Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/geometry/FitCurve.cpp')
-rwxr-xr-xsource/blender/freestyle/intern/geometry/FitCurve.cpp603
1 files changed, 603 insertions, 0 deletions
diff --git a/source/blender/freestyle/intern/geometry/FitCurve.cpp b/source/blender/freestyle/intern/geometry/FitCurve.cpp
new file mode 100755
index 00000000000..7754fcda32b
--- /dev/null
+++ b/source/blender/freestyle/intern/geometry/FitCurve.cpp
@@ -0,0 +1,603 @@
+
+//
+// Copyright (C) : Please refer to the COPYRIGHT file distributed
+// with this source distribution.
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License
+// as published by the Free Software Foundation; either version 2
+// of the License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include <cstdlib> // for malloc and free
+#include <stdio.h>
+#include <math.h>
+#include "FitCurve.h"
+
+using namespace std;
+
+typedef Vector2 *BezierCurve;
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/* Forward declarations */
+static double *Reparameterize(Vector2 *d, int first, int last, double *u, BezierCurve bezCurve);
+static double NewtonRaphsonRootFind(BezierCurve Q, Vector2 P, double u);
+static Vector2 BezierII(int degree, Vector2 *V, double t);
+static double B0(double u);
+static double B1(double u);
+static double B2(double u);
+static double B3(double u);
+static Vector2 ComputeLeftTangent(Vector2 *d, int end);
+static Vector2 ComputeLeftTangent(Vector2 *d, int end);
+static Vector2 ComputeLeftTangent(Vector2 *d, int end);
+static double ComputeMaxError(Vector2 *d, int first, int last, BezierCurve bezCurve, double *u, int *splitPoint);
+static double *ChordLengthParameterize(Vector2 *d, int first, int last);
+static BezierCurve GenerateBezier(Vector2 *d, int first, int last, double *uPrime, Vector2 tHat1, Vector2 tHat2);
+static Vector2 V2AddII(Vector2 a, Vector2 b);
+static Vector2 V2ScaleIII(Vector2 v, double s);
+static Vector2 V2SubII(Vector2 a, Vector2 b);
+
+
+#define MAXPOINTS 1000 /* The most points you can have */
+
+/* returns squared length of input vector */
+double V2SquaredLength(Vector2 *a)
+{ return(((*a)[0] * (*a)[0])+((*a)[1] * (*a)[1]));
+}
+
+/* returns length of input vector */
+double V2Length(Vector2 *a)
+{
+ return(sqrt(V2SquaredLength(a)));
+}
+
+Vector2 *V2Scale(Vector2 *v, double newlen)
+{
+ double len = V2Length(v);
+ if (len != 0.0) { (*v)[0] *= newlen/len; (*v)[1] *= newlen/len; }
+ return(v);
+}
+
+/* return the dot product of vectors a and b */
+double V2Dot(Vector2 *a, Vector2 *b)
+{
+ return(((*a)[0]*(*b)[0])+((*a)[1]*(*b)[1]));
+}
+
+/* return the distance between two points */
+double V2DistanceBetween2Points(Vector2 *a, Vector2 *b)
+{
+double dx = (*a)[0] - (*b)[0];
+double dy = (*a)[1] - (*b)[1];
+ return(sqrt((dx*dx)+(dy*dy)));
+}
+
+/* return vector sum c = a+b */
+Vector2 *V2Add(Vector2 *a, Vector2 *b, Vector2 *c)
+{
+ (*c)[0] = (*a)[0]+(*b)[0]; (*c)[1] = (*a)[1]+(*b)[1];
+ return(c);
+}
+
+/* normalizes the input vector and returns it */
+Vector2 *V2Normalize(Vector2 *v)
+{
+double len = V2Length(v);
+ if (len != 0.0) { (*v)[0] /= len; (*v)[1] /= len; }
+ return(v);
+}
+
+/* negates the input vector and returns it */
+Vector2 *V2Negate(Vector2 *v)
+{
+ (*v)[0] = -(*v)[0]; (*v)[1] = -(*v)[1];
+ return(v);
+}
+
+
+/*
+ * GenerateBezier :
+ * Use least-squares method to find Bezier control points for region.
+ *
+ */
+static BezierCurve GenerateBezier(Vector2 *d, int first, int last, double *uPrime, Vector2 tHat1, Vector2 tHat2)
+// Vector2 *d; /* Array of digitized points */
+// int first, last; /* Indices defining region */
+// double *uPrime; /* Parameter values for region */
+// Vector2 tHat1, tHat2; /* Unit tangents at endpoints */
+{
+ int i;
+ Vector2 A[MAXPOINTS][2]; /* Precomputed rhs for eqn */
+ int nPts; /* Number of pts in sub-curve */
+ double C[2][2]; /* Matrix C */
+ double X[2]; /* Matrix X */
+ double det_C0_C1, /* Determinants of matrices */
+ det_C0_X,
+ det_X_C1;
+ double alpha_l, /* Alpha values, left and right */
+ alpha_r;
+ Vector2 tmp; /* Utility variable */
+ BezierCurve bezCurve; /* RETURN bezier curve ctl pts */
+
+ bezCurve = (Vector2 *)malloc(4 * sizeof(Vector2));
+ nPts = last - first + 1;
+
+
+ /* Compute the A's */
+ for (i = 0; i < nPts; i++) {
+ Vector2 v1, v2;
+ v1 = tHat1;
+ v2 = tHat2;
+ V2Scale(&v1, B1(uPrime[i]));
+ V2Scale(&v2, B2(uPrime[i]));
+ A[i][0] = v1;
+ A[i][1] = v2;
+ }
+
+ /* Create the C and X matrices */
+ C[0][0] = 0.0;
+ C[0][1] = 0.0;
+ C[1][0] = 0.0;
+ C[1][1] = 0.0;
+ X[0] = 0.0;
+ X[1] = 0.0;
+
+ for (i = 0; i < nPts; i++) {
+ C[0][0] += V2Dot(&A[i][0], &A[i][0]);
+ C[0][1] += V2Dot(&A[i][0], &A[i][1]);
+/* C[1][0] += V2Dot(&A[i][0], &A[i][1]);*/
+ C[1][0] = C[0][1];
+ C[1][1] += V2Dot(&A[i][1], &A[i][1]);
+
+ tmp = V2SubII(d[first + i],
+ V2AddII(
+ V2ScaleIII(d[first], B0(uPrime[i])),
+ V2AddII(
+ V2ScaleIII(d[first], B1(uPrime[i])),
+ V2AddII(
+ V2ScaleIII(d[last], B2(uPrime[i])),
+ V2ScaleIII(d[last], B3(uPrime[i]))))));
+
+
+ X[0] += V2Dot(&((A[i])[0]), &tmp);
+ X[1] += V2Dot(&((A[i])[1]), &tmp);
+ }
+
+ /* Compute the determinants of C and X */
+ det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];
+ det_C0_X = C[0][0] * X[1] - C[0][1] * X[0];
+ det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1];
+
+ /* Finally, derive alpha values */
+ if (det_C0_C1 == 0.0) {
+ det_C0_C1 = (C[0][0] * C[1][1]) * 10e-12;
+ }
+ alpha_l = det_X_C1 / det_C0_C1;
+ alpha_r = det_C0_X / det_C0_C1;
+
+
+ /* If alpha negative, use the Wu/Barsky heuristic (see text) */
+ /* (if alpha is 0, you get coincident control points that lead to
+ * divide by zero in any subsequent NewtonRaphsonRootFind() call. */
+ if (alpha_l < 1.0e-6 || alpha_r < 1.0e-6) {
+ double dist = V2DistanceBetween2Points(&d[last], &d[first]) /
+ 3.0;
+
+ bezCurve[0] = d[first];
+ bezCurve[3] = d[last];
+ V2Add(&(bezCurve[0]), V2Scale(&(tHat1), dist), &(bezCurve[1]));
+ V2Add(&(bezCurve[3]), V2Scale(&(tHat2), dist), &(bezCurve[2]));
+ return (bezCurve);
+ }
+
+ /* First and last control points of the Bezier curve are */
+ /* positioned exactly at the first and last data points */
+ /* Control points 1 and 2 are positioned an alpha distance out */
+ /* on the tangent vectors, left and right, respectively */
+ bezCurve[0] = d[first];
+ bezCurve[3] = d[last];
+ V2Add(&bezCurve[0], V2Scale(&tHat1, alpha_l), &bezCurve[1]);
+ V2Add(&bezCurve[3], V2Scale(&tHat2, alpha_r), &bezCurve[2]);
+ return (bezCurve);
+}
+
+
+/*
+ * Reparameterize:
+ * Given set of points and their parameterization, try to find
+ * a better parameterization.
+ *
+ */
+static double *Reparameterize(Vector2 *d, int first, int last, double *u, BezierCurve bezCurve)
+// Vector2 *d; /* Array of digitized points */
+// int first, last; /* Indices defining region */
+// double *u; /* Current parameter values */
+// BezierCurve bezCurve; /* Current fitted curve */
+{
+ int nPts = last-first+1;
+ int i;
+ double *uPrime; /* New parameter values */
+
+ uPrime = (double *)malloc(nPts * sizeof(double));
+ for (i = first; i <= last; i++) {
+ uPrime[i-first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i-
+ first]);
+ }
+ return (uPrime);
+}
+
+
+
+/*
+ * NewtonRaphsonRootFind :
+ * Use Newton-Raphson iteration to find better root.
+ */
+static double NewtonRaphsonRootFind(BezierCurve Q, Vector2 P, double u)
+// BezierCurve Q; /* Current fitted curve */
+// Vector2 P; /* Digitized point */
+// double u; /* Parameter value for "P" */
+{
+ double numerator, denominator;
+ Vector2 Q1[3], Q2[2]; /* Q' and Q'' */
+ Vector2 Q_u, Q1_u, Q2_u; /*u evaluated at Q, Q', & Q'' */
+ double uPrime; /* Improved u */
+ int i;
+
+ /* Compute Q(u) */
+ Q_u = BezierII(3, Q, u);
+
+ /* Generate control vertices for Q' */
+ for (i = 0; i <= 2; i++) {
+ Q1[i][0] = (Q[i+1][0] - Q[i][0]) * 3.0;
+ Q1[i][1] = (Q[i+1][1] - Q[i][1]) * 3.0;
+ }
+
+ /* Generate control vertices for Q'' */
+ for (i = 0; i <= 1; i++) {
+ Q2[i][0] = (Q1[i+1][0] - Q1[i][0]) * 2.0;
+ Q2[i][1] = (Q1[i+1][1] - Q1[i][1]) * 2.0;
+ }
+
+ /* Compute Q'(u) and Q''(u) */
+ Q1_u = BezierII(2, Q1, u);
+ Q2_u = BezierII(1, Q2, u);
+
+ /* Compute f(u)/f'(u) */
+ numerator = (Q_u[0] - P[0]) * (Q1_u[0]) + (Q_u[1] - P[1]) * (Q1_u[1]);
+ denominator = (Q1_u[0]) * (Q1_u[0]) + (Q1_u[1]) * (Q1_u[1]) +
+ (Q_u[0] - P[0]) * (Q2_u[0]) + (Q_u[1] - P[1]) * (Q2_u[1]);
+
+ /* u = u - f(u)/f'(u) */
+ if(denominator == 0) // FIXME
+ return u;
+ uPrime = u - (numerator/denominator);
+ return (uPrime);
+}
+
+
+
+/*
+ * Bezier :
+ * Evaluate a Bezier curve at a particular parameter value
+ *
+ */
+static Vector2 BezierII(int degree, Vector2 *V, double t)
+// int degree; /* The degree of the bezier curve */
+// Vector2 *V; /* Array of control points */
+// double t; /* Parametric value to find point for */
+{
+ int i, j;
+ Vector2 Q; /* Point on curve at parameter t */
+ Vector2 *Vtemp; /* Local copy of control points */
+
+ /* Copy array */
+ Vtemp = (Vector2 *)malloc((unsigned)((degree+1)
+ * sizeof (Vector2)));
+ for (i = 0; i <= degree; i++) {
+ Vtemp[i] = V[i];
+ }
+
+ /* Triangle computation */
+ for (i = 1; i <= degree; i++) {
+ for (j = 0; j <= degree-i; j++) {
+ Vtemp[j][0] = (1.0 - t) * Vtemp[j][0] + t * Vtemp[j+1][0];
+ Vtemp[j][1] = (1.0 - t) * Vtemp[j][1] + t * Vtemp[j+1][1];
+ }
+ }
+
+ Q = Vtemp[0];
+ free((void *)Vtemp);
+ return Q;
+}
+
+
+/*
+ * B0, B1, B2, B3 :
+ * Bezier multipliers
+ */
+static double B0(double u)
+{
+ double tmp = 1.0 - u;
+ return (tmp * tmp * tmp);
+}
+
+
+static double B1(double u)
+{
+ double tmp = 1.0 - u;
+ return (3 * u * (tmp * tmp));
+}
+
+static double B2(double u)
+{
+ double tmp = 1.0 - u;
+ return (3 * u * u * tmp);
+}
+
+static double B3(double u)
+{
+ return (u * u * u);
+}
+
+
+
+/*
+ * ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent :
+ *Approximate unit tangents at endpoints and "center" of digitized curve
+ */
+static Vector2 ComputeLeftTangent(Vector2 *d, int end)
+// Vector2 *d; /* Digitized points*/
+// int end; /* Index to "left" end of region */
+{
+ Vector2 tHat1;
+ tHat1 = V2SubII(d[end+1], d[end]);
+ tHat1 = *V2Normalize(&tHat1);
+ return tHat1;
+}
+
+static Vector2 ComputeRightTangent(Vector2 *d, int end)
+// Vector2 *d; /* Digitized points */
+// int end; /* Index to "right" end of region */
+{
+ Vector2 tHat2;
+ tHat2 = V2SubII(d[end-1], d[end]);
+ tHat2 = *V2Normalize(&tHat2);
+ return tHat2;
+}
+
+static Vector2 ComputeCenterTangent(Vector2 *d, int center)
+// Vector2 *d; /* Digitized points */
+// int center; /* Index to point inside region */
+{
+ Vector2 V1, V2, tHatCenter;
+
+ V1 = V2SubII(d[center-1], d[center]);
+ V2 = V2SubII(d[center], d[center+1]);
+ tHatCenter[0] = (V1[0] + V2[0])/2.0;
+ tHatCenter[1] = (V1[1] + V2[1])/2.0;
+ tHatCenter = *V2Normalize(&tHatCenter);
+ return tHatCenter;
+}
+
+
+/*
+ * ChordLengthParameterize :
+ * Assign parameter values to digitized points
+ * using relative distances between points.
+ */
+static double *ChordLengthParameterize(Vector2 *d, int first, int last)
+// Vector2 *d; /* Array of digitized points */
+// int first, last; /* Indices defining region */
+{
+ int i;
+ double *u; /* Parameterization */
+
+ u = (double *)malloc((unsigned)(last-first+1) * sizeof(double));
+
+ u[0] = 0.0;
+ for (i = first+1; i <= last; i++) {
+ u[i-first] = u[i-first-1] +
+ V2DistanceBetween2Points(&d[i], &d[i-1]);
+ }
+
+ for (i = first + 1; i <= last; i++) {
+ u[i-first] = u[i-first] / u[last-first];
+ }
+
+ return(u);
+}
+
+
+
+
+/*
+ * ComputeMaxError :
+ * Find the maximum squared distance of digitized points
+ * to fitted curve.
+*/
+static double ComputeMaxError(Vector2 *d, int first, int last, BezierCurve bezCurve, double *u, int *splitPoint)
+// Vector2 *d; /* Array of digitized points */
+// int first, last; /* Indices defining region */
+// BezierCurve bezCurve; /* Fitted Bezier curve */
+// double *u; /* Parameterization of points */
+// int *splitPoint; /* Point of maximum error */
+{
+ int i;
+ double maxDist; /* Maximum error */
+ double dist; /* Current error */
+ Vector2 P; /* Point on curve */
+ Vector2 v; /* Vector from point to curve */
+
+ *splitPoint = (last - first + 1)/2;
+ maxDist = 0.0;
+ for (i = first + 1; i < last; i++) {
+ P = BezierII(3, bezCurve, u[i-first]);
+ v = V2SubII(P, d[i]);
+ dist = V2SquaredLength(&v);
+ if (dist >= maxDist) {
+ maxDist = dist;
+ *splitPoint = i;
+ }
+ }
+ return (maxDist);
+}
+static Vector2 V2AddII(Vector2 a, Vector2 b)
+{
+ Vector2 c;
+ c[0] = a[0] + b[0]; c[1] = a[1] + b[1];
+ return (c);
+}
+static Vector2 V2ScaleIII(Vector2 v, double s)
+{
+ Vector2 result;
+ result[0] = v[0] * s; result[1] = v[1] * s;
+ return (result);
+}
+
+static Vector2 V2SubII(Vector2 a, Vector2 b)
+{
+ Vector2 c;
+ c[0] = a[0] - b[0]; c[1] = a[1] - b[1];
+ return (c);
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+
+//------------------------- WRAPPER -----------------------------//
+
+FitCurveWrapper::FitCurveWrapper()
+{
+}
+
+FitCurveWrapper::~FitCurveWrapper()
+{
+ _vertices.clear();
+}
+
+void FitCurveWrapper::DrawBezierCurve(int n, Vector2 *curve )
+{
+ for(int i=0; i<n+1; ++i)
+ _vertices.push_back(curve[i]);
+}
+
+void FitCurveWrapper::FitCurve(vector<Vec2d>& data, vector<Vec2d>& oCurve, double error)
+{
+ int size = data.size();
+ Vector2 *d = new Vector2[size];
+ for(int i=0; i<size; ++i)
+ {
+ d[i][0] = data[i][0];
+ d[i][1] = data[i][1];
+ }
+
+ FitCurve(d,size,error);
+
+ // copy results
+ for(vector<Vector2>::iterator v=_vertices.begin(), vend=_vertices.end();
+ v!=vend;
+ ++v)
+ {
+ oCurve.push_back(Vec2d(v->x(), v->y())) ;
+ }
+
+}
+
+void FitCurveWrapper::FitCurve(Vector2 *d, int nPts, double error)
+{
+ Vector2 tHat1, tHat2; /* Unit tangent vectors at endpoints */
+
+ tHat1 = ComputeLeftTangent(d, 0);
+ tHat2 = ComputeRightTangent(d, nPts - 1);
+ FitCubic(d, 0, nPts - 1, tHat1, tHat2, error);
+}
+
+void FitCurveWrapper::FitCubic(Vector2 *d, int first, int last, Vector2 tHat1, Vector2 tHat2, double error)
+{
+ BezierCurve bezCurve; /*Control points of fitted Bezier curve*/
+ double *u; /* Parameter values for point */
+ double *uPrime; /* Improved parameter values */
+ double maxError; /* Maximum fitting error */
+ int splitPoint; /* Point to split point set at */
+ int nPts; /* Number of points in subset */
+ double iterationError; /*Error below which you try iterating */
+ int maxIterations = 4; /* Max times to try iterating */
+ Vector2 tHatCenter; /* Unit tangent vector at splitPoint */
+ int i;
+
+ iterationError = error * error;
+ nPts = last - first + 1;
+
+ /* Use heuristic if region only has two points in it */
+ if (nPts == 2) {
+ double dist = V2DistanceBetween2Points(&d[last], &d[first]) / 3.0;
+
+ bezCurve = (Vector2 *)malloc(4 * sizeof(Vector2));
+ bezCurve[0] = d[first];
+ bezCurve[3] = d[last];
+ V2Add(&bezCurve[0], V2Scale(&tHat1, dist), &bezCurve[1]);
+ V2Add(&bezCurve[3], V2Scale(&tHat2, dist), &bezCurve[2]);
+ DrawBezierCurve(3, bezCurve);
+ free((void *)bezCurve);
+ return;
+ }
+
+ /* Parameterize points, and attempt to fit curve */
+ u = ChordLengthParameterize(d, first, last);
+ bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);
+
+ /* Find max deviation of points to fitted curve */
+ maxError = ComputeMaxError(d, first, last, bezCurve, u, &splitPoint);
+ if (maxError < error) {
+ DrawBezierCurve(3, bezCurve);
+ free((void *)u);
+ free((void *)bezCurve);
+ return;
+ }
+
+
+ /* If error not too large, try some reparameterization */
+ /* and iteration */
+ if (maxError < iterationError) {
+ for (i = 0; i < maxIterations; i++) {
+ uPrime = Reparameterize(d, first, last, u, bezCurve);
+ bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
+ maxError = ComputeMaxError(d, first, last,
+ bezCurve, uPrime, &splitPoint);
+ if (maxError < error) {
+ DrawBezierCurve(3, bezCurve);
+ free((void *)u);
+ free((void *)bezCurve);
+ return;
+ }
+ free((void *)u);
+ u = uPrime;
+ }
+ }
+
+ /* Fitting failed -- split at max error point and fit recursively */
+ free((void *)u);
+ free((void *)bezCurve);
+ tHatCenter = ComputeCenterTangent(d, splitPoint);
+ FitCubic(d, first, splitPoint, tHat1, tHatCenter, error);
+ V2Negate(&tHatCenter);
+ FitCubic(d, splitPoint, last, tHatCenter, tHat2, error);
+
+}
+