Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/bmesh/tools/bmesh_path_region.c')
-rw-r--r--source/blender/bmesh/tools/bmesh_path_region.c477
1 files changed, 477 insertions, 0 deletions
diff --git a/source/blender/bmesh/tools/bmesh_path_region.c b/source/blender/bmesh/tools/bmesh_path_region.c
new file mode 100644
index 00000000000..aad1f9c5a49
--- /dev/null
+++ b/source/blender/bmesh/tools/bmesh_path_region.c
@@ -0,0 +1,477 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/bmesh/tools/bmesh_path_region.c
+ * \ingroup bmesh
+ *
+ * Find the region defined by the path(s) between 2 elements.
+ * (path isn't ordered).
+ */
+
+#include "MEM_guardedalloc.h"
+
+#include "BLI_math.h"
+#include "BLI_linklist.h"
+#include "BLI_stackdefines.h"
+#include "BLI_alloca.h"
+
+#include "bmesh.h"
+#include "bmesh_path_region.h" /* own include */
+
+
+/* Special handling of vertices with 2 edges
+ * (act as if the edge-chain is a single edge). */
+#define USE_EDGE_CHAIN
+
+
+#ifdef USE_EDGE_CHAIN
+/**
+ * Takes a vertex with 2 edge users and fills in the vertices at each end-point,
+ * or nothing if if the edges loop back to its self.
+ */
+static bool bm_vert_pair_ends(BMVert *v_pivot, BMVert *v_end_pair[2])
+{
+ BMEdge *e = v_pivot->e;
+ int j = 0;
+ do {
+ BMEdge *e_chain = e;
+ BMVert *v_other = BM_edge_other_vert(e_chain, v_pivot);
+ while (BM_vert_is_edge_pair(v_other)) {
+ BMEdge *e_chain_next = BM_DISK_EDGE_NEXT(e_chain, v_other);
+ BLI_assert(BM_DISK_EDGE_NEXT(e_chain_next, v_other) == e_chain);
+ v_other = BM_edge_other_vert(e_chain_next, v_other);
+ if (v_other == v_pivot) {
+ return false;
+ }
+ e_chain = e_chain_next;
+ }
+ v_end_pair[j++] = v_other;
+ } while ((e = BM_DISK_EDGE_NEXT(e, v_pivot)) != v_pivot->e);
+
+ BLI_assert(j == 2);
+ return true;
+}
+#endif /* USE_EDGE_CHAIN */
+
+
+/** \name Vertex in Region Checks
+ * \{ */
+
+static bool bm_vert_region_test(BMVert *v, int * const depths[2], const int pass)
+{
+ const int index = BM_elem_index_get(v);
+ return (((depths[0][index] != -1) && (depths[1][index] != -1)) && \
+ ((depths[0][index] + depths[1][index]) < pass));
+}
+
+#ifdef USE_EDGE_CHAIN
+static bool bm_vert_region_test_chain(BMVert *v, int * const depths[2], const int pass)
+{
+ BMVert *v_end_pair[2];
+ if (bm_vert_region_test(v, depths, pass)) {
+ return true;
+ }
+ else if (BM_vert_is_edge_pair(v) &&
+ bm_vert_pair_ends(v, v_end_pair) &&
+ bm_vert_region_test(v_end_pair[0], depths, pass) &&
+ bm_vert_region_test(v_end_pair[1], depths, pass))
+ {
+ return true;
+ }
+
+ return false;
+}
+#else
+static bool bm_vert_region_test_chain(BMVert *v, int * const depths[2], const int pass)
+{
+ return bm_vert_region_test(v, depths, pass);
+}
+#endif
+
+/** \} */
+
+
+/**
+ * Main logic for calculating region between 2 elements.
+ *
+ * This method works walking (breadth first) over all vertices,
+ * keeping track of topological distance from the source.
+ *
+ * This is done in both directions, after that each vertices 'depth' is added to check
+ * if its less than the number of passes needed to complete the search.
+ * When it is, we know the path is one of possible paths that have the minimum topological distance.
+ *
+ * \note Only verts without BM_ELEM_TAG will be walked over.
+ */
+static LinkNode *mesh_calc_path_region_elem(
+ BMesh *bm,
+ BMElem *ele_src, BMElem *ele_dst,
+ const char path_htype)
+{
+ int ele_verts_len[2];
+ BMVert **ele_verts[2];
+
+ /* Get vertices from any `ele_src/ele_dst` elements. */
+ for (int side = 0; side < 2; side++) {
+ BMElem *ele = side ? ele_dst : ele_src;
+ int j = 0;
+
+ if (ele->head.htype == BM_FACE) {
+ BMFace *f = (BMFace *)ele;
+ ele_verts[side] = BLI_array_alloca(ele_verts[side], f->len);
+
+ BMLoop *l_first, *l_iter;
+ l_iter = l_first = BM_FACE_FIRST_LOOP(f);
+ do {
+ ele_verts[side][j++] = l_iter->v;
+ } while ((l_iter = l_iter->next) != l_first);
+ }
+ else if (ele->head.htype == BM_EDGE) {
+ BMEdge *e = (BMEdge *)ele;
+ ele_verts[side] = BLI_array_alloca(ele_verts[side], 2);
+
+ ele_verts[side][j++] = e->v1;
+ ele_verts[side][j++] = e->v2;
+ }
+ else if (ele->head.htype == BM_VERT) {
+ BMVert *v = (BMVert *)ele;
+ ele_verts[side] = BLI_array_alloca(ele_verts[side], 1);
+
+ ele_verts[side][j++] = v;
+ }
+ else {
+ BLI_assert(0);
+ }
+ ele_verts_len[side] = j;
+ }
+
+ int *depths[2] = {NULL};
+ int pass = 0;
+
+ BMVert **stack = MEM_mallocN(sizeof(*stack) * bm->totvert, __func__);
+ BMVert **stack_other = MEM_mallocN(sizeof(*stack_other) * bm->totvert, __func__);
+
+ STACK_DECLARE(stack);
+ STACK_INIT(stack, bm->totvert);
+
+ STACK_DECLARE(stack_other);
+ STACK_INIT(stack_other, bm->totvert);
+
+ BM_mesh_elem_index_ensure(bm, BM_VERT);
+
+ /* After exhausting all possible elements, we should have found all elements on the 'side_other'.
+ * otherwise, exit early. */
+ bool found_all = false;
+
+ for (int side = 0; side < 2; side++) {
+ const int side_other = !side;
+
+ /* initialize depths to -1 (un-touched), fill in with the depth as we walk over the edges. */
+ depths[side] = MEM_mallocN(sizeof(*depths[side]) * bm->totvert, __func__);
+ copy_vn_i(depths[side], bm->totvert, -1);
+
+ /* needed for second side */
+ STACK_CLEAR(stack);
+ STACK_CLEAR(stack_other);
+
+ for (int i = 0; i < ele_verts_len[side]; i++) {
+ BMVert *v = ele_verts[side][i];
+ depths[side][BM_elem_index_get(v)] = 0;
+ if (v->e && !BM_elem_flag_test(v, BM_ELEM_TAG)) {
+ STACK_PUSH(stack, v);
+ }
+ }
+
+#ifdef USE_EDGE_CHAIN
+ /* Expand initial state to end-point vertices when they only have 2x edges,
+ * this prevents odd behavior when source or destination are in the middle of a long chain of edges. */
+ if (ELEM(path_htype, BM_VERT, BM_EDGE)) {
+ for (int i = 0; i < ele_verts_len[side]; i++) {
+ BMVert *v = ele_verts[side][i];
+ BMVert *v_end_pair[2];
+ if (BM_vert_is_edge_pair(v) && bm_vert_pair_ends(v, v_end_pair)) {
+ for (int j = 0; j < 2; j++) {
+ const int v_end_index = BM_elem_index_get(v_end_pair[j]);
+ if (depths[side][v_end_index] == -1) {
+ depths[side][v_end_index] = 0;
+ if (!BM_elem_flag_test(v_end_pair[j], BM_ELEM_TAG)) {
+ STACK_PUSH(stack, v_end_pair[j]);
+ }
+ }
+ }
+ }
+ }
+ }
+#endif /* USE_EDGE_CHAIN */
+
+ /* Keep walking over connected geometry until we find all the vertices in `ele_verts[side_other]`,
+ * or exit the loop when theres no connection. */
+ found_all = false;
+ for (pass = 1; (STACK_SIZE(stack) != 0); pass++) {
+ while (STACK_SIZE(stack) != 0) {
+ BMVert *v_a = STACK_POP(stack);
+ // const int v_a_index = BM_elem_index_get(v_a); /* only for assert */
+ BMEdge *e = v_a->e;
+
+ do {
+ BMVert *v_b = BM_edge_other_vert(e, v_a);
+ int v_b_index = BM_elem_index_get(v_b);
+ if (depths[side][v_b_index] == -1) {
+
+#ifdef USE_EDGE_CHAIN
+ /* Walk along the chain, fill in values until we reach a vertex with 3+ edges. */
+ {
+ BMEdge *e_chain = e;
+ while (BM_vert_is_edge_pair(v_b) &&
+ ((depths[side][v_b_index] == -1)))
+ {
+ depths[side][v_b_index] = pass;
+
+ BMEdge *e_chain_next = BM_DISK_EDGE_NEXT(e_chain, v_b);
+ BLI_assert(BM_DISK_EDGE_NEXT(e_chain_next, v_b) == e_chain);
+ v_b = BM_edge_other_vert(e_chain_next, v_b);
+ v_b_index = BM_elem_index_get(v_b);
+ e_chain = e_chain_next;
+ }
+ }
+#endif /* USE_EDGE_CHAIN */
+
+ /* Add the other vertex to the stack, to be traversed in the next pass. */
+ if (depths[side][v_b_index] == -1) {
+#ifdef USE_EDGE_CHAIN
+ BLI_assert(!BM_vert_is_edge_pair(v_b));
+#endif
+ BLI_assert(pass == depths[side][BM_elem_index_get(v_a)] + 1);
+ depths[side][v_b_index] = pass;
+ if (!BM_elem_flag_test(v_b, BM_ELEM_TAG)) {
+ STACK_PUSH(stack_other, v_b);
+ }
+ }
+ }
+ } while ((e = BM_DISK_EDGE_NEXT(e, v_a)) != v_a->e);
+ }
+
+ /* Stop searching once theres none left.
+ * Note that this looks in-efficient, however until the target elements reached,
+ * it will exit immediately.
+ * After that, it takes as many passes as the element has edges to finish off. */
+ found_all = true;
+ for (int i = 0; i < ele_verts_len[side_other]; i++) {
+ if (depths[side][BM_elem_index_get(ele_verts[side_other][i])] == -1) {
+ found_all = false;
+ break;
+ }
+ }
+ if (found_all == true) {
+ pass++;
+ break;
+ }
+
+ STACK_SWAP(stack, stack_other);
+ }
+
+ /* if we have nothing left, and didn't find all elements on the other side,
+ * exit early and don't continue */
+ if (found_all == false) {
+ break;
+ }
+ }
+
+ MEM_freeN(stack);
+ MEM_freeN(stack_other);
+
+
+ /* Now we have depths recorded from both sides,
+ * select elements that use tagged verts. */
+ LinkNode *path = NULL;
+
+ if (found_all == false) {
+ /* fail! (do nothing) */
+ }
+ else if (path_htype == BM_FACE) {
+ BMIter fiter;
+ BMFace *f;
+
+ BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
+ if (!BM_elem_flag_test(f, BM_ELEM_TAG)) {
+ /* check all verts in face are tagged */
+ BMLoop *l_first, *l_iter;
+ l_iter = l_first = BM_FACE_FIRST_LOOP(f);
+ bool ok = true;
+#if 0
+ do {
+ if (!bm_vert_region_test_chain(l_iter->v, depths, pass)) {
+ ok = false;
+ break;
+ }
+ } while ((l_iter = l_iter->next) != l_first);
+#else
+ /* Allowing a single failure on a face gives fewer 'gaps'.
+ * While correct, in practice they're often part of what a user would consider the 'region'. */
+ int ok_tests = f->len > 3 ? 1 : 0; /* how many times we may fail */
+ do {
+ if (!bm_vert_region_test_chain(l_iter->v, depths, pass)) {
+ if (ok_tests == 0) {
+ ok = false;
+ break;
+ }
+ ok_tests--;
+ }
+ } while ((l_iter = l_iter->next) != l_first);
+#endif
+
+ if (ok) {
+ BLI_linklist_prepend(&path, f);
+ }
+ }
+ }
+ }
+ else if (path_htype == BM_EDGE) {
+ BMIter eiter;
+ BMEdge *e;
+
+ BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) {
+ if (!BM_elem_flag_test(e, BM_ELEM_TAG)) {
+ /* check all verts in edge are tagged */
+ bool ok = true;
+ for (int j = 0; j < 2; j++) {
+ if (!bm_vert_region_test_chain(*((&e->v1) + j), depths, pass)) {
+ ok = false;
+ break;
+ }
+ }
+
+ if (ok) {
+ BLI_linklist_prepend(&path, e);
+ }
+ }
+ }
+ }
+ else if (path_htype == BM_VERT) {
+ BMIter viter;
+ BMVert *v;
+
+ BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
+ if (bm_vert_region_test_chain(v, depths, pass)) {
+ BLI_linklist_prepend(&path, v);
+ }
+ }
+ }
+
+
+ for (int side = 0; side < 2; side++) {
+ if (depths[side]) {
+ MEM_freeN(depths[side]);
+ }
+ }
+
+ return path;
+}
+
+#undef USE_EDGE_CHAIN
+
+
+/** \name Main Functions (exposed externally).
+ * \{ */
+
+LinkNode *BM_mesh_calc_path_region_vert(
+ BMesh *bm, BMElem *ele_src, BMElem *ele_dst,
+ bool (*filter_fn)(BMVert *, void *user_data), void *user_data)
+{
+ LinkNode *path = NULL;
+ /* BM_ELEM_TAG flag is used to store visited verts */
+ BMVert *v;
+ BMIter viter;
+ int i;
+
+ BM_ITER_MESH_INDEX (v, &viter, bm, BM_VERTS_OF_MESH, i) {
+ BM_elem_flag_set(v, BM_ELEM_TAG, !filter_fn(v, user_data));
+ BM_elem_index_set(v, i); /* set_inline */
+ }
+ bm->elem_index_dirty &= ~BM_VERT;
+
+ path = mesh_calc_path_region_elem(bm, ele_src, ele_dst, BM_VERT);
+
+ return path;
+}
+
+LinkNode *BM_mesh_calc_path_region_edge(
+ BMesh *bm, BMElem *ele_src, BMElem *ele_dst,
+ bool (*filter_fn)(BMEdge *, void *user_data), void *user_data)
+{
+ LinkNode *path = NULL;
+ /* BM_ELEM_TAG flag is used to store visited verts */
+ BMEdge *e;
+ BMIter eiter;
+ int i;
+
+ /* flush flag to verts */
+ BM_mesh_elem_hflag_enable_all(bm, BM_VERT, BM_ELEM_TAG, false);
+
+ BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, i) {
+ bool test;
+ BM_elem_flag_set(e, BM_ELEM_TAG, test = !filter_fn(e, user_data));
+
+ /* flush tag to verts */
+ if (test == false) {
+ for (int j = 0; j < 2; j++) {
+ BM_elem_flag_disable(*((&e->v1) + j), BM_ELEM_TAG);
+ }
+ }
+ }
+
+ path = mesh_calc_path_region_elem(bm, ele_src, ele_dst, BM_EDGE);
+
+ return path;
+}
+
+LinkNode *BM_mesh_calc_path_region_face(
+ BMesh *bm, BMElem *ele_src, BMElem *ele_dst,
+ bool (*filter_fn)(BMFace *, void *user_data), void *user_data)
+{
+ LinkNode *path = NULL;
+ /* BM_ELEM_TAG flag is used to store visited verts */
+ BMFace *f;
+ BMIter fiter;
+ int i;
+
+ /* flush flag to verts */
+ BM_mesh_elem_hflag_enable_all(bm, BM_VERT, BM_ELEM_TAG, false);
+
+ BM_ITER_MESH_INDEX (f, &fiter, bm, BM_FACES_OF_MESH, i) {
+ bool test;
+ BM_elem_flag_set(f, BM_ELEM_TAG, test = !filter_fn(f, user_data));
+
+ /* flush tag to verts */
+ if (test == false) {
+ BMLoop *l_first, *l_iter;
+ l_iter = l_first = BM_FACE_FIRST_LOOP(f);
+ do {
+ BM_elem_flag_disable(l_iter->v, BM_ELEM_TAG);
+ } while ((l_iter = l_iter->next) != l_first);
+ }
+ }
+
+ path = mesh_calc_path_region_elem(bm, ele_src, ele_dst, BM_FACE);
+
+ return path;
+}
+
+/** \} */