Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/bmesh/intern/bmesh_eulers.c')
-rw-r--r--source/blender/bmesh/intern/bmesh_eulers.c1208
1 files changed, 1208 insertions, 0 deletions
diff --git a/source/blender/bmesh/intern/bmesh_eulers.c b/source/blender/bmesh/intern/bmesh_eulers.c
new file mode 100644
index 00000000000..25b4ee846a0
--- /dev/null
+++ b/source/blender/bmesh/intern/bmesh_eulers.c
@@ -0,0 +1,1208 @@
+/*some of this may come back, such as split face or split edge, if necassary for speed*/
+
+#if 0
+/**
+ * bmesh_eulers.c jan 2007
+ *
+ * BM Euler construction API.
+ *
+ * $Id: bmesh_eulers.c,v 1.00 2007/01/17 17:42:01 Briggs Exp $
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2004 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Geoffrey Bantle.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "MEM_guardedalloc.h"
+
+#include "DNA_listBase.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_mesh_types.h"
+
+#include "BKE_customdata.h"
+#include "BKE_utildefines.h"
+
+#include "bmesh.h"
+#include "bmesh_private.h"
+
+#include "BLI_blenlib.h"
+#include "BLI_ghash.h"
+
+/*********************************************************
+ * "Euler API" *
+ * *
+ * *
+ * Primitive construction operators for mesh tools. *
+ * *
+ **********************************************************/
+
+
+/*
+ The functions in this file represent the 'primitive' or 'atomic' operators that
+ mesh tools use to manipulate the topology of the structure.* The purpose of these
+ functions is to provide a trusted set of operators to manipulate the mesh topology
+ and which can also be combined together like building blocks to create more
+ sophisticated tools. It needs to be stressed that NO manipulation of an existing
+ mesh structure should be done outside of these functions.
+
+ In the BM system, each euler is named by an ancronym which describes what it actually does.
+ Furthermore each Euler has a logical inverse. An important design criteria of all Eulers is that
+ through a Euler's logical inverse you can 'undo' an operation. (Special note should
+ be taken of bmesh_loop_reverse, which is its own inverse).
+
+ bmesh_MF/KF: Make Face and Kill Face
+ bmesh_ME/KE: Make Edge and Kill Edge
+ bmesh_MV/KV: Make Vert and Kill Vert
+ bmesh_SEMV/JEKV: Split Edge, Make Vert and Join Edge, Kill Vert
+ bmesh_SFME/JFKE: Split Face, Make Edge and Join Face, Kill Edge
+ bmesh_loop_reverse: Reverse a Polygon's loop cycle. (used for flip normals for one)
+
+ Using a combination of these eleven eulers any non-manifold modelling operation can be achieved.
+ Each Euler operator has a detailed explanation of what is does in the comments preceding its
+ code.
+
+ *The term "Euler Operator" is actually a misnomer when referring to a non-manifold
+ data structure. Its use is in keeping with the convention established by others.
+
+ BMESH_TODO:
+ -Make seperate 'debug levels' of validation
+ -Add in the UnglueFaceRegionMakeVert and GlueFaceRegionKillVert eulers.
+
+ NOTE:
+ -The functions in this file are notoriously difficult to debug and even understand sometimes.
+ better code comments would be nice....
+
+*/
+
+
+/*MAKE Eulers*/
+
+/**
+ * bmesh_MV
+ *
+ * MAKE VERT EULER:
+ *
+ * Makes a single loose vertex.
+ *
+ * Returns -
+ * A BMVert pointer.
+ */
+
+BMVert *bmesh_mv(BMesh *bm, float *vec){
+ BMVert *v = bmesh_addvertlist(bm, NULL);
+ VECCOPY(v->co,vec);
+ return v;
+}
+
+/**
+ * bmesh_ME
+ *
+ * MAKE EDGE EULER:
+ *
+ * Makes a single wire edge between two vertices.
+ * If the caller does not want there to be duplicate
+ * edges between the vertices, it is up to them to check
+ * for this condition beforehand.
+ *
+ * Returns -
+ * A BMEdge pointer.
+ */
+
+BMEdge *bmesh_me(BMesh *bm, BMVert *v1, BMVert *v2){
+ BMEdge *e=NULL;
+ BMNode *d1=NULL, *d2=NULL;
+ int valance1=0, valance2=0, edok;
+
+ /*edge must be between two distinct vertices...*/
+ if(v1 == v2) return NULL;
+
+ #ifndef bmesh_FASTEULER
+ /*count valance of v1*/
+ if(v1->e){
+ d1 = bmesh_disk_getpointer(v1->e,v1);
+ if(d1) valance1 = bmesh_cycle_length(d1);
+ else bmesh_error();
+ }
+ if(v2->e){
+ d2 = bmesh_disk_getpointer(v2->e,v2);
+ if(d2) valance2 = bmesh_cycle_length(d2);
+ else bmesh_error();
+ }
+ #endif
+
+ /*go ahead and add*/
+ e = bmesh_addedgelist(bm, v1, v2, NULL);
+ bmesh_disk_append_edge(e, e->v1);
+ bmesh_disk_append_edge(e, e->v2);
+
+ #ifndef bmesh_FASTEULER
+ /*verify disk cycle lengths*/
+ d1 = bmesh_disk_getpointer(e, e->v1);
+ edok = bmesh_cycle_validate(valance1+1, d1);
+ if(!edok) bmesh_error();
+ d2 = bmesh_disk_getpointer(e, e->v2);
+ edok = bmesh_cycle_validate(valance2+1, d2);
+ if(!edok) bmesh_error();
+
+ /*verify that edge actually made it into the cycle*/
+ edok = bmesh_disk_hasedge(v1, e);
+ if(!edok) bmesh_error();
+ edok = bmesh_disk_hasedge(v2, e);
+ if(!edok) bmesh_error();
+ #endif
+ return e;
+}
+
+
+
+/**
+ * bmesh_MF
+ *
+ * MAKE FACE EULER:
+ * Takes a list of edge pointers which form a closed loop and makes a face
+ * from them. The first edge in elist is considered to be the start of the
+ * polygon, and v1 and v2 are its vertices and determine the winding of the face
+ * Other than the first edge, no other assumptions are made about the order of edges
+ * in the elist array. To verify that it is a single closed loop and derive the correct
+ * order a simple series of verifications is done and all elements are visited.
+ *
+ * Returns -
+ * A BMFace pointer
+ */
+
+#define MF_CANDIDATE 1
+#define MF_VISITED 2
+#define MF_TAKEN 4
+
+BMFace *bmesh_mf(BMesh *bm, BMVert *v1, BMVert *v2, BMEdge **elist, int len)
+{
+ BMFace *f = NULL;
+ BMEdge *curedge;
+ BMVert *curvert, *tv, **vlist;
+ int i, j, done, cont, edok;
+
+ if(len < 2) return NULL;
+
+ /*make sure that v1 and v2 are in elist[0]*/
+ //if(bmesh_verts_in_edge(v1,v2,elist[0]) == 0)
+ // return NULL;
+
+ /*clear euler flags*/
+ for(i=0;i<len;i++) {
+ BMNode *diskbase;
+ BMEdge *curedge;
+ BMVert *v1;
+ int j;
+
+ for (j=0; j<2; j++) {
+ int a, len=0;
+
+ v1 = j ? elist[i]->v2 : elist[i]->v1;
+ diskbase = bmesh_disk_getpointer(v1->e, v1);
+ len = bmesh_cycle_length(diskbase);
+
+ for(a=0,curedge=v1->e;a<len;a++,curedge = bmesh_disk_nextedge(curedge,v1)){
+ curedge->head.eflag1 = curedge->head.eflag2 = 0;
+ }
+ }
+ }
+
+ for(i=0;i<len;i++){
+ elist[i]->head.eflag1 |= MF_CANDIDATE;
+
+ /*if elist[i] has a loop, count its radial length*/
+ if(elist[i]->loop) elist[i]->head.eflag2 = bmesh_cycle_length(&(elist[i]->l->radial));
+ else elist[i]->head.eflag2 = 0;
+ }
+
+ /* For each vertex in each edge, it must have exactly two MF_CANDIDATE edges attached to it
+ Note that this does not gauruntee that face is a single closed loop. At best it gauruntees
+ that elist contains a finite number of seperate closed loops.
+ */
+// for(i=0; i<len; i++){
+// edok = bmesh_disk_count_edgeflag(elist[i]->v1, MF_CANDIDATE, 0);
+// if(edok != 2) return NULL;
+// edok = bmesh_disk_count_edgeflag(elist[i]->v2, MF_CANDIDATE, 0);
+// if(edok != 2) return NULL;
+// }
+
+ /*set start edge, start vert and target vert for our loop traversal*/
+ curedge = elist[0];
+ tv = v1;
+ curvert = v2;
+
+ if(bm->vtarlen < len){
+ if (bm->vtar) MEM_freeN(bm->vtar);
+ bm->vtar = MEM_callocN(sizeof(BMVert *)* len, "BM Vert pointer array");
+ bm->vtarlen = len;
+ }
+ /*insert tv into vlist since its the first vertex in face*/
+
+ i=0;
+ vlist=bm->vtar;
+ vlist[i] = tv;
+
+ /* Basic procedure: Starting with curv we find the edge in it's disk cycle which hasn't
+ been visited yet. When we do, we put curv in a linked list and find the next MF_CANDIDATE
+ edge, loop until we find TV. We know TV is reachable because of test we did earlier.
+ */
+ done=0;
+ while(!done){
+ /*add curvert to vlist*/
+ /*insert some error cheking here for overflows*/
+ i++;
+ vlist[i] = curvert;
+
+ /*mark curedge as visited*/
+ curedge->head.eflag1 |= MF_VISITED;
+
+ /*find next edge and vert*/
+ curedge = bmesh_disk_next_edgeflag(curedge, curvert, MF_CANDIDATE, 0);
+ curvert = bmesh_edge_getothervert(curedge, curvert);
+ if(curvert == tv){
+ curedge->head.eflag1 |= MF_VISITED;
+ done=1;
+ }
+ }
+
+ /* Verify that all edges have been visited It's possible that we did reach tv
+ from sv, but that several unconnected loops were passed in via elist.
+ */
+ cont=1;
+// for(i=0; i<len; i++){
+// if((elist[i]->head.eflag1 & MF_VISITED) == 0) cont = 0;
+// }
+
+ /*if we get this far, its ok to allocate the face and add the loops*/
+ if(cont){
+ BMLoop *l;
+ BMEdge *e;
+ f = bmesh_addpolylist(bm, NULL);
+ f->len = len;
+ for(i=0;i<len;i++){
+ curvert = vlist[i];
+ l = bmesh_create_loop(bm,curvert,NULL,f,NULL);
+ if(!(f->loopbase)) f->lbase = l;
+ bmesh_cycle_append(f->lbase, l);
+ }
+
+ /*take care of edge pointers and radial cycle*/
+ for(i=0, l = f->loopbase; i<len; i++, l= l->next) {
+ e = NULL;
+ if(l == f->loopbase) e = elist[0]; /*first edge*/
+
+ else{/*search elist for others*/
+ for(j=1; j<len; j++){
+ edok = bmesh_verts_in_edge(l->v, ((l->next))->v, elist[j]);
+ if(edok){
+ e = elist[j];
+ break;
+ }
+ }
+ }
+ l->e = e; /*set pointer*/
+ bmesh_radial_append(e, l); /*append into radial*/
+ }
+
+ f->len = len;
+
+ /*Validation Loop cycle*/
+ edok = bmesh_cycle_validate(len, f->lbase);
+ if(!edok) bmesh_error();
+ for(i=0, l = f->loopbase; i<len; i++, l=((l->next))){
+ /*validate loop vert pointers*/
+ edok = bmesh_verts_in_edge(l->v, ((l->next))->v, l->e);
+ if(!edok) bmesh_error();
+ /*validate the radial cycle of each edge*/
+ edok = bmesh_cycle_length(&(l->radial));
+ if(edok != (l->e->head.eflag2 + 1)) bmesh_error();
+ }
+ }
+
+ for(i=0;i<len;i++) elist[i]->head.eflag1=elist[i]->head.eflag2 = 0;
+ return f;
+}
+
+/* KILL Eulers */
+
+/**
+ * bmesh_KV
+ *
+ * KILL VERT EULER:
+ *
+ * Kills a single loose vertex.
+ *
+ * Returns -
+ * 1 for success, 0 for failure.
+ */
+
+int bmesh_kv(BMesh *bm, BMVert *v){
+ if(v->e == NULL){
+ if (BM_TestHFlag(v, BM_SELECT)) bm->totvertsel--;
+
+ BLI_remlink(&(bm->verts), &(v->head));
+ bmesh_free_vert(bm,v);
+ return 1;
+ }
+ return 0;
+}
+
+/**
+ * bmesh_KE
+ *
+ * KILL EDGE EULER:
+ *
+ * Kills a wire edge.
+ *
+ * Returns -
+ * 1 for success, 0 for failure.
+ */
+
+int bmesh_ke(BMesh *bm, BMEdge *e){
+ int edok;
+
+ /*Make sure that no faces!*/
+ if(e->l == NULL){
+ bmesh_disk_remove_edge(e, e->v1);
+ bmesh_disk_remove_edge(e, e->v2);
+
+ /*verify that edge out of disk*/
+ edok = bmesh_disk_hasedge(e->v1, e);
+ if(edok) bmesh_error();
+ edok = bmesh_disk_hasedge(e->v2, e);
+ if(edok) bmesh_error();
+
+ /*remove and deallocate*/
+ if (BM_TestHFlag(e, BM_SELECT)) bm->totedgesel--;
+ BLI_remlink(&(bm->edges), &(e->head));
+ bmesh_free_edge(bm, e);
+ return 1;
+ }
+ return 0;
+}
+
+/**
+ * bmesh_KF
+ *
+ * KILL FACE EULER:
+ *
+ * The logical inverse of bmesh_MF.
+ * Kills a face and removes each of its loops from the radial that it belongs to.
+ *
+ * Returns -
+ * 1 for success, 0 for failure.
+*/
+
+int bmesh_kf(BMesh *bm, BMFace *bply){
+ BMLoop *newbase,*oldbase, *curloop;
+ int i,len=0;
+
+ /*add validation to make sure that radial cycle is cleaned up ok*/
+ /*deal with radial cycle first*/
+ len = bmesh_cycle_length(bply->lbase);
+ for(i=0, curloop=bply->loopbase; i < len; i++, curloop = ((curloop->next)))
+ bmesh_radial_remove_loop(curloop, curloop->e);
+
+ /*now deallocate the editloops*/
+ for(i=0; i < len; i++){
+ newbase = ((bply->lbase->next));
+ oldbase = bply->lbase;
+ bmesh_cycle_remove(oldbase, oldbase);
+ bmesh_free_loop(bm, oldbase);
+ bply->loopbase = newbase;
+ }
+
+ if (BM_TestHFlag(bply, BM_SELECT)) bm->totfacesel--;
+ BLI_remlink(&(bm->polys), &(bply->head));
+ bmesh_free_poly(bm, bply);
+ return 1;
+}
+
+/*SPLIT Eulers*/
+
+/**
+ * bmesh_SEMV
+ *
+ * SPLIT EDGE MAKE VERT:
+ * Takes a given edge and splits it into two, creating a new vert.
+ *
+ *
+ * Before: OV---------TV
+ * After: OV----NV---TV
+ *
+ * Returns -
+ * BMVert pointer.
+ *
+*/
+
+BMVert *bmesh_semv(BMesh *bm, BMVert *tv, BMEdge *e, BMEdge **re){
+ BMVert *nv, *ov;
+ BMNode *diskbase;
+ BMEdge *ne;
+ int i, edok, valance1=0, valance2=0;
+
+ if(bmesh_vert_in_edge(e,tv) == 0) return NULL;
+ ov = bmesh_edge_getothervert(e,tv);
+ //v2 = tv;
+
+ /*count valance of v1*/
+ diskbase = bmesh_disk_getpointer(e, ov);
+ valance1 = bmesh_cycle_length(diskbase);
+ /*count valance of v2*/
+ diskbase = bmesh_disk_getpointer(e, tv);
+ valance2 = bmesh_cycle_length(diskbase);
+
+ nv = bmesh_addvertlist(bm, tv);
+ ne = bmesh_addedgelist(bm, nv, tv, e);
+
+ //e->v2 = nv;
+ /*remove e from v2's disk cycle*/
+ bmesh_disk_remove_edge(e, tv);
+ /*swap out tv for nv in e*/
+ bmesh_edge_swapverts(e, tv, nv);
+ /*add e to nv's disk cycle*/
+ bmesh_disk_append_edge(e, nv);
+ /*add ne to nv's disk cycle*/
+ bmesh_disk_append_edge(ne, nv);
+ /*add ne to tv's disk cycle*/
+ bmesh_disk_append_edge(ne, tv);
+ /*verify disk cycles*/
+ diskbase = bmesh_disk_getpointer(ov->e,ov);
+ edok = bmesh_cycle_validate(valance1, diskbase);
+ if(!edok) bmesh_error();
+ diskbase = bmesh_disk_getpointer(tv->e,tv);
+ edok = bmesh_cycle_validate(valance2, diskbase);
+ if(!edok) bmesh_error();
+ diskbase = bmesh_disk_getpointer(nv->e,nv);
+ edok = bmesh_cycle_validate(2, diskbase);
+ if(!edok) bmesh_error();
+
+ /*Split the radial cycle if present*/
+ if(e->l){
+ BMLoop *nl,*l;
+ BMNode *radEBase=NULL, *radNEBase=NULL;
+ int radlen = bmesh_cycle_length(&(e->l->radial));
+ /*Take the next loop. Remove it from radial. Split it. Append to appropriate radials.*/
+ while(e->l){
+ l=e->l;
+ l->f->len++;
+ bmesh_radial_remove_loop(l,e);
+
+ nl = bmesh_create_loop(bm,NULL,NULL,l->f,l);
+ nl->prev = (BMHeader*)l;
+ nl->next = (BMHeader*)(l->next);
+ nl->prev->next = (BMHeader*)nl;
+ nl->next->prev = (BMHeader*)nl;
+ nl->v = nv;
+
+ /*assign the correct edge to the correct loop*/
+ if(bmesh_verts_in_edge(nl->v, ((nl->next))->v, e)){
+ nl->e = e;
+ l->e = ne;
+
+ /*append l into ne's rad cycle*/
+ if(!radNEBase){
+ radNEBase = &(l->radial);
+ radNEBase->next = NULL;
+ radNEBase->prev = NULL;
+ }
+
+ if(!radEBase){
+ radEBase = &(nl->radial);
+ radEBase->next = NULL;
+ radEBase->prev = NULL;
+ }
+
+ bmesh_cycle_append(radEBase,&(nl->radial));
+ bmesh_cycle_append(radNEBase,&(l->radial));
+
+ }
+ else if(bmesh_verts_in_edge(nl->v,((nl->next))->v,ne)){
+ nl->e = ne;
+ l->e = e;
+
+ if(!radNEBase){
+ radNEBase = &(nl->radial);
+ radNEBase->next = NULL;
+ radNEBase->prev = NULL;
+ }
+ if(!radEBase){
+ radEBase = &(l->radial);
+ radEBase->next = NULL;
+ radEBase->prev = NULL;
+ }
+ bmesh_cycle_append(radEBase,&(l->radial));
+ bmesh_cycle_append(radNEBase,&(nl->radial));
+ }
+
+ }
+
+ e->l = radEBase->data;
+ ne->l = radNEBase->data;
+
+ /*verify length of radial cycle*/
+ edok = bmesh_cycle_validate(radlen,&(e->l->radial));
+ if(!edok) bmesh_error();
+ edok = bmesh_cycle_validate(radlen,&(ne->l->radial));
+ if(!edok) bmesh_error();
+
+ /*verify loop->v and loop->next->v pointers for e*/
+ for(i=0,l=e->l; i < radlen; i++, l = l->radial_next){
+ if(!(l->e == e)) bmesh_error();
+ if(!(l->radial.data == l)) bmesh_error();
+ if( ((l->prev))->e != ne && ((l->next))->e != ne) bmesh_error();
+ edok = bmesh_verts_in_edge(l->v, ((l->next))->v, e);
+ if(!edok) bmesh_error();
+ if(l->v == ((l->next))->v) bmesh_error();
+ if(l->e == ((l->next))->e) bmesh_error();
+ /*verify loop cycle for kloop->f*/
+ edok = bmesh_cycle_validate(l->f->len, l->f->lbase);
+ if(!edok) bmesh_error();
+ }
+ /*verify loop->v and loop->next->v pointers for ne*/
+ for(i=0,l=ne->l; i < radlen; i++, l = l->radial_next){
+ if(!(l->e == ne)) bmesh_error();
+ if(!(l->radial.data == l)) bmesh_error();
+ if( ((l->prev))->e != e && ((l->next))->e != e) bmesh_error();
+ edok = bmesh_verts_in_edge(l->v, ((l->next))->v, ne);
+ if(!edok) bmesh_error();
+ if(l->v == ((l->next))->v) bmesh_error();
+ if(l->e == ((l->next))->e) bmesh_error();
+ /*verify loop cycle for kloop->f. Redundant*/
+ edok = bmesh_cycle_validate(l->f->len, l->f->lbase);
+ if(!edok) bmesh_error();
+ }
+ }
+
+ if(re) *re = ne;
+ return nv;
+}
+
+/**
+ * bmesh_SFME
+ *
+ * SPLIT FACE MAKE EDGE:
+ *
+ * Takes as input two vertices in a single face. An edge is created which divides the original face
+ * into two distinct regions. One of the regions is assigned to the original face and it is closed off.
+ * The second region has a new face assigned to it.
+ *
+ * Examples:
+ *
+ * Before: After:
+ * ---------- ----------
+ * | | | |
+ * | | | f1 |
+ * v1 f1 v2 v1======v2
+ * | | | f2 |
+ * | | | |
+ * ---------- ----------
+ *
+ * Note that the input vertices can be part of the same edge. This will result in a two edged face.
+ * This is desirable for advanced construction tools and particularly essential for edge bevel. Because
+ * of this it is up to the caller to decide what to do with the extra edge.
+ *
+ * Note that the tesselator abuses eflag2 while using this euler! (don't ever ever do this....)
+ *
+ * Returns -
+ * A BMFace pointer
+ */
+BMFace *bmesh_sfme(BMesh *bm, BMFace *f, BMVert *v1, BMVert *v2, BMLoop **rl){
+
+ BMFace *f2;
+ BMLoop *v1loop = NULL, *v2loop = NULL, *curloop, *f1loop=NULL, *f2loop=NULL;
+ BMEdge *e;
+ int i, len, f1len, f2len;
+
+
+ /*verify that v1 and v2 are in face.*/
+ len = bmesh_cycle_length(f->lbase);
+ for(i = 0, curloop = f->loopbase; i < len; i++, curloop = ((curloop->next)) ){
+ if(curloop->v == v1) v1loop = curloop;
+ else if(curloop->v == v2) v2loop = curloop;
+ }
+
+ if(!v1loop || !v2loop) return NULL;
+
+ /*allocate new edge between v1 and v2*/
+ e = bmesh_addedgelist(bm, v1, v2,NULL);
+ bmesh_disk_append_edge(e, v1);
+ bmesh_disk_append_edge(e, v2);
+
+ f2 = bmesh_addpolylist(bm,f);
+ f1loop = bmesh_create_loop(bm,v2,e,f,v2loop);
+ f2loop = bmesh_create_loop(bm,v1,e,f2,v1loop);
+
+ f1loop->prev = v2loop->prev;
+ f2loop->prev = v1loop->prev;
+ v2loop->prev->next = (BMHeader*)f1loop;
+ v1loop->prev->next = (BMHeader*)f2loop;
+
+ f1loop->next = (BMHeader*)v1loop;
+ f2loop->next = (BMHeader*)v2loop;
+ v1loop->prev = (BMHeader*)f1loop;
+ v2loop->prev = (BMHeader*)f2loop;
+
+ f2->loopbase = f2loop;
+ f->loopbase = f1loop;
+
+ /*validate both loops*/
+ /*I dont know how many loops are supposed to be in each face at this point! FIXME!*/
+
+ /*go through all of f2's loops and make sure they point to it properly.*/
+ f2len = bmesh_cycle_length(f2->lbase);
+ for(i=0, curloop = f2->loopbase; i < f2len; i++, curloop = ((curloop->next)) ) curloop->f = f2;
+
+ /*link up the new loops into the new edges radial*/
+ bmesh_radial_append(e, f1loop);
+ bmesh_radial_append(e, f2loop);
+
+
+ f2->len = f2len;
+
+ f1len = bmesh_cycle_length(f->lbase);
+ f->len = f1len;
+
+ if(rl) *rl = f2loop;
+ return f2;
+}
+
+
+/**
+ * bmesh_JEKV
+ *
+ * JOIN EDGE KILL VERT:
+ * Takes a an edge and pointer to one of its vertices and collapses
+ * the edge on that vertex.
+ *
+ * Before: OE KE
+ * ------- -------
+ * | || |
+ * OV KV TV
+ *
+ *
+ * After: OE
+ * ---------------
+ * | |
+ * OV TV
+ *
+ *
+ * Restrictions:
+ * KV is a vertex that must have a valance of exactly two. Furthermore
+ * both edges in KV's disk cycle (OE and KE) must be unique (no double
+ * edges).
+ *
+ * It should also be noted that this euler has the possibility of creating
+ * faces with just 2 edges. It is up to the caller to decide what to do with
+ * these faces.
+ *
+ * Returns -
+ * 1 for success, 0 for failure.
+ */
+int bmesh_jekv(BMesh *bm, BMEdge *ke, BMVert *kv)
+{
+ BMEdge *oe;
+ BMVert *ov, *tv;
+ BMNode *diskbase;
+ BMLoop *killoop,*nextl;
+ int len,radlen=0, halt = 0, i, valance1, valance2,edok;
+
+ if(bmesh_vert_in_edge(ke,kv) == 0) return 0;
+ diskbase = bmesh_disk_getpointer(kv->e, kv);
+ len = bmesh_cycle_length(diskbase);
+
+ if(len == 2){
+ oe = bmesh_disk_nextedge(ke, kv);
+ tv = bmesh_edge_getothervert(ke, kv);
+ ov = bmesh_edge_getothervert(oe, kv);
+ halt = bmesh_verts_in_edge(kv, tv, oe); //check for double edges
+
+ if(halt) return 0;
+ else{
+
+ /*For verification later, count valance of ov and tv*/
+ diskbase = bmesh_disk_getpointer(ov->e, ov);
+ valance1 = bmesh_cycle_length(diskbase);
+ diskbase = bmesh_disk_getpointer(tv->e, tv);
+ valance2 = bmesh_cycle_length(diskbase);
+
+ /*remove oe from kv's disk cycle*/
+ bmesh_disk_remove_edge(oe,kv);
+ /*relink oe->kv to be oe->tv*/
+ bmesh_edge_swapverts(oe, kv, tv);
+ /*append oe to tv's disk cycle*/
+ bmesh_disk_append_edge(oe, tv);
+ /*remove ke from tv's disk cycle*/
+ bmesh_disk_remove_edge(ke, tv);
+
+
+
+ /*deal with radial cycle of ke*/
+ if(ke->l){
+ /*first step, fix the neighboring loops of all loops in ke's radial cycle*/
+ radlen = bmesh_cycle_length(&(ke->l->radial));
+ for(i=0,killoop = ke->l; i<radlen; i++, killoop = bmesh_radial_nextloop(killoop)){
+ /*relink loops and fix vertex pointer*/
+ killoop->next->prev = killoop->prev;
+ killoop->prev->next = killoop->next;
+ if( ((killoop->next))->v == kv) ((killoop->next))->v = tv;
+
+ /*fix len attribute of face*/
+ killoop->f->len--;
+ if(killoop->f->loopbase == killoop) killoop->f->lbase = ((killoop->next));
+ }
+ /*second step, remove all the hanging loops attached to ke*/
+ killoop = ke->l;
+ radlen = bmesh_cycle_length(&(ke->l->radial));
+ /*make sure we have enough room in bm->lpar*/
+ if(bm->lparlen < radlen){
+ MEM_freeN(bm->lpar);
+ bm->lpar = MEM_callocN(sizeof(BMLoop *)* radlen, "BM Loop pointer array");
+ bm->lparlen = bm->lparlen * radlen;
+ }
+ /*this should be wrapped into a bme_free_radial function to be used by bmesh_KF as well...*/
+ i=0;
+ while(i<radlen){
+ bm->lpar[i] = killoop;
+ killoop = killoop->radial_next;
+ i++;
+ }
+ i=0;
+ while(i<radlen){
+ bmesh_free_loop(bm,bm->lpar[i]);
+ i++;
+ }
+ /*Validate radial cycle of oe*/
+ edok = bmesh_cycle_validate(radlen,&(oe->l->radial));
+
+ }
+
+
+ /*Validate disk cycles*/
+ diskbase = bmesh_disk_getpointer(ov->e,ov);
+ edok = bmesh_cycle_validate(valance1, diskbase);
+ if(!edok) bmesh_error();
+ diskbase = bmesh_disk_getpointer(tv->e,tv);
+ edok = bmesh_cycle_validate(valance2, diskbase);
+ if(!edok) bmesh_error();
+
+ /*Validate loop cycle of all faces attached to oe*/
+ for(i=0,nextl = oe->l; i<radlen; i++, nextl = bmesh_radial_nextloop(nextl)){
+ edok = bmesh_cycle_validate(nextl->f->len,nextl->f->lbase);
+ if(!edok) bmesh_error();
+ }
+ /*deallocate edge*/
+ BLI_remlink(&(bm->edges), &(ke->head));
+ bmesh_free_edge(bm, ke);
+ /*deallocate vertex*/
+ BLI_remlink(&(bm->verts), &(kv->head));
+ bmesh_free_vert(bm, kv);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/**
+ * bmesh_loop_reverse
+ *
+ * FLIP FACE EULER
+ *
+ * Changes the winding order of a face from CW to CCW or vice versa.
+ * This euler is a bit peculiar in compairson to others as it is its
+ * own inverse.
+ *
+ * BMESH_TODO: reinsert validation code.
+ *
+ * Returns -
+ * 1 for success, 0 for failure.
+ */
+
+int bmesh_loop_reverse(BMesh *bm, BMFace *f){
+ BMLoop *l = f->loopbase, *curloop, *oldprev, *oldnext;
+ int i, j, edok, len = 0;
+
+ len = bmesh_cycle_length(l);
+ if(bm->edarlen < len){
+ MEM_freeN(bm->edar);
+ bm->edar = MEM_callocN(sizeof(BMEdge *)* len, "BM Edge pointer array");
+ bm->edarlen = len;
+ }
+
+ for(i=0, curloop = l; i< len; i++, curloop= ((curloop->next)) ){
+ curloop->e->head.eflag1 = 0;
+ curloop->e->head.eflag2 = bmesh_cycle_length(&curloop->radial);
+ bmesh_radial_remove_loop(curloop, curloop->e);
+ /*in case of border edges we HAVE to zero out curloop->radial Next/Prev*/
+ curloop->radial.next = curloop->radial.prev = NULL;
+ bm->edar[i] = curloop->e;
+ }
+
+ /*actually reverse the loop. This belongs in bmesh_cycle_reverse!*/
+ for(i=0, curloop = l; i < len; i++){
+ oldnext = ((curloop->next));
+ oldprev = ((curloop->prev));
+ curloop->next = (BMHeader*)oldprev;
+ curloop->prev = (BMHeader*)oldnext;
+ curloop = oldnext;
+ }
+
+ if(len == 2){ //two edged face
+ //do some verification here!
+ l->e = bm->edar[1];
+ ((l->next))->e = bm->edar[0];
+ }
+ else{
+ for(i=0, curloop = l; i < len; i++, curloop = ((curloop->next)) ){
+ edok = 0;
+ for(j=0; j < len; j++){
+ edok = bmesh_verts_in_edge(curloop->v, ((curloop->next))->v, bm->edar[j]);
+ if(edok){
+ curloop->e = bm->edar[j];
+ break;
+ }
+ }
+ }
+ }
+ /*rebuild radial*/
+ for(i=0, curloop = l; i < len; i++, curloop = curloop->next ) bmesh_radial_append(curloop->e, curloop);
+
+ /*validate radial*/
+ for(i=0, curloop = l; i < len; i++, curloop = ((curloop->next)) ){
+ edok = bmesh_cycle_validate(curloop->e->head.eflag2, &(curloop->radial));
+ if(!edok){
+ bmesh_error();
+ }
+ }
+ return 1;
+}
+
+/**
+ * bmesh_JFKE
+ *
+ * JOIN FACE KILL EDGE:
+ *
+ * Takes two faces joined by a single 2-manifold edge and fuses them togather.
+ * The edge shared by the faces must not be connected to any other edges which have
+ * Both faces in its radial cycle
+ *
+ * Examples:
+ *
+ * A B
+ * ---------- ----------
+ * | | | |
+ * | f1 | | f1 |
+ * v1========v2 = Ok! v1==V2==v3 == Wrong!
+ * | f2 | | f2 |
+ * | | | |
+ * ---------- ----------
+ *
+ * In the example A, faces f1 and f2 are joined by a single edge, and the euler can safely be used.
+ * In example B however, f1 and f2 are joined by multiple edges and will produce an error. The caller
+ * in this case should call bmesh_JEKV on the extra edges before attempting to fuse f1 and f2.
+ *
+ * Also note that the order of arguments decides whether or not certain per-face attributes are present
+ * in the resultant face. For instance vertex winding, material index, smooth flags, ect are inherited
+ * from f1, not f2.
+ *
+ * Returns -
+ * A BMFace pointer
+*/
+
+//disregarding f1loop and f2loop, if a vertex appears in a joined face more than once, we cancel
+
+BMFace *bmesh_jfke(BMesh *bm, BMFace *f1, BMFace *f2, BMEdge *e)
+{
+
+ BMLoop *curloop, *f1loop=NULL, *f2loop=NULL;
+ int loopok = 0, newlen = 0,i, f1len=0, f2len=0, radlen=0, edok, shared;
+
+ if(f1 == f2) return NULL; //can't join a face to itself
+ /*verify that e is in both f1 and f2*/
+ f1len = bmesh_cycle_length(f1->lbase);
+ f2len = bmesh_cycle_length(f2->lbase);
+ for(i=0, curloop = f1->loopbase; i < f1len; i++, curloop = ((curloop->next)) ){
+ if(curloop->e == e){
+ f1loop = curloop;
+ break;
+ }
+ }
+ for(i=0, curloop = f2->loopbase; i < f2len; i++, curloop = ((curloop->next)) ){
+ if(curloop->e==e){
+ f2loop = curloop;
+ break;
+ }
+ }
+ if(!(f1loop && f2loop)) return NULL;
+
+ /*validate that edge is 2-manifold edge*/
+ radlen = bmesh_cycle_length(&(f1loop->radial));
+ if(radlen != 2) return NULL;
+
+ /*validate direction of f2's loop cycle is compatible.*/
+ if(f1loop->v == f2loop->v) return NULL;
+
+ /*
+ validate that for each face, each vertex has another edge in its disk cycle that is
+ not e, and not shared.
+ */
+ if(bmesh_radial_find_face( ((f1loop->next))->e,f2)) return NULL;
+ if(bmesh_radial_find_face( ((f1loop->prev))->e,f2)) return NULL;
+ if(bmesh_radial_find_face( ((f2loop->next))->e,f1)) return NULL;
+ if(bmesh_radial_find_face( ((f2loop->prev))->e,f1)) return NULL;
+
+ /*validate only one shared edge*/
+ shared = BM_Face_Sharededges(f1,f2);
+ if(shared > 1) return NULL;
+
+ /*validate no internal joins*/
+ for(i=0, curloop = f1->loopbase; i < f1len; i++, curloop = ((curloop->next)) ) curloop->v->head.eflag1 = 0;
+ for(i=0, curloop = f2->loopbase; i < f2len; i++, curloop = ((curloop->next)) ) curloop->v->head.eflag1 = 0;
+
+ for(i=0, curloop = f1->loopbase; i < f1len; i++, curloop = ((curloop->next)) ){
+ if(curloop != f1loop)
+ curloop->v->head.eflag1++;
+ }
+ for(i=0, curloop = f2->loopbase; i < f2len; i++, curloop = ((curloop->next)) ){
+ if(curloop != f2loop)
+ curloop->v->head.eflag1++;
+ }
+
+ for(i=0, curloop = f1->loopbase; i < f1len; i++, curloop = ((curloop->next)) ){
+ if(curloop->v->head.eflag1 > 1)
+ return NULL;
+ }
+
+ for(i=0, curloop = f2->loopbase; i < f2len; i++, curloop = ((curloop->next)) ){
+ if(curloop->v->head.eflag1 > 1)
+ return NULL;
+ }
+
+ /*join the two loops*/
+ f1loop->prev->next = f2loop->next;
+ f2loop->next->prev = f1loop->prev;
+
+ f1loop->next->prev = f2loop->prev;
+ f2loop->prev->next = f1loop->next;
+
+ /*if f1loop was baseloop, give f1loop->next the base.*/
+ if(f1->loopbase == f1loop) f1->lbase = ((f1loop->next));
+
+ /*validate the new loop*/
+ loopok = bmesh_cycle_validate((f1len+f2len)-2, f1->lbase);
+ if(!loopok) bmesh_error();
+
+ /*make sure each loop points to the proper face*/
+ newlen = bmesh_cycle_length(f1->lbase);
+ for(i = 0, curloop = f1->loopbase; i < newlen; i++, curloop = ((curloop->next)) ) curloop->f = f1;
+
+ f1->len = newlen;
+
+ edok = bmesh_cycle_validate(f1->len, f1->lbase);
+ if(!edok) bmesh_error();
+
+ /*remove edge from the disk cycle of its two vertices.*/
+ bmesh_disk_remove_edge(f1loop->e, f1loop->e->v1);
+ bmesh_disk_remove_edge(f1loop->e, f1loop->e->v2);
+
+ /*deallocate edge and its two loops as well as f2*/
+ BLI_remlink(&(bm->edges), &(f1loop->e->head));
+ BLI_remlink(&(bm->polys), &(f2->head));
+ bmesh_free_edge(bm, f1loop->e);
+ bmesh_free_loop(bm, f1loop);
+ bmesh_free_loop(bm, f2loop);
+ bmesh_free_poly(bm, f2);
+ return f1;
+}
+
+/**
+* bmesh_URMV
+*
+* UNGLUE REGION MAKE VERT:
+*
+* Takes a locally manifold disk of face corners and 'unglues' it
+* creating a new vertex
+*
+**/
+
+#define URMV_VISIT 1
+#define URMV_VISIT2 2
+
+BMVert *bmesh_urmv(BMesh *bm, BMFace *sf, BMVert *sv)
+{
+ BMVert *nv = NULL;
+ BMLoop *l = NULL, *sl = NULL;
+ BMEdge *curedge = NULL;
+ int numloops = 0, numedges = 0, i, maxedges, maxloops;
+
+
+ /*BMESH_TODO: Validation*/
+ /*validate radial cycle of all collected loops*/
+ /*validate the disk cycle of sv, and nv*/
+ /*validate the face length of all faces? overkill?*/
+ /*validate the l->e pointers of all affected faces, ie: l->v and l->next->v should be equivalent to l->e*/
+
+ /*verify that sv has edges*/
+ if(sv->e == NULL)
+ return NULL;
+
+ /*first verify no wire edges on sv*/
+ curedge = sv->e;
+ do{
+ if(curedge->l == NULL)
+ return NULL;
+ curedge = bmesh_disk_nextedge(curedge, sv);
+ }while(curedge != sv->e);
+
+ /*next verify that sv is in sf*/
+ l = sf->loopbase;
+ do{
+ if(l->v == sv){
+ sl = l;
+ break;
+ }
+ l = (l->next);
+ }while(l != sf->lbase);
+
+ if(sl == NULL)
+ return NULL;
+
+ /*clear euler flags*/
+ sv->head.eflag1 = 0;
+
+ curedge = sv->e;
+ do{
+ curedge->head.eflag1 = 0;
+ l = curedge->l;
+ do{
+ l->head.eflag1 = 0;
+ l->f->head.eflag1 = 0;
+ l = bmesh_radial_nextloop(l);
+ }while(l != curedge->l);
+ curedge = bmesh_disk_nextedge(curedge, sv);
+ }while(curedge != sv->e);
+
+ /*search through face disk and flag elements as we go.*/
+ /*Note, test this to make sure that it works correct on
+ non-manifold faces!
+ */
+ l = sl;
+ l->e->head.eflag1 |= URMV_VISIT;
+ l->f->head.eflag1 |= URMV_VISIT;
+ do{
+ if(l->v == sv)
+ l = bmesh_radial_nextloop((l->prev));
+ else
+ l = bmesh_radial_nextloop((l->next));
+ l->e->head.eflag1 |= URMV_VISIT;
+ l->f->head.eflag1 |= URMV_VISIT;
+ }while(l != sl && (bmesh_cycle_length(&(l->radial)) > 1) );
+
+ /*Verify that all visited edges are at least 1 or 2 manifold*/
+ curedge = sv->e;
+ do{
+ if(curedge->head.eflag1 && (bmesh_cycle_length(&(curedge->l->radial)) > 2) )
+ return NULL;
+ curedge = bmesh_disk_nextedge(curedge, sv);
+ }while(curedge != sv->e);
+
+ /*allocate temp storage - we overallocate here instead of trying to be clever*/
+ maxedges = 0;
+ maxloops = 0;
+ curedge = sv->e;
+ do{
+ if(curedge->l){
+ l = curedge->l;
+ do{
+ maxloops += l->f->len;
+ l = bmesh_radial_nextloop(l);
+ }while(l != curedge->l);
+ }
+ maxedges+= 1;
+ curedge = bmesh_disk_nextedge(curedge,sv);
+ }while(curedge != sv->e);
+
+ if(bm->edarlen < maxedges){
+ MEM_freeN(bm->edar);
+ bm->edar = MEM_callocN(sizeof(BMEdge *) * maxedges, "BM Edge pointer array");
+ bm->edarlen = maxedges;
+ }
+ if(bm->lparlen < maxloops){
+ MEM_freeN(bm->lpar);
+ bm->lpar = MEM_callocN(sizeof(BMLoop *) * maxloops, "BM Loop pointer array");
+ bm->lparlen = maxloops;
+ }
+
+ /*first get loops by looping around edges and loops around that edges faces*/
+ curedge = sv->e;
+ do{
+ if(curedge->l){
+ l = curedge->l;
+ do{
+ if( (l->head.eflag1 & URMV_VISIT) && (!(l->head.eflag1 & URMV_VISIT2)) ){
+ bm->lpar[numloops] = l;
+ l->head.eflag1 |= URMV_VISIT2;
+ numloops++;
+ }
+ l = bmesh_radial_nextloop(l);
+ }while(l != curedge->l);
+ }
+ curedge = bmesh_disk_nextedge(curedge, sv);
+ }while(curedge != sv->e);
+
+ /*now collect edges by looping around edges and looking at visited flags*/
+ curedge = sv->e;
+ do{
+ if(curedge->head.eflag1 & URMV_VISIT){
+ bm->edar[numedges] = curedge;
+ numedges++;
+ }
+ curedge = bmesh_disk_nextedge(curedge, sv);
+ }while(curedge != sv->e);
+
+ /*make new vertex*/
+ nv = bmesh_addvertlist(bm, sv);
+
+ /*go through and relink edges*/
+ for(i = 0; i < numedges; i++){
+ curedge = bm->edar[i];
+ /*remove curedge from sv*/
+ bmesh_disk_remove_edge(curedge, sv);
+ /*swap out sv for nv in curedge*/
+ bmesh_edge_swapverts(curedge, sv, nv);
+ /*add curedge to nv's disk cycle*/
+ bmesh_disk_append_edge(curedge, nv);
+ }
+
+ /*go through and relink loops*/
+ for(i = 0; i < numloops; i ++){
+ l = bm->lpar[i];
+ if(l->v == sv)
+ l->v = nv;
+ }
+ return nv;
+}
+#endif