Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl')
-rw-r--r--source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl282
1 files changed, 282 insertions, 0 deletions
diff --git a/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl b/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
new file mode 100644
index 00000000000..9d27224b5c9
--- /dev/null
+++ b/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
@@ -0,0 +1,282 @@
+
+/* Based on Practical Realtime Strategies for Accurate Indirect Occlusion
+ * http://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
+ * http://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pptx */
+
+#if defined(MESH_SHADER)
+# if !defined(USE_ALPHA_HASH)
+# if !defined(USE_ALPHA_CLIP)
+# if !defined(SHADOW_SHADER)
+# if !defined(USE_MULTIPLY)
+# if !defined(USE_ALPHA_BLEND)
+# define ENABLE_DEFERED_AO
+# endif
+# endif
+# endif
+# endif
+# endif
+#endif
+
+#ifndef ENABLE_DEFERED_AO
+# if defined(STEP_RESOLVE)
+# define ENABLE_DEFERED_AO
+# endif
+#endif
+
+#define MAX_PHI_STEP 32
+#define MAX_SEARCH_ITER 32
+#define MAX_LOD 6.0
+
+#ifndef UTIL_TEX
+#define UTIL_TEX
+uniform sampler2DArray utilTex;
+#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
+#endif /* UTIL_TEX */
+
+uniform sampler2D horizonBuffer;
+
+/* aoSettings flags */
+#define USE_AO 1
+#define USE_BENT_NORMAL 2
+#define USE_DENOISE 4
+
+vec4 pack_horizons(vec4 v) { return v * 0.5 + 0.5; }
+vec4 unpack_horizons(vec4 v) { return v * 2.0 - 1.0; }
+
+/* Returns maximum screen distance an AO ray can travel for a given view depth */
+vec2 get_max_dir(float view_depth)
+{
+ float homcco = ProjectionMatrix[2][3] * view_depth + ProjectionMatrix[3][3];
+ float max_dist = aoDistance / homcco;
+ return vec2(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) * max_dist;
+}
+
+vec2 get_ao_dir(float jitter)
+{
+ /* Only half a turn because we integrate in slices. */
+ jitter *= M_PI;
+ return vec2(cos(jitter), sin(jitter));
+}
+
+void get_max_horizon_grouped(vec4 co1, vec4 co2, vec3 x, float lod, inout float h)
+{
+ co1 *= mipRatio[int(lod + 1.0)].xyxy; /* +1 because we are using half res top level */
+ co2 *= mipRatio[int(lod + 1.0)].xyxy; /* +1 because we are using half res top level */
+
+ float depth1 = textureLod(maxzBuffer, co1.xy, floor(lod)).r;
+ float depth2 = textureLod(maxzBuffer, co1.zw, floor(lod)).r;
+ float depth3 = textureLod(maxzBuffer, co2.xy, floor(lod)).r;
+ float depth4 = textureLod(maxzBuffer, co2.zw, floor(lod)).r;
+
+ vec4 len, s_h;
+
+ vec3 s1 = get_view_space_from_depth(co1.xy, depth1); /* s View coordinate */
+ vec3 omega_s1 = s1 - x;
+ len.x = length(omega_s1);
+ s_h.x = omega_s1.z / len.x;
+
+ vec3 s2 = get_view_space_from_depth(co1.zw, depth2); /* s View coordinate */
+ vec3 omega_s2 = s2 - x;
+ len.y = length(omega_s2);
+ s_h.y = omega_s2.z / len.y;
+
+ vec3 s3 = get_view_space_from_depth(co2.xy, depth3); /* s View coordinate */
+ vec3 omega_s3 = s3 - x;
+ len.z = length(omega_s3);
+ s_h.z = omega_s3.z / len.z;
+
+ vec3 s4 = get_view_space_from_depth(co2.zw, depth4); /* s View coordinate */
+ vec3 omega_s4 = s4 - x;
+ len.w = length(omega_s4);
+ s_h.w = omega_s4.z / len.w;
+
+ /* Blend weight after half the aoDistance to fade artifacts */
+ vec4 blend = saturate((1.0 - len / aoDistance) * 2.0);
+
+ h = mix(h, max(h, s_h.x), blend.x);
+ h = mix(h, max(h, s_h.y), blend.y);
+ h = mix(h, max(h, s_h.z), blend.z);
+ h = mix(h, max(h, s_h.w), blend.w);
+}
+
+vec2 search_horizon_sweep(vec2 t_phi, vec3 pos, vec2 uvs, float jitter, vec2 max_dir)
+{
+ max_dir *= max_v2(abs(t_phi));
+
+ /* Convert to pixel space. */
+ t_phi /= vec2(textureSize(maxzBuffer, 0));
+
+ /* Avoid division by 0 */
+ t_phi += vec2(1e-5);
+
+ jitter *= 0.25;
+
+ /* Compute end points */
+ vec2 corner1 = min(vec2(1.0) - uvs, max_dir); /* Top right */
+ vec2 corner2 = max(vec2(0.0) - uvs, -max_dir); /* Bottom left */
+ vec2 iter1 = corner1 / t_phi;
+ vec2 iter2 = corner2 / t_phi;
+
+ vec2 min_iter = max(-iter1, -iter2);
+ vec2 max_iter = max( iter1, iter2);
+
+ vec2 times = vec2(-min_v2(min_iter), min_v2(max_iter));
+
+ vec2 h = vec2(-1.0); /* init at cos(pi) */
+
+ /* This is freaking sexy optimized. */
+ for (float i = 0.0, ofs = 4.0, time = -1.0;
+ i < MAX_SEARCH_ITER && time > times.x;
+ i++, time -= ofs, ofs = min(exp2(MAX_LOD) * 4.0, ofs + ofs * aoQuality))
+ {
+ vec4 t = max(times.xxxx, vec4(time) - (vec4(0.25, 0.5, 0.75, 1.0) - jitter) * ofs);
+ vec4 cos1 = uvs.xyxy + t_phi.xyxy * t.xxyy;
+ vec4 cos2 = uvs.xyxy + t_phi.xyxy * t.zzww;
+ float lod = min(MAX_LOD, max(i - jitter * 4.0, 0.0) * aoQuality);
+ get_max_horizon_grouped(cos1, cos2, pos, lod, h.y);
+ }
+
+ for (float i = 0.0, ofs = 4.0, time = 1.0;
+ i < MAX_SEARCH_ITER && time < times.y;
+ i++, time += ofs, ofs = min(exp2(MAX_LOD) * 4.0, ofs + ofs * aoQuality))
+ {
+ vec4 t = min(times.yyyy, vec4(time) + (vec4(0.25, 0.5, 0.75, 1.0) - jitter) * ofs);
+ vec4 cos1 = uvs.xyxy + t_phi.xyxy * t.xxyy;
+ vec4 cos2 = uvs.xyxy + t_phi.xyxy * t.zzww;
+ float lod = min(MAX_LOD, max(i - jitter * 4.0, 0.0) * aoQuality);
+ get_max_horizon_grouped(cos1, cos2, pos, lod, h.x);
+ }
+
+ return h;
+}
+
+void integrate_slice(vec3 normal, vec2 t_phi, vec2 horizons, inout float visibility, inout vec3 bent_normal)
+{
+ /* Projecting Normal to Plane P defined by t_phi and omega_o */
+ vec3 np = vec3(t_phi.y, -t_phi.x, 0.0); /* Normal vector to Integration plane */
+ vec3 t = vec3(-t_phi, 0.0);
+ vec3 n_proj = normal - np * dot(np, normal);
+ float n_proj_len = max(1e-16, length(n_proj));
+
+ float cos_n = clamp(n_proj.z / n_proj_len, -1.0, 1.0);
+ float n = sign(dot(n_proj, t)) * fast_acos(cos_n); /* Angle between view vec and normal */
+
+ /* (Slide 54) */
+ vec2 h = fast_acos(horizons);
+ h.x = -h.x;
+
+ /* Clamping thetas (slide 58) */
+ h.x = n + max(h.x - n, -M_PI_2);
+ h.y = n + min(h.y - n, M_PI_2);
+
+ /* Solving inner integral */
+ vec2 h_2 = 2.0 * h;
+ vec2 vd = -cos(h_2 - n) + cos_n + h_2 * sin(n);
+ float vis = (vd.x + vd.y) * 0.25 * n_proj_len;
+
+ visibility += vis;
+
+ /* Finding Bent normal */
+ float b_angle = (h.x + h.y) * 0.5;
+ /* The 0.5 factor below is here to equilibrate the accumulated vectors.
+ * (sin(b_angle) * -t_phi) will accumulate to (phi_step * result_nor.xy * 0.5).
+ * (cos(b_angle) * 0.5) will accumulate to (phi_step * result_nor.z * 0.5). */
+ bent_normal += vec3(sin(b_angle) * -t_phi, cos(b_angle) * 0.5);
+}
+
+void gtao_deferred(
+ vec3 normal, vec3 position, vec4 noise, float frag_depth, out float visibility, out vec3 bent_normal)
+{
+ /* Fetch early, hide latency! */
+ vec4 horizons = texelFetch(horizonBuffer, ivec2(gl_FragCoord.xy), 0);
+
+ vec4 dirs;
+ dirs.xy = get_ao_dir(noise.x * 0.5);
+ dirs.zw = get_ao_dir(noise.x * 0.5 + 0.5);
+ vec2 uvs = get_uvs_from_view(position);
+
+ bent_normal = vec3(0.0);
+ visibility = 0.0;
+
+ horizons = unpack_horizons(horizons);
+
+ integrate_slice(normal, dirs.xy, horizons.xy, visibility, bent_normal);
+ integrate_slice(normal, dirs.zw, horizons.zw, visibility, bent_normal);
+
+ visibility *= 0.5; /* We integrated 2 slices. */
+
+ bent_normal = normalize(bent_normal);
+}
+
+void gtao(vec3 normal, vec3 position, vec4 noise, out float visibility, out vec3 bent_normal)
+{
+ vec2 uvs = get_uvs_from_view(position);
+ vec2 max_dir = get_max_dir(position.z);
+ vec2 dir = get_ao_dir(noise.x);
+
+ bent_normal = vec3(0.0);
+ visibility = 0.0;
+
+ /* Only trace in 2 directions. May lead to a darker result but since it's mostly for
+ * alpha blended objects that will have overdraw, we limit the performance impact. */
+ vec2 horizons = search_horizon_sweep(dir, position, uvs, noise.y, max_dir);
+ integrate_slice(normal, dir, horizons, visibility, bent_normal);
+
+ bent_normal = normalize(bent_normal);
+}
+
+/* Multibounce approximation base on surface albedo.
+ * Page 78 in the .pdf version. */
+float gtao_multibounce(float visibility, vec3 albedo)
+{
+ if (aoBounceFac == 0.0) return visibility;
+
+ /* Median luminance. Because Colored multibounce looks bad. */
+ float lum = dot(albedo, vec3(0.3333));
+
+ float a = 2.0404 * lum - 0.3324;
+ float b = -4.7951 * lum + 0.6417;
+ float c = 2.7552 * lum + 0.6903;
+
+ float x = visibility;
+ return max(x, ((x * a + b) * x + c) * x);
+}
+
+/* Use the right occlusion */
+float occlusion_compute(vec3 N, vec3 vpos, float user_occlusion, vec4 rand, out vec3 bent_normal)
+{
+#ifndef USE_REFRACTION
+ if ((int(aoSettings) & USE_AO) > 0) {
+ float visibility;
+ vec3 vnor = mat3(ViewMatrix) * N;
+
+#ifdef ENABLE_DEFERED_AO
+ gtao_deferred(vnor, vpos, rand, gl_FragCoord.z, visibility, bent_normal);
+#else
+ gtao(vnor, vpos, rand, visibility, bent_normal);
+#endif
+
+ /* Prevent some problems down the road. */
+ visibility = max(1e-3, visibility);
+
+ if ((int(aoSettings) & USE_BENT_NORMAL) != 0) {
+ /* The bent normal will show the facet look of the mesh. Try to minimize this. */
+ float mix_fac = visibility * visibility;
+ bent_normal = normalize(mix(bent_normal, vnor, mix_fac));
+
+ bent_normal = transform_direction(ViewMatrixInverse, bent_normal);
+ }
+ else {
+ bent_normal = N;
+ }
+
+ /* Scale by user factor */
+ visibility = pow(visibility, aoFactor);
+
+ return min(visibility, user_occlusion);
+ }
+#endif
+
+ bent_normal = N;
+ return user_occlusion;
+}