Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/bmesh/intern/bmesh_mesh_normals.c')
-rw-r--r--source/blender/bmesh/intern/bmesh_mesh_normals.c1859
1 files changed, 1859 insertions, 0 deletions
diff --git a/source/blender/bmesh/intern/bmesh_mesh_normals.c b/source/blender/bmesh/intern/bmesh_mesh_normals.c
new file mode 100644
index 00000000000..a3eae6dabe8
--- /dev/null
+++ b/source/blender/bmesh/intern/bmesh_mesh_normals.c
@@ -0,0 +1,1859 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/** \file
+ * \ingroup bmesh
+ *
+ * BM mesh normal calculation functions.
+ */
+
+#include "MEM_guardedalloc.h"
+
+#include "DNA_scene_types.h"
+
+#include "BLI_bitmap.h"
+#include "BLI_linklist_stack.h"
+#include "BLI_math.h"
+#include "BLI_stack.h"
+#include "BLI_task.h"
+#include "BLI_utildefines.h"
+
+#include "BKE_editmesh.h"
+#include "BKE_global.h"
+#include "BKE_mesh.h"
+
+#include "intern/bmesh_private.h"
+
+/* -------------------------------------------------------------------- */
+/** \name Update Vertex & Face Normals
+ * \{ */
+
+/**
+ * Helpers for #BM_mesh_normals_update and #BM_verts_calc_normal_vcos
+ */
+
+/* We use that existing internal API flag,
+ * assuming no other tool using it would run concurrently to clnors editing. */
+#define BM_LNORSPACE_UPDATE _FLAG_MF
+
+typedef struct BMEdgesCalcVectorsData {
+ /* Read-only data. */
+ const float (*vcos)[3];
+
+ /* Read-write data, but no need to protect it, no concurrency to fear here. */
+ float (*edgevec)[3];
+} BMEdgesCalcVectorsData;
+
+static void bm_edge_calc_vectors_cb(void *userdata,
+ MempoolIterData *mp_e,
+ const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ BMEdge *e = (BMEdge *)mp_e;
+ /* The edge vector will not be needed when the edge has no radial. */
+ if (e->l != NULL) {
+ float(*edgevec)[3] = userdata;
+ float *e_diff = edgevec[BM_elem_index_get(e)];
+ sub_v3_v3v3(e_diff, e->v2->co, e->v1->co);
+ normalize_v3(e_diff);
+ }
+}
+
+static void bm_edge_calc_vectors_with_coords_cb(void *userdata,
+ MempoolIterData *mp_e,
+ const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ BMEdge *e = (BMEdge *)mp_e;
+ /* The edge vector will not be needed when the edge has no radial. */
+ if (e->l != NULL) {
+ BMEdgesCalcVectorsData *data = userdata;
+ float *e_diff = data->edgevec[BM_elem_index_get(e)];
+ sub_v3_v3v3(
+ e_diff, data->vcos[BM_elem_index_get(e->v2)], data->vcos[BM_elem_index_get(e->v1)]);
+ normalize_v3(e_diff);
+ }
+}
+
+static void bm_mesh_edges_calc_vectors(BMesh *bm, float (*edgevec)[3], const float (*vcos)[3])
+{
+ BM_mesh_elem_index_ensure(bm, BM_EDGE | (vcos ? BM_VERT : 0));
+
+ TaskParallelSettings settings;
+ BLI_parallel_mempool_settings_defaults(&settings);
+ settings.use_threading = bm->totedge >= BM_OMP_LIMIT;
+
+ if (vcos == NULL) {
+ BM_iter_parallel(bm, BM_EDGES_OF_MESH, bm_edge_calc_vectors_cb, edgevec, &settings);
+ }
+ else {
+ BMEdgesCalcVectorsData data = {
+ .edgevec = edgevec,
+ .vcos = vcos,
+ };
+ BM_iter_parallel(bm, BM_EDGES_OF_MESH, bm_edge_calc_vectors_with_coords_cb, &data, &settings);
+ }
+}
+
+typedef struct BMVertsCalcNormalsWithCoordsData {
+ /* Read-only data. */
+ const float (*fnos)[3];
+ const float (*edgevec)[3];
+ const float (*vcos)[3];
+
+ /* Write data. */
+ float (*vnos)[3];
+} BMVertsCalcNormalsWithCoordsData;
+
+BLI_INLINE void bm_vert_calc_normals_accum_loop(const BMLoop *l_iter,
+ const float (*edgevec)[3],
+ const float f_no[3],
+ float v_no[3])
+{
+ /* Calculate the dot product of the two edges that meet at the loop's vertex. */
+ const float *e1diff = edgevec[BM_elem_index_get(l_iter->prev->e)];
+ const float *e2diff = edgevec[BM_elem_index_get(l_iter->e)];
+ /* Edge vectors are calculated from e->v1 to e->v2, so adjust the dot product if one but not
+ * both loops actually runs from from e->v2 to e->v1. */
+ float dotprod = dot_v3v3(e1diff, e2diff);
+ if ((l_iter->prev->e->v1 == l_iter->prev->v) ^ (l_iter->e->v1 == l_iter->v)) {
+ dotprod = -dotprod;
+ }
+ const float fac = saacos(-dotprod);
+ /* NAN detection, otherwise this is a degenerated case, ignore that vertex in this case. */
+ if (fac == fac) { /* NAN detection. */
+ madd_v3_v3fl(v_no, f_no, fac);
+ }
+}
+
+static void bm_vert_calc_normals_impl(const float (*edgevec)[3], BMVert *v)
+{
+ float *v_no = v->no;
+ zero_v3(v_no);
+ BMEdge *e_first = v->e;
+ if (e_first != NULL) {
+ BMEdge *e_iter = e_first;
+ do {
+ BMLoop *l_first = e_iter->l;
+ if (l_first != NULL) {
+ BMLoop *l_iter = l_first;
+ do {
+ if (l_iter->v == v) {
+ bm_vert_calc_normals_accum_loop(l_iter, edgevec, l_iter->f->no, v_no);
+ }
+ } while ((l_iter = l_iter->radial_next) != l_first);
+ }
+ } while ((e_iter = BM_DISK_EDGE_NEXT(e_iter, v)) != e_first);
+
+ if (LIKELY(normalize_v3(v_no) != 0.0f)) {
+ return;
+ }
+ }
+ /* Fallback normal. */
+ normalize_v3_v3(v_no, v->co);
+}
+
+static void bm_vert_calc_normals_cb(void *userdata,
+ MempoolIterData *mp_v,
+ const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ const float(*edgevec)[3] = userdata;
+ BMVert *v = (BMVert *)mp_v;
+ bm_vert_calc_normals_impl(edgevec, v);
+}
+
+static void bm_vert_calc_normals_with_coords(BMVert *v, BMVertsCalcNormalsWithCoordsData *data)
+{
+ float *v_no = data->vnos[BM_elem_index_get(v)];
+ zero_v3(v_no);
+
+ /* Loop over edges. */
+ BMEdge *e_first = v->e;
+ if (e_first != NULL) {
+ BMEdge *e_iter = e_first;
+ do {
+ BMLoop *l_first = e_iter->l;
+ if (l_first != NULL) {
+ BMLoop *l_iter = l_first;
+ do {
+ if (l_iter->v == v) {
+ bm_vert_calc_normals_accum_loop(
+ l_iter, data->edgevec, data->fnos[BM_elem_index_get(l_iter->f)], v_no);
+ }
+ } while ((l_iter = l_iter->radial_next) != l_first);
+ }
+ } while ((e_iter = BM_DISK_EDGE_NEXT(e_iter, v)) != e_first);
+
+ if (LIKELY(normalize_v3(v_no) != 0.0f)) {
+ return;
+ }
+ }
+ /* Fallback normal. */
+ normalize_v3_v3(v_no, data->vcos[BM_elem_index_get(v)]);
+}
+
+static void bm_vert_calc_normals_with_coords_cb(void *userdata,
+ MempoolIterData *mp_v,
+ const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ BMVertsCalcNormalsWithCoordsData *data = userdata;
+ BMVert *v = (BMVert *)mp_v;
+ bm_vert_calc_normals_with_coords(v, data);
+}
+
+static void bm_mesh_verts_calc_normals(BMesh *bm,
+ const float (*edgevec)[3],
+ const float (*fnos)[3],
+ const float (*vcos)[3],
+ float (*vnos)[3])
+{
+ BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE) | ((vnos || vcos) ? BM_VERT : 0));
+
+ TaskParallelSettings settings;
+ BLI_parallel_mempool_settings_defaults(&settings);
+ settings.use_threading = bm->totvert >= BM_OMP_LIMIT;
+
+ if (vcos == NULL) {
+ BM_iter_parallel(bm, BM_VERTS_OF_MESH, bm_vert_calc_normals_cb, (void *)edgevec, &settings);
+ }
+ else {
+ BLI_assert(!ELEM(NULL, fnos, vnos));
+ BMVertsCalcNormalsWithCoordsData data = {
+ .edgevec = edgevec,
+ .fnos = fnos,
+ .vcos = vcos,
+ .vnos = vnos,
+ };
+ BM_iter_parallel(bm, BM_VERTS_OF_MESH, bm_vert_calc_normals_with_coords_cb, &data, &settings);
+ }
+}
+
+static void bm_face_calc_normals_cb(void *UNUSED(userdata),
+ MempoolIterData *mp_f,
+ const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ BMFace *f = (BMFace *)mp_f;
+
+ BM_face_calc_normal(f, f->no);
+}
+
+/**
+ * \brief BMesh Compute Normals
+ *
+ * Updates the normals of a mesh.
+ */
+void BM_mesh_normals_update(BMesh *bm)
+{
+ float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
+
+ /* Parallel mempool iteration does not allow generating indices inline anymore. */
+ BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE));
+
+ /* Calculate all face normals. */
+ TaskParallelSettings settings;
+ BLI_parallel_mempool_settings_defaults(&settings);
+ settings.use_threading = bm->totedge >= BM_OMP_LIMIT;
+
+ BM_iter_parallel(bm, BM_FACES_OF_MESH, bm_face_calc_normals_cb, NULL, &settings);
+
+ bm_mesh_edges_calc_vectors(bm, edgevec, NULL);
+
+ /* Add weighted face normals to vertices, and normalize vert normals. */
+ bm_mesh_verts_calc_normals(bm, edgevec, NULL, NULL, NULL);
+ MEM_freeN(edgevec);
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Update Vertex & Face Normals (Partial Updates)
+ * \{ */
+
+static void bm_partial_faces_parallel_range_calc_normals_cb(
+ void *userdata, const int iter, const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ BMFace *f = ((BMFace **)userdata)[iter];
+ BM_face_calc_normal(f, f->no);
+}
+
+static void bm_partial_edges_parallel_range_calc_vectors_cb(
+ void *userdata, const int iter, const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ BMEdge *e = ((BMEdge **)((void **)userdata)[0])[iter];
+ float *r_edgevec = ((float(*)[3])((void **)userdata)[1])[iter];
+ sub_v3_v3v3(r_edgevec, e->v1->co, e->v2->co);
+ normalize_v3(r_edgevec);
+}
+
+static void bm_partial_verts_parallel_range_calc_normal_cb(
+ void *userdata, const int iter, const TaskParallelTLS *__restrict UNUSED(tls))
+{
+ BMVert *v = ((BMVert **)((void **)userdata)[0])[iter];
+ const float(*edgevec)[3] = (const float(*)[3])((void **)userdata)[1];
+ bm_vert_calc_normals_impl(edgevec, v);
+}
+
+/**
+ * A version of #BM_mesh_normals_update that updates a subset of geometry,
+ * used to avoid the overhead of updating everything.
+ */
+void BM_mesh_normals_update_with_partial(BMesh *bm, const BMPartialUpdate *bmpinfo)
+{
+ BLI_assert(bmpinfo->params.do_normals);
+
+ BMVert **verts = bmpinfo->verts;
+ BMEdge **edges = bmpinfo->edges;
+ BMFace **faces = bmpinfo->faces;
+ const int verts_len = bmpinfo->verts_len;
+ const int edges_len = bmpinfo->edges_len;
+ const int faces_len = bmpinfo->faces_len;
+
+ float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * edges_len, __func__);
+
+ TaskParallelSettings settings;
+ BLI_parallel_range_settings_defaults(&settings);
+
+ /* Faces. */
+ BLI_task_parallel_range(
+ 0, faces_len, faces, bm_partial_faces_parallel_range_calc_normals_cb, &settings);
+
+ /* Temporarily override the edge indices,
+ * storing the correct indices in the case they're not dirty.
+ *
+ * \note in most cases indices are modified and #BMesh.elem_index_dirty is set.
+ * This is an exceptional case where indices are restored because the worst case downside
+ * of marking the edge indices dirty would require a full loop over all edges to
+ * correct the indices in other functions which need them to be valid.
+ * When moving a few vertices on a high poly mesh setting and restoring connected
+ * edges has very little overhead compared with restoring all edge indices. */
+ int *edge_index_value = NULL;
+ if ((bm->elem_index_dirty & BM_EDGE) == 0) {
+ edge_index_value = MEM_mallocN(sizeof(*edge_index_value) * edges_len, __func__);
+
+ for (int i = 0; i < edges_len; i++) {
+ BMEdge *e = edges[i];
+ edge_index_value[i] = BM_elem_index_get(e);
+ BM_elem_index_set(e, i); /* set_dirty! (restore before this function exits). */
+ }
+ }
+ else {
+ for (int i = 0; i < edges_len; i++) {
+ BMEdge *e = edges[i];
+ BM_elem_index_set(e, i); /* set_dirty! (already dirty) */
+ }
+ }
+
+ {
+ /* Verts. */
+
+ /* Compute normalized direction vectors for each edge.
+ * Directions will be used for calculating the weights of the face normals on the vertex
+ * normals. */
+ void *data[2] = {edges, edgevec};
+ BLI_task_parallel_range(
+ 0, edges_len, data, bm_partial_edges_parallel_range_calc_vectors_cb, &settings);
+
+ /* Calculate vertex normals. */
+ data[0] = verts;
+ BLI_task_parallel_range(
+ 0, verts_len, data, bm_partial_verts_parallel_range_calc_normal_cb, &settings);
+ }
+
+ if (edge_index_value != NULL) {
+ for (int i = 0; i < edges_len; i++) {
+ BMEdge *e = edges[i];
+ BM_elem_index_set(e, edge_index_value[i]); /* set_ok (restore) */
+ }
+
+ MEM_freeN(edge_index_value);
+ }
+
+ MEM_freeN(edgevec);
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Update Vertex & Face Normals (Custom Coords)
+ * \{ */
+
+/**
+ * \brief BMesh Compute Normals from/to external data.
+ *
+ * Computes the vertex normals of a mesh into vnos,
+ * using given vertex coordinates (vcos) and polygon normals (fnos).
+ */
+void BM_verts_calc_normal_vcos(BMesh *bm,
+ const float (*fnos)[3],
+ const float (*vcos)[3],
+ float (*vnos)[3])
+{
+ float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
+
+ /* Compute normalized direction vectors for each edge.
+ * Directions will be used for calculating the weights of the face normals on the vertex normals.
+ */
+ bm_mesh_edges_calc_vectors(bm, edgevec, vcos);
+
+ /* Add weighted face normals to vertices, and normalize vert normals. */
+ bm_mesh_verts_calc_normals(bm, edgevec, fnos, vcos, vnos);
+ MEM_freeN(edgevec);
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Tagging Utility Functions
+ * \{ */
+
+void BM_normals_loops_edges_tag(BMesh *bm, const bool do_edges)
+{
+ BMFace *f;
+ BMEdge *e;
+ BMIter fiter, eiter;
+ BMLoop *l_curr, *l_first;
+
+ if (do_edges) {
+ int index_edge;
+ BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, index_edge) {
+ BMLoop *l_a, *l_b;
+
+ BM_elem_index_set(e, index_edge); /* set_inline */
+ BM_elem_flag_disable(e, BM_ELEM_TAG);
+ if (BM_edge_loop_pair(e, &l_a, &l_b)) {
+ if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
+ BM_elem_flag_enable(e, BM_ELEM_TAG);
+ }
+ }
+ }
+ bm->elem_index_dirty &= ~BM_EDGE;
+ }
+
+ int index_face, index_loop = 0;
+ BM_ITER_MESH_INDEX (f, &fiter, bm, BM_FACES_OF_MESH, index_face) {
+ BM_elem_index_set(f, index_face); /* set_inline */
+ l_curr = l_first = BM_FACE_FIRST_LOOP(f);
+ do {
+ BM_elem_index_set(l_curr, index_loop++); /* set_inline */
+ BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
+ } while ((l_curr = l_curr->next) != l_first);
+ }
+ bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
+}
+
+/**
+ * Helpers for #BM_mesh_loop_normals_update and #BM_loops_calc_normal_vcos
+ */
+static void bm_mesh_edges_sharp_tag(BMesh *bm,
+ const float (*vnos)[3],
+ const float (*fnos)[3],
+ float (*r_lnos)[3],
+ const float split_angle,
+ const bool do_sharp_edges_tag)
+{
+ BMIter eiter;
+ BMEdge *e;
+ int i;
+
+ const bool check_angle = (split_angle < (float)M_PI);
+ const float split_angle_cos = check_angle ? cosf(split_angle) : -1.0f;
+
+ {
+ char htype = BM_VERT | BM_LOOP;
+ if (fnos) {
+ htype |= BM_FACE;
+ }
+ BM_mesh_elem_index_ensure(bm, htype);
+ }
+
+ /* This first loop checks which edges are actually smooth,
+ * and pre-populate lnos with vnos (as if they were all smooth). */
+ BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, i) {
+ BMLoop *l_a, *l_b;
+
+ BM_elem_index_set(e, i); /* set_inline */
+ BM_elem_flag_disable(e, BM_ELEM_TAG); /* Clear tag (means edge is sharp). */
+
+ /* An edge with only two loops, might be smooth... */
+ if (BM_edge_loop_pair(e, &l_a, &l_b)) {
+ bool is_angle_smooth = true;
+ if (check_angle) {
+ const float *no_a = fnos ? fnos[BM_elem_index_get(l_a->f)] : l_a->f->no;
+ const float *no_b = fnos ? fnos[BM_elem_index_get(l_b->f)] : l_b->f->no;
+ is_angle_smooth = (dot_v3v3(no_a, no_b) >= split_angle_cos);
+ }
+
+ /* We only tag edges that are *really* smooth:
+ * If the angle between both its polys' normals is below split_angle value,
+ * and it is tagged as such,
+ * and both its faces are smooth,
+ * and both its faces have compatible (non-flipped) normals,
+ * i.e. both loops on the same edge do not share the same vertex.
+ */
+ if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && BM_elem_flag_test(l_a->f, BM_ELEM_SMOOTH) &&
+ BM_elem_flag_test(l_b->f, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
+ if (is_angle_smooth) {
+ const float *no;
+ BM_elem_flag_enable(e, BM_ELEM_TAG);
+
+ /* linked vertices might be fully smooth, copy their normals to loop ones. */
+ if (r_lnos) {
+ no = vnos ? vnos[BM_elem_index_get(l_a->v)] : l_a->v->no;
+ copy_v3_v3(r_lnos[BM_elem_index_get(l_a)], no);
+ no = vnos ? vnos[BM_elem_index_get(l_b->v)] : l_b->v->no;
+ copy_v3_v3(r_lnos[BM_elem_index_get(l_b)], no);
+ }
+ }
+ else if (do_sharp_edges_tag) {
+ /* Note that we do not care about the other sharp-edge cases
+ * (sharp poly, non-manifold edge, etc.),
+ * only tag edge as sharp when it is due to angle threshold. */
+ BM_elem_flag_disable(e, BM_ELEM_SMOOTH);
+ }
+ }
+ }
+ }
+
+ bm->elem_index_dirty &= ~BM_EDGE;
+}
+
+/**
+ * Define sharp edges as needed to mimic 'autosmooth' from angle threshold.
+ *
+ * Used when defining an empty custom loop normals data layer,
+ * to keep same shading as with auto-smooth!
+ */
+void BM_edges_sharp_from_angle_set(BMesh *bm, const float split_angle)
+{
+ if (split_angle >= (float)M_PI) {
+ /* Nothing to do! */
+ return;
+ }
+
+ bm_mesh_edges_sharp_tag(bm, NULL, NULL, NULL, split_angle, true);
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Loop Normals Calculation API
+ * \{ */
+
+/**
+ * Check whether given loop is part of an unknown-so-far cyclic smooth fan, or not.
+ * Needed because cyclic smooth fans have no obvious 'entry point',
+ * and yet we need to walk them once, and only once.
+ */
+bool BM_loop_check_cyclic_smooth_fan(BMLoop *l_curr)
+{
+ BMLoop *lfan_pivot_next = l_curr;
+ BMEdge *e_next = l_curr->e;
+
+ BLI_assert(!BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG));
+ BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);
+
+ while (true) {
+ /* Much simpler than in sibling code with basic Mesh data! */
+ lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot_next, &e_next);
+
+ if (!lfan_pivot_next || !BM_elem_flag_test(e_next, BM_ELEM_TAG)) {
+ /* Sharp loop/edge, so not a cyclic smooth fan... */
+ return false;
+ }
+ /* Smooth loop/edge... */
+ if (BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG)) {
+ if (lfan_pivot_next == l_curr) {
+ /* We walked around a whole cyclic smooth fan
+ * without finding any already-processed loop,
+ * means we can use initial l_curr/l_prev edge as start for this smooth fan. */
+ return true;
+ }
+ /* ... already checked in some previous looping, we can abort. */
+ return false;
+ }
+ /* ... we can skip it in future, and keep checking the smooth fan. */
+ BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);
+ }
+}
+
+/**
+ * BMesh version of BKE_mesh_normals_loop_split() in mesh_evaluate.c
+ * Will use first clnors_data array, and fallback to cd_loop_clnors_offset
+ * (use NULL and -1 to not use clnors).
+ *
+ * \note This sets #BM_ELEM_TAG which is used in tool code (e.g. T84426).
+ * we could add a low-level API flag for this, see #BM_ELEM_API_FLAG_ENABLE and friends.
+ */
+static void bm_mesh_loops_calc_normals(BMesh *bm,
+ const float (*vcos)[3],
+ const float (*fnos)[3],
+ float (*r_lnos)[3],
+ MLoopNorSpaceArray *r_lnors_spacearr,
+ const short (*clnors_data)[2],
+ const int cd_loop_clnors_offset,
+ const bool do_rebuild)
+{
+ BMIter fiter;
+ BMFace *f_curr;
+ const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
+
+ MLoopNorSpaceArray _lnors_spacearr = {NULL};
+
+ /* Temp normal stack. */
+ BLI_SMALLSTACK_DECLARE(normal, float *);
+ /* Temp clnors stack. */
+ BLI_SMALLSTACK_DECLARE(clnors, short *);
+ /* Temp edge vectors stack, only used when computing lnor spacearr. */
+ BLI_Stack *edge_vectors = NULL;
+
+ {
+ char htype = 0;
+ if (vcos) {
+ htype |= BM_VERT;
+ }
+ /* Face/Loop indices are set inline below. */
+ BM_mesh_elem_index_ensure(bm, htype);
+ }
+
+ if (!r_lnors_spacearr && has_clnors) {
+ /* We need to compute lnor spacearr if some custom lnor data are given to us! */
+ r_lnors_spacearr = &_lnors_spacearr;
+ }
+ if (r_lnors_spacearr) {
+ BKE_lnor_spacearr_init(r_lnors_spacearr, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);
+ edge_vectors = BLI_stack_new(sizeof(float[3]), __func__);
+ }
+
+ /* Clear all loops' tags (means none are to be skipped for now). */
+ int index_face, index_loop = 0;
+ BM_ITER_MESH_INDEX (f_curr, &fiter, bm, BM_FACES_OF_MESH, index_face) {
+ BMLoop *l_curr, *l_first;
+
+ BM_elem_index_set(f_curr, index_face); /* set_inline */
+
+ l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
+ do {
+ BM_elem_index_set(l_curr, index_loop++); /* set_inline */
+ BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
+ } while ((l_curr = l_curr->next) != l_first);
+ }
+ bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
+
+ /* We now know edges that can be smoothed (they are tagged),
+ * and edges that will be hard (they aren't).
+ * Now, time to generate the normals.
+ */
+ BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
+ BMLoop *l_curr, *l_first;
+
+ l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
+ do {
+ if (do_rebuild && !BM_ELEM_API_FLAG_TEST(l_curr, BM_LNORSPACE_UPDATE) &&
+ !(bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL)) {
+ continue;
+ }
+ /* A smooth edge, we have to check for cyclic smooth fan case.
+ * If we find a new, never-processed cyclic smooth fan, we can do it now using that loop/edge
+ * as 'entry point', otherwise we can skip it. */
+
+ /* Note: In theory, we could make bm_mesh_loop_check_cyclic_smooth_fan() store
+ * mlfan_pivot's in a stack, to avoid having to fan again around
+ * the vert during actual computation of clnor & clnorspace. However, this would complicate
+ * the code, add more memory usage, and
+ * BM_vert_step_fan_loop() is quite cheap in term of CPU cycles,
+ * so really think it's not worth it. */
+ if (BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
+ (BM_elem_flag_test(l_curr, BM_ELEM_TAG) || !BM_loop_check_cyclic_smooth_fan(l_curr))) {
+ }
+ else if (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
+ !BM_elem_flag_test(l_curr->prev->e, BM_ELEM_TAG)) {
+ /* Simple case (both edges around that vertex are sharp in related polygon),
+ * this vertex just takes its poly normal.
+ */
+ const int l_curr_index = BM_elem_index_get(l_curr);
+ const float *no = fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no;
+ copy_v3_v3(r_lnos[l_curr_index], no);
+
+ /* If needed, generate this (simple!) lnor space. */
+ if (r_lnors_spacearr) {
+ float vec_curr[3], vec_prev[3];
+ MLoopNorSpace *lnor_space = BKE_lnor_space_create(r_lnors_spacearr);
+
+ {
+ const BMVert *v_pivot = l_curr->v;
+ const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
+ const BMVert *v_1 = BM_edge_other_vert(l_curr->e, v_pivot);
+ const float *co_1 = vcos ? vcos[BM_elem_index_get(v_1)] : v_1->co;
+ const BMVert *v_2 = BM_edge_other_vert(l_curr->prev->e, v_pivot);
+ const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
+
+ sub_v3_v3v3(vec_curr, co_1, co_pivot);
+ normalize_v3(vec_curr);
+ sub_v3_v3v3(vec_prev, co_2, co_pivot);
+ normalize_v3(vec_prev);
+ }
+
+ BKE_lnor_space_define(lnor_space, r_lnos[l_curr_index], vec_curr, vec_prev, NULL);
+ /* We know there is only one loop in this space,
+ * no need to create a linklist in this case... */
+ BKE_lnor_space_add_loop(r_lnors_spacearr, lnor_space, l_curr_index, l_curr, true);
+
+ if (has_clnors) {
+ const short(*clnor)[2] = clnors_data ? &clnors_data[l_curr_index] :
+ (const void *)BM_ELEM_CD_GET_VOID_P(
+ l_curr, cd_loop_clnors_offset);
+ BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor, r_lnos[l_curr_index]);
+ }
+ }
+ }
+ /* We *do not need* to check/tag loops as already computed!
+ * Due to the fact a loop only links to one of its two edges,
+ * a same fan *will never be walked more than once!*
+ * Since we consider edges having neighbor faces with inverted (flipped) normals as sharp,
+ * we are sure that no fan will be skipped, even only considering the case
+ * (sharp curr_edge, smooth prev_edge), and not the alternative
+ * (smooth curr_edge, sharp prev_edge).
+ * All this due/thanks to link between normals and loop ordering.
+ */
+ else {
+ /* We have to fan around current vertex, until we find the other non-smooth edge,
+ * and accumulate face normals into the vertex!
+ * Note in case this vertex has only one sharp edge,
+ * this is a waste because the normal is the same as the vertex normal,
+ * but I do not see any easy way to detect that (would need to count number of sharp edges
+ * per vertex, I doubt the additional memory usage would be worth it, especially as it
+ * should not be a common case in real-life meshes anyway).
+ */
+ BMVert *v_pivot = l_curr->v;
+ BMEdge *e_next;
+ const BMEdge *e_org = l_curr->e;
+ BMLoop *lfan_pivot, *lfan_pivot_next;
+ int lfan_pivot_index;
+ float lnor[3] = {0.0f, 0.0f, 0.0f};
+ float vec_curr[3], vec_next[3], vec_org[3];
+
+ /* We validate clnors data on the fly - cheapest way to do! */
+ int clnors_avg[2] = {0, 0};
+ const short(*clnor_ref)[2] = NULL;
+ int clnors_nbr = 0;
+ bool clnors_invalid = false;
+
+ const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
+
+ MLoopNorSpace *lnor_space = r_lnors_spacearr ? BKE_lnor_space_create(r_lnors_spacearr) :
+ NULL;
+
+ BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors));
+
+ lfan_pivot = l_curr;
+ lfan_pivot_index = BM_elem_index_get(lfan_pivot);
+ e_next = lfan_pivot->e; /* Current edge here, actually! */
+
+ /* Only need to compute previous edge's vector once,
+ * then we can just reuse old current one! */
+ {
+ const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
+ const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
+
+ sub_v3_v3v3(vec_org, co_2, co_pivot);
+ normalize_v3(vec_org);
+ copy_v3_v3(vec_curr, vec_org);
+
+ if (r_lnors_spacearr) {
+ BLI_stack_push(edge_vectors, vec_org);
+ }
+ }
+
+ while (true) {
+ /* Much simpler than in sibling code with basic Mesh data! */
+ lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot, &e_next);
+ if (lfan_pivot_next) {
+ BLI_assert(lfan_pivot_next->v == v_pivot);
+ }
+ else {
+ /* next edge is non-manifold, we have to find it ourselves! */
+ e_next = (lfan_pivot->e == e_next) ? lfan_pivot->prev->e : lfan_pivot->e;
+ }
+
+ /* Compute edge vector.
+ * NOTE: We could pre-compute those into an array, in the first iteration,
+ * instead of computing them twice (or more) here.
+ * However, time gained is not worth memory and time lost,
+ * given the fact that this code should not be called that much in real-life meshes.
+ */
+ {
+ const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
+ const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
+
+ sub_v3_v3v3(vec_next, co_2, co_pivot);
+ normalize_v3(vec_next);
+ }
+
+ {
+ /* Code similar to accumulate_vertex_normals_poly_v3. */
+ /* Calculate angle between the two poly edges incident on this vertex. */
+ const BMFace *f = lfan_pivot->f;
+ const float fac = saacos(dot_v3v3(vec_next, vec_curr));
+ const float *no = fnos ? fnos[BM_elem_index_get(f)] : f->no;
+ /* Accumulate */
+ madd_v3_v3fl(lnor, no, fac);
+
+ if (has_clnors) {
+ /* Accumulate all clnors, if they are not all equal we have to fix that! */
+ const short(*clnor)[2] = clnors_data ? &clnors_data[lfan_pivot_index] :
+ (const void *)BM_ELEM_CD_GET_VOID_P(
+ lfan_pivot, cd_loop_clnors_offset);
+ if (clnors_nbr) {
+ clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] ||
+ (*clnor_ref)[1] != (*clnor)[1]);
+ }
+ else {
+ clnor_ref = clnor;
+ }
+ clnors_avg[0] += (*clnor)[0];
+ clnors_avg[1] += (*clnor)[1];
+ clnors_nbr++;
+ /* We store here a pointer to all custom lnors processed. */
+ BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor);
+ }
+ }
+
+ /* We store here a pointer to all loop-normals processed. */
+ BLI_SMALLSTACK_PUSH(normal, (float *)r_lnos[lfan_pivot_index]);
+
+ if (r_lnors_spacearr) {
+ /* Assign current lnor space to current 'vertex' loop. */
+ BKE_lnor_space_add_loop(
+ r_lnors_spacearr, lnor_space, lfan_pivot_index, lfan_pivot, false);
+ if (e_next != e_org) {
+ /* We store here all edges-normalized vectors processed. */
+ BLI_stack_push(edge_vectors, vec_next);
+ }
+ }
+
+ if (!BM_elem_flag_test(e_next, BM_ELEM_TAG) || (e_next == e_org)) {
+ /* Next edge is sharp, we have finished with this fan of faces around this vert! */
+ break;
+ }
+
+ /* Copy next edge vector to current one. */
+ copy_v3_v3(vec_curr, vec_next);
+ /* Next pivot loop to current one. */
+ lfan_pivot = lfan_pivot_next;
+ lfan_pivot_index = BM_elem_index_get(lfan_pivot);
+ }
+
+ {
+ float lnor_len = normalize_v3(lnor);
+
+ /* If we are generating lnor spacearr, we can now define the one for this fan. */
+ if (r_lnors_spacearr) {
+ if (UNLIKELY(lnor_len == 0.0f)) {
+ /* Use vertex normal as fallback! */
+ copy_v3_v3(lnor, r_lnos[lfan_pivot_index]);
+ lnor_len = 1.0f;
+ }
+
+ BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_next, edge_vectors);
+
+ if (has_clnors) {
+ if (clnors_invalid) {
+ short *clnor;
+
+ clnors_avg[0] /= clnors_nbr;
+ clnors_avg[1] /= clnors_nbr;
+ /* Fix/update all clnors of this fan with computed average value. */
+
+ /* Prints continuously when merge custom normals, so commenting. */
+ /* printf("Invalid clnors in this fan!\n"); */
+
+ while ((clnor = BLI_SMALLSTACK_POP(clnors))) {
+ // print_v2("org clnor", clnor);
+ clnor[0] = (short)clnors_avg[0];
+ clnor[1] = (short)clnors_avg[1];
+ }
+ // print_v2("new clnors", clnors_avg);
+ }
+ else {
+ /* We still have to consume the stack! */
+ while (BLI_SMALLSTACK_POP(clnors)) {
+ /* pass */
+ }
+ }
+ BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor);
+ }
+ }
+
+ /* In case we get a zero normal here, just use vertex normal already set! */
+ if (LIKELY(lnor_len != 0.0f)) {
+ /* Copy back the final computed normal into all related loop-normals. */
+ float *nor;
+
+ while ((nor = BLI_SMALLSTACK_POP(normal))) {
+ copy_v3_v3(nor, lnor);
+ }
+ }
+ else {
+ /* We still have to consume the stack! */
+ while (BLI_SMALLSTACK_POP(normal)) {
+ /* pass */
+ }
+ }
+ }
+
+ /* Tag related vertex as sharp, to avoid fanning around it again
+ * (in case it was a smooth one). */
+ if (r_lnors_spacearr) {
+ BM_elem_flag_enable(l_curr->v, BM_ELEM_TAG);
+ }
+ }
+ } while ((l_curr = l_curr->next) != l_first);
+ }
+
+ if (r_lnors_spacearr) {
+ BLI_stack_free(edge_vectors);
+ if (r_lnors_spacearr == &_lnors_spacearr) {
+ BKE_lnor_spacearr_free(r_lnors_spacearr);
+ }
+ }
+}
+
+/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */
+#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-4f)
+
+/**
+ * Check each current smooth fan (one lnor space per smooth fan!), and if all its
+ * matching custom lnors are not (enough) equal, add sharp edges as needed.
+ */
+static bool bm_mesh_loops_split_lnor_fans(BMesh *bm,
+ MLoopNorSpaceArray *lnors_spacearr,
+ const float (*new_lnors)[3])
+{
+ BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);
+ bool changed = false;
+
+ BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
+
+ for (int i = 0; i < bm->totloop; i++) {
+ if (!lnors_spacearr->lspacearr[i]) {
+ /* This should not happen in theory, but in some rare case (probably ugly geometry)
+ * we can get some NULL loopspacearr at this point. :/
+ * Maybe we should set those loops' edges as sharp?
+ */
+ BLI_BITMAP_ENABLE(done_loops, i);
+ if (G.debug & G_DEBUG) {
+ printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i);
+ }
+ continue;
+ }
+
+ if (!BLI_BITMAP_TEST(done_loops, i)) {
+ /* Notes:
+ * * In case of mono-loop smooth fan, we have nothing to do.
+ * * Loops in this linklist are ordered (in reversed order compared to how they were
+ * discovered by BKE_mesh_normals_loop_split(), but this is not a problem).
+ * Which means if we find a mismatching clnor,
+ * we know all remaining loops will have to be in a new, different smooth fan/lnor space.
+ * * In smooth fan case, we compare each clnor against a ref one,
+ * to avoid small differences adding up into a real big one in the end!
+ */
+ if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
+ BLI_BITMAP_ENABLE(done_loops, i);
+ continue;
+ }
+
+ LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;
+ BMLoop *prev_ml = NULL;
+ const float *org_nor = NULL;
+
+ while (loops) {
+ BMLoop *ml = loops->link;
+ const int lidx = BM_elem_index_get(ml);
+ const float *nor = new_lnors[lidx];
+
+ if (!org_nor) {
+ org_nor = nor;
+ }
+ else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
+ /* Current normal differs too much from org one, we have to tag the edge between
+ * previous loop's face and current's one as sharp.
+ * We know those two loops do not point to the same edge,
+ * since we do not allow reversed winding in a same smooth fan.
+ */
+ BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;
+
+ BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
+ changed = true;
+
+ org_nor = nor;
+ }
+
+ prev_ml = ml;
+ loops = loops->next;
+ BLI_BITMAP_ENABLE(done_loops, lidx);
+ }
+
+ /* We also have to check between last and first loops,
+ * otherwise we may miss some sharp edges here!
+ * This is just a simplified version of above while loop.
+ * See T45984. */
+ loops = lnors_spacearr->lspacearr[i]->loops;
+ if (loops && org_nor) {
+ BMLoop *ml = loops->link;
+ const int lidx = BM_elem_index_get(ml);
+ const float *nor = new_lnors[lidx];
+
+ if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
+ BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;
+
+ BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
+ changed = true;
+ }
+ }
+ }
+ }
+
+ MEM_freeN(done_loops);
+ return changed;
+}
+
+/**
+ * Assign custom normal data from given normal vectors, averaging normals
+ * from one smooth fan as necessary.
+ */
+static void bm_mesh_loops_assign_normal_data(BMesh *bm,
+ MLoopNorSpaceArray *lnors_spacearr,
+ short (*r_clnors_data)[2],
+ const int cd_loop_clnors_offset,
+ const float (*new_lnors)[3])
+{
+ BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);
+
+ BLI_SMALLSTACK_DECLARE(clnors_data, short *);
+
+ BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
+
+ for (int i = 0; i < bm->totloop; i++) {
+ if (!lnors_spacearr->lspacearr[i]) {
+ BLI_BITMAP_ENABLE(done_loops, i);
+ if (G.debug & G_DEBUG) {
+ printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i);
+ }
+ continue;
+ }
+
+ if (!BLI_BITMAP_TEST(done_loops, i)) {
+ /* Note we accumulate and average all custom normals in current smooth fan,
+ * to avoid getting different clnors data (tiny differences in plain custom normals can
+ * give rather huge differences in computed 2D factors).
+ */
+ LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;
+
+ if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
+ BMLoop *ml = (BMLoop *)loops;
+ const int lidx = BM_elem_index_get(ml);
+
+ BLI_assert(lidx == i);
+
+ const float *nor = new_lnors[lidx];
+ short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
+ BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);
+
+ BKE_lnor_space_custom_normal_to_data(lnors_spacearr->lspacearr[i], nor, clnor);
+ BLI_BITMAP_ENABLE(done_loops, i);
+ }
+ else {
+ int nbr_nors = 0;
+ float avg_nor[3];
+ short clnor_data_tmp[2], *clnor_data;
+
+ zero_v3(avg_nor);
+
+ while (loops) {
+ BMLoop *ml = loops->link;
+ const int lidx = BM_elem_index_get(ml);
+ const float *nor = new_lnors[lidx];
+ short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
+ BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);
+
+ nbr_nors++;
+ add_v3_v3(avg_nor, nor);
+ BLI_SMALLSTACK_PUSH(clnors_data, clnor);
+
+ loops = loops->next;
+ BLI_BITMAP_ENABLE(done_loops, lidx);
+ }
+
+ mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors);
+ BKE_lnor_space_custom_normal_to_data(
+ lnors_spacearr->lspacearr[i], avg_nor, clnor_data_tmp);
+
+ while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) {
+ clnor_data[0] = clnor_data_tmp[0];
+ clnor_data[1] = clnor_data_tmp[1];
+ }
+ }
+ }
+ }
+
+ MEM_freeN(done_loops);
+}
+
+/**
+ * Compute internal representation of given custom normals (as an array of float[2] or data layer).
+ *
+ * It also makes sure the mesh matches those custom normals, by marking new sharp edges to split
+ * the smooth fans when loop normals for the same vertex are different, or averaging the normals
+ * instead, depending on the do_split_fans parameter.
+ */
+static void bm_mesh_loops_custom_normals_set(BMesh *bm,
+ const float (*vcos)[3],
+ const float (*vnos)[3],
+ const float (*fnos)[3],
+ MLoopNorSpaceArray *r_lnors_spacearr,
+ short (*r_clnors_data)[2],
+ const int cd_loop_clnors_offset,
+ float (*new_lnors)[3],
+ const int cd_new_lnors_offset,
+ bool do_split_fans)
+{
+ BMFace *f;
+ BMLoop *l;
+ BMIter liter, fiter;
+ float(*cur_lnors)[3] = MEM_mallocN(sizeof(*cur_lnors) * bm->totloop, __func__);
+
+ BKE_lnor_spacearr_clear(r_lnors_spacearr);
+
+ /* Tag smooth edges and set lnos from vnos when they might be completely smooth...
+ * When using custom loop normals, disable the angle feature! */
+ bm_mesh_edges_sharp_tag(bm, vnos, fnos, cur_lnors, (float)M_PI, false);
+
+ /* Finish computing lnos by accumulating face normals
+ * in each fan of faces defined by sharp edges. */
+ bm_mesh_loops_calc_normals(
+ bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);
+
+ /* Extract new normals from the data layer if necessary. */
+ float(*custom_lnors)[3] = new_lnors;
+
+ if (new_lnors == NULL) {
+ custom_lnors = MEM_mallocN(sizeof(*new_lnors) * bm->totloop, __func__);
+
+ BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
+ BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
+ const float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_new_lnors_offset);
+ copy_v3_v3(custom_lnors[BM_elem_index_get(l)], normal);
+ }
+ }
+ }
+
+ /* Validate the new normals. */
+ for (int i = 0; i < bm->totloop; i++) {
+ if (is_zero_v3(custom_lnors[i])) {
+ copy_v3_v3(custom_lnors[i], cur_lnors[i]);
+ }
+ else {
+ normalize_v3(custom_lnors[i]);
+ }
+ }
+
+ /* Now, check each current smooth fan (one lnor space per smooth fan!),
+ * and if all its matching custom lnors are not equal, add sharp edges as needed. */
+ if (do_split_fans && bm_mesh_loops_split_lnor_fans(bm, r_lnors_spacearr, custom_lnors)) {
+ /* If any sharp edges were added, run bm_mesh_loops_calc_normals() again to get lnor
+ * spacearr/smooth fans matching the given custom lnors. */
+ BKE_lnor_spacearr_clear(r_lnors_spacearr);
+
+ bm_mesh_loops_calc_normals(
+ bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);
+ }
+
+ /* And we just have to convert plain object-space custom normals to our
+ * lnor space-encoded ones. */
+ bm_mesh_loops_assign_normal_data(
+ bm, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, custom_lnors);
+
+ MEM_freeN(cur_lnors);
+
+ if (custom_lnors != new_lnors) {
+ MEM_freeN(custom_lnors);
+ }
+}
+
+static void bm_mesh_loops_calc_normals_no_autosmooth(BMesh *bm,
+ const float (*vnos)[3],
+ const float (*fnos)[3],
+ float (*r_lnos)[3])
+{
+ BMIter fiter;
+ BMFace *f_curr;
+
+ {
+ char htype = BM_LOOP;
+ if (vnos) {
+ htype |= BM_VERT;
+ }
+ if (fnos) {
+ htype |= BM_FACE;
+ }
+ BM_mesh_elem_index_ensure(bm, htype);
+ }
+
+ BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
+ BMLoop *l_curr, *l_first;
+ const bool is_face_flat = !BM_elem_flag_test(f_curr, BM_ELEM_SMOOTH);
+
+ l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
+ do {
+ const float *no = is_face_flat ? (fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no) :
+ (vnos ? vnos[BM_elem_index_get(l_curr->v)] : l_curr->v->no);
+ copy_v3_v3(r_lnos[BM_elem_index_get(l_curr)], no);
+
+ } while ((l_curr = l_curr->next) != l_first);
+ }
+}
+
+#if 0 /* Unused currently */
+/**
+ * \brief BMesh Compute Loop Normals
+ *
+ * Updates the loop normals of a mesh.
+ * Assumes vertex and face normals are valid (else call BM_mesh_normals_update() first)!
+ */
+void BM_mesh_loop_normals_update(BMesh *bm,
+ const bool use_split_normals,
+ const float split_angle,
+ float (*r_lnos)[3],
+ MLoopNorSpaceArray *r_lnors_spacearr,
+ const short (*clnors_data)[2],
+ const int cd_loop_clnors_offset)
+{
+ const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
+
+ if (use_split_normals) {
+ /* Tag smooth edges and set lnos from vnos when they might be completely smooth...
+ * When using custom loop normals, disable the angle feature! */
+ bm_mesh_edges_sharp_tag(bm, NULL, NULL, has_clnors ? (float)M_PI : split_angle, r_lnos);
+
+ /* Finish computing lnos by accumulating face normals
+ * in each fan of faces defined by sharp edges. */
+ bm_mesh_loops_calc_normals(
+ bm, NULL, NULL, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset);
+ }
+ else {
+ BLI_assert(!r_lnors_spacearr);
+ bm_mesh_loops_calc_normals_no_autosmooth(bm, NULL, NULL, r_lnos);
+ }
+}
+#endif
+
+/**
+ * \brief BMesh Compute Loop Normals from/to external data.
+ *
+ * Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
+ * Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry
+ * (splitting edges).
+ */
+void BM_loops_calc_normal_vcos(BMesh *bm,
+ const float (*vcos)[3],
+ const float (*vnos)[3],
+ const float (*fnos)[3],
+ const bool use_split_normals,
+ const float split_angle,
+ float (*r_lnos)[3],
+ MLoopNorSpaceArray *r_lnors_spacearr,
+ short (*clnors_data)[2],
+ const int cd_loop_clnors_offset,
+ const bool do_rebuild)
+{
+ const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
+
+ if (use_split_normals) {
+ /* Tag smooth edges and set lnos from vnos when they might be completely smooth...
+ * When using custom loop normals, disable the angle feature! */
+ bm_mesh_edges_sharp_tag(bm, vnos, fnos, r_lnos, has_clnors ? (float)M_PI : split_angle, false);
+
+ /* Finish computing lnos by accumulating face normals
+ * in each fan of faces defined by sharp edges. */
+ bm_mesh_loops_calc_normals(
+ bm, vcos, fnos, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset, do_rebuild);
+ }
+ else {
+ BLI_assert(!r_lnors_spacearr);
+ bm_mesh_loops_calc_normals_no_autosmooth(bm, vnos, fnos, r_lnos);
+ }
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Loop Normal Space API
+ * \{ */
+
+void BM_lnorspacearr_store(BMesh *bm, float (*r_lnors)[3])
+{
+ BLI_assert(bm->lnor_spacearr != NULL);
+
+ if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
+ BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
+ }
+
+ int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
+
+ BM_loops_calc_normal_vcos(bm,
+ NULL,
+ NULL,
+ NULL,
+ true,
+ M_PI,
+ r_lnors,
+ bm->lnor_spacearr,
+ NULL,
+ cd_loop_clnors_offset,
+ false);
+ bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
+}
+
+#define CLEAR_SPACEARRAY_THRESHOLD(x) ((x) / 2)
+
+void BM_lnorspace_invalidate(BMesh *bm, const bool do_invalidate_all)
+{
+ if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
+ return;
+ }
+ if (do_invalidate_all || bm->totvertsel > CLEAR_SPACEARRAY_THRESHOLD(bm->totvert)) {
+ bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
+ return;
+ }
+ if (bm->lnor_spacearr == NULL) {
+ bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
+ return;
+ }
+
+ BMVert *v;
+ BMLoop *l;
+ BMIter viter, liter;
+ /* Note: we could use temp tag of BMItem for that,
+ * but probably better not use it in such a low-level func?
+ * --mont29 */
+ BLI_bitmap *done_verts = BLI_BITMAP_NEW(bm->totvert, __func__);
+
+ BM_mesh_elem_index_ensure(bm, BM_VERT);
+
+ /* When we affect a given vertex, we may affect following smooth fans:
+ * - all smooth fans of said vertex;
+ * - all smooth fans of all immediate loop-neighbors vertices;
+ * This can be simplified as 'all loops of selected vertices and their immediate neighbors'
+ * need to be tagged for update.
+ */
+ BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
+ if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
+ BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
+ BM_ELEM_API_FLAG_ENABLE(l, BM_LNORSPACE_UPDATE);
+
+ /* Note that we only handle unselected neighbor vertices here, main loop will take care of
+ * selected ones. */
+ if ((!BM_elem_flag_test(l->prev->v, BM_ELEM_SELECT)) &&
+ !BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->prev->v))) {
+
+ BMLoop *l_prev;
+ BMIter liter_prev;
+ BM_ITER_ELEM (l_prev, &liter_prev, l->prev->v, BM_LOOPS_OF_VERT) {
+ BM_ELEM_API_FLAG_ENABLE(l_prev, BM_LNORSPACE_UPDATE);
+ }
+ BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_prev->v));
+ }
+
+ if ((!BM_elem_flag_test(l->next->v, BM_ELEM_SELECT)) &&
+ !BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->next->v))) {
+
+ BMLoop *l_next;
+ BMIter liter_next;
+ BM_ITER_ELEM (l_next, &liter_next, l->next->v, BM_LOOPS_OF_VERT) {
+ BM_ELEM_API_FLAG_ENABLE(l_next, BM_LNORSPACE_UPDATE);
+ }
+ BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_next->v));
+ }
+ }
+
+ BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(v));
+ }
+ }
+
+ MEM_freeN(done_verts);
+ bm->spacearr_dirty |= BM_SPACEARR_DIRTY;
+}
+
+void BM_lnorspace_rebuild(BMesh *bm, bool preserve_clnor)
+{
+ BLI_assert(bm->lnor_spacearr != NULL);
+
+ if (!(bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL))) {
+ return;
+ }
+ BMFace *f;
+ BMLoop *l;
+ BMIter fiter, liter;
+
+ float(*r_lnors)[3] = MEM_callocN(sizeof(*r_lnors) * bm->totloop, __func__);
+ float(*oldnors)[3] = preserve_clnor ? MEM_mallocN(sizeof(*oldnors) * bm->totloop, __func__) :
+ NULL;
+
+ int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
+
+ BM_mesh_elem_index_ensure(bm, BM_LOOP);
+
+ if (preserve_clnor) {
+ BLI_assert(bm->lnor_spacearr->lspacearr != NULL);
+
+ BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
+ BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
+ if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
+ bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
+ short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
+ int l_index = BM_elem_index_get(l);
+
+ BKE_lnor_space_custom_data_to_normal(
+ bm->lnor_spacearr->lspacearr[l_index], *clnor, oldnors[l_index]);
+ }
+ }
+ }
+ }
+
+ if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
+ BKE_lnor_spacearr_clear(bm->lnor_spacearr);
+ }
+ BM_loops_calc_normal_vcos(bm,
+ NULL,
+ NULL,
+ NULL,
+ true,
+ M_PI,
+ r_lnors,
+ bm->lnor_spacearr,
+ NULL,
+ cd_loop_clnors_offset,
+ true);
+ MEM_freeN(r_lnors);
+
+ BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
+ BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
+ if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
+ bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
+ if (preserve_clnor) {
+ short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
+ int l_index = BM_elem_index_get(l);
+ BKE_lnor_space_custom_normal_to_data(
+ bm->lnor_spacearr->lspacearr[l_index], oldnors[l_index], *clnor);
+ }
+ BM_ELEM_API_FLAG_DISABLE(l, BM_LNORSPACE_UPDATE);
+ }
+ }
+ }
+
+ MEM_SAFE_FREE(oldnors);
+ bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
+
+#ifndef NDEBUG
+ BM_lnorspace_err(bm);
+#endif
+}
+
+/**
+ * \warning This function sets #BM_ELEM_TAG on loops & edges via #bm_mesh_loops_calc_normals,
+ * take care to run this before setting up tags.
+ */
+void BM_lnorspace_update(BMesh *bm)
+{
+ if (bm->lnor_spacearr == NULL) {
+ bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
+ }
+ if (bm->lnor_spacearr->lspacearr == NULL) {
+ float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);
+
+ BM_lnorspacearr_store(bm, lnors);
+
+ MEM_freeN(lnors);
+ }
+ else if (bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL)) {
+ BM_lnorspace_rebuild(bm, false);
+ }
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Loop Normal Edit Data Array API
+ *
+ * Utilities for creating/freeing #BMLoopNorEditDataArray.
+ * \{ */
+
+/**
+ * Auxiliary function only used by rebuild to detect if any spaces were not marked as invalid.
+ * Reports error if any of the lnor spaces change after rebuilding, meaning that all the possible
+ * lnor spaces to be rebuilt were not correctly marked.
+ */
+#ifndef NDEBUG
+void BM_lnorspace_err(BMesh *bm)
+{
+ bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
+ bool clear = true;
+
+ MLoopNorSpaceArray *temp = MEM_callocN(sizeof(*temp), __func__);
+ temp->lspacearr = NULL;
+
+ BKE_lnor_spacearr_init(temp, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);
+
+ int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
+ float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);
+ BM_loops_calc_normal_vcos(
+ bm, NULL, NULL, NULL, true, M_PI, lnors, temp, NULL, cd_loop_clnors_offset, true);
+
+ for (int i = 0; i < bm->totloop; i++) {
+ int j = 0;
+ j += compare_ff(
+ temp->lspacearr[i]->ref_alpha, bm->lnor_spacearr->lspacearr[i]->ref_alpha, 1e-4f);
+ j += compare_ff(
+ temp->lspacearr[i]->ref_beta, bm->lnor_spacearr->lspacearr[i]->ref_beta, 1e-4f);
+ j += compare_v3v3(
+ temp->lspacearr[i]->vec_lnor, bm->lnor_spacearr->lspacearr[i]->vec_lnor, 1e-4f);
+ j += compare_v3v3(
+ temp->lspacearr[i]->vec_ortho, bm->lnor_spacearr->lspacearr[i]->vec_ortho, 1e-4f);
+ j += compare_v3v3(
+ temp->lspacearr[i]->vec_ref, bm->lnor_spacearr->lspacearr[i]->vec_ref, 1e-4f);
+
+ if (j != 5) {
+ clear = false;
+ break;
+ }
+ }
+ BKE_lnor_spacearr_free(temp);
+ MEM_freeN(temp);
+ MEM_freeN(lnors);
+ BLI_assert(clear);
+
+ bm->spacearr_dirty &= ~BM_SPACEARR_DIRTY_ALL;
+}
+#endif
+
+static void bm_loop_normal_mark_indiv_do_loop(BMLoop *l,
+ BLI_bitmap *loops,
+ MLoopNorSpaceArray *lnor_spacearr,
+ int *totloopsel,
+ const bool do_all_loops_of_vert)
+{
+ if (l != NULL) {
+ const int l_idx = BM_elem_index_get(l);
+
+ if (!BLI_BITMAP_TEST(loops, l_idx)) {
+ /* If vert and face selected share a loop, mark it for editing. */
+ BLI_BITMAP_ENABLE(loops, l_idx);
+ (*totloopsel)++;
+
+ if (do_all_loops_of_vert) {
+ /* If required, also mark all loops shared by that vertex.
+ * This is needed when loop spaces may change
+ * (i.e. when some faces or edges might change of smooth/sharp status). */
+ BMIter liter;
+ BMLoop *lfan;
+ BM_ITER_ELEM (lfan, &liter, l->v, BM_LOOPS_OF_VERT) {
+ const int lfan_idx = BM_elem_index_get(lfan);
+ if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
+ BLI_BITMAP_ENABLE(loops, lfan_idx);
+ (*totloopsel)++;
+ }
+ }
+ }
+ else {
+ /* Mark all loops in same loop normal space (aka smooth fan). */
+ if ((lnor_spacearr->lspacearr[l_idx]->flags & MLNOR_SPACE_IS_SINGLE) == 0) {
+ for (LinkNode *node = lnor_spacearr->lspacearr[l_idx]->loops; node; node = node->next) {
+ const int lfan_idx = BM_elem_index_get((BMLoop *)node->link);
+ if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
+ BLI_BITMAP_ENABLE(loops, lfan_idx);
+ (*totloopsel)++;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+/* Mark the individual clnors to be edited, if multiple selection methods are used. */
+static int bm_loop_normal_mark_indiv(BMesh *bm, BLI_bitmap *loops, const bool do_all_loops_of_vert)
+{
+ BMEditSelection *ese, *ese_prev;
+ int totloopsel = 0;
+
+ const bool sel_verts = (bm->selectmode & SCE_SELECT_VERTEX) != 0;
+ const bool sel_edges = (bm->selectmode & SCE_SELECT_EDGE) != 0;
+ const bool sel_faces = (bm->selectmode & SCE_SELECT_FACE) != 0;
+ const bool use_sel_face_history = sel_faces && (sel_edges || sel_verts);
+
+ BM_mesh_elem_index_ensure(bm, BM_LOOP);
+
+ BLI_assert(bm->lnor_spacearr != NULL);
+ BLI_assert(bm->lnor_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
+
+ if (use_sel_face_history) {
+ /* Using face history allows to select a single loop from a single face...
+ * Note that this is O(n^2) piece of code,
+ * but it is not designed to be used with huge selection sets,
+ * rather with only a few items selected at most.*/
+ /* Goes from last selected to the first selected element. */
+ for (ese = bm->selected.last; ese; ese = ese->prev) {
+ if (ese->htype == BM_FACE) {
+ /* If current face is selected,
+ * then any verts to be edited must have been selected before it. */
+ for (ese_prev = ese->prev; ese_prev; ese_prev = ese_prev->prev) {
+ if (ese_prev->htype == BM_VERT) {
+ bm_loop_normal_mark_indiv_do_loop(
+ BM_face_vert_share_loop((BMFace *)ese->ele, (BMVert *)ese_prev->ele),
+ loops,
+ bm->lnor_spacearr,
+ &totloopsel,
+ do_all_loops_of_vert);
+ }
+ else if (ese_prev->htype == BM_EDGE) {
+ BMEdge *e = (BMEdge *)ese_prev->ele;
+ bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v1),
+ loops,
+ bm->lnor_spacearr,
+ &totloopsel,
+ do_all_loops_of_vert);
+
+ bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v2),
+ loops,
+ bm->lnor_spacearr,
+ &totloopsel,
+ do_all_loops_of_vert);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (sel_faces) {
+ /* Only select all loops of selected faces. */
+ BMLoop *l;
+ BMFace *f;
+ BMIter liter, fiter;
+ BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
+ if (BM_elem_flag_test(f, BM_ELEM_SELECT)) {
+ BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
+ bm_loop_normal_mark_indiv_do_loop(
+ l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
+ }
+ }
+ }
+ }
+ if (sel_edges) {
+ /* Only select all loops of selected edges. */
+ BMLoop *l;
+ BMEdge *e;
+ BMIter liter, eiter;
+ BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) {
+ if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
+ BM_ITER_ELEM (l, &liter, e, BM_LOOPS_OF_EDGE) {
+ bm_loop_normal_mark_indiv_do_loop(
+ l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
+ /* Loops actually 'have' two edges, or said otherwise, a selected edge actually selects
+ * *two* loops in each of its faces. We have to find the other one too. */
+ if (BM_vert_in_edge(e, l->next->v)) {
+ bm_loop_normal_mark_indiv_do_loop(
+ l->next, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
+ }
+ else {
+ BLI_assert(BM_vert_in_edge(e, l->prev->v));
+ bm_loop_normal_mark_indiv_do_loop(
+ l->prev, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
+ }
+ }
+ }
+ }
+ }
+ if (sel_verts) {
+ /* Select all loops of selected verts. */
+ BMLoop *l;
+ BMVert *v;
+ BMIter liter, viter;
+ BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
+ if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
+ BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
+ bm_loop_normal_mark_indiv_do_loop(
+ l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
+ }
+ }
+ }
+ }
+ }
+
+ return totloopsel;
+}
+
+static void loop_normal_editdata_init(
+ BMesh *bm, BMLoopNorEditData *lnor_ed, BMVert *v, BMLoop *l, const int offset)
+{
+ BLI_assert(bm->lnor_spacearr != NULL);
+ BLI_assert(bm->lnor_spacearr->lspacearr != NULL);
+
+ const int l_index = BM_elem_index_get(l);
+ short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, offset);
+
+ lnor_ed->loop_index = l_index;
+ lnor_ed->loop = l;
+
+ float custom_normal[3];
+ BKE_lnor_space_custom_data_to_normal(
+ bm->lnor_spacearr->lspacearr[l_index], clnors_data, custom_normal);
+
+ lnor_ed->clnors_data = clnors_data;
+ copy_v3_v3(lnor_ed->nloc, custom_normal);
+ copy_v3_v3(lnor_ed->niloc, custom_normal);
+
+ lnor_ed->loc = v->co;
+}
+
+BMLoopNorEditDataArray *BM_loop_normal_editdata_array_init(BMesh *bm,
+ const bool do_all_loops_of_vert)
+{
+ BMLoop *l;
+ BMVert *v;
+ BMIter liter, viter;
+
+ int totloopsel = 0;
+
+ BLI_assert(bm->spacearr_dirty == 0);
+
+ BMLoopNorEditDataArray *lnors_ed_arr = MEM_callocN(sizeof(*lnors_ed_arr), __func__);
+ lnors_ed_arr->lidx_to_lnor_editdata = MEM_callocN(
+ sizeof(*lnors_ed_arr->lidx_to_lnor_editdata) * bm->totloop, __func__);
+
+ if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
+ BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
+ }
+ const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
+
+ BM_mesh_elem_index_ensure(bm, BM_LOOP);
+
+ BLI_bitmap *loops = BLI_BITMAP_NEW(bm->totloop, __func__);
+
+ /* This function define loop normals to edit, based on selection modes and history. */
+ totloopsel = bm_loop_normal_mark_indiv(bm, loops, do_all_loops_of_vert);
+
+ if (totloopsel) {
+ BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata = MEM_mallocN(
+ sizeof(*lnor_ed) * totloopsel, __func__);
+
+ BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
+ BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
+ if (BLI_BITMAP_TEST(loops, BM_elem_index_get(l))) {
+ loop_normal_editdata_init(bm, lnor_ed, v, l, cd_custom_normal_offset);
+ lnors_ed_arr->lidx_to_lnor_editdata[BM_elem_index_get(l)] = lnor_ed;
+ lnor_ed++;
+ }
+ }
+ }
+ lnors_ed_arr->totloop = totloopsel;
+ }
+
+ MEM_freeN(loops);
+ lnors_ed_arr->cd_custom_normal_offset = cd_custom_normal_offset;
+ return lnors_ed_arr;
+}
+
+void BM_loop_normal_editdata_array_free(BMLoopNorEditDataArray *lnors_ed_arr)
+{
+ MEM_SAFE_FREE(lnors_ed_arr->lnor_editdata);
+ MEM_SAFE_FREE(lnors_ed_arr->lidx_to_lnor_editdata);
+ MEM_freeN(lnors_ed_arr);
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Custom Normals / Vector Layer Conversion
+ * \{ */
+
+/**
+ * \warning This function sets #BM_ELEM_TAG on loops & edges via #bm_mesh_loops_calc_normals,
+ * take care to run this before setting up tags.
+ */
+bool BM_custom_loop_normals_to_vector_layer(BMesh *bm)
+{
+ BMFace *f;
+ BMLoop *l;
+ BMIter liter, fiter;
+
+ if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
+ return false;
+ }
+
+ BM_lnorspace_update(bm);
+ BM_mesh_elem_index_ensure(bm, BM_LOOP);
+
+ /* Create a loop normal layer. */
+ if (!CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
+ BM_data_layer_add(bm, &bm->ldata, CD_NORMAL);
+
+ CustomData_set_layer_flag(&bm->ldata, CD_NORMAL, CD_FLAG_TEMPORARY);
+ }
+
+ const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
+ const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);
+
+ BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
+ BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
+ const int l_index = BM_elem_index_get(l);
+ const short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, cd_custom_normal_offset);
+ float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_normal_offset);
+
+ BKE_lnor_space_custom_data_to_normal(
+ bm->lnor_spacearr->lspacearr[l_index], clnors_data, normal);
+ }
+ }
+
+ return true;
+}
+
+void BM_custom_loop_normals_from_vector_layer(BMesh *bm, bool add_sharp_edges)
+{
+ if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL) ||
+ !CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
+ return;
+ }
+
+ const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
+ const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);
+
+ if (bm->lnor_spacearr == NULL) {
+ bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
+ }
+
+ bm_mesh_loops_custom_normals_set(bm,
+ NULL,
+ NULL,
+ NULL,
+ bm->lnor_spacearr,
+ NULL,
+ cd_custom_normal_offset,
+ NULL,
+ cd_normal_offset,
+ add_sharp_edges);
+
+ bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
+}
+
+/** \} */