Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/geometry/FitCurve.cpp')
-rw-r--r--source/blender/freestyle/intern/geometry/FitCurve.cpp602
1 files changed, 602 insertions, 0 deletions
diff --git a/source/blender/freestyle/intern/geometry/FitCurve.cpp b/source/blender/freestyle/intern/geometry/FitCurve.cpp
new file mode 100644
index 00000000000..4eae543c9f9
--- /dev/null
+++ b/source/blender/freestyle/intern/geometry/FitCurve.cpp
@@ -0,0 +1,602 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2010 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/freestyle/intern/geometry/FitCurve.cpp
+ * \ingroup freestyle
+ * \brief An Algorithm for Automatically Fitting Digitized Curves by Philip J. Schneider,
+ * \brief from "Graphics Gems", Academic Press, 1990
+ * \author Stephane Grabli
+ * \date 06/06/2003
+ */
+
+#include <cstdlib> // for malloc and free
+#include <stdio.h>
+#include <math.h>
+
+#include "FitCurve.h"
+
+using namespace std;
+
+typedef Vector2 *BezierCurve;
+
+// XXX Do we need "#ifdef __cplusplus" at all here???
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/* Forward declarations */
+static double *Reparameterize(Vector2 *d, int first, int last, double *u, BezierCurve bezCurve);
+static double NewtonRaphsonRootFind(BezierCurve Q, Vector2 P, double u);
+static Vector2 BezierII(int degree, Vector2 *V, double t);
+static double B0(double u);
+static double B1(double u);
+static double B2(double u);
+static double B3(double u);
+static Vector2 ComputeLeftTangent(Vector2 *d, int end);
+static Vector2 ComputeLeftTangent(Vector2 *d, int end);
+static Vector2 ComputeLeftTangent(Vector2 *d, int end);
+static double ComputeMaxError(Vector2 *d, int first, int last, BezierCurve bezCurve, double *u, int *splitPoint);
+static double *ChordLengthParameterize(Vector2 *d, int first, int last);
+static BezierCurve GenerateBezier(Vector2 *d, int first, int last, double *uPrime, Vector2 tHat1, Vector2 tHat2);
+static Vector2 V2AddII(Vector2 a, Vector2 b);
+static Vector2 V2ScaleIII(Vector2 v, double s);
+static Vector2 V2SubII(Vector2 a, Vector2 b);
+
+#define MAXPOINTS 1000 /* The most points you can have */
+
+/* returns squared length of input vector */
+static double V2SquaredLength(Vector2 *a)
+{
+ return (((*a)[0] * (*a)[0]) + ((*a)[1] * (*a)[1]));
+}
+
+/* returns length of input vector */
+static double V2Length(Vector2 *a)
+{
+ return (sqrt(V2SquaredLength(a)));
+}
+
+static Vector2 *V2Scale(Vector2 *v, double newlen)
+{
+ double len = V2Length(v);
+ if (len != 0.0) {
+ (*v)[0] *= newlen / len;
+ (*v)[1] *= newlen / len;
+ }
+ return v;
+}
+
+/* return the dot product of vectors a and b */
+static double V2Dot(Vector2 *a, Vector2 *b)
+{
+ return (((*a)[0] * (*b)[0]) + ((*a)[1] * (*b)[1]));
+}
+
+/* return the distance between two points */
+static double V2DistanceBetween2Points(Vector2 *a, Vector2 *b)
+{
+ double dx = (*a)[0] - (*b)[0];
+ double dy = (*a)[1] - (*b)[1];
+ return (sqrt((dx * dx) + (dy * dy)));
+}
+
+/* return vector sum c = a+b */
+static Vector2 *V2Add(Vector2 *a, Vector2 *b, Vector2 *c)
+{
+ (*c)[0] = (*a)[0] + (*b)[0];
+ (*c)[1] = (*a)[1] + (*b)[1];
+ return c;
+}
+
+/* normalizes the input vector and returns it */
+static Vector2 *V2Normalize(Vector2 *v)
+{
+ double len = V2Length(v);
+ if (len != 0.0) {
+ (*v)[0] /= len;
+ (*v)[1] /= len;
+ }
+ return v;
+}
+
+/* negates the input vector and returns it */
+static Vector2 *V2Negate(Vector2 *v)
+{
+ (*v)[0] = -(*v)[0];
+ (*v)[1] = -(*v)[1];
+ return v;
+}
+
+/* GenerateBezier:
+ * Use least-squares method to find Bezier control points for region.
+ * Vector2 *d; Array of digitized points
+ * int first, last; Indices defining region
+ * double *uPrime; Parameter values for region
+ * Vector2 tHat1, tHat2; Unit tangents at endpoints
+ */
+static BezierCurve GenerateBezier(Vector2 *d, int first, int last, double *uPrime, Vector2 tHat1, Vector2 tHat2)
+{
+ int i;
+ Vector2 A[MAXPOINTS][2]; /* Precomputed rhs for eqn */
+ int nPts; /* Number of pts in sub-curve */
+ double C[2][2]; /* Matrix C */
+ double X[2]; /* Matrix X */
+ double det_C0_C1; /* Determinants of matrices */
+ double det_C0_X;
+ double det_X_C1;
+ double alpha_l; /* Alpha values, left and right */
+ double alpha_r;
+ Vector2 tmp; /* Utility variable */
+ BezierCurve bezCurve; /* RETURN bezier curve ctl pts */
+
+ bezCurve = (Vector2*)malloc(4 * sizeof(Vector2));
+ nPts = last - first + 1;
+
+ /* Compute the A's */
+ for (i = 0; i < nPts; i++) {
+ Vector2 v1, v2;
+ v1 = tHat1;
+ v2 = tHat2;
+ V2Scale(&v1, B1(uPrime[i]));
+ V2Scale(&v2, B2(uPrime[i]));
+ A[i][0] = v1;
+ A[i][1] = v2;
+ }
+
+ /* Create the C and X matrices */
+ C[0][0] = 0.0;
+ C[0][1] = 0.0;
+ C[1][0] = 0.0;
+ C[1][1] = 0.0;
+ X[0] = 0.0;
+ X[1] = 0.0;
+ for (i = 0; i < nPts; i++) {
+ C[0][0] += V2Dot(&A[i][0], &A[i][0]);
+ C[0][1] += V2Dot(&A[i][0], &A[i][1]);
+// C[1][0] += V2Dot(&A[i][0], &A[i][1]);
+ C[1][0] = C[0][1];
+ C[1][1] += V2Dot(&A[i][1], &A[i][1]);
+
+ tmp = V2SubII(d[first + i],
+ V2AddII(V2ScaleIII(d[first], B0(uPrime[i])),
+ V2AddII(V2ScaleIII(d[first], B1(uPrime[i])),
+ V2AddII(V2ScaleIII(d[last], B2(uPrime[i])),
+ V2ScaleIII(d[last], B3(uPrime[i]))
+ )
+ )
+ )
+ );
+
+ X[0] += V2Dot(&((A[i])[0]), &tmp);
+ X[1] += V2Dot(&((A[i])[1]), &tmp);
+ }
+
+ /* Compute the determinants of C and X */
+ det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];
+ det_C0_X = C[0][0] * X[1] - C[0][1] * X[0];
+ det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1];
+
+ /* Finally, derive alpha values */
+ if (det_C0_C1 == 0.0) {
+ det_C0_C1 = (C[0][0] * C[1][1]) * 10.0e-12;
+ }
+ alpha_l = det_X_C1 / det_C0_C1;
+ alpha_r = det_C0_X / det_C0_C1;
+
+
+ /* If alpha negative, use the Wu/Barsky heuristic (see text) (if alpha is 0, you get coincident control points
+ * that lead to divide by zero in any subsequent NewtonRaphsonRootFind() call).
+ */
+ if (alpha_l < 1.0e-6 || alpha_r < 1.0e-6) {
+ double dist = V2DistanceBetween2Points(&d[last], &d[first]) / 3.0;
+
+ bezCurve[0] = d[first];
+ bezCurve[3] = d[last];
+ V2Add(&(bezCurve[0]), V2Scale(&(tHat1), dist), &(bezCurve[1]));
+ V2Add(&(bezCurve[3]), V2Scale(&(tHat2), dist), &(bezCurve[2]));
+ return bezCurve;
+ }
+
+ /* First and last control points of the Bezier curve are positioned exactly at the first and last data points
+ * Control points 1 and 2 are positioned an alpha distance out on the tangent vectors, left and right, respectively
+ */
+ bezCurve[0] = d[first];
+ bezCurve[3] = d[last];
+ V2Add(&bezCurve[0], V2Scale(&tHat1, alpha_l), &bezCurve[1]);
+ V2Add(&bezCurve[3], V2Scale(&tHat2, alpha_r), &bezCurve[2]);
+ return (bezCurve);
+}
+
+/*
+ * Reparameterize:
+ * Given set of points and their parameterization, try to find a better parameterization.
+ * Vector2 *d; Array of digitized points
+ * int first, last; Indices defining region
+ * double *u; Current parameter values
+ * BezierCurve bezCurve; Current fitted curve
+ */
+static double *Reparameterize(Vector2 *d, int first, int last, double *u, BezierCurve bezCurve)
+{
+ int nPts = last - first + 1;
+ int i;
+ double *uPrime; /* New parameter values */
+
+ uPrime = (double*)malloc(nPts * sizeof(double));
+ for (i = first; i <= last; i++) {
+ uPrime[i-first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i - first]);
+ }
+ return (uPrime);
+}
+
+/*
+ * NewtonRaphsonRootFind:
+ * Use Newton-Raphson iteration to find better root.
+ * BezierCurve Q; Current fitted curve
+ * Vector2 P; Digitized point
+ * double u; Parameter value for "P"
+ */
+static double NewtonRaphsonRootFind(BezierCurve Q, Vector2 P, double u)
+{
+ double numerator, denominator;
+ Vector2 Q1[3], Q2[2]; /* Q' and Q'' */
+ Vector2 Q_u, Q1_u, Q2_u; /* u evaluated at Q, Q', & Q'' */
+ double uPrime; /* Improved u */
+ int i;
+
+ /* Compute Q(u) */
+ Q_u = BezierII(3, Q, u);
+
+ /* Generate control vertices for Q' */
+ for (i = 0; i <= 2; i++) {
+ Q1[i][0] = (Q[i + 1][0] - Q[i][0]) * 3.0;
+ Q1[i][1] = (Q[i + 1][1] - Q[i][1]) * 3.0;
+ }
+
+ /* Generate control vertices for Q'' */
+ for (i = 0; i <= 1; i++) {
+ Q2[i][0] = (Q1[i + 1][0] - Q1[i][0]) * 2.0;
+ Q2[i][1] = (Q1[i + 1][1] - Q1[i][1]) * 2.0;
+ }
+
+ /* Compute Q'(u) and Q''(u) */
+ Q1_u = BezierII(2, Q1, u);
+ Q2_u = BezierII(1, Q2, u);
+
+ /* Compute f(u)/f'(u) */
+ numerator = (Q_u[0] - P[0]) * (Q1_u[0]) + (Q_u[1] - P[1]) * (Q1_u[1]);
+ denominator = (Q1_u[0]) * (Q1_u[0]) + (Q1_u[1]) * (Q1_u[1]) +
+ (Q_u[0] - P[0]) * (Q2_u[0]) + (Q_u[1] - P[1]) * (Q2_u[1]);
+
+ /* u = u - f(u)/f'(u) */
+ if (denominator == 0) // FIXME
+ return u;
+ uPrime = u - (numerator / denominator);
+ return uPrime;
+}
+
+/*
+ * Bezier:
+ * Evaluate a Bezier curve at a particular parameter value
+ * int degree; The degree of the bezier curve
+ * Vector2 *V; Array of control points
+ * double t; Parametric value to find point for
+ */
+static Vector2 BezierII(int degree, Vector2 *V, double t)
+{
+ int i, j;
+ Vector2 Q; /* Point on curve at parameter t */
+ Vector2 *Vtemp; /* Local copy of control points */
+
+ /* Copy array */
+ Vtemp = (Vector2*)malloc((unsigned)((degree + 1) * sizeof (Vector2)));
+ for (i = 0; i <= degree; i++) {
+ Vtemp[i] = V[i];
+ }
+
+ /* Triangle computation */
+ for (i = 1; i <= degree; i++) {
+ for (j = 0; j <= degree-i; j++) {
+ Vtemp[j][0] = (1.0 - t) * Vtemp[j][0] + t * Vtemp[j + 1][0];
+ Vtemp[j][1] = (1.0 - t) * Vtemp[j][1] + t * Vtemp[j + 1][1];
+ }
+ }
+
+ Q = Vtemp[0];
+ free((void*)Vtemp);
+ return Q;
+}
+
+/*
+ * B0, B1, B2, B3:
+ * Bezier multipliers
+ */
+static double B0(double u)
+{
+ double tmp = 1.0 - u;
+ return (tmp * tmp * tmp);
+}
+
+
+static double B1(double u)
+{
+ double tmp = 1.0 - u;
+ return (3 * u * (tmp * tmp));
+}
+
+static double B2(double u)
+{
+ double tmp = 1.0 - u;
+ return (3 * u * u * tmp);
+}
+
+static double B3(double u)
+{
+ return (u * u * u);
+}
+
+/*
+ * ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent:
+ * Approximate unit tangents at endpoints and "center" of digitized curve
+ */
+/* Vector2 *d; Digitized points
+ * int end; Index to "left" end of region
+ */
+static Vector2 ComputeLeftTangent(Vector2 *d, int end)
+{
+ Vector2 tHat1;
+ tHat1 = V2SubII(d[end + 1], d[end]);
+ tHat1 = *V2Normalize(&tHat1);
+ return tHat1;
+}
+
+/* Vector2 *d; Digitized points
+ * int end; Index to "right" end of region
+ */
+static Vector2 ComputeRightTangent(Vector2 *d, int end)
+{
+ Vector2 tHat2;
+ tHat2 = V2SubII(d[end - 1], d[end]);
+ tHat2 = *V2Normalize(&tHat2);
+ return tHat2;
+}
+
+/* Vector2 *d; Digitized points
+ * int end; Index to point inside region
+ */
+static Vector2 ComputeCenterTangent(Vector2 *d, int center)
+{
+ Vector2 V1, V2, tHatCenter;
+
+ V1 = V2SubII(d[center - 1], d[center]);
+ V2 = V2SubII(d[center], d[center + 1]);
+ tHatCenter[0] = (V1[0] + V2[0]) / 2.0;
+ tHatCenter[1] = (V1[1] + V2[1]) / 2.0;
+ tHatCenter = *V2Normalize(&tHatCenter);
+ return tHatCenter;
+}
+
+/*
+ * ChordLengthParameterize:
+ * Assign parameter values to digitized points using relative distances between points.
+ * Vector2 *d; Array of digitized points
+ * int first, last; Indices defining region
+ */
+static double *ChordLengthParameterize(Vector2 *d, int first, int last)
+{
+ int i;
+ double *u; /* Parameterization */
+
+ u = (double*)malloc((unsigned)(last - first + 1) * sizeof(double));
+
+ u[0] = 0.0;
+ for (i = first + 1; i <= last; i++) {
+ u[i - first] = u[i - first - 1] + V2DistanceBetween2Points(&d[i], &d[i - 1]);
+ }
+
+ for (i = first + 1; i <= last; i++) {
+ u[i - first] = u[i - first] / u[last - first];
+ }
+
+ return u;
+}
+
+
+
+
+/*
+ * ComputeMaxError :
+ * Find the maximum squared distance of digitized points to fitted curve.
+ * Vector2 *d; Array of digitized points
+ * int first, last; Indices defining region
+ * BezierCurve bezCurve; Fitted Bezier curve
+ * double *u; Parameterization of points
+ * int *splitPoint; Point of maximum error
+ */
+static double ComputeMaxError(Vector2 *d, int first, int last, BezierCurve bezCurve, double *u, int *splitPoint)
+{
+ int i;
+ double maxDist; /* Maximum error */
+ double dist; /* Current error */
+ Vector2 P; /* Point on curve */
+ Vector2 v; /* Vector from point to curve */
+
+ *splitPoint = (last - first + 1) / 2;
+ maxDist = 0.0;
+ for (i = first + 1; i < last; i++) {
+ P = BezierII(3, bezCurve, u[i - first]);
+ v = V2SubII(P, d[i]);
+ dist = V2SquaredLength(&v);
+ if (dist >= maxDist) {
+ maxDist = dist;
+ *splitPoint = i;
+ }
+ }
+ return maxDist;
+}
+
+static Vector2 V2AddII(Vector2 a, Vector2 b)
+{
+ Vector2 c;
+ c[0] = a[0] + b[0];
+ c[1] = a[1] + b[1];
+ return c;
+}
+
+static Vector2 V2ScaleIII(Vector2 v, double s)
+{
+ Vector2 result;
+ result[0] = v[0] * s;
+ result[1] = v[1] * s;
+ return result;
+}
+
+static Vector2 V2SubII(Vector2 a, Vector2 b)
+{
+ Vector2 c;
+ c[0] = a[0] - b[0];
+ c[1] = a[1] - b[1];
+ return c;
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+
+//------------------------- WRAPPER -----------------------------//
+
+FitCurveWrapper::FitCurveWrapper()
+{
+}
+
+FitCurveWrapper::~FitCurveWrapper()
+{
+ _vertices.clear();
+}
+
+void FitCurveWrapper::DrawBezierCurve(int n, Vector2 *curve)
+{
+ for (int i = 0; i < n + 1; ++i)
+ _vertices.push_back(curve[i]);
+}
+
+void FitCurveWrapper::FitCurve(vector<Vec2d>& data, vector<Vec2d>& oCurve, double error)
+{
+ int size = data.size();
+ Vector2 *d = new Vector2[size];
+ for (int i = 0; i < size; ++i) {
+ d[i][0] = data[i][0];
+ d[i][1] = data[i][1];
+ }
+
+ FitCurve(d, size, error);
+
+ // copy results
+ for (vector<Vector2>::iterator v = _vertices.begin(), vend = _vertices.end(); v != vend; ++v) {
+ oCurve.push_back(Vec2d(v->x(), v->y())) ;
+ }
+}
+
+void FitCurveWrapper::FitCurve(Vector2 *d, int nPts, double error)
+{
+ Vector2 tHat1, tHat2; /* Unit tangent vectors at endpoints */
+
+ tHat1 = ComputeLeftTangent(d, 0);
+ tHat2 = ComputeRightTangent(d, nPts - 1);
+ FitCubic(d, 0, nPts - 1, tHat1, tHat2, error);
+}
+
+void FitCurveWrapper::FitCubic(Vector2 *d, int first, int last, Vector2 tHat1, Vector2 tHat2, double error)
+{
+ BezierCurve bezCurve; /* Control points of fitted Bezier curve */
+ double *u; /* Parameter values for point */
+ double *uPrime; /* Improved parameter values */
+ double maxError; /* Maximum fitting error */
+ int splitPoint; /* Point to split point set at */
+ int nPts; /* Number of points in subset */
+ double iterationError; /* Error below which you try iterating */
+ int maxIterations = 4; /* Max times to try iterating */
+ Vector2 tHatCenter; /* Unit tangent vector at splitPoint */
+ int i;
+
+ iterationError = error * error;
+ nPts = last - first + 1;
+
+ /* Use heuristic if region only has two points in it */
+ if (nPts == 2) {
+ double dist = V2DistanceBetween2Points(&d[last], &d[first]) / 3.0;
+
+ bezCurve = (Vector2*)malloc(4 * sizeof(Vector2));
+ bezCurve[0] = d[first];
+ bezCurve[3] = d[last];
+ V2Add(&bezCurve[0], V2Scale(&tHat1, dist), &bezCurve[1]);
+ V2Add(&bezCurve[3], V2Scale(&tHat2, dist), &bezCurve[2]);
+ DrawBezierCurve(3, bezCurve);
+ free((void*)bezCurve);
+ return;
+ }
+
+ /* Parameterize points, and attempt to fit curve */
+ u = ChordLengthParameterize(d, first, last);
+ bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);
+
+ /* Find max deviation of points to fitted curve */
+ maxError = ComputeMaxError(d, first, last, bezCurve, u, &splitPoint);
+ if (maxError < error) {
+ DrawBezierCurve(3, bezCurve);
+ free((void*)u);
+ free((void*)bezCurve);
+ return;
+ }
+
+ /* If error not too large, try some reparameterization and iteration */
+ if (maxError < iterationError) {
+ for (i = 0; i < maxIterations; i++) {
+ uPrime = Reparameterize(d, first, last, u, bezCurve);
+ bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
+ maxError = ComputeMaxError(d, first, last,
+ bezCurve, uPrime, &splitPoint);
+ if (maxError < error) {
+ DrawBezierCurve(3, bezCurve);
+ free((void*)u);
+ free((void*)bezCurve);
+ return;
+ }
+ free((void*)u);
+ u = uPrime;
+ }
+ }
+
+ /* Fitting failed -- split at max error point and fit recursively */
+ free((void*)u);
+ free((void*)bezCurve);
+ tHatCenter = ComputeCenterTangent(d, splitPoint);
+ FitCubic(d, first, splitPoint, tHat1, tHatCenter, error);
+ V2Negate(&tHatCenter);
+ FitCubic(d, splitPoint, last, tHatCenter, tHat2, error);
+}