Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp')
-rw-r--r--source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp1195
1 files changed, 1195 insertions, 0 deletions
diff --git a/source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp b/source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp
new file mode 100644
index 00000000000..cb6b27b9da1
--- /dev/null
+++ b/source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp
@@ -0,0 +1,1195 @@
+/*
+ * Copyright 2011, Blender Foundation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * Contributor:
+ * Jeroen Bakker
+ * Monique Dewanchand
+ */
+
+#include "COM_DoubleEdgeMaskOperation.h"
+#include "BLI_math.h"
+#include "DNA_node_types.h"
+
+// this part has been copied from the double edge mask
+// Contributor(s): Peter Larabell.
+static void do_adjacentKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel underneath, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel underneath, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel above, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel above, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+
+ /* Test the TOP row of pixels in buffer, except corners */
+ for(x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel to the right, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for(x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel to the right, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for(x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
+}
+
+static void do_adjacentBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel underneath, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel underneath, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel above, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty above or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if pixel above, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* Test the TOP row of pixels in buffer, except corners */
+ for(x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel to the left, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for(x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel to the left, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for(x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
+}
+
+static void do_allKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if the inner mask is empty underneath or to the right
+ if(!limask[x-rw] || !limask[x+1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if the inner mask is empty underneath or to the left
+ if(!limask[x-rw] || !limask[x-1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if inner mask is empty above or to the right
+ if(!limask[x+rw] || !limask[x+1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if inner mask is empty above or to the left
+ if(!limask[x+rw] || !limask[x-1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+
+ /* Test the TOP row of pixels in buffer, except corners */
+ for(x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if(!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for(x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if(!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty underneath or above
+ if(!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for(x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty underneath or above
+ if(!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
+}
+
+static void do_allBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if the inner mask is empty underneath or to the right
+ if(!limask[x-rw] || !limask[x+1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if the inner mask is empty underneath or to the left
+ if(!limask[x-rw] || !limask[x-1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if inner mask is empty above or to the right
+ if(!limask[x+rw] || !limask[x+1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if(limask[x]){
+ // test if inner mask is empty above or to the left
+ if(!limask[x+rw] || !limask[x-1]){
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
+ if(!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* Test the TOP row of pixels in buffer, except corners */
+ for(x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if(!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for(x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if(!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty underneath or above
+ if(!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for(x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if(limask[x]) {
+ // test if inner mask is empty underneath or above
+ if(!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ } else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ } else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
+}
+
+static void do_allEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz){
+ int x; // x = pixel loop counter
+ int a; // a = pixel loop counter
+ int dx; // dx = delta x
+ int pix_prevRow; // pix_prevRow = pixel one row behind the one we are testing in a loop
+ int pix_nextRow; // pix_nextRow = pixel one row in front of the one we are testing in a loop
+ int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
+ int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
+ /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
+ for(x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
+ a=x-2;
+ pix_prevRow=a+rw;
+ pix_nextRow=a-rw;
+ pix_prevCol=a+1;
+ pix_nextCol=a-1;
+ while(a>dx-2) {
+ if(!limask[a]) { // if the inner mask is empty
+ if(lomask[a]) { // if the outer mask is full
+ /*
+ Next we test all 4 directions around the current pixel: next/prev/up/down
+ The test ensures that the outer mask is empty and that the inner mask
+ is also empty. If both conditions are true for any one of the 4 adjacent pixels
+ then the current pixel is counted as being a true outer edge pixel.
+ */
+ if((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
+ (!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
+ (!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
+ (!lomask[pix_prevRow] && !limask[pix_prevRow]))
+ {
+ in_osz++; // increment the outer boundary pixel count
+ lres[a]=3; // flag pixel as part of outer edge
+ } else { // it's not a boundary pixel, but it is a gradient pixel
+ in_gsz++; // increment the gradient pixel count
+ lres[a]=2; // flag pixel as gradient
+ }
+ }
+
+ } else {
+ if(!limask[pix_nextCol] || !limask[pix_prevCol] || !limask[pix_nextRow] || !limask[pix_prevRow]) {
+ in_isz++; // increment the inner boundary pixel count
+ lres[a]=4; // flag pixel as part of inner edge
+ } else {
+ res[a]=1.0f; // pixel is part of inner mask, but not at an edge
+ }
+ }
+ a--;
+ pix_prevRow--;
+ pix_nextRow--;
+ pix_prevCol--;
+ pix_nextCol--;
+ }
+ }
+
+ rsize[0]=in_isz; // fill in our return sizes for edges + fill
+ rsize[1]=in_osz;
+ rsize[2]=in_gsz;
+}
+
+static void do_adjacentEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz){
+ int x; // x = pixel loop counter
+ int a; // a = pixel loop counter
+ int dx; // dx = delta x
+ int pix_prevRow; // pix_prevRow = pixel one row behind the one we are testing in a loop
+ int pix_nextRow; // pix_nextRow = pixel one row in front of the one we are testing in a loop
+ int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
+ int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
+ /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
+ for(x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
+ a=x-2;
+ pix_prevRow=a+rw;
+ pix_nextRow=a-rw;
+ pix_prevCol=a+1;
+ pix_nextCol=a-1;
+ while(a>dx-2) {
+ if(!limask[a]) { // if the inner mask is empty
+ if(lomask[a]) { // if the outer mask is full
+ /*
+ Next we test all 4 directions around the current pixel: next/prev/up/down
+ The test ensures that the outer mask is empty and that the inner mask
+ is also empty. If both conditions are true for any one of the 4 adjacent pixels
+ then the current pixel is counted as being a true outer edge pixel.
+ */
+ if((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
+ (!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
+ (!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
+ (!lomask[pix_prevRow] && !limask[pix_prevRow]))
+ {
+ in_osz++; // increment the outer boundary pixel count
+ lres[a]=3; // flag pixel as part of outer edge
+ } else { // it's not a boundary pixel, but it is a gradient pixel
+ in_gsz++; // increment the gradient pixel count
+ lres[a]=2; // flag pixel as gradient
+ }
+ }
+
+ } else {
+ if((!limask[pix_nextCol] && lomask[pix_nextCol]) ||
+ (!limask[pix_prevCol] && lomask[pix_prevCol]) ||
+ (!limask[pix_nextRow] && lomask[pix_nextRow]) ||
+ (!limask[pix_prevRow] && lomask[pix_prevRow]))
+ {
+ in_isz++; // increment the inner boundary pixel count
+ lres[a]=4; // flag pixel as part of inner edge
+ } else {
+ res[a]=1.0f; // pixel is part of inner mask, but not at an edge
+ }
+ }
+ a--;
+ pix_prevRow--; // advance all four "surrounding" pixel pointers
+ pix_nextRow--;
+ pix_prevCol--;
+ pix_nextCol--;
+ }
+ }
+
+ rsize[0]=in_isz; // fill in our return sizes for edges + fill
+ rsize[1]=in_osz;
+ rsize[2]=in_gsz;
+}
+
+static void do_createEdgeLocationBuffer(unsigned int t, unsigned int rw, unsigned int *lres, float *res, unsigned short *gbuf, unsigned int *innerEdgeOffset, unsigned int *outerEdgeOffset, unsigned int isz, unsigned int gsz){
+ int x; // x = pixel loop counter
+ int a; // a = temporary pixel index buffer loop counter
+ unsigned int ud; // ud = unscaled edge distance
+ unsigned int dmin; // dmin = minimun edge distance
+
+ unsigned int rsl; // long used for finding fast 1.0/sqrt
+ unsigned int gradientFillOffset;
+ unsigned int innerAccum=0; // for looping inner edge pixel indexes, represents current position from offset
+ unsigned int outerAccum=0; // for looping outer edge pixel indexes, represents current position from offset
+ unsigned int gradientAccum=0; // for looping gradient pixel indexes, represents current position from offset
+ /*
+ Here we compute the size of buffer needed to hold (row,col) coordinates
+ for each pixel previously determined to be either gradient, inner edge,
+ or outer edge.
+
+ Allocation is done by requesting 4 bytes "sizeof(int)" per pixel, even
+ though gbuf[] is declared as unsigned short* (2 bytes) because we don't
+ store the pixel indexes, we only store x,y location of pixel in buffer.
+
+ This does make the assumption that x and y can fit in 16 unsigned bits
+ so if Blender starts doing renders greater than 65536 in either direction
+ this will need to allocate gbuf[] as unsigned int* and allocate 8 bytes
+ per flagged pixel.
+
+ In general, the buffer on-screen:
+
+ Example: 9 by 9 pixel block
+
+ . = pixel non-white in both outer and inner mask
+ o = pixel white in outer, but not inner mask, adjacent to "." pixel
+ g = pixel white in outer, but not inner mask, not adjacent to "." pixel
+ i = pixel white in inner mask, adjacent to "g" or "." pixel
+ F = pixel white in inner mask, only adjacent to other pixels white in the inner mask
+
+
+ ......... <----- pixel #80
+ ..oooo...
+ .oggggo..
+ .oggiggo.
+ .ogiFigo.
+ .oggiggo.
+ .oggggo..
+ ..oooo...
+ pixel #00 -----> .........
+
+ gsz = 18 (18 "g" pixels above)
+ isz = 4 (4 "i" pixels above)
+ osz = 18 (18 "o" pixels above)
+
+
+ The memory in gbuf[] after filling will look like this:
+
+ gradientFillOffset (0 pixels) innerEdgeOffset (18 pixels) outerEdgeOffset (22 pixels)
+ / / /
+ / / /
+ |X Y X Y X Y X Y > <X Y X Y > <X Y X Y X Y > <X Y X Y | <- (x,y)
+ +--------------------------------> <----------------> <------------------------> <----------------+
+ |0 2 4 6 8 10 12 14 > ... <68 70 72 74 > ... <80 82 84 86 88 90 > ... <152 154 156 158 | <- bytes
+ +--------------------------------> <----------------> <------------------------> <----------------+
+ |g0 g0 g1 g1 g2 g2 g3 g3 > <g17 g17 i0 i0 > <i2 i2 i3 i3 o0 o0 > <o16 o16 o17 o17 | <- pixel
+ / / /
+ / / /
+ / / /
+ +---------- gradientAccum (18) ---------+ +--- innerAccum (22) ---+ +--- outerAccum (40) ---+
+
+
+ Ultimately we do need the pixel's memory buffer index to set the output
+ pixel color, but it's faster to reconstruct the memory buffer location
+ each iteration of the final gradient calculation than it is to deconstruct
+ a memory location into x,y pairs each round.
+*/
+
+
+ gradientFillOffset=0; // since there are likely "more" of these, put it first. :)
+ *innerEdgeOffset=gradientFillOffset+gsz; // set start of inner edge indexes
+ *outerEdgeOffset=(*innerEdgeOffset)+isz; // set start of outer edge indexes
+ /* set the accumulators to correct positions */ // set up some accumulator variables for loops
+ gradientAccum = gradientFillOffset; // each accumulator variable starts at its respective
+ innerAccum = *innerEdgeOffset; // section's offset so when we start filling, each
+ outerAccum = *outerEdgeOffset; // section fills up it's allocated space in gbuf
+ //uses dmin=row, rsl=col
+ for(x=0,dmin=0; x<t; x+=rw,dmin++) {
+ for(rsl=0; rsl<rw; rsl++) {
+ a=x+rsl;
+ if(lres[a]==2) { // it is a gradient pixel flagged by 2
+ ud=gradientAccum<<1; // double the index to reach correct unsigned short location
+ gbuf[ud]=dmin; // insert pixel's row into gradient pixel location buffer
+ gbuf[ud+1]=rsl; // insert pixel's column into gradient pixel location buffer
+ gradientAccum++; // increment gradient index buffer pointer
+ } else if(lres[a]==3) { // it is an outer edge pixel flagged by 3
+ ud=outerAccum<<1; // double the index to reach correct unsigned short location
+ gbuf[ud]=dmin; // insert pixel's row into outer edge pixel location buffer
+ gbuf[ud+1]=rsl; // insert pixel's column into outer edge pixel location buffer
+ outerAccum++; // increment outer edge index buffer pointer
+ res[a]=0.0f; // set output pixel intensity now since it won't change later
+ } else if(lres[a]==4) { // it is an inner edge pixel flagged by 4
+ ud=innerAccum<<1; // double int index to reach correct unsigned short location
+ gbuf[ud]=dmin; // insert pixel's row into inner edge pixel location buffer
+ gbuf[ud+1]=rsl; // insert pixel's column into inner edge pixel location buffer
+ innerAccum++; // increment inner edge index buffer pointer
+ res[a]=1.0f; // set output pixel intensity now since it won't change later
+ }
+ }
+ }
+
+}
+
+static void do_fillGradientBuffer(unsigned int rw, float *res, unsigned short *gbuf, unsigned int isz, unsigned int osz, unsigned int gsz, unsigned int innerEdgeOffset, unsigned int outerEdgeOffset){
+ int x; // x = pixel loop counter
+ int a; // a = temporary pixel index buffer loop counter
+ int fsz; // size of the frame
+ unsigned int rsl; // long used for finding fast 1.0/sqrt
+ float rsf; // float used for finding fast 1.0/sqrt
+ const float rsopf = 1.5f; // constant float used for finding fast 1.0/sqrt
+
+ unsigned int gradientFillOffset;
+ unsigned int t;
+ unsigned int ud; // ud = unscaled edge distance
+ unsigned int dmin; // dmin = minimun edge distance
+ float odist; // odist = current outer edge distance
+ float idist; // idist = current inner edge distance
+ int dx; // dx = X-delta (used for distance proportion calculation)
+ int dy; // dy = Y-delta (used for distance proportion calculation)
+
+ /*
+ The general algorithm used to color each gradient pixel is:
+
+ 1.) Loop through all gradient pixels.
+ A.) For each gradient pixel:
+ a.) Loop though all outside edge pixels, looking for closest one
+ to the gradient pixel we are in.
+ b.) Loop through all inside edge pixels, looking for closest one
+ to the gradient pixel we are in.
+ c.) Find proportion of distance from gradient pixel to inside edge
+ pixel compared to sum of distance to inside edge and distance to
+ outside edge.
+
+ In an image where:
+ . = blank (black) pixels, not covered by inner mask or outer mask
+ + = desired gradient pixels, covered only by outer mask
+ * = white full mask pixels, covered by at least inner mask
+
+ ...............................
+ ...............+++++++++++.....
+ ...+O++++++..++++++++++++++....
+ ..+++\++++++++++++++++++++.....
+ .+++++G+++++++++*******+++.....
+ .+++++|+++++++*********+++.....
+ .++***I****************+++.....
+ .++*******************+++......
+ .+++*****************+++.......
+ ..+++***************+++........
+ ....+++**********+++...........
+ ......++++++++++++.............
+ ...............................
+
+ O = outside edge pixel
+ \
+ G = gradient pixel
+ |
+ I = inside edge pixel
+
+ __
+ *note that IO does not need to be a straight line, in fact
+ many cases can arise where straight lines do not work
+ correctly.
+
+ __ __ __
+ d.) Pixel color is assigned as |GO| / ( |GI| + |GO| )
+
+ The implementation does not compute distance, but the reciprocal of the
+ distance. This is done to avoid having to compute a square root, as a
+ reciprocal square root can be computed faster. Therefore, the code computes
+ pixel color as |GI| / (|GI| + |GO|). Since these are reciprocals, GI serves the
+ purpose of GO for the proportion calculation.
+
+ For the purposes of the minimun distance comparisons, we only check
+ the sums-of-squares against eachother, since they are in the same
+ mathematical sort-order as if we did go ahead and take square roots
+
+ Loop through all gradient pixels.
+ */
+
+ for(x= gsz-1; x>=0; x--) {
+ gradientFillOffset=x<<1;
+ t=gbuf[gradientFillOffset]; // calculate column of pixel indexed by gbuf[x]
+ fsz=gbuf[gradientFillOffset+1]; // calculate row of pixel indexed by gbuf[x]
+ dmin=0xffffffff; // reset min distance to edge pixel
+ for(a=outerEdgeOffset+osz-1; a>=outerEdgeOffset; a--) { // loop through all outer edge buffer pixels
+ ud=a<<1;
+ dy=t-gbuf[ud]; // set dx to gradient pixel column - outer edge pixel row
+ dx=fsz-gbuf[ud+1]; // set dy to gradient pixel row - outer edge pixel column
+ ud=dx*dx+dy*dy; // compute sum of squares
+ if(ud<dmin) { // if our new sum of squares is less than the current minimum
+ dmin=ud; // set a new minimum equal to the new lower value
+ }
+ }
+ odist=(float)(dmin); // cast outer min to a float
+ rsf=odist*0.5f; //
+ rsl=*(unsigned int*)&odist; // use some peculiar properties of the way bits are stored
+ rsl=0x5f3759df-(rsl>>1); // in floats vs. unsigned ints to compute an approximate
+ odist=*(float*)&rsl; // reciprocal square root
+ odist=odist*(rsopf-(rsf*odist*odist)); // -- ** this line can be iterated for more accuracy ** --
+ dmin=0xffffffff; // reset min distance to edge pixel
+ for(a= innerEdgeOffset+isz-1; a>=innerEdgeOffset; a--) { // loop through all inside edge pixels
+ ud=a<<1;
+ dy=t-gbuf[ud]; // compute delta in Y from gradient pixel to inside edge pixel
+ dx=fsz-gbuf[ud+1]; // compute delta in X from gradient pixel to inside edge pixel
+ ud=dx*dx+dy*dy; // compute sum of squares
+ if(ud<dmin) { // if our new sum of squares is less than the current minimum we've found
+ dmin=ud; // set a new minimum equal to the new lower value
+ }
+ }
+ idist=(float)(dmin); // cast inner min to a float
+ rsf=idist*0.5f; //
+ rsl=*(unsigned int*)&idist; //
+ rsl=0x5f3759df-(rsl>>1); // see notes above
+ idist=*(float*)&rsl; //
+ idist=idist*(rsopf-(rsf*idist*idist)); //
+ /*
+ Note once again that since we are using reciprocals of distance values our
+ proportion is already the correct intensity, and does not need to be
+ subracted from 1.0 like it would have if we used real distances.
+ */
+
+ /*
+ Here we reconstruct the pixel's memory location in the CompBuf by
+ Pixel Index = Pixel Column + ( Pixel Row * Row Width )
+ */
+ res[gbuf[gradientFillOffset+1]+(gbuf[gradientFillOffset]*rw)]=(idist/(idist+odist)); //set intensity
+ }
+
+}
+
+// end of copy
+
+void DoubleEdgeMaskOperation::doDoubleEdgeMask(float* imask, float *omask, float *res) {
+
+ unsigned int *lres; // lres = unsigned int pointer to output pixel buffer (for bit operations)
+ unsigned int *limask; // limask = unsigned int pointer to inner mask (for bit operations)
+ unsigned int *lomask; // lomask = unsigned int pointer to outer mask (for bit operations)
+
+ int rw; // rw = pixel row width
+ int t; // t = total number of pixels in buffer - 1 (used for loop starts)
+ int fsz; // size of the frame
+
+ unsigned int isz=0; // size (in pixels) of inside edge pixel index buffer
+ unsigned int osz=0; // size (in pixels) of outside edge pixel index buffer
+ unsigned int gsz=0; // size (in pixels) of gradient pixel index buffer
+ unsigned int rsize[3]; // size storage to pass to helper functions
+ unsigned int innerEdgeOffset=0; // offset into final buffer where inner edge pixel indexes start
+ unsigned int outerEdgeOffset=0; // offset into final buffer where outer edge pixel indexes start
+
+ unsigned short *gbuf; // gradient/inner/outer pixel location index buffer
+
+ if(true) { // if both input sockets have some data coming in...
+
+ t=(this->getWidth()*this->getHeight())-1; // determine size of the frame
+
+ lres= (unsigned int*)res; // unsigned int pointer to output buffer (for bit level ops)
+ limask=(unsigned int*)imask; // unsigned int pointer to input mask (for bit level ops)
+ lomask=(unsigned int*)omask; // unsigned int pointer to output mask (for bit level ops)
+ rw= this->getWidth(); // width of a row of pixels
+
+
+ /*
+ The whole buffer is broken up into 4 parts. The four CORNERS, the FIRST and LAST rows, the
+ LEFT and RIGHT edges (excluding the corner pixels), and all OTHER rows.
+ This allows for quick computation of outer edge pixels where
+ a screen edge pixel is marked to be gradient.
+
+ The pixel type (gradient vs inner-edge vs outer-edge) tests change
+ depending on the user selected "Inner Edge Mode" and the user selected
+ "Buffer Edge Mode" on the node's GUI. There are 4 sets of basically the
+ same algorithm:
+
+ 1.) Inner Edge -> Adjacent Only
+ Buffer Edge -> Keep Inside
+
+ 2.) Inner Edge -> Adjacent Only
+ Buffer Edge -> Bleed Out
+
+ 3.) Inner Edge -> All
+ Buffer Edge -> Keep Inside
+
+ 4.) Inner Edge -> All
+ Buffer Edge -> Bleed Out
+
+ Each version has slightly different criteria for detecting an edge pixel.
+ */
+ if(this->adjecentOnly) { // if "adjacent only" inner edge mode is turned on
+ if(this->keepInside) { // if "keep inside" buffer edge mode is turned on
+ do_adjacentKeepBorders(t,rw,limask,lomask,lres,res,rsize);
+ }else{ // "bleed out" buffer edge mode is turned on
+ do_adjacentBleedBorders(t,rw,limask,lomask,lres,res,rsize);
+ }
+ isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
+ osz=rsize[1];
+ gsz=rsize[2];
+ // detect edges in all non-border pixels in the buffer
+ do_adjacentEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
+ }else{ // "all" inner edge mode is turned on
+ if(this->keepInside) { // if "keep inside" buffer edge mode is turned on
+ do_allKeepBorders(t,rw,limask,lomask,lres,res,rsize);
+ }else{ // "bleed out" buffer edge mode is turned on
+ do_allBleedBorders(t,rw,limask,lomask,lres,res,rsize);
+ }
+ isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
+ osz=rsize[1];
+ gsz=rsize[2];
+ // detect edges in all non-border pixels in the buffer
+ do_allEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
+ }
+
+ isz=rsize[0]; // set edge and gradient buffer sizes once again...
+ osz=rsize[1]; // the sizes in rsize[] may have been modified
+ gsz=rsize[2]; // by the do_*EdgeDetection() function.
+
+ fsz=gsz+isz+osz; // calculate size of pixel index buffer needed
+ gbuf= new unsigned short[fsz*2]; // allocate edge/gradient pixel index buffer
+
+ do_createEdgeLocationBuffer(t,rw,lres,res,gbuf,&innerEdgeOffset,&outerEdgeOffset,isz,gsz);
+ do_fillGradientBuffer(rw,res,gbuf,isz,osz,gsz,innerEdgeOffset,outerEdgeOffset);
+
+ delete gbuf; // free the gradient index buffer
+ }
+}
+
+DoubleEdgeMaskOperation::DoubleEdgeMaskOperation(): NodeOperation() {
+ this->addInputSocket(COM_DT_VALUE);
+ this->addInputSocket(COM_DT_VALUE);
+ this->addOutputSocket(COM_DT_VALUE);
+ this->inputInnerMask = NULL;
+ this->inputOuterMask = NULL;
+ this->adjecentOnly = false;
+ this->keepInside = false;
+ this->setComplex(true);
+}
+
+bool DoubleEdgeMaskOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output) {
+ if (this->cachedInstance == NULL) {
+ rcti newInput;
+ newInput.xmax = this->getWidth();
+ newInput.xmin = 0;
+ newInput.ymax = this->getHeight();
+ newInput.ymin = 0;
+ return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
+ } else {
+ return false;
+ }
+}
+
+void DoubleEdgeMaskOperation::initExecution() {
+ this->inputInnerMask = this->getInputSocketReader(0);
+ this->inputOuterMask = this->getInputSocketReader(1);
+ initMutex();
+ this->cachedInstance = NULL;
+}
+
+void* DoubleEdgeMaskOperation::initializeTileData(rcti *rect, MemoryBuffer **memoryBuffers) {
+ if (this->cachedInstance) return this->cachedInstance;
+
+ BLI_mutex_lock(getMutex());
+ if (this->cachedInstance == NULL) {
+ MemoryBuffer* innerMask = (MemoryBuffer*)inputInnerMask->initializeTileData(rect, memoryBuffers);
+ MemoryBuffer* outerMask= (MemoryBuffer*)inputOuterMask->initializeTileData(rect, memoryBuffers);
+ float* data = new float[this->getWidth()*this->getHeight()];
+ float* imask = innerMask->convertToValueBuffer();
+ float* omask = outerMask->convertToValueBuffer();
+ doDoubleEdgeMask(imask, omask, data);
+ delete imask;
+ delete omask;
+ this->cachedInstance = data;
+ }
+ BLI_mutex_unlock(getMutex());
+ return this->cachedInstance;
+}
+void DoubleEdgeMaskOperation::executePixel(float* color, int x, int y, MemoryBuffer *inputBuffers[], void* data) {
+ float* buffer = (float*) data;
+ int index = (y*this->getWidth() + x);
+ color[0] = buffer[index];
+ color[1] = buffer[index+1];
+ color[2] = buffer[index+2];
+ color[3] = buffer[index+3];
+}
+
+void DoubleEdgeMaskOperation::deinitExecution() {
+ this->inputInnerMask = NULL;
+ this->inputOuterMask = NULL;
+ deinitMutex();
+ if (this->cachedInstance) {
+ delete cachedInstance;
+ this->cachedInstance = NULL;
+ }
+}
+