Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/bmesh/operators/utils.c')
-rw-r--r--source/blender/bmesh/operators/utils.c1292
1 files changed, 1292 insertions, 0 deletions
diff --git a/source/blender/bmesh/operators/utils.c b/source/blender/bmesh/operators/utils.c
new file mode 100644
index 00000000000..daa60c640cd
--- /dev/null
+++ b/source/blender/bmesh/operators/utils.c
@@ -0,0 +1,1292 @@
+#include "MEM_guardedalloc.h"
+#include "BKE_customdata.h"
+#include "DNA_listBase.h"
+#include "DNA_customdata_types.h"
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_object_types.h"
+#include "DNA_scene_types.h"
+#include <string.h>
+#include "BKE_utildefines.h"
+#include "BKE_mesh.h"
+#include "BKE_global.h"
+#include "BKE_DerivedMesh.h"
+#include "BKE_cdderivedmesh.h"
+
+#include "BLI_editVert.h"
+#include "mesh_intern.h"
+#include "ED_mesh.h"
+
+#include "BLI_math.h"
+#include "BLI_array.h"
+#include "BLI_blenlib.h"
+#include "BLI_edgehash.h"
+
+#include "BLI_heap.h"
+
+#include "bmesh.h"
+
+#include "bmesh_operators_private.h" /* own include */
+
+/*
+ * UTILS.C
+ *
+ * utility bmesh operators, e.g. transform,
+ * translate, rotate, scale, etc.
+ *
+*/
+
+void bmesh_makevert_exec(BMesh *bm, BMOperator *op)
+{
+ float vec[3];
+
+ BMO_Get_Vec(op, "co", vec);
+
+ BMO_SetFlag(bm, BM_Make_Vert(bm, vec, NULL), 1);
+ BMO_Flag_To_Slot(bm, op, "newvertout", 1, BM_VERT);
+}
+
+void bmesh_transform_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter iter;
+ BMVert *v;
+ float mat[4][4];
+
+ BMO_Get_Mat4(op, "mat", mat);
+
+ BMO_ITER(v, &iter, bm, op, "verts", BM_VERT) {
+ mul_m4_v3(mat, v->co);
+ }
+}
+
+void bmesh_translate_exec(BMesh *bm, BMOperator *op)
+{
+ float mat[4][4], vec[3];
+
+ BMO_Get_Vec(op, "vec", vec);
+
+ unit_m4(mat);
+ copy_v3_v3(mat[3], vec);
+
+ BMO_CallOpf(bm, "transform mat=%m4 verts=%s", mat, op, "verts");
+}
+
+void bmesh_scale_exec(BMesh *bm, BMOperator *op)
+{
+ float mat[3][3], vec[3];
+
+ BMO_Get_Vec(op, "vec", vec);
+
+ unit_m3(mat);
+ mat[0][0] = vec[0];
+ mat[1][1] = vec[1];
+ mat[2][2] = vec[2];
+
+ BMO_CallOpf(bm, "transform mat=%m3 verts=%s", mat, op, "verts");
+}
+
+void bmesh_rotate_exec(BMesh *bm, BMOperator *op)
+{
+ float vec[3];
+
+ BMO_Get_Vec(op, "cent", vec);
+
+ /*there has to be a proper matrix way to do this, but
+ this is how editmesh did it and I'm too tired to think
+ through the math right now.*/
+ mul_v3_fl(vec, -1);
+ BMO_CallOpf(bm, "translate verts=%s vec=%v", op, "verts", vec);
+
+ BMO_CallOpf(bm, "transform mat=%s verts=%s", op, "mat", op, "verts");
+
+ mul_v3_fl(vec, -1);
+ BMO_CallOpf(bm, "translate verts=%s vec=%v", op, "verts", vec);
+}
+
+void bmesh_reversefaces_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter siter;
+ BMFace *f;
+
+ BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) {
+ BM_flip_normal(bm, f);
+ }
+}
+
+void bmesh_edgerotate_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter siter;
+ BMEdge *e, *e2;
+ int ccw = BMO_Get_Int(op, "ccw");
+
+ BMO_ITER(e, &siter, bm, op, "edges", BM_EDGE) {
+ if (!(e2 = BM_Rotate_Edge(bm, e, ccw))) {
+ BMO_RaiseError(bm, op, BMERR_INVALID_SELECTION, "Could not rotate edge");
+ return;
+ }
+
+ BMO_SetFlag(bm, e2, 1);
+ }
+
+ BMO_Flag_To_Slot(bm, op, "edgeout", 1, BM_EDGE);
+}
+
+#define SEL_FLAG 1
+#define SEL_ORIG 2
+
+static void bmesh_regionextend_extend(BMesh *bm, BMOperator *op, int usefaces)
+{
+ BMVert *v;
+ BMEdge *e;
+ BMIter eiter;
+ BMOIter siter;
+
+ if (!usefaces) {
+ BMO_ITER(v, &siter, bm, op, "geom", BM_VERT) {
+ BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
+ if (!BMO_TestFlag(bm, e, SEL_ORIG))
+ break;
+ }
+
+ if (e) {
+ BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
+ BMO_SetFlag(bm, e, SEL_FLAG);
+ BMO_SetFlag(bm, BM_OtherEdgeVert(e, v), SEL_FLAG);
+ }
+ }
+ }
+ } else {
+ BMIter liter, fiter;
+ BMFace *f, *f2;
+ BMLoop *l;
+
+ BMO_ITER(f, &siter, bm, op, "geom", BM_FACE) {
+ BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
+ BM_ITER(f2, &fiter, bm, BM_FACES_OF_EDGE, l->e) {
+ if (!BMO_TestFlag(bm, f2, SEL_ORIG))
+ BMO_SetFlag(bm, f2, SEL_FLAG);
+ }
+ }
+ }
+ }
+}
+
+static void bmesh_regionextend_constrict(BMesh *bm, BMOperator *op, int usefaces)
+{
+ BMVert *v;
+ BMEdge *e;
+ BMIter eiter;
+ BMOIter siter;
+
+ if (!usefaces) {
+ BMO_ITER(v, &siter, bm, op, "geom", BM_VERT) {
+ BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
+ if (!BMO_TestFlag(bm, e, SEL_ORIG))
+ break;
+ }
+
+ if (e) {
+ BMO_SetFlag(bm, v, SEL_FLAG);
+
+ BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
+ BMO_SetFlag(bm, e, SEL_FLAG);
+ }
+ }
+ }
+ } else {
+ BMIter liter, fiter;
+ BMFace *f, *f2;
+ BMLoop *l;
+
+ BMO_ITER(f, &siter, bm, op, "geom", BM_FACE) {
+ BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
+ BM_ITER(f2, &fiter, bm, BM_FACES_OF_EDGE, l->e) {
+ if (!BMO_TestFlag(bm, f2, SEL_ORIG)) {
+ BMO_SetFlag(bm, f, SEL_FLAG);
+ break;
+ }
+ }
+ }
+ }
+ }
+}
+
+void bmesh_regionextend_exec(BMesh *bm, BMOperator *op)
+{
+ int usefaces = BMO_Get_Int(op, "usefaces");
+ int constrict = BMO_Get_Int(op, "constrict");
+
+ BMO_Flag_Buffer(bm, op, "geom", SEL_ORIG, BM_ALL);
+
+ if (constrict)
+ bmesh_regionextend_constrict(bm, op, usefaces);
+ else
+ bmesh_regionextend_extend(bm, op, usefaces);
+
+ BMO_Flag_To_Slot(bm, op, "geomout", SEL_FLAG, BM_ALL);
+}
+
+/********* righthand faces implementation ********/
+
+#define FACE_VIS 1
+#define FACE_FLAG 2
+#define FACE_MARK 4
+#define FACE_FLIP 8
+
+/* NOTE: these are the original righthandfaces comment in editmesh_mods.c,
+ * copied here for reference. */
+
+ /* based at a select-connected to witness loose objects */
+
+/* count per edge the amount of faces
+ * find the ultimate left, front, upper face (not manhattan dist!!)
+ * also evaluate both triangle cases in quad, since these can be non-flat
+ *
+ * put normal to the outside, and set the first direction flags in edges
+ *
+ * then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces
+ * this is in fact the 'select connected'
+ *
+ * in case (selected) faces were not done: start over with 'find the ultimate ...' */
+
+/* NOTE: this function uses recursion, which is a little unusual for a bmop
+ function, but acceptable I think. */
+
+void bmesh_righthandfaces_exec(BMesh *bm, BMOperator *op)
+{
+ BMIter liter, liter2;
+ BMOIter siter;
+ BMFace *f, *startf, **fstack = NULL;
+ BLI_array_declare(fstack);
+ BMLoop *l, *l2;
+ float maxx, cent[3];
+ int i, maxi, flagflip = BMO_Get_Int(op, "doflip");
+
+ startf= NULL;
+ maxx= -1.0e10;
+
+ BMO_Flag_Buffer(bm, op, "faces", FACE_FLAG, BM_FACE);
+
+ /*find a starting face*/
+ BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) {
+ if (BMO_TestFlag(bm, f, FACE_VIS))
+ continue;
+
+ if (!startf) startf = f;
+
+ BM_Compute_Face_Center(bm, f, cent);
+
+ cent[0] = cent[0]*cent[0] + cent[1]*cent[1] + cent[2]*cent[2];
+ if (cent[0] > maxx) {
+ maxx = cent[0];
+ startf = f;
+ }
+ }
+
+ if (!startf) return;
+
+ BM_Compute_Face_Center(bm, startf, cent);
+
+ /*make sure the starting face has the correct winding*/
+ if (dot_v3v3(cent, startf->no) < 0.0f) {
+ BM_flip_normal(bm, startf);
+ BMO_ToggleFlag(bm, startf, FACE_FLIP);
+
+ if (flagflip)
+ BM_ToggleHFlag(startf, BM_FLIPPED);
+ }
+
+ /*now that we've found our starting face, make all connected faces
+ have the same winding. this is done recursively, using a manual
+ stack (if we use simple function recursion, we'd end up overloading
+ the stack on large meshes).*/
+
+ BLI_array_growone(fstack);
+ fstack[0] = startf;
+ BMO_SetFlag(bm, startf, FACE_VIS);
+
+ i = 0;
+ maxi = 1;
+ while (i >= 0) {
+ f = fstack[i];
+ i--;
+
+ BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
+ BM_ITER(l2, &liter2, bm, BM_LOOPS_OF_LOOP, l) {
+ if (!BMO_TestFlag(bm, l2->f, FACE_FLAG) || l2 == l)
+ continue;
+
+ if (!BMO_TestFlag(bm, l2->f, FACE_VIS)) {
+ BMO_SetFlag(bm, l2->f, FACE_VIS);
+ i++;
+
+ if (l2->v == l->v) {
+ BM_flip_normal(bm, l2->f);
+
+ BMO_ToggleFlag(bm, l2->f, FACE_FLIP);
+ if (flagflip)
+ BM_ToggleHFlag(l2->f, BM_FLIPPED);
+ } else if (BM_TestHFlag(l2->f, BM_FLIPPED) || BM_TestHFlag(l->f, BM_FLIPPED)) {
+ if (flagflip) {
+ BM_ClearHFlag(l->f, BM_FLIPPED);
+ BM_ClearHFlag(l2->f, BM_FLIPPED);
+ }
+ }
+
+ if (i == maxi) {
+ BLI_array_growone(fstack);
+ maxi++;
+ }
+
+ fstack[i] = l2->f;
+ }
+ }
+ }
+ }
+
+ BLI_array_free(fstack);
+
+ /*check if we have faces yet to do. if so, recurse.*/
+ BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) {
+ if (!BMO_TestFlag(bm, f, FACE_VIS)) {
+ bmesh_righthandfaces_exec(bm, op);
+ break;
+ }
+ }
+}
+
+void bmesh_vertexsmooth_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter siter;
+ BMIter iter;
+ BMVert *v;
+ BMEdge *e;
+ BLI_array_declare(cos);
+ float (*cos)[3] = NULL;
+ float *co, *co2, clipdist = BMO_Get_Float(op, "clipdist");
+ int i, j, clipx, clipy, clipz;
+
+ clipx = BMO_Get_Int(op, "mirror_clip_x");
+ clipy = BMO_Get_Int(op, "mirror_clip_y");
+ clipz = BMO_Get_Int(op, "mirror_clip_z");
+
+ i = 0;
+ BMO_ITER(v, &siter, bm, op, "verts", BM_VERT) {
+ BLI_array_growone(cos);
+ co = cos[i];
+
+ j = 0;
+ BM_ITER(e, &iter, bm, BM_EDGES_OF_VERT, v) {
+ co2 = BM_OtherEdgeVert(e, v)->co;
+ add_v3_v3v3(co, co, co2);
+ j += 1;
+ }
+
+ if (!j) {
+ copy_v3_v3(co, v->co);
+ i++;
+ continue;
+ }
+
+ mul_v3_fl(co, 1.0f / (float)j);
+ mid_v3_v3v3(co, co, v->co);
+
+ if (clipx && fabsf(v->co[0]) < clipdist)
+ co[0] = 0.0f;
+ if (clipy && fabsf(v->co[1]) < clipdist)
+ co[1] = 0.0f;
+ if (clipz && fabsf(v->co[2]) < clipdist)
+ co[2] = 0.0f;
+
+ i++;
+ }
+
+ i = 0;
+ BMO_ITER(v, &siter, bm, op, "verts", BM_VERT) {
+ copy_v3_v3(v->co, cos[i]);
+ i++;
+ }
+
+ BLI_array_free(cos);
+}
+
+/*
+** compute the centroid of an ngon
+**
+** NOTE: This should probably go to bmesh_polygon.c and replace the function that compute its center
+** basing on bounding box
+*/
+static void ngon_center(float *v, BMesh *bm, BMFace *f)
+{
+ BMIter liter;
+ BMLoop *l;
+ v[0] = v[1] = v[2] = 0;
+
+ BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
+ add_v3_v3v3(v, v, l->v->co);
+ }
+
+ if( f->len ) mul_v3_fl(v, 1.0f / (float)f->len);
+}
+
+/*
+** compute the perimeter of an ngon
+**
+** NOTE: This should probably go to bmesh_polygon.c
+*/
+static float ngon_perimeter(BMesh *bm, BMFace *f)
+{
+ BMIter liter;
+ BMLoop *l;
+ int num_verts = 0;
+ float v[3], sv[3];
+ float perimeter = 0.0f;
+
+ BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
+ if( num_verts == 0 ) {
+ copy_v3_v3(v, l->v->co);
+ copy_v3_v3(sv, l->v->co);
+ } else {
+ perimeter += len_v3v3(v, l->v->co);
+ copy_v3_v3(v, l->v->co);
+ }
+ num_verts++;
+ }
+
+ perimeter += len_v3v3(v, sv);
+
+ return perimeter;
+}
+
+/*
+** compute the fake surface of an ngon
+** This is done by decomposing the ngon into triangles who share the centroid of the ngon
+** while this method is far from being exact, it should garantee an invariance.
+**
+** NOTE: This should probably go to bmesh_polygon.c
+*/
+static float ngon_fake_area(BMesh *bm, BMFace *f)
+{
+ BMIter liter;
+ BMLoop *l;
+ int num_verts = 0;
+ float v[3], sv[3], c[3];
+ float area = 0.0f;
+
+ ngon_center(c, bm, f);
+
+ BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
+ if( num_verts == 0 ) {
+ copy_v3_v3(v, l->v->co);
+ copy_v3_v3(sv, l->v->co);
+ num_verts++;
+ } else {
+ area += area_tri_v3(v, c, l->v->co);
+ copy_v3_v3(v, l->v->co);
+ num_verts++;
+ }
+ }
+
+ area += area_tri_v3(v, c, sv);
+
+ return area;
+}
+
+/*
+** extra face data (computed data)
+*/
+typedef struct tmp_face_ext {
+ BMFace *f; /* the face */
+ float c[3]; /* center */
+ union {
+ float area; /* area */
+ float perim; /* perimeter */
+ float d; /* 4th component of plane (the first three being the normal) */
+ struct Image *t; /* image pointer */
+ };
+} tmp_face_ext;
+
+/*
+** Select similar faces, the choices are in the enum in source/blender/bmesh/bmesh_operators.h
+** We select either similar faces based on material, image, area, perimeter, normal, or the coplanar faces
+*/
+void bmesh_similarfaces_exec(BMesh *bm, BMOperator *op)
+{
+ BMIter fm_iter;
+ BMFace *fs, *fm;
+ BMOIter fs_iter;
+ int num_sels = 0, num_total = 0, i = 0, idx = 0;
+ float angle = 0.0f;
+ tmp_face_ext *f_ext = NULL;
+ int *indices = NULL;
+ float t_no[3]; /* temporary normal */
+ int type = BMO_Get_Int(op, "type");
+ float thresh = BMO_Get_Float(op, "thresh");
+
+ num_total = BM_Count_Element(bm, BM_FACE);
+
+ /*
+ ** The first thing to do is to iterate through all the the selected items and mark them since
+ ** they will be in the selection anyway.
+ ** This will increase performance, (especially when the number of originaly selected faces is high)
+ ** so the overall complexity will be less than $O(mn)$ where is the total number of selected faces,
+ ** and n is the total number of faces
+ */
+ BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
+ if (!BMO_TestFlag(bm, fs, FACE_MARK)) { /* is this really needed ? */
+ BMO_SetFlag(bm, fs, FACE_MARK);
+ num_sels++;
+ }
+ }
+
+ /* allocate memory for the selected faces indices and for all temporary faces */
+ indices = (int*)MEM_callocN(sizeof(int) * num_sels, "face indices util.c");
+ f_ext = (tmp_face_ext*)MEM_callocN(sizeof(tmp_face_ext) * num_total, "f_ext util.c");
+
+ /* loop through all the faces and fill the faces/indices structure */
+ BM_ITER(fm, &fm_iter, bm, BM_FACES_OF_MESH, NULL) {
+ f_ext[i].f = fm;
+ if (BMO_TestFlag(bm, fm, FACE_MARK)) {
+ indices[idx] = i;
+ idx++;
+ }
+ i++;
+ }
+
+ /*
+ ** Save us some computation burden: In case of perimeter/area/coplanar selection we compute
+ ** only once.
+ */
+ if( type == SIMFACE_PERIMETER || type == SIMFACE_AREA || type == SIMFACE_COPLANAR || type == SIMFACE_IMAGE ) {
+ for( i = 0; i < num_total; i++ ) {
+ switch( type ) {
+ case SIMFACE_PERIMETER:
+ /* set the perimeter */
+ f_ext[i].perim = ngon_perimeter(bm, f_ext[i].f);
+ break;
+
+ case SIMFACE_COPLANAR:
+ /* compute the center of the polygon */
+ ngon_center(f_ext[i].c, bm, f_ext[i].f);
+
+ /* normalize the polygon normal */
+ copy_v3_v3(t_no, f_ext[i].f->no);
+ normalize_v3(t_no);
+
+ /* compute the plane distance */
+ f_ext[i].d = dot_v3v3(t_no, f_ext[i].c);
+ break;
+
+ case SIMFACE_AREA:
+ f_ext[i].area = ngon_fake_area(bm, f_ext[i].f);
+ break;
+
+ case SIMFACE_IMAGE:
+ f_ext[i].t = NULL;
+ if( CustomData_has_layer(&(bm->pdata), CD_MTEXPOLY) ) {
+ MTexPoly *mtpoly = CustomData_bmesh_get(&bm->pdata, f_ext[i].f->head.data, CD_MTEXPOLY);
+ f_ext[i].t = mtpoly->tpage;
+ }
+ break;
+ }
+ }
+ }
+
+ /* now select the rest (if any) */
+ for( i = 0; i < num_total; i++ ) {
+ fm = f_ext[i].f;
+ if( !BMO_TestFlag(bm, fm, FACE_MARK) && !BM_TestHFlag(fm, BM_HIDDEN) ) {
+ int cont = 1;
+ for( idx = 0; idx < num_sels && cont == 1; idx++ ) {
+ fs = f_ext[indices[idx]].f;
+ switch( type ) {
+ case SIMFACE_MATERIAL:
+ if( fm->mat_nr == fs->mat_nr ) {
+ BMO_SetFlag(bm, fm, FACE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMFACE_IMAGE:
+ if( f_ext[i].t == f_ext[indices[idx]].t ) {
+ BMO_SetFlag(bm, fm, FACE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMFACE_NORMAL:
+ angle = RAD2DEGF(angle_v3v3(fs->no, fm->no)); /* if the angle between the normals -> 0 */
+ if( angle / 180.0f <= thresh ) {
+ BMO_SetFlag(bm, fm, FACE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMFACE_COPLANAR:
+ angle = RAD2DEGF(angle_v3v3(fs->no, fm->no)); /* angle -> 0 */
+ if( angle / 180.0f <= thresh ) { /* and dot product difference -> 0 */
+ if( fabsf(f_ext[i].d - f_ext[indices[idx]].d) <= thresh ) {
+ BMO_SetFlag(bm, fm, FACE_MARK);
+ cont = 0;
+ }
+ }
+ break;
+
+ case SIMFACE_AREA:
+ if( fabsf(f_ext[i].area - f_ext[indices[idx]].area) <= thresh ) {
+ BMO_SetFlag(bm, fm, FACE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMFACE_PERIMETER:
+ if( fabsf(f_ext[i].perim - f_ext[indices[idx]].perim) <= thresh ) {
+ BMO_SetFlag(bm, fm, FACE_MARK);
+ cont = 0;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ MEM_freeN(f_ext);
+ MEM_freeN(indices);
+
+ /* transfer all marked faces to the output slot */
+ BMO_Flag_To_Slot(bm, op, "faceout", FACE_MARK, BM_FACE);
+}
+
+/******************************************************************************
+** Similar Edges
+******************************************************************************/
+#define EDGE_MARK 1
+
+/*
+** compute the angle of an edge (i.e. the angle between two faces)
+*/
+static float edge_angle(BMesh *bm, BMEdge *e)
+{
+ BMIter fiter;
+ BMFace *f, *f_prev = NULL;
+
+ /* first edge faces, dont account for 3+ */
+
+ BM_ITER(f, &fiter, bm, BM_FACES_OF_EDGE, e) {
+ if(f_prev == NULL) {
+ f_prev= f;
+ }
+ else {
+ return angle_v3v3(f_prev->no, f->no);
+ }
+ }
+
+ return 0.0f;
+}
+/*
+** extra edge information
+*/
+typedef struct tmp_edge_ext {
+ BMEdge *e;
+ union {
+ float dir[3];
+ float angle; /* angle between the faces*/
+ };
+
+ union {
+ float length; /* edge length */
+ int faces; /* faces count */
+ };
+} tmp_edge_ext;
+
+/*
+** select similar edges: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
+** choices are length, direction, face, ...
+*/
+void bmesh_similaredges_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter es_iter; /* selected edges iterator */
+ BMIter e_iter; /* mesh edges iterator */
+ BMEdge *es; /* selected edge */
+ BMEdge *e; /* mesh edge */
+ int idx = 0, i = 0 /* , f = 0 */;
+ int *indices = NULL;
+ tmp_edge_ext *e_ext = NULL;
+ // float *angles = NULL;
+ float angle;
+
+ int num_sels = 0, num_total = 0;
+ int type = BMO_Get_Int(op, "type");
+ float thresh = BMO_Get_Float(op, "thresh");
+
+ num_total = BM_Count_Element(bm, BM_EDGE);
+
+ /* iterate through all selected edges and mark them */
+ BMO_ITER(es, &es_iter, bm, op, "edges", BM_EDGE) {
+ BMO_SetFlag(bm, es, EDGE_MARK);
+ num_sels++;
+ }
+
+ /* allocate memory for the selected edges indices and for all temporary edges */
+ indices = (int*)MEM_callocN(sizeof(int) * num_sels, "indices util.c");
+ e_ext = (tmp_edge_ext*)MEM_callocN(sizeof(tmp_edge_ext) * num_total, "e_ext util.c");
+
+ /* loop through all the edges and fill the edges/indices structure */
+ BM_ITER(e, &e_iter, bm, BM_EDGES_OF_MESH, NULL) {
+ e_ext[i].e = e;
+ if (BMO_TestFlag(bm, e, EDGE_MARK)) {
+ indices[idx] = i;
+ idx++;
+ }
+ i++;
+ }
+
+ /* save us some computation time by doing heavy computation once */
+ if( type == SIMEDGE_LENGTH || type == SIMEDGE_FACE || type == SIMEDGE_DIR ||
+ type == SIMEDGE_FACE_ANGLE ) {
+ for( i = 0; i < num_total; i++ ) {
+ switch( type ) {
+ case SIMEDGE_LENGTH: /* compute the length of the edge */
+ e_ext[i].length = len_v3v3(e_ext[i].e->v1->co, e_ext[i].e->v2->co);
+ break;
+
+ case SIMEDGE_DIR: /* compute the direction */
+ sub_v3_v3v3(e_ext[i].dir, e_ext[i].e->v1->co, e_ext[i].e->v2->co);
+ break;
+
+ case SIMEDGE_FACE: /* count the faces around the edge */
+ e_ext[i].faces = BM_Edge_FaceCount(e_ext[i].e);
+ break;
+
+ case SIMEDGE_FACE_ANGLE:
+ e_ext[i].faces = BM_Edge_FaceCount(e_ext[i].e);
+ if( e_ext[i].faces == 2 )
+ e_ext[i].angle = edge_angle(bm, e_ext[i].e);
+ break;
+ }
+ }
+ }
+
+ /* select the edges if any */
+ for( i = 0; i < num_total; i++ ) {
+ e = e_ext[i].e;
+ if( !BMO_TestFlag(bm, e, EDGE_MARK) && !BM_TestHFlag(e, BM_HIDDEN) ) {
+ int cont = 1;
+ for( idx = 0; idx < num_sels && cont == 1; idx++ ) {
+ es = e_ext[indices[idx]].e;
+ switch( type ) {
+ case SIMEDGE_LENGTH:
+ if( fabsf(e_ext[i].length - e_ext[indices[idx]].length) <= thresh ) {
+ BMO_SetFlag(bm, e, EDGE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMEDGE_DIR:
+ /* compute the angle between the two edges */
+ angle = RAD2DEGF(angle_v3v3(e_ext[i].dir, e_ext[indices[idx]].dir));
+
+ if( angle > 90.0f ) /* use the smallest angle between the edges */
+ angle = fabsf(angle - 180.0f);
+
+ if( angle / 90.0f <= thresh ) {
+ BMO_SetFlag(bm, e, EDGE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMEDGE_FACE:
+ if( e_ext[i].faces == e_ext[indices[idx]].faces ) {
+ BMO_SetFlag(bm, e, EDGE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMEDGE_FACE_ANGLE:
+ if( e_ext[i].faces == 2 ) {
+ if( e_ext[indices[idx]].faces == 2 ) {
+ if( fabsf(e_ext[i].angle - e_ext[indices[idx]].angle) <= thresh ) {
+ BMO_SetFlag(bm, e, EDGE_MARK);
+ cont = 0;
+ }
+ }
+ } else cont = 0;
+ break;
+
+ case SIMEDGE_CREASE:
+ if (CustomData_has_layer(&bm->edata, CD_CREASE)) {
+ float *c1, *c2;
+
+ c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_CREASE);
+ c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_CREASE);
+
+ if( c1&&c2 && fabsf(*c1 - *c2) <= thresh ) {
+ BMO_SetFlag(bm, e, EDGE_MARK);
+ cont = 0;
+ }
+ }
+ break;
+
+ case SIMEDGE_SEAM:
+ if( BM_TestHFlag(e, BM_SEAM) == BM_TestHFlag(es, BM_SEAM) ) {
+ BMO_SetFlag(bm, e, EDGE_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMEDGE_SHARP:
+ if( BM_TestHFlag(e, BM_SHARP) == BM_TestHFlag(es, BM_SHARP) ) {
+ BMO_SetFlag(bm, e, EDGE_MARK);
+ cont = 0;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ MEM_freeN(e_ext);
+ MEM_freeN(indices);
+
+ /* transfer all marked edges to the output slot */
+ BMO_Flag_To_Slot(bm, op, "edgeout", EDGE_MARK, BM_EDGE);
+}
+
+/******************************************************************************
+** Similar Vertices
+******************************************************************************/
+#define VERT_MARK 1
+
+typedef struct tmp_vert_ext {
+ BMVert *v;
+ union {
+ int num_faces; /* adjacent faces */
+ MDeformVert *dvert; /* deform vertex */
+ };
+} tmp_vert_ext;
+
+/*
+** select similar vertices: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
+** choices are normal, face, vertex group...
+*/
+void bmesh_similarverts_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter vs_iter; /* selected verts iterator */
+ BMIter v_iter; /* mesh verts iterator */
+ BMVert *vs; /* selected vertex */
+ BMVert *v; /* mesh vertex */
+ tmp_vert_ext *v_ext = NULL;
+ int *indices = NULL;
+ int num_total = 0, num_sels = 0, i = 0, idx = 0;
+ int type = BMO_Get_Int(op, "type");
+ float thresh = BMO_Get_Float(op, "thresh");
+
+ num_total = BM_Count_Element(bm, BM_VERT);
+
+ /* iterate through all selected edges and mark them */
+ BMO_ITER(vs, &vs_iter, bm, op, "verts", BM_VERT) {
+ BMO_SetFlag(bm, vs, VERT_MARK);
+ num_sels++;
+ }
+
+ /* allocate memory for the selected vertices indices and for all temporary vertices */
+ indices = (int*)MEM_mallocN(sizeof(int) * num_sels, "vertex indices");
+ v_ext = (tmp_vert_ext*)MEM_mallocN(sizeof(tmp_vert_ext) * num_total, "vertex extra");
+
+ /* loop through all the vertices and fill the vertices/indices structure */
+ BM_ITER(v, &v_iter, bm, BM_VERTS_OF_MESH, NULL) {
+ v_ext[i].v = v;
+ if (BMO_TestFlag(bm, v, VERT_MARK)) {
+ indices[idx] = i;
+ idx++;
+ }
+
+ switch( type ) {
+ case SIMVERT_FACE:
+ /* calling BM_Vert_FaceCount every time is time consumming, so call it only once per vertex */
+ v_ext[i].num_faces = BM_Vert_FaceCount(v);
+ break;
+
+ case SIMVERT_VGROUP:
+ if( CustomData_has_layer(&(bm->vdata),CD_MDEFORMVERT) ) {
+ v_ext[i].dvert = CustomData_bmesh_get(&bm->vdata, v_ext[i].v->head.data, CD_MDEFORMVERT);
+ } else v_ext[i].dvert = NULL;
+ break;
+ }
+
+ i++;
+ }
+
+ /* select the vertices if any */
+ for( i = 0; i < num_total; i++ ) {
+ v = v_ext[i].v;
+ if( !BMO_TestFlag(bm, v, VERT_MARK) && !BM_TestHFlag(v, BM_HIDDEN) ) {
+ int cont = 1;
+ for( idx = 0; idx < num_sels && cont == 1; idx++ ) {
+ vs = v_ext[indices[idx]].v;
+ switch( type ) {
+ case SIMVERT_NORMAL:
+ /* compare the angle between the normals */
+ if( RAD2DEGF(angle_v3v3(v->no, vs->no)) / 180.0f <= thresh ) {
+ BMO_SetFlag(bm, v, VERT_MARK);
+ cont = 0;
+ }
+ break;
+ case SIMVERT_FACE:
+ /* number of adjacent faces */
+ if( v_ext[i].num_faces == v_ext[indices[idx]].num_faces ) {
+ BMO_SetFlag(bm, v, VERT_MARK);
+ cont = 0;
+ }
+ break;
+
+ case SIMVERT_VGROUP:
+ if( v_ext[i].dvert != NULL && v_ext[indices[idx]].dvert != NULL ) {
+ int v1, v2;
+ for( v1 = 0; v1 < v_ext[i].dvert->totweight && cont == 1; v1++ ) {
+ for( v2 = 0; v2 < v_ext[indices[idx]].dvert->totweight; v2++ ) {
+ if( v_ext[i].dvert->dw[v1].def_nr == v_ext[indices[idx]].dvert->dw[v2].def_nr ) {
+ BMO_SetFlag(bm, v, VERT_MARK);
+ cont = 0;
+ break;
+ }
+ }
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ MEM_freeN(indices);
+ MEM_freeN(v_ext);
+
+ BMO_Flag_To_Slot(bm, op, "vertout", VERT_MARK, BM_VERT);
+}
+
+/******************************************************************************
+** Cycle UVs for a face
+******************************************************************************/
+
+void bmesh_rotateuvs_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter fs_iter; /* selected faces iterator */
+ BMFace *fs; /* current face */
+ BMIter l_iter; /* iteration loop */
+ // int n;
+
+ int dir = BMO_Get_Int(op, "dir");
+
+ BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
+ if( CustomData_has_layer(&(bm->ldata), CD_MLOOPUV) ) {
+ if( dir == DIRECTION_CW ) { /* same loops direction */
+ BMLoop *lf; /* current face loops */
+ MLoopUV *f_luv; /* first face loop uv */
+ float p_uv[2]; /* previous uvs */
+ float t_uv[2]; /* tmp uvs */
+
+ int n = 0;
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ /* current loop uv is the previous loop uv */
+ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
+ if( n == 0 ) {
+ f_luv = luv;
+ p_uv[0] = luv->uv[0];
+ p_uv[1] = luv->uv[1];
+ } else {
+ t_uv[0] = luv->uv[0];
+ t_uv[1] = luv->uv[1];
+ luv->uv[0] = p_uv[0];
+ luv->uv[1] = p_uv[1];
+ p_uv[0] = t_uv[0];
+ p_uv[1] = t_uv[1];
+ }
+ n++;
+ }
+
+ f_luv->uv[0] = p_uv[0];
+ f_luv->uv[1] = p_uv[1];
+ } else if( dir == DIRECTION_CCW ) { /* counter loop direction */
+ BMLoop *lf; /* current face loops */
+ MLoopUV *p_luv; /*previous loop uv */
+ MLoopUV *luv;
+ float t_uv[2]; /* current uvs */
+
+ int n = 0;
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ /* previous loop uv is the current loop uv */
+ luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
+ if( n == 0 ) {
+ p_luv = luv;
+ t_uv[0] = luv->uv[0];
+ t_uv[1] = luv->uv[1];
+ } else {
+ p_luv->uv[0] = luv->uv[0];
+ p_luv->uv[1] = luv->uv[1];
+ p_luv = luv;
+ }
+ n++;
+ }
+
+ luv->uv[0] = t_uv[0];
+ luv->uv[1] = t_uv[1];
+ }
+ }
+ }
+
+}
+
+/******************************************************************************
+** Reverse UVs for a face
+******************************************************************************/
+
+void bmesh_reverseuvs_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter fs_iter; /* selected faces iterator */
+ BMFace *fs; /* current face */
+ BMIter l_iter; /* iteration loop */
+ BLI_array_declare(uvs);
+ float (*uvs)[2] = NULL;
+
+ BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
+ if( CustomData_has_layer(&(bm->ldata), CD_MLOOPUV) ) {
+ BMLoop *lf; /* current face loops */
+ int i = 0;
+
+ BLI_array_empty(uvs);
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
+
+ /* current loop uv is the previous loop uv */
+ BLI_array_growone(uvs);
+ uvs[i][0] = luv->uv[0];
+ uvs[i][1] = luv->uv[1];
+ i++;
+ }
+
+ /* now that we have the uvs in the array, reverse! */
+ i = 0;
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ /* current loop uv is the previous loop uv */
+ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
+ luv->uv[0] = uvs[(fs->len - i - 1)][0];
+ luv->uv[1] = uvs[(fs->len - i - 1)][1];
+ i++;
+ }
+ }
+ }
+
+ BLI_array_free(uvs);
+}
+
+/******************************************************************************
+** Cycle colors for a face
+******************************************************************************/
+
+void bmesh_rotatecolors_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter fs_iter; /* selected faces iterator */
+ BMFace *fs; /* current face */
+ BMIter l_iter; /* iteration loop */
+ // int n;
+
+ int dir = BMO_Get_Int(op, "dir");
+
+ BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
+ if( CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL) ) {
+ if( dir == DIRECTION_CW ) { /* same loops direction */
+ BMLoop *lf; /* current face loops */
+ MLoopCol *f_lcol; /* first face loop color */
+ MLoopCol p_col; /* previous color */
+ MLoopCol t_col; /* tmp color */
+
+ int n = 0;
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ /* current loop color is the previous loop color */
+ MLoopCol *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
+ if( n == 0 ) {
+ f_lcol = luv;
+ p_col = *luv;
+ } else {
+ t_col = *luv;
+ *luv = p_col;
+ p_col = t_col;
+ }
+ n++;
+ }
+
+ *f_lcol = p_col;
+ } else if( dir == DIRECTION_CCW ) { /* counter loop direction */
+ BMLoop *lf; /* current face loops */
+ MLoopCol *p_lcol; /*previous loop color */
+ MLoopCol *lcol;
+ MLoopCol t_col; /* current color */
+
+ int n = 0;
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ /* previous loop color is the current loop color */
+ lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
+ if( n == 0 ) {
+ p_lcol = lcol;
+ t_col = *lcol;
+ } else {
+ *p_lcol = *lcol;
+ p_lcol = lcol;
+ }
+ n++;
+ }
+
+ *lcol = t_col;
+ }
+ }
+ }
+}
+
+/******************************************************************************
+** Reverse colors for a face
+******************************************************************************/
+
+void bmesh_reversecolors_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter fs_iter; /* selected faces iterator */
+ BMFace *fs; /* current face */
+ BMIter l_iter; /* iteration loop */
+ BLI_array_declare(cols);
+ MLoopCol *cols = NULL;
+
+ BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
+ if( CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL) ) {
+ BMLoop *lf; /* current face loops */
+ int i = 0;
+
+ BLI_array_empty(cols);
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
+
+ /* current loop uv is the previous loop color */
+ BLI_array_growone(cols);
+ cols[i] = *lcol;
+ i++;
+ }
+
+ /* now that we have the uvs in the array, reverse! */
+ i = 0;
+ BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
+ /* current loop uv is the previous loop color */
+ MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
+ *lcol = cols[(fs->len - i - 1)];
+ i++;
+ }
+ }
+ }
+
+ BLI_array_free(cols);
+}
+
+
+/******************************************************************************
+** shortest vertex path select
+******************************************************************************/
+
+typedef struct element_node {
+ BMVert *v; /* vertex */
+ BMVert *parent; /* node parent id */
+ float weight; /* node weight */
+ HeapNode *hn; /* heap node */
+} element_node;
+
+void bmesh_vertexshortestpath_exec(BMesh *bm, BMOperator *op)
+{
+ BMOIter vs_iter /* , vs2_iter */; /* selected verts iterator */
+ BMIter v_iter; /* mesh verts iterator */
+ BMVert *vs, *sv, *ev; /* starting vertex, ending vertex */
+ BMVert *v; /* mesh vertex */
+ Heap *h = NULL;
+
+ element_node *vert_list = NULL;
+
+ int num_total = 0 /*, num_sels = 0 */, i = 0;
+ int type = BMO_Get_Int(op, "type");
+
+ BMO_ITER(vs, &vs_iter, bm, op, "startv", BM_VERT)
+ sv = vs;
+ BMO_ITER(vs, &vs_iter, bm, op, "endv", BM_VERT)
+ ev = vs;
+
+ num_total = BM_Count_Element(bm, BM_VERT);
+
+ /* allocate memory for the nodes */
+ vert_list = (element_node*)MEM_mallocN(sizeof(element_node) * num_total, "vertex nodes");
+
+ /* iterate through all the mesh vertices */
+ /* loop through all the vertices and fill the vertices/indices structure */
+ i = 0;
+ BM_ITER(v, &v_iter, bm, BM_VERTS_OF_MESH, NULL) {
+ vert_list[i].v = v;
+ vert_list[i].parent = NULL;
+ vert_list[i].weight = FLT_MAX;
+ BM_SetIndex(v, i);
+ i++;
+ }
+
+ /*
+ ** we now have everything we need, start Dijkstra path finding algorithm
+ */
+
+ /* set the distance/weight of the start vertex to 0 */
+ vert_list[BM_GetIndex(sv)].weight = 0.0f;
+
+ h = BLI_heap_new();
+
+ for( i = 0; i < num_total; i++ )
+ vert_list[i].hn = BLI_heap_insert(h, vert_list[i].weight, vert_list[i].v);
+
+ while( !BLI_heap_empty(h) ) {
+ BMEdge *e;
+ BMIter e_i;
+ float v_weight;
+
+ /* take the vertex with the lowest weight out of the heap */
+ BMVert *v = (BMVert*)BLI_heap_popmin(h);
+
+ if( vert_list[BM_GetIndex(v)].weight == FLT_MAX ) /* this means that there is no path */
+ break;
+
+ v_weight = vert_list[BM_GetIndex(v)].weight;
+
+ BM_ITER(e, &e_i, bm, BM_EDGES_OF_VERT, v) {
+ BMVert *u;
+ float e_weight = v_weight;
+
+ if( type == VPATH_SELECT_EDGE_LENGTH )
+ e_weight += len_v3v3(e->v1->co, e->v2->co);
+ else e_weight += 1.0f;
+
+ u = ( e->v1 == v ) ? e->v2 : e->v1;
+
+ if( e_weight < vert_list[BM_GetIndex(u)].weight ) { /* is this path shorter ? */
+ /* add it if so */
+ vert_list[BM_GetIndex(u)].parent = v;
+ vert_list[BM_GetIndex(u)].weight = e_weight;
+
+ /* we should do a heap update node function!!! :-/ */
+ BLI_heap_remove(h, vert_list[BM_GetIndex(u)].hn);
+ BLI_heap_insert(h, e_weight, u);
+ }
+ }
+ }
+
+ /* now we trace the path (if it exists) */
+ v = ev;
+
+ while( vert_list[BM_GetIndex(v)].parent != NULL ) {
+ BMO_SetFlag(bm, v, VERT_MARK);
+ v = vert_list[BM_GetIndex(v)].parent;
+ }
+
+ BLI_heap_free(h, NULL);
+ MEM_freeN(vert_list);
+
+ BMO_Flag_To_Slot(bm, op, "vertout", VERT_MARK, BM_VERT);
+}