if(ib>255) ib= 255;
+
+ return (ir+ (ig*256) + (ib*256*256));
+}
+
+void cpack_to_rgb(unsigned int col, float *r, float *g, float *b)
+{
+
+ *r= (float)((col)&0xFF);
+ *r /= 255.0f;
+
+ *g= (float)(((col)>>8)&0xFF);
+ *g /= 255.0f;
+
+ *b= (float)(((col)>>16)&0xFF);
+ *b /= 255.0f;
+}
+
+
+/* *************** PROJECTIONS ******************* */
+
+void tubemap(float x, float y, float z, float *u, float *v)
+{
+ float len;
+
+ *v = (z + 1.0f) / 2.0f;
+
+ len= (float)sqrt(x*x+y*y);
+ if(len > 0.0f)
+ *u = (float)((1.0 - (atan2(x/len,y/len) / M_PI)) / 2.0);
+ else
+ *v = *u = 0.0f; /* to avoid un-initialized variables */
+}
+
+/* ------------------------------------------------------------------------- */
+
+void spheremap(float x, float y, float z, float *u, float *v)
+{
+ float len;
+
+ len= (float)sqrt(x*x+y*y+z*z);
+ if(len > 0.0f) {
+ if(x==0.0f && y==0.0f) *u= 0.0f; /* othwise domain error */
+ else *u = (float)((1.0 - (float)atan2(x,y) / M_PI) / 2.0);
+
+ z/=len;
+ *v = 1.0f - (float)saacos(z)/(float)M_PI;
+ } else {
+ *v = *u = 0.0f; /* to avoid un-initialized variables */
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+
+/* proposed api by ton and zr, not used yet */
+#if 0
+/* ***************** m1 = m2 ***************** */
+static void cpy_m3_m3(float m1[][3], float m2[][3])
+{
+ memcpy(m1[0], m2[0], 9*sizeof(float));
+}
+
+/* ***************** m1 = m2 ***************** */
+static void cpy_m4_m4(float m1[][4], float m2[][4])
+{
+ memcpy(m1[0], m2[0], 16*sizeof(float));
+}
+
+/* ***************** identity matrix ***************** */
+static void ident_m4(float m[][4])
+{
+
+ m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
+ m[0][1]= m[0][2]= m[0][3]= 0.0;
+ m[1][0]= m[1][2]= m[1][3]= 0.0;
+ m[2][0]= m[2][1]= m[2][3]= 0.0;
+ m[3][0]= m[3][1]= m[3][2]= 0.0;
+}
+
+/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
+static void mul_m3_m3m3(float m1[][3], float m2[][3], float m3[][3])
+{
+ float m[3][3];
+
+ m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2];
+ m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2];
+ m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2];
+
+ m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2];
+ m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2];
+ m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2];
+
+ m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2];
+ m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2];
+ m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2];
+
+ cpy_m3_m3(m1, m2);
+}
+
+/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
+static void mul_m4_m4m4(float m1[][4], float m2[][4], float m3[][4])
+{
+ float m[4][4];
+
+ m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2] + m2[3][0]*m3[0][3];
+ m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2] + m2[3][1]*m3[0][3];
+ m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2] + m2[3][2]*m3[0][3];
+ m[0][3]= m2[0][3]*m3[0][0] + m2[1][3]*m3[0][1] + m2[2][3]*m3[0][2] + m2[3][3]*m3[0][3];
+
+ m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2] + m2[3][0]*m3[1][3];
+ m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2] + m2[3][1]*m3[1][3];
+ m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2] + m2[3][2]*m3[1][3];
+ m[1][3]= m2[0][3]*m3[1][0] + m2[1][3]*m3[1][1] + m2[2][3]*m3[1][2] + m2[3][3]*m3[1][3];
+
+ m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2] + m2[3][0]*m3[2][3];
+ m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2] + m2[3][1]*m3[2][3];
+ m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2] + m2[3][2]*m3[2][3];
+ m[2][3]= m2[0][3]*m3[2][0] + m2[1][3]*m3[2][1] + m2[2][3]*m3[2][2] + m2[3][3]*m3[2][3];
+
+ m[3][0]= m2[0][0]*m3[3][0] + m2[1][0]*m3[3][1] + m2[2][0]*m3[3][2] + m2[3][0]*m3[3][3];
+ m[3][1]= m2[0][1]*m3[3][0] + m2[1][1]*m3[3][1] + m2[2][1]*m3[3][2] + m2[3][1]*m3[3][3];
+ m[3][2]= m2[0][2]*m3[3][0] + m2[1][2]*m3[3][1] + m2[2][2]*m3[3][2] + m2[3][2]*m3[3][3];
+ m[3][3]= m2[0][3]*m3[3][0] + m2[1][3]*m3[3][1] + m2[2][3]*m3[3][2] + m2[3][3]*m3[3][3];
+
+ cpy_m4_m4(m1, m2);
+}
+
+/* ***************** m1 = inverse(m2) ***************** */
+static void inv_m3_m3(float m1[][3], float m2[][3])
+{
+ short a,b;
+ float det;
+
+ /* calc adjoint */
+ Mat3Adj(m1, m2);
+
+ /* then determinant old matrix! */
+ det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
+ -m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
+ +m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
+
+ if(det==0.0f) det=1.0f;
+ det= 1.0f/det;
+ for(a=0;a<3;a++) {
+ for(b=0;b<3;b++) {
+ m1[a][b]*=det;
+ }
+ }
+}
+
+/* ***************** m1 = inverse(m2) ***************** */
+static int inv_m4_m4(float inverse[][4], float mat[][4])
+{
+ int i, j, k;
+ double temp;
+ float tempmat[4][4];
+ float max;
+ int maxj;
+
+ /* Set inverse to identity */
+ ident_m4(inverse);
+
+ /* Copy original matrix so we don't mess it up */
+ cpy_m4_m4(tempmat, mat);
+
+ for(i = 0; i < 4; i++) {
+ /* Look for row with max pivot */
+ max = ABS(tempmat[i][i]);
+ maxj = i;
+ for(j = i + 1; j < 4; j++) {
+ if(ABS(tempmat[j][i]) > max) {
+ max = ABS(tempmat[j][i]);
+ maxj = j;
+ }
+ }
+ /* Swap rows if necessary */
+ if (maxj != i) {
+ for( k = 0; k < 4; k++) {
+ SWAP(float, tempmat[i][k], tempmat[maxj][k]);
+ SWAP(float, inverse[i][k], inverse[maxj][k]);
+ }
+ }
+
+ temp = tempmat[i][i];
+ if (temp == 0)
+ return 0; /* No non-zero pivot */
+ for(k = 0; k < 4; k++) {
+ tempmat[i][k] = (float)(tempmat[i][k]/temp);
+ inverse[i][k] = (float)(inverse[i][k]/temp);
+ }
+ for(j = 0; j < 4; j++) {
+ if(j != i) {
+ temp = tempmat[j][i];
+ for(k = 0; k < 4; k++) {
+ tempmat[j][k] -= (float)(tempmat[i][k]*temp);
+ inverse[j][k] -= (float)(inverse[i][k]*temp);
+ }
+ }
+ }
+ }
+ return 1;
+}
+
+/* ***************** v1 = v2 * mat ***************** */
+static void mul_v3_v3m4(float *v1, float *v2, float mat[][4])
+{
+ float x, y;
+
+ x= v2[0]; /* work with a copy, v1 can be same as v2 */
+ y= v2[1];
+ v1[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*v2[2] + mat[3][0];
+ v1[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*v2[2] + mat[3][1];
+ v1[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*v2[2] + mat[3][2];
+
+}
+
+#endif
+
+/* moved from effect.c
+ test if the line starting at p1 ending at p2 intersects the triangle v0..v2
+ return non zero if it does
+*/
+int LineIntersectsTriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv)
+{
+
+ float p[3], s[3], d[3], e1[3], e2[3], q[3];
+ float a, f, u, v;
+
+ VecSubf(e1, v1, v0);
+ VecSubf(e2, v2, v0);
+ VecSubf(d, p2, p1);
+
+ Crossf(p, d, e2);
+ a = Inpf(e1, p);
+ if ((a > -0.000001) && (a < 0.000001)) return 0;
+ f = 1.0f/a;
+
+ VecSubf(s, p1, v0);
+
+ Crossf(q, s, e1);
+ *lambda = f * Inpf(e2, q);
+ if ((*lambda < 0.0)||(*lambda > 1.0)) return 0;
+
+ u = f * Inpf(s, p);
+ if ((u < 0.0)||(u > 1.0)) return 0;
+
+ v = f * Inpf(d, q);
+ if ((v < 0.0)||((u + v) > 1.0)) return 0;
+
+ if(uv) {
+ uv[0]= u;
+ uv[1]= v;
+ }
+
+ return 1;
+}
+
+/* moved from effect.c
+ test if the ray starting at p1 going in d direction intersects the triangle v0..v2
+ return non zero if it does
+*/
+int RayIntersectsTriangle(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv)
+{
+ float p[3], s[3], e1[3], e2[3], q[3];
+ float a, f, u, v;
+
+ VecSubf(e1, v1, v0);
+ VecSubf(e2, v2, v0);
+
+ Crossf(p, d, e2);
+ a = Inpf(e1, p);
+ if ((a > -0.000001) && (a < 0.000001)) return 0;
+ f = 1.0f/a;
+
+ VecSubf(s, p1, v0);
+
+ Crossf(q, s, e1);
+ *lambda = f * Inpf(e2, q);
+ if ((*lambda < 0.0)) return 0;
+
+ u = f * Inpf(s, p);
+ if ((u < 0.0)||(u > 1.0)) return 0;
+
+ v = f * Inpf(d, q);
+ if ((v < 0.0)||((u + v) > 1.0)) return 0;
+
+ if(uv) {
+ uv[0]= u;
+ uv[1]= v;
+ }
+
+ return 1;
+}
+
+int RayIntersectsTriangleThreshold(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv, float threshold)
+{
+ float p[3], s[3], e1[3], e2[3], q[3];
+ float a, f, u, v;
+ float du = 0, dv = 0;
+
+ VecSubf(e1, v1, v0);
+ VecSubf(e2, v2, v0);
+
+ Crossf(p, d, e2);
+ a = Inpf(e1, p);
+ if ((a > -0.000001) && (a < 0.000001)) return 0;
+ f = 1.0f/a;
+
+ VecSubf(s, p1, v0);
+
+ Crossf(q, s, e1);
+ *lambda = f * Inpf(e2, q);
+ if ((*lambda < 0.0)) return 0;
+
+ u = f * Inpf(s, p);
+ v = f * Inpf(d, q);
+
+ if (u < 0) du = u;
+ if (u > 1) du = u - 1;
+ if (v < 0) dv = v;
+ if (v > 1) dv = v - 1;
+ if (u > 0 && v > 0 && u + v > 1)
+ {
+ float t = u + v - 1;
+ du = u - t/2;
+ dv = v - t/2;
+ }
+
+ VecMulf(e1, du);
+ VecMulf(e2, dv);
+
+ if (Inpf(e1, e1) + Inpf(e2, e2) > threshold * threshold)
+ {
+ return 0;
+ }
+
+ if(uv) {
+ uv[0]= u;
+ uv[1]= v;
+ }
+
+ return 1;
+}
+
+
+/* Adapted from the paper by Kasper Fauerby */
+/* "Improved Collision detection and Response" */
+static int getLowestRoot(float a, float b, float c, float maxR, float* root)
+{
+ // Check if a solution exists
+ float determinant = b*b - 4.0f*a*c;
+
+ // If determinant is negative it means no solutions.
+ if (determinant >= 0.0f)
+ {
+ // calculate the two roots: (if determinant == 0 then
+ // x1==x2 but let’s disregard that slight optimization)
+ float sqrtD = (float)sqrt(determinant);
+ float r1 = (-b - sqrtD) / (2.0f*a);
+ float r2 = (-b + sqrtD) / (2.0f*a);
+
+ // Sort so x1 <= x2
+ if (r1 > r2)
+ SWAP( float, r1, r2);
+
+ // Get lowest root:
+ if (r1 > 0.0f && r1 < maxR)
+ {
+ *root = r1;
+ return 1;
+ }
+
+ // It is possible that we want x2 - this can happen
+ // if x1 < 0
+ if (r2 > 0.0f && r2 < maxR)
+ {
+ *root = r2;
+ return 1;
+ }
+ }
+ // No (valid) solutions
+ return 0;
+}
+
+int SweepingSphereIntersectsTriangleUV(float p1[3], float p2[3], float radius, float v0[3], float v1[3], float v2[3], float *lambda, float *ipoint)
+{
+ float e1[3], e2[3], e3[3], point[3], vel[3], /*dist[3],*/ nor[3], temp[3], bv[3];
+ float a, b, c, d, e, x, y, z, radius2=radius*radius;
+ float elen2,edotv,edotbv,nordotv,vel2;
+ float newLambda;
+ int found_by_sweep=0;
+
+ VecSubf(e1,v1,v0);
+ VecSubf(e2,v2,v0);
+ VecSubf(vel,p2,p1);
+
+/*---test plane of tri---*/
+ Crossf(nor,e1,e2);
+ Normalize(nor);
+
+ /* flip normal */
+ if(Inpf(nor,vel)>0.0f) VecNegf(nor);
+
+ a=Inpf(p1,nor)-Inpf(v0,nor);
+ nordotv=Inpf(nor,vel);
+
+ if (fabs(nordotv) < 0.000001)
+ {
+ if(fabs(a)>=radius)
+ {
+ return 0;
+ }
+ }
+ else
+ {
+ float t0=(-a+radius)/nordotv;
+ float t1=(-a-radius)/nordotv;
+
+ if(t0>t1)
+ SWAP(float, t0, t1);
+
+ if(t0>1.0f || t1<0.0f) return 0;
+
+ /* clamp to [0,1] */
+ CLAMP(t0, 0.0f, 1.0f);
+ CLAMP(t1, 0.0f, 1.0f);
+
+ /*---test inside of tri---*/
+ /* plane intersection point */
+
+ point[0] = p1[0] + vel[0]*t0 - nor[0]*radius;
+ point[1] = p1[1] + vel[1]*t0 - nor[1]*radius;
+ point[2] = p1[2] + vel[2]*t0 - nor[2]*radius;
+
+
+ /* is the point in the tri? */
+ a=Inpf(e1,e1);
+ b=Inpf(e1,e2);
+ c=Inpf(e2,e2);
+
+ VecSubf(temp,point,v0);
+ d=Inpf(temp,e1);
+ e=Inpf(temp,e2);
+
+ x=d*c-e*b;
+ y=e*a-d*b;
+ z=x+y-(a*c-b*b);
+
+
+ if( z <= 0.0f && (x >= 0.0f && y >= 0.0f))
+ {
+ //( ((unsigned int)z)& ~(((unsigned int)x)|((unsigned int)y)) ) & 0x80000000){
+ *lambda=t0;
+ VecCopyf(ipoint,point);
+ return 1;
+ }
+ }
+
+
+ *lambda=1.0f;
+
+/*---test points---*/
+ a=vel2=Inpf(vel,vel);
+
+ /*v0*/
+ VecSubf(temp,p1,v0);
+ b=2.0f*Inpf(vel,temp);
+ c=Inpf(temp,temp)-radius2;
+
+ if(getLowestRoot(a, b, c, *lambda, lambda))
+ {
+ VecCopyf(ipoint,v0);
+ found_by_sweep=1;
+ }
+
+ /*v1*/
+ VecSubf(temp,p1,v1);
+ b=2.0f*Inpf(vel,temp);
+ c=Inpf(temp,temp)-radius2;
+
+ if(getLowestRoot(a, b, c, *lambda, lambda))
+ {
+ VecCopyf(ipoint,v1);
+ found_by_sweep=1;
+ }
+
+ /*v2*/
+ VecSubf(temp,p1,v2);
+ b=2.0f*Inpf(vel,temp);
+ c=Inpf(temp,temp)-radius2;
+
+ if(getLowestRoot(a, b, c, *lambda, lambda))
+ {
+ VecCopyf(ipoint,v2);
+ found_by_sweep=1;
+ }
+
+/*---test edges---*/
+ VecSubf(e3,v2,v1); //wasnt yet calculated
+
+
+ /*e1*/
+ VecSubf(bv,v0,p1);
+
+ elen2 = Inpf(e1,e1);
+ edotv = Inpf(e1,vel);
+ edotbv = Inpf(e1,bv);
+
+ a=elen2*(-Inpf(vel,vel))+edotv*edotv;
+ b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
+ c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
+
+ if(getLowestRoot(a, b, c, *lambda, &newLambda))
+ {
+ e=(edotv*newLambda-edotbv)/elen2;
+
+ if(e >= 0.0f && e <= 1.0f)
+ {
+ *lambda = newLambda;
+ VecCopyf(ipoint,e1);
+ VecMulf(ipoint,e);
+ VecAddf(ipoint,ipoint,v0);
+ found_by_sweep=1;
+ }
+ }
+
+ /*e2*/
+ /*bv is same*/
+ elen2 = Inpf(e2,e2);
+ edotv = Inpf(e2,vel);
+ edotbv = Inpf(e2,bv);
+
+ a=elen2*(-Inpf(vel,vel))+edotv*edotv;
+ b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
+ c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
+
+ if(getLowestRoot(a, b, c, *lambda, &newLambda))
+ {
+ e=(edotv*newLambda-edotbv)/elen2;
+
+ if(e >= 0.0f && e <= 1.0f)
+ {
+ *lambda = newLambda;
+ VecCopyf(ipoint,e2);
+ VecMulf(ipoint,e);
+ VecAddf(ipoint,ipoint,v0);
+ found_by_sweep=1;
+ }
+ }
+
+ /*e3*/
+ VecSubf(bv,v0,p1);
+ elen2 = Inpf(e1,e1);
+ edotv = Inpf(e1,vel);
+ edotbv = Inpf(e1,bv);
+
+ VecSubf(bv,v1,p1);
+ elen2 = Inpf(e3,e3);
+ edotv = Inpf(e3,vel);
+ edotbv = Inpf(e3,bv);
+
+ a=elen2*(-Inpf(vel,vel))+edotv*edotv;
+ b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
+ c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
+
+ if(getLowestRoot(a, b, c, *lambda, &newLambda))
+ {
+ e=(edotv*newLambda-edotbv)/elen2;
+
+ if(e >= 0.0f && e <= 1.0f)
+ {
+ *lambda = newLambda;
+ VecCopyf(ipoint,e3);
+ VecMulf(ipoint,e);
+ VecAddf(ipoint,ipoint,v1);
+ found_by_sweep=1;
+ }
+ }
+
+
+ return found_by_sweep;
+}
+int AxialLineIntersectsTriangle(int axis, float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda)
+{
+ float p[3], e1[3], e2[3];
+ float u, v, f;
+ int a0=axis, a1=(axis+1)%3, a2=(axis+2)%3;
+
+ //return LineIntersectsTriangle(p1,p2,v0,v1,v2,lambda);
+
+ ///* first a simple bounding box test */
+ //if(MIN3(v0[a1],v1[a1],v2[a1]) > p1[a1]) return 0;
+ //if(MIN3(v0[a2],v1[a2],v2[a2]) > p1[a2]) return 0;
+ //if(MAX3(v0[a1],v1[a1],v2[a1]) < p1[a1]) return 0;
+ //if(MAX3(v0[a2],v1[a2],v2[a2]) < p1[a2]) return 0;
+
+ ///* then a full intersection test */
+
+ VecSubf(e1,v1,v0);
+ VecSubf(e2,v2,v0);
+ VecSubf(p,v0,p1);
+
+ f= (e2[a1]*e1[a2]-e2[a2]*e1[a1]);
+ if ((f > -0.000001) && (f < 0.000001)) return 0;
+
+ v= (p[a2]*e1[a1]-p[a1]*e1[a2])/f;
+ if ((v < 0.0)||(v > 1.0)) return 0;
+
+ f= e1[a1];
+ if((f > -0.000001) && (f < 0.000001)){
+ f= e1[a2];
+ if((f > -0.000001) && (f < 0.000001)) return 0;
+ u= (-p[a2]-v*e2[a2])/f;
+ }
+ else
+ u= (-p[a1]-v*e2[a1])/f;
+
+ if ((u < 0.0)||((u + v) > 1.0)) return 0;
+
+ *lambda = (p[a0]+u*e1[a0]+v*e2[a0])/(p2[a0]-p1[a0]);
+
+ if ((*lambda < 0.0)||(*lambda > 1.0)) return 0;
+
+ return 1;
+}
+
+/* Returns the number of point of interests
+ * 0 - lines are colinear
+ * 1 - lines are coplanar, i1 is set to intersection
+ * 2 - i1 and i2 are the nearest points on line 1 (v1, v2) and line 2 (v3, v4) respectively
+ * */
+int LineIntersectLine(float v1[3], float v2[3], float v3[3], float v4[3], float i1[3], float i2[3])
+{
+ float a[3], b[3], c[3], ab[3], cb[3], dir1[3], dir2[3];
+ float d;
+
+ VecSubf(c, v3, v1);
+ VecSubf(a, v2, v1);
+ VecSubf(b, v4, v3);
+
+ VecCopyf(dir1, a);
+ Normalize(dir1);
+ VecCopyf(dir2, b);
+ Normalize(dir2);
+ d = Inpf(dir1, dir2);
+ if (d == 1.0f || d == -1.0f) {
+ /* colinear */
+ return 0;
+ }
+
+ Crossf(ab, a, b);
+ d = Inpf(c, ab);
+
+ /* test if the two lines are coplanar */
+ if (d > -0.000001f && d < 0.000001f) {
+ Crossf(cb, c, b);
+
+ VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
+ VecAddf(i1, v1, a);
+ VecCopyf(i2, i1);
+
+ return 1; /* one intersection only */
+ }
+ /* if not */
+ else {
+ float n[3], t[3];
+ float v3t[3], v4t[3];
+ VecSubf(t, v1, v3);
+
+ /* offset between both plane where the lines lies */
+ Crossf(n, a, b);
+ Projf(t, t, n);
+
+ /* for the first line, offset the second line until it is coplanar */
+ VecAddf(v3t, v3, t);
+ VecAddf(v4t, v4, t);
+
+ VecSubf(c, v3t, v1);
+ VecSubf(a, v2, v1);
+ VecSubf(b, v4t, v3t);
+
+ Crossf(ab, a, b);
+ Crossf(cb, c, b);
+
+ VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
+ VecAddf(i1, v1, a);
+
+ /* for the second line, just substract the offset from the first intersection point */
+ VecSubf(i2, i1, t);
+
+ return 2; /* two nearest points */
+ }
+}
+
+/* Intersection point strictly between the two lines
+ * 0 when no intersection is found
+ * */
+int LineIntersectLineStrict(float v1[3], float v2[3], float v3[3], float v4[3], float vi[3], float *lambda)
+{
+ float a[3], b[3], c[3], ab[3], cb[3], ca[3], dir1[3], dir2[3];
+ float d;
+ float d1;
+
+ VecSubf(c, v3, v1);
+ VecSubf(a, v2, v1);
+ VecSubf(b, v4, v3);
+
+ VecCopyf(dir1, a);
+ Normalize(dir1);
+ VecCopyf(dir2, b);
+ Normalize(dir2);
+ d = Inpf(dir1, dir2);
+ if (d == 1.0f || d == -1.0f || d == 0) {
+ /* colinear or one vector is zero-length*/
+ return 0;
+ }
+
+ d1 = d;
+
+ Crossf(ab, a, b);
+ d = Inpf(c, ab);
+
+ /* test if the two lines are coplanar */
+ if (d > -0.000001f && d < 0.000001f) {
+ float f1, f2;
+ Crossf(cb, c, b);
+ Crossf(ca, c, a);
+
+ f1 = Inpf(cb, ab) / Inpf(ab, ab);
+ f2 = Inpf(ca, ab) / Inpf(ab, ab);
+
+ if (f1 >= 0 && f1 <= 1 &&
+ f2 >= 0 && f2 <= 1)
+ {
+ VecMulf(a, f1);
+ VecAddf(vi, v1, a);
+
+ if (lambda != NULL)
+ {
+ *lambda = f1;
+ }
+
+ return 1; /* intersection found */
+ }
+ else
+ {
+ return 0;
+ }
+ }
+ else
+ {
+ return 0;
+ }
+}
+
+int AabbIntersectAabb(float min1[3], float max1[3], float min2[3], float max2[3])
+{
+ return (min1[0]<max2[0] && min1[1]<max2[1] && min1[2]<max2[2] &&
+ min2[0]<max1[0] && min2[1]<max1[1] && min2[2]<max1[2]);
+}
+
+/* find closest point to p on line through l1,l2 and return lambda,
+ * where (0 <= lambda <= 1) when cp is in the line segement l1,l2
+ */
+float lambda_cp_line_ex(float p[3], float l1[3], float l2[3], float cp[3])
+{
+ float h[3],u[3],lambda;
+ VecSubf(u, l2, l1);
+ VecSubf(h, p, l1);
+ lambda =Inpf(u,h)/Inpf(u,u);
+ cp[0] = l1[0] + u[0] * lambda;
+ cp[1] = l1[1] + u[1] * lambda;
+ cp[2] = l1[2] + u[2] * lambda;
+ return lambda;
+}
+
+#if 0
+/* little sister we only need to know lambda */
+static float lambda_cp_line(float p[3], float l1[3], float l2[3])
+{
+ float h[3],u[3];
+ VecSubf(u, l2, l1);
+ VecSubf(h, p, l1);
+ return(Inpf(u,h)/Inpf(u,u));
+}
+#endif
+
+/* useful to calculate an even width shell, by taking the angle between 2 planes.
+ * The return value is a scale on the offset.
+ * no angle between planes is 1.0, as the angle between the 2 planes approches 180d
+ * the distance gets very high, 180d would be inf, but this case isn't valid */
+float AngleToLength(const float angle)
+{
+ return (angle < SMALL_NUMBER) ? 1.0f : fabsf(1.0f / cosf(angle * (M_PI/180.0f)));
+}
+
+/* Similar to LineIntersectsTriangleUV, except it operates on a quad and in 2d, assumes point is in quad */
+void PointInQuad2DUV(float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv)
+{
+ float x0,y0, x1,y1, wtot, v2d[2], w1, w2;
+
+ /* used for paralelle lines */
+ float pt3d[3], l1[3], l2[3], pt_on_line[3];
+
+ /* compute 2 edges of the quad intersection point */
+ if (IsectLLPt2Df(v0[0],v0[1],v1[0],v1[1], v2[0],v2[1],v3[0],v3[1], &x0,&y0) == 1) {
+ /* the intersection point between the quad-edge intersection and the point in the quad we want the uv's for */
+ /* should never be paralle !! */
+ /*printf("\tnot paralelle 1\n");*/
+ IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v3[0],v3[1], &x1,&y1);
+
+ /* Get the weights from the new intersection point, to each edge */
+ v2d[0] = x1-v0[0];
+ v2d[1] = y1-v0[1];
+ w1 = Vec2Length(v2d);
+
+ v2d[0] = x1-v3[0]; /* some but for the other vert */
+ v2d[1] = y1-v3[1];
+ w2 = Vec2Length(v2d);
+ wtot = w1+w2;
+ /*w1 = w1/wtot;*/
+ /*w2 = w2/wtot;*/
+ uv[0] = w1/wtot;
+ } else {
+ /* lines are paralelle, lambda_cp_line_ex is 3d grrr */
+ /*printf("\tparalelle1\n");*/
+ pt3d[0] = pt[0];
+ pt3d[1] = pt[1];
+ pt3d[2] = l1[2] = l2[2] = 0.0f;
+
+ l1[0] = v0[0]; l1[1] = v0[1];
+ l2[0] = v1[0]; l2[1] = v1[1];
+ lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
+ v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
+ v2d[1] = pt[1]-pt_on_line[1];
+ w1 = Vec2Length(v2d);
+
+ l1[0] = v2[0]; l1[1] = v2[1];
+ l2[0] = v3[0]; l2[1] = v3[1];
+ lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
+ v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
+ v2d[1] = pt[1]-pt_on_line[1];
+ w2 = Vec2Length(v2d);
+ wtot = w1+w2;
+ uv[0] = w1/wtot;
+ }
+
+ /* Same as above to calc the uv[1] value, alternate calculation */
+
+ if (IsectLLPt2Df(v0[0],v0[1],v3[0],v3[1], v1[0],v1[1],v2[0],v2[1], &x0,&y0) == 1) { /* was v0,v1 v2,v3 now v0,v3 v1,v2*/
+ /* never paralle if above was not */
+ /*printf("\tnot paralelle2\n");*/
+ IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v1[0],v1[1], &x1,&y1);/* was v0,v3 now v0,v1*/
+
+ v2d[0] = x1-v0[0];
+ v2d[1] = y1-v0[1];
+ w1 = Vec2Length(v2d);
+
+ v2d[0] = x1-v1[0];
+ v2d[1] = y1-v1[1];
+ w2 = Vec2Length(v2d);
+ wtot = w1+w2;
+ uv[1] = w1/wtot;
+ } else {
+ /* lines are paralelle, lambda_cp_line_ex is 3d grrr */
+ /*printf("\tparalelle2\n");*/
+ pt3d[0] = pt[0];
+ pt3d[1] = pt[1];
+ pt3d[2] = l1[2] = l2[2] = 0.0f;
+
+
+ l1[0] = v0[0]; l1[1] = v0[1];
+ l2[0] = v3[0]; l2[1] = v3[1];
+ lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
+ v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
+ v2d[1] = pt[1]-pt_on_line[1];
+ w1 = Vec2Length(v2d);
+
+ l1[0] = v1[0]; l1[1] = v1[1];
+ l2[0] = v2[0]; l2[1] = v2[1];
+ lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
+ v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
+ v2d[1] = pt[1]-pt_on_line[1];
+ w2 = Vec2Length(v2d);
+ wtot = w1+w2;
+ uv[1] = w1/wtot;
+ }
+ /* may need to flip UV's here */
+}
+
+/* same as above but does tri's and quads, tri's are a bit of a hack */
+void PointInFace2DUV(int isquad, float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv)
+{
+ if (isquad) {
+ PointInQuad2DUV(v0, v1, v2, v3, pt, uv);
+ }
+ else {
+ /* not for quads, use for our abuse of LineIntersectsTriangleUV */
+ float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3], lambda;
+
+ p1_3d[0] = p2_3d[0] = uv[0];
+ p1_3d[1] = p2_3d[1] = uv[1];
+ p1_3d[2] = 1.0f;
+ p2_3d[2] = -1.0f;
+ v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
+
+ /* generate a new fuv, (this is possibly a non optimal solution,
+ * since we only need 2d calculation but use 3d func's)
+ *
+ * this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
+ * Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
+ * This means the new values will be correct in relation to the derived meshes face.
+ */
+ Vec2Copyf(v0_3d, v0);
+ Vec2Copyf(v1_3d, v1);
+ Vec2Copyf(v2_3d, v2);
+
+ /* Doing this in 3D is not nice */
+ LineIntersectsTriangle(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
+ }
+}
+
+int IsPointInTri2D(float v1[2], float v2[2], float v3[2], float pt[2])
+{
+ float inp1, inp2, inp3;
+
+ inp1= (v2[0]-v1[0])*(v1[1]-pt[1]) + (v1[1]-v2[1])*(v1[0]-pt[0]);
+ inp2= (v3[0]-v2[0])*(v2[1]-pt[1]) + (v2[1]-v3[1])*(v2[0]-pt[0]);
+ inp3= (v1[0]-v3[0])*(v3[1]-pt[1]) + (v3[1]-v1[1])*(v3[0]-pt[0]);
+
+ if(inp1<=0.0f && inp2<=0.0f && inp3<=0.0f) return 1;
+ if(inp1>=0.0f && inp2>=0.0f && inp3>=0.0f) return 1;
+
+ return 0;
+}
+
+#if 0
+int IsPointInTri2D(float v0[2], float v1[2], float v2[2], float pt[2])
+{
+ /* not for quads, use for our abuse of LineIntersectsTriangleUV */
+ float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3];
+ /* not used */
+ float lambda, uv[3];
+
+ p1_3d[0] = p2_3d[0] = uv[0]= pt[0];
+ p1_3d[1] = p2_3d[1] = uv[1]= uv[2]= pt[1];
+ p1_3d[2] = 1.0f;
+ p2_3d[2] = -1.0f;
+ v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
+
+ /* generate a new fuv, (this is possibly a non optimal solution,
+ * since we only need 2d calculation but use 3d func's)
+ *
+ * this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
+ * Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
+ * This means the new values will be correct in relation to the derived meshes face.
+ */
+ Vec2Copyf(v0_3d, v0);
+ Vec2Copyf(v1_3d, v1);
+ Vec2Copyf(v2_3d, v2);
+
+ /* Doing this in 3D is not nice */
+ return LineIntersectsTriangle(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
+}
+#endif
+
+/*
+
+ x1,y2
+ | \
+ | \ .(a,b)
+ | \
+ x1,y1-- x2,y1
+
+*/
+int IsPointInTri2DInts(int x1, int y1, int x2, int y2, int a, int b)
+{
+ float v1[2], v2[2], v3[2], p[2];
+
+ v1[0]= (float)x1;
+ v1[1]= (float)y1;
+
+ v2[0]= (float)x1;
+ v2[1]= (float)y2;
+
+ v3[0]= (float)x2;
+ v3[1]= (float)y1;
+
+ p[0]= (float)a;
+ p[1]= (float)b;
+
+ return IsPointInTri2D(v1, v2, v3, p);
+
+}
+
+/* (x1,v1)(t1=0)------(x2,v2)(t2=1), 0<t<1 --> (x,v)(t) */
+void VecfCubicInterpol(float *x1, float *v1, float *x2, float *v2, float t, float *x, float *v)
+{
+ float a[3],b[3];
+ float t2= t*t;
+ float t3= t2*t;
+
+ /* cubic interpolation */
+ a[0]= v1[0] + v2[0] + 2*(x1[0] - x2[0]);
+ a[1]= v1[1] + v2[1] + 2*(x1[1] - x2[1]);
+ a[2]= v1[2] + v2[2] + 2*(x1[2] - x2[2]);
+
+ b[0]= -2*v1[0] - v2[0] - 3*(x1[0] - x2[0]);
+ b[1]= -2*v1[1] - v2[1] - 3*(x1[1] - x2[1]);
+ b[2]= -2*v1[2] - v2[2] - 3*(x1[2] - x2[2]);
+
+ x[0]= a[0]*t3 + b[0]*t2 + v1[0]*t + x1[0];
+ x[1]= a[1]*t3 + b[1]*t2 + v1[1]*t + x1[1];
+ x[2]= a[2]*t3 + b[2]*t2 + v1[2]*t + x1[2];
+
+ v[0]= 3*a[0]*t2 + 2*b[0]*t + v1[0];
+ v[1]= 3*a[1]*t2 + 2*b[1]*t + v1[1];
+ v[2]= 3*a[2]*t2 + 2*b[2]*t + v1[2];
+}
+
+static int point_in_slice(float p[3], float v1[3], float l1[3], float l2[3])
+{
+/*
+what is a slice ?
+some maths:
+a line including l1,l2 and a point not on the line
+define a subset of R3 delimeted by planes parallel to the line and orthogonal
+to the (point --> line) distance vector,one plane on the line one on the point,
+the room inside usually is rather small compared to R3 though still infinte
+useful for restricting (speeding up) searches
+e.g. all points of triangular prism are within the intersection of 3 'slices'
+onother trivial case : cube
+but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too
+*/
+ float h,rp[3],cp[3],q[3];
+
+ lambda_cp_line_ex(v1,l1,l2,cp);
+ VecSubf(q,cp,v1);
+
+ VecSubf(rp,p,v1);
+ h=Inpf(q,rp)/Inpf(q,q);
+ if (h < 0.0f || h > 1.0f) return 0;
+ return 1;
+}
+
+#if 0
+/*adult sister defining the slice planes by the origin and the normal
+NOTE |normal| may not be 1 but defining the thickness of the slice*/
+static int point_in_slice_as(float p[3],float origin[3],float normal[3])
+{
+ float h,rp[3];
+ VecSubf(rp,p,origin);
+ h=Inpf(normal,rp)/Inpf(normal,normal);
+ if (h < 0.0f || h > 1.0f) return 0;
+ return 1;
+}
+
+/*mama (knowing the squared lenght of the normal)*/
+static int point_in_slice_m(float p[3],float origin[3],float normal[3],float lns)
+{
+ float h,rp[3];
+ VecSubf(rp,p,origin);
+ h=Inpf(normal,rp)/lns;
+ if (h < 0.0f || h > 1.0f) return 0;
+ return 1;
+}
+#endif
+
+
+int point_in_tri_prism(float p[3], float v1[3], float v2[3], float v3[3])
+{
+ if(!point_in_slice(p,v1,v2,v3)) return 0;
+ if(!point_in_slice(p,v2,v3,v1)) return 0;
+ if(!point_in_slice(p,v3,v1,v2)) return 0;
+ return 1;
+}
+
+/* point closest to v1 on line v2-v3 in 3D */
+void PclosestVL3Dfl(float *closest, float v1[3], float v2[3], float v3[3])
+{
+ float lambda, cp[3];
+
+ lambda= lambda_cp_line_ex(v1, v2, v3, cp);
+
+ if(lambda <= 0.0f)
+ VecCopyf(closest, v2);
+ else if(lambda >= 1.0f)
+ VecCopyf(closest, v3);
+ else
+ VecCopyf(closest, cp);
+}
+
+/* distance v1 to line-piece v2-v3 in 3D */
+float PdistVL3Dfl(float *v1, float *v2, float *v3)
+{
+ float closest[3];
+
+ PclosestVL3Dfl(closest, v1, v2, v3);
+
+ return VecLenf(closest, v1);
+}
+
+/********************************************************/
+
+/* make a 4x4 matrix out of 3 transform components */
+/* matrices are made in the order: scale * rot * loc */
+// TODO: need to have a version that allows for rotation order...
+void LocEulSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3])
+{
+ float rmat[3][3], smat[3][3], tmat[3][3];
+
+ /* initialise new matrix */
+ Mat4One(mat);
+
+ /* make rotation + scaling part */
+ EulToMat3(eul, rmat);
+ SizeToMat3(size, smat);
+ Mat3MulMat3(tmat, rmat, smat);
+
+ /* copy rot/scale part to output matrix*/
+ Mat4CpyMat3(mat, tmat);
+
+ /* copy location to matrix */
+ mat[3][0] = loc[0];
+ mat[3][1] = loc[1];
+ mat[3][2] = loc[2];
+}
+
+/* make a 4x4 matrix out of 3 transform components */
+/* matrices are made in the order: scale * rot * loc */
+void LocEulOSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3], short rotOrder)
+{
+ float rmat[3][3], smat[3][3], tmat[3][3];
+
+ /* initialise new matrix */
+ Mat4One(mat);
+
+ /* make rotation + scaling part */
+ EulOToMat3(eul, rotOrder, rmat);
+ SizeToMat3(size, smat);
+ Mat3MulMat3(tmat, rmat, smat);
+
+ /* copy rot/scale part to output matrix*/
+ Mat4CpyMat3(mat, tmat);
+
+ /* copy location to matrix */
+ mat[3][0] = loc[0];
+ mat[3][1] = loc[1];
+ mat[3][2] = loc[2];
+}
+
+
+/* make a 4x4 matrix out of 3 transform components */
+/* matrices are made in the order: scale * rot * loc */
+void LocQuatSizeToMat4(float mat[4][4], float loc[3], float quat[4], float size[3])
+{
+ float rmat[3][3], smat[3][3], tmat[3][3];
+
+ /* initialise new matrix */
+ Mat4One(mat);
+
+ /* make rotation + scaling part */
+ QuatToMat3(quat, rmat);
+ SizeToMat3(size, smat);
+ Mat3MulMat3(tmat, rmat, smat);
+
+ /* copy rot/scale part to output matrix*/
+ Mat4CpyMat3(mat, tmat);
+
+ /* copy location to matrix */
+ mat[3][0] = loc[0];
+ mat[3][1] = loc[1];
+ mat[3][2] = loc[2];
+}
+
+/********************************************************/
+
+/* Tangents */
+
+/* For normal map tangents we need to detect uv boundaries, and only average
+ * tangents in case the uvs are connected. Alternative would be to store 1
+ * tangent per face rather than 4 per face vertex, but that's not compatible
+ * with games */
+
+
+/* from BKE_mesh.h */
+#define STD_UV_CONNECT_LIMIT 0.0001f
+
+void sum_or_add_vertex_tangent(void *arena, VertexTangent **vtang, float *tang, float *uv)
+{
+ VertexTangent *vt;
+
+ /* find a tangent with connected uvs */
+ for(vt= *vtang; vt; vt=vt->next) {
+ if(fabs(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabs(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT) {
+ VecAddf(vt->tang, vt->tang, tang);
+ return;
+ }
+ }
+
+ /* if not found, append a new one */
+ vt= BLI_memarena_alloc((MemArena *)arena, sizeof(VertexTangent));
+ VecCopyf(vt->tang, tang);
+ vt->uv[0]= uv[0];
+ vt->uv[1]= uv[1];
+
+ if(*vtang)
+ vt->next= *vtang;
+ *vtang= vt;
+}
+
+float *find_vertex_tangent(VertexTangent *vtang, float *uv)
+{
+ VertexTangent *vt;
+ static float nulltang[3] = {0.0f, 0.0f, 0.0f};
+
+ for(vt= vtang; vt; vt=vt->next)
+ if(fabs(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabs(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT)
+ return vt->tang;
+
+ return nulltang; /* shouldn't happen, except for nan or so */
+}
+
+void tangent_from_uv(float *uv1, float *uv2, float *uv3, float *co1, float *co2, float *co3, float *n, float *tang)
+{
+ float tangv[3], ct[3], e1[3], e2[3], s1, t1, s2, t2, det;
+
+ s1= uv2[0] - uv1[0];
+ s2= uv3[0] - uv1[0];
+ t1= uv2[1] - uv1[1];
+ t2= uv3[1] - uv1[1];
+ det= 1.0f / (s1 * t2 - s2 * t1);
+
+ /* normals in render are inversed... */
+ VecSubf(e1, co1, co2);
+ VecSubf(e2, co1, co3);
+ tang[0] = (t2*e1[0] - t1*e2[0])*det;
+ tang[1] = (t2*e1[1] - t1*e2[1])*det;
+ tang[2] = (t2*e1[2] - t1*e2[2])*det;
+ tangv[0] = (s1*e2[0] - s2*e1[0])*det;
+ tangv[1] = (s1*e2[1] - s2*e1[1])*det;
+ tangv[2] = (s1*e2[2] - s2*e1[2])*det;
+ Crossf(ct, tang, tangv);
+
+ /* check flip */
+ if ((ct[0]*n[0] + ct[1]*n[1] + ct[2]*n[2]) < 0.0f)
+ VecNegf(tang);
+}
+
+/* used for zoom values*/
+float power_of_2(float val) {
+ return (float)pow(2, ceil(log(val) / log(2)));
+}
diff --git a/source/blender/blenlib/intern/edgehash.c b/source/blender/blenlib/intern/edgehash.c
index 603c85655d7..5b98c3194bc 100644
--- a/source/blender/blenlib/intern/edgehash.c
+++ b/source/blender/blenlib/intern/edgehash.c
@@ -22,7 +22,7 @@
*
* The Original Code is: none of this file.
*
- * Contributor(s): Daniel Dunbar
+ * Contributor(s): Daniel Dunbar, Joseph Eagar
*
* ***** END GPL LICENSE BLOCK *****
* A general (pointer -> pointer) hash table ADT
@@ -33,112 +33,20 @@
#include "MEM_guardedalloc.h"
#include "BLI_edgehash.h"
-
-/***/
-
-static unsigned int hashsizes[]= {
- 1, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209,
- 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169,
- 4194319, 8388617, 16777259, 33554467, 67108879, 134217757,
- 268435459
-};
-
-#define EDGEHASH(v0,v1) ((v0*39)^(v1*31))
-
-/***/
-
-typedef struct Entry Entry;
-struct Entry {
- Entry *next;
- int v0, v1;
- void *val;
-};
-
-struct EdgeHash {
- Entry **buckets;
- int nbuckets, nentries, cursize;
-};
+#include "BLI_mempool.h"
/***/
EdgeHash *BLI_edgehash_new(void) {
- EdgeHash *eh= MEM_mallocN(sizeof(*eh), "EdgeHash");
+ EdgeHash *eh= MEM_callocN(sizeof(*eh), "EdgeHash");
eh->cursize= 0;
eh->nentries= 0;
- eh->nbuckets= hashsizes[eh->cursize];
-
- eh->buckets= malloc(eh->nbuckets*sizeof(*eh->buckets));
- memset(eh->buckets, 0, eh->nbuckets*sizeof(*eh->buckets));
+ eh->nbuckets= _ehash_hashsizes[eh->cursize];
- return eh;
-}
-
-void BLI_edgehash_insert(EdgeHash *eh, int v0, int v1, void *val) {
- unsigned int hash;
- Entry *e= malloc(sizeof(*e));
+ eh->buckets= MEM_callocN(eh->nbuckets*sizeof(*eh->buckets), "eh buckets 2");
+ eh->epool = BLI_mempool_create(sizeof(EdgeEntry), 512, 512);
- if (v1<v0) {
- v0 ^= v1;
- v1 ^= v0;
- v0 ^= v1;
- }
- hash = EDGEHASH(v0,v1)%eh->nbuckets;
-
- e->v0 = v0;
- e->v1 = v1;
- e->val = val;
- e->next= eh->buckets[hash];
- eh->buckets[hash]= e;
-
- if (++eh->nentries>eh->nbuckets*3) {
- Entry *e, **old= eh->buckets;
- int i, nold= eh->nbuckets;
-
- eh->nbuckets= hashsizes[++eh->cursize];
- eh->buckets= malloc(eh->nbuckets*sizeof(*eh->buckets));
- memset(eh->buckets, 0, eh->nbuckets*sizeof(*eh->buckets));
-
- for (i=0; i<nold; i++) {
- for (e= old[i]; e;) {
- Entry *n= e->next;
-
- hash= EDGEHASH(e->v0,e->v1)%eh->nbuckets;
- e->next= eh->buckets[hash];
- eh->buckets[hash]= e;
-
- e= n;
- }
- }
-
- free(old);
- }
-}
-
-void** BLI_edgehash_lookup_p(EdgeHash *eh, int v0, int v1) {
- unsigned int hash;
- Entry *e;
-
- if (v1<v0) {
- v0 ^= v1;
- v1 ^= v0;
- v0 ^= v1;
- }
- hash = EDGEHASH(v0,v1)%eh->nbuckets;
- for (e= eh->buckets[hash]; e; e= e->next)
- if (v0==e->v0 && v1==e->v1)
- return &e->val;
-
- return NULL;
-}
-
-void* BLI_edgehash_lookup(EdgeHash *eh, int v0, int v1) {
- void **value_p = BLI_edgehash_lookup_p(eh,v0,v1);
-
- return value_p?*value_p:NULL;
-}
-
-int BLI_edgehash_haskey(EdgeHash *eh, int v0, int v1) {
- return BLI_edgehash_lookup_p(eh, v0, v1)!=NULL;
+ return eh;
}
int BLI_edgehash_size(EdgeHash *eh) {
@@ -149,13 +57,13 @@ void BLI_edgehash_clear(EdgeHash *eh, EdgeHashFreeFP valfreefp) {
int i;
for (i=0; i<eh->nbuckets; i++) {
- Entry *e;
+ EdgeEntry *e;
for (e= eh->buckets[i]; e; ) {
- Entry *n= e->next;
+ EdgeEntry *n= e->next;
if (valfreefp) valfreefp(e->val);
- free(e);
+ BLI_mempool_free(eh->epool, e);
e= n;
}
@@ -167,8 +75,10 @@ void BLI_edgehash_clear(EdgeHash *eh, EdgeHashFreeFP valfreefp) {
void BLI_edgehash_free(EdgeHash *eh, EdgeHashFreeFP valfreefp) {
BLI_edgehash_clear(eh, valfreefp);
-
- free(eh->buckets);
+
+ BLI_mempool_destroy(eh->epool);
+
+ MEM_freeN(eh->buckets);
MEM_freeN(eh);
}
@@ -178,11 +88,11 @@ void BLI_edgehash_free(EdgeHash *eh, EdgeHashFreeFP valfreefp) {
struct EdgeHashIterator {
EdgeHash *eh;
int curBucket;
- Entry *curEntry;
+ EdgeEntry *curEntry;
};
EdgeHashIterator *BLI_edgehashIterator_new(EdgeHash *eh) {
- EdgeHashIterator *ehi= malloc(sizeof(*ehi));
+ EdgeHashIterator *ehi= MEM_mallocN(sizeof(*ehi), "eh iter");
ehi->eh= eh;
ehi->curEntry= NULL;
ehi->curBucket= -1;
@@ -195,7 +105,7 @@ EdgeHashIterator *BLI_edgehashIterator_new(EdgeHash *eh) {
return ehi;
}
void BLI_edgehashIterator_free(EdgeHashIterator *ehi) {
- free(ehi);
+ MEM_freeN(ehi);
}
void BLI_edgehashIterator_getKey(EdgeHashIterator *ehi, int *v0_r, int *v1_r) {
diff --git a/source/blender/blenlib/intern/scanfill.c b/source/blender/blenlib/intern/scanfill.c
index bd9ed85efa2..df7d608027b 100644
--- a/source/blender/blenlib/intern/scanfill.c
+++ b/source/blender/blenlib/intern/scanfill.c
@@ -31,6 +31,7 @@
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
+#include <string.h>
#include "MEM_guardedalloc.h"
@@ -44,6 +45,8 @@
#include "BLI_scanfill.h"
#include "BLI_callbacks.h"
+#include "BKE_utildefines.h"
+
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
@@ -152,7 +155,7 @@ static void *new_mem_element(int size)
{
int blocksize= 16384;
static int offs= 0; /* the current free adress */
- static struct mem_elements *cur= 0;
+ static struct mem_elements *cur= 0, *first;
static ListBase lb= {0, 0};
void *adr;
@@ -160,6 +163,10 @@ static void *new_mem_element(int size)
printf("incorrect use of new_mem_element\n");
}
else if(size== -1) {
+ /*keep the first block*/
+ first = lb.first;
+ BLI_remlink(&lb, first);
+
cur= lb.first;
while(cur) {
MEM_freeN(cur->data);
@@ -167,6 +174,12 @@ static void *new_mem_element(int size)
}
BLI_freelistN(&lb);
+ /*reset the block we're keeping*/
+ BLI_addtail(&lb, first);
+ memset(first->data, 0, blocksize);
+ cur = first;
+ offs = 0;
+
return NULL;
}
@@ -768,6 +781,7 @@ int BLI_edgefill(int mode, int mat_nr)
- struct elements xs en ys are not used here: don't hide stuff in it
- edge flag ->f becomes 2 when it's a new edge
- mode: & 1 is check for crossings, then create edges (TO DO )
+ - mode: & 2 is enable shortest diagonal test for quads
*/
ListBase tempve, temped;
EditVert *eve;
@@ -778,11 +792,42 @@ int BLI_edgefill(int mode, int mat_nr)
/* reset variables */
eve= fillvertbase.first;
+ a = 0;
while(eve) {
eve->f= 0;
eve->xs= 0;
eve->h= 0;
eve= eve->next;
+ a += 1;
+ }
+
+ if (a == 3) {
+ eve = fillvertbase.first;
+
+ addfillface(eve, eve->next, eve->next->next, 0);
+ return 1;
+ } else if (a == 4) {
+ float vec1[3], vec2[3];
+
+ eve = fillvertbase.first;
+
+ if (mode & 2) {
+ /*use shortest diagonal for quad*/
+ VecSubf(vec1, eve->co, eve->next->next->co);
+ VecSubf(vec2, eve->next->co, eve->next->next->next->co);
+
+ if (INPR(vec1, vec1) < INPR(vec2, vec2)) {
+ addfillface(eve, eve->next, eve->next->next, 0);
+ addfillface(eve->next->next, eve->next->next->next, eve, 0);
+ } else{
+ addfillface(eve->next, eve->next->next, eve->next->next->next, 0);
+ addfillface(eve->next->next->next, eve, eve->next, 0);
+ }
+ } else {
+ addfillface(eve, eve->next, eve->next->next, 0);
+ addfillface(eve->next->next, eve->next->next->next, eve, 0);
+ }
+ return 1;
}
/* first test vertices if they are in edges */