Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/python/BPy_Operators.cpp')
-rw-r--r--source/blender/freestyle/intern/python/BPy_Operators.cpp393
1 files changed, 165 insertions, 228 deletions
diff --git a/source/blender/freestyle/intern/python/BPy_Operators.cpp b/source/blender/freestyle/intern/python/BPy_Operators.cpp
index 56f95b8ecbb..5fd02e4a9dd 100644
--- a/source/blender/freestyle/intern/python/BPy_Operators.cpp
+++ b/source/blender/freestyle/intern/python/BPy_Operators.cpp
@@ -41,7 +41,7 @@ extern "C" {
//-------------------MODULE INITIALIZATION--------------------------------
int Operators_Init(PyObject *module)
{
- if (module == NULL) {
+ if (module == nullptr) {
return -1;
}
@@ -78,29 +78,30 @@ PyDoc_STRVAR(Operators_select_doc,
static PyObject *Operators_select(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"pred", NULL};
- PyObject *obj = 0;
+ static const char *kwlist[] = {"pred", nullptr};
+ PyObject *obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(
args, kwds, "O!", (char **)kwlist, &UnaryPredicate1D_Type, &obj)) {
- return NULL;
+ return nullptr;
}
if (!((BPy_UnaryPredicate1D *)obj)->up1D) {
PyErr_SetString(PyExc_TypeError,
"Operators.select(): 1st argument: invalid UnaryPredicate1D object");
- return NULL;
+ return nullptr;
}
if (Operators::select(*(((BPy_UnaryPredicate1D *)obj)->up1D)) < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.select() failed");
}
- return NULL;
+ return nullptr;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_chain_doc,
".. staticmethod:: chain(it, pred, modifier)\n"
+ " chain(it, pred)\n"
"\n"
" Builds a set of chains from the current set of ViewEdges. Each\n"
" ViewEdge of the current list starts a new chain. The chaining\n"
@@ -116,33 +117,14 @@ PyDoc_STRVAR(Operators_chain_doc,
" :type pred: :class:`UnaryPredicate1D`\n"
" :arg modifier: A function that takes a ViewEdge as argument and\n"
" that is used to modify the processed ViewEdge state (the\n"
- " timestamp incrementation is a typical illustration of such a\n"
- " modifier).\n"
- " :type modifier: :class:`UnaryFunction1DVoid`\n"
- "\n"
- ".. staticmethod:: chain(it, pred)\n"
- "\n"
- " Builds a set of chains from the current set of ViewEdges. Each\n"
- " ViewEdge of the current list starts a new chain. The chaining\n"
- " operator then iterates over the ViewEdges of the ViewMap using the\n"
- " user specified iterator. This operator only iterates using the\n"
- " increment operator and is therefore unidirectional. This chaining\n"
- " operator is different from the previous one because it doesn't take\n"
- " any modifier as argument. Indeed, the time stamp (insuring that a\n"
- " ViewEdge is processed one time) is automatically managed in this\n"
- " case.\n"
- "\n"
- " :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
- " the chaining rule. \n"
- " :type it: :class:`ViewEdgeIterator`\n"
- " :arg pred: The predicate on the ViewEdge that expresses the\n"
- " stopping condition.\n"
- " :type pred: :class:`UnaryPredicate1D`");
+ " timestamp incrementation is a typical illustration of such a modifier).\n"
+ " If this argument is not given, the time stamp is automatically managed.\n"
+ " :type modifier: :class:`UnaryFunction1DVoid`\n");
static PyObject *Operators_chain(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"it", "pred", "modifier", NULL};
- PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
+ static const char *kwlist[] = {"it", "pred", "modifier", nullptr};
+ PyObject *obj1 = nullptr, *obj2 = nullptr, *obj3 = nullptr;
if (!PyArg_ParseTupleAndKeywords(args,
kwds,
@@ -154,17 +136,17 @@ static PyObject *Operators_chain(BPy_Operators * /*self*/, PyObject *args, PyObj
&obj2,
&UnaryFunction1DVoid_Type,
&obj3)) {
- return NULL;
+ return nullptr;
}
if (!((BPy_ChainingIterator *)obj1)->c_it) {
PyErr_SetString(PyExc_TypeError,
"Operators.chain(): 1st argument: invalid ChainingIterator object");
- return NULL;
+ return nullptr;
}
if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
PyErr_SetString(PyExc_TypeError,
"Operators.chain(): 2nd argument: invalid UnaryPredicate1D object");
- return NULL;
+ return nullptr;
}
if (!obj3) {
if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
@@ -172,14 +154,14 @@ static PyObject *Operators_chain(BPy_Operators * /*self*/, PyObject *args, PyObj
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
}
- return NULL;
+ return nullptr;
}
}
else {
if (!((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void) {
PyErr_SetString(PyExc_TypeError,
"Operators.chain(): 3rd argument: invalid UnaryFunction1DVoid object");
- return NULL;
+ return nullptr;
}
if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
*(((BPy_UnaryPredicate1D *)obj2)->up1D),
@@ -187,7 +169,7 @@ static PyObject *Operators_chain(BPy_Operators * /*self*/, PyObject *args, PyObj
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
}
- return NULL;
+ return nullptr;
}
}
Py_RETURN_NONE;
@@ -195,6 +177,7 @@ static PyObject *Operators_chain(BPy_Operators * /*self*/, PyObject *args, PyObj
PyDoc_STRVAR(Operators_bidirectional_chain_doc,
".. staticmethod:: bidirectional_chain(it, pred)\n"
+ " bidirectional_chain(it)\n"
"\n"
" Builds a set of chains from the current set of ViewEdges. Each\n"
" ViewEdge of the current list potentially starts a new chain. The\n"
@@ -211,37 +194,17 @@ PyDoc_STRVAR(Operators_bidirectional_chain_doc,
" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
" contains the chaining rule.\n"
" :type it: :class:`ChainingIterator`\n"
- " :arg pred: The predicate on the ViewEdge that expresses the\n"
- " stopping condition.\n"
- " :type pred: :class:`UnaryPredicate1D`\n"
- "\n"
- ".. staticmethod:: bidirectional_chain(it)\n"
- "\n"
- " The only difference with the above bidirectional chaining algorithm\n"
- " is that we don't need to pass a stopping criterion. This might be\n"
- " desirable when the stopping criterion is already contained in the\n"
- " iterator definition. Builds a set of chains from the current set of\n"
- " ViewEdges. Each ViewEdge of the current list potentially starts a new\n"
- " chain. The chaining operator then iterates over the ViewEdges of the\n"
- " ViewMap using the user specified iterator. This operator iterates\n"
- " both using the increment and decrement operators and is therefore\n"
- " bidirectional. This operator works with a ChainingIterator which\n"
- " contains the chaining rules. It is this last one which can be told to\n"
- " chain only edges that belong to the selection or not to process twice\n"
- " a ViewEdge during the chaining. Each time a ViewEdge is added to a\n"
- " chain, its chaining time stamp is incremented. This allows you to\n"
- " keep track of the number of chains to which a ViewEdge belongs to.\n"
- "\n"
- " :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
- " contains the chaining rule.\n"
- " :type it: :class:`ChainingIterator`");
+ " :arg pred: The predicate on the ViewEdge that expresses the stopping condition.\n"
+ " This parameter is optional, you make not want to pass a stopping criterion\n"
+ " when the stopping criterion is already contained in the iterator definition.\n"
+ " :type pred: :class:`UnaryPredicate1D`\n");
static PyObject *Operators_bidirectional_chain(BPy_Operators * /*self*/,
PyObject *args,
PyObject *kwds)
{
- static const char *kwlist[] = {"it", "pred", NULL};
- PyObject *obj1 = 0, *obj2 = 0;
+ static const char *kwlist[] = {"it", "pred", nullptr};
+ PyObject *obj1 = nullptr, *obj2 = nullptr;
if (!PyArg_ParseTupleAndKeywords(args,
kwds,
@@ -251,20 +214,20 @@ static PyObject *Operators_bidirectional_chain(BPy_Operators * /*self*/,
&obj1,
&UnaryPredicate1D_Type,
&obj2)) {
- return NULL;
+ return nullptr;
}
if (!((BPy_ChainingIterator *)obj1)->c_it) {
PyErr_SetString(
PyExc_TypeError,
"Operators.bidirectional_chain(): 1st argument: invalid ChainingIterator object");
- return NULL;
+ return nullptr;
}
if (!obj2) {
if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it)) < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
}
- return NULL;
+ return nullptr;
}
}
else {
@@ -272,14 +235,14 @@ static PyObject *Operators_bidirectional_chain(BPy_Operators * /*self*/,
PyErr_SetString(
PyExc_TypeError,
"Operators.bidirectional_chain(): 2nd argument: invalid UnaryPredicate1D object");
- return NULL;
+ return nullptr;
}
if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it),
*(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
}
- return NULL;
+ return nullptr;
}
}
Py_RETURN_NONE;
@@ -287,52 +250,42 @@ static PyObject *Operators_bidirectional_chain(BPy_Operators * /*self*/,
PyDoc_STRVAR(Operators_sequential_split_doc,
".. staticmethod:: sequential_split(starting_pred, stopping_pred, sampling=0.0)\n"
+ " sequential_split(pred, sampling=0.0)\n"
"\n"
" Splits each chain of the current set of chains in a sequential way.\n"
" The points of each chain are processed (with a specified sampling)\n"
- " sequentially. Each time a user specified starting condition is\n"
- " verified, a new chain begins and ends as soon as a user-defined\n"
- " stopping predicate is verified. This allows chains overlapping rather\n"
- " than chains partitioning. The first point of the initial chain is the\n"
+ " sequentially. The first point of the initial chain is the\n"
" first point of one of the resulting chains. The splitting ends when\n"
" no more chain can start.\n"
"\n"
+ " .. tip::\n"
+ "\n"
+ " By specifiying a starting and stopping predicate allows\n"
+ " the chains to overlapp rather than chains partitioning.\n"
+ "\n"
" :arg starting_pred: The predicate on a point that expresses the\n"
- " starting condition.\n"
+ " starting condition. Each time this condition is verified, a new chain begins\n"
" :type starting_pred: :class:`UnaryPredicate0D`\n"
" :arg stopping_pred: The predicate on a point that expresses the\n"
- " stopping condition.\n"
+ " stopping condition. The chain ends as soon as this predicate is verified.\n"
" :type stopping_pred: :class:`UnaryPredicate0D`\n"
+ " :arg pred: The predicate on a point that expresses the splitting condition.\n"
+ " Each time the condition is verified, the chain is split into two chains.\n"
+ " The resulting set of chains is a partition of the initial chain\n"
+ " :type pred: :class:`UnaryPredicate0D`\n"
" :arg sampling: The resolution used to sample the chain for the\n"
" predicates evaluation. (The chain is not actually resampled;\n"
" a virtual point only progresses along the curve using this\n"
" resolution.)\n"
- " :type sampling: float\n"
- "\n"
- ".. staticmethod:: sequential_split(pred, sampling=0.0)\n"
- "\n"
- " Splits each chain of the current set of chains in a sequential way.\n"
- " The points of each chain are processed (with a specified sampling)\n"
- " sequentially and each time a user specified condition is verified,\n"
- " the chain is split into two chains. The resulting set of chains is a\n"
- " partition of the initial chain\n"
- "\n"
- " :arg pred: The predicate on a point that expresses the splitting\n"
- " condition.\n"
- " :type pred: :class:`UnaryPredicate0D`\n"
- " :arg sampling: The resolution used to sample the chain for the\n"
- " predicate evaluation. (The chain is not actually resampled; a\n"
- " virtual point only progresses along the curve using this\n"
- " resolution.)\n"
- " :type sampling: float");
+ " :type sampling: float\n");
static PyObject *Operators_sequential_split(BPy_Operators * /*self*/,
PyObject *args,
PyObject *kwds)
{
- static const char *kwlist_1[] = {"starting_pred", "stopping_pred", "sampling", NULL};
- static const char *kwlist_2[] = {"pred", "sampling", NULL};
- PyObject *obj1 = 0, *obj2 = 0;
+ static const char *kwlist_1[] = {"starting_pred", "stopping_pred", "sampling", nullptr};
+ static const char *kwlist_2[] = {"pred", "sampling", nullptr};
+ PyObject *obj1 = nullptr, *obj2 = nullptr;
float f = 0.0f;
if (PyArg_ParseTupleAndKeywords(args,
@@ -348,13 +301,13 @@ static PyObject *Operators_sequential_split(BPy_Operators * /*self*/,
PyErr_SetString(
PyExc_TypeError,
"Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
- return NULL;
+ return nullptr;
}
if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
PyErr_SetString(
PyExc_TypeError,
"Operators.sequential_split(): 2nd argument: invalid UnaryPredicate0D object");
- return NULL;
+ return nullptr;
}
if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D),
*(((BPy_UnaryPredicate0D *)obj2)->up0D),
@@ -362,7 +315,7 @@ static PyObject *Operators_sequential_split(BPy_Operators * /*self*/,
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
}
- return NULL;
+ return nullptr;
}
}
else if ((void)PyErr_Clear(),
@@ -373,85 +326,65 @@ static PyObject *Operators_sequential_split(BPy_Operators * /*self*/,
PyErr_SetString(
PyExc_TypeError,
"Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
- return NULL;
+ return nullptr;
}
if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D), f) < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
}
- return NULL;
+ return nullptr;
}
}
else {
PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
- return NULL;
+ return nullptr;
}
Py_RETURN_NONE;
}
-PyDoc_STRVAR(Operators_recursive_split_doc,
- ".. staticmethod:: recursive_split(func, pred_1d, sampling=0.0)\n"
- "\n"
- " Splits the current set of chains in a recursive way. We process the\n"
- " points of each chain (with a specified sampling) to find the point\n"
- " minimizing a specified function. The chain is split in two at this\n"
- " point and the two new chains are processed in the same way. The\n"
- " recursivity level is controlled through a predicate 1D that expresses\n"
- " a stopping condition on the chain that is about to be processed.\n"
- "\n"
- " :arg func: The Unary Function evaluated at each point of the chain.\n"
- " The splitting point is the point minimizing this function.\n"
- " :type func: :class:`UnaryFunction0DDouble`\n"
- " :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
- " condition. This predicate is evaluated for each curve before it\n"
- " actually gets split. If pred_1d(chain) is true, the curve won't be\n"
- " split anymore.\n"
- " :type pred_1d: :class:`UnaryPredicate1D`\n"
- " :arg sampling: The resolution used to sample the chain for the\n"
- " predicates evaluation. (The chain is not actually resampled, a\n"
- " virtual point only progresses along the curve using this\n"
- " resolution.)\n"
- " :type sampling: float\n"
- "\n"
- ".. staticmethod:: recursive_split(func, pred_0d, pred_1d, sampling=0.0)\n"
- "\n"
- " Splits the current set of chains in a recursive way. We process the\n"
- " points of each chain (with a specified sampling) to find the point\n"
- " minimizing a specified function. The chain is split in two at this\n"
- " point and the two new chains are processed in the same way. The user\n"
- " can specify a 0D predicate to make a first selection on the points\n"
- " that can potentially be split. A point that doesn't verify the 0D\n"
- " predicate won't be candidate in realizing the min. The recursivity\n"
- " level is controlled through a predicate 1D that expresses a stopping\n"
- " condition on the chain that is about to be processed.\n"
- "\n"
- " :arg func: The Unary Function evaluated at each point of the chain.\n"
- " The splitting point is the point minimizing this function.\n"
- " :type func: :class:`UnaryFunction0DDouble`\n"
- " :arg pred_0d: The Unary Predicate 0D used to select the candidate\n"
- " points where the split can occur. For example, it is very likely\n"
- " that would rather have your chain splitting around its middle\n"
- " point than around one of its extremities. A 0D predicate working\n"
- " on the curvilinear abscissa allows to add this kind of constraints.\n"
- " :type pred_0d: :class:`UnaryPredicate0D`\n"
- " :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
- " condition. This predicate is evaluated for each curve before it\n"
- " actually gets split. If pred_1d(chain) is true, the curve won't be\n"
- " split anymore.\n"
- " :type pred_1d: :class:`UnaryPredicate1D`\n"
- " :arg sampling: The resolution used to sample the chain for the\n"
- " predicates evaluation. (The chain is not actually resampled; a\n"
- " virtual point only progresses along the curve using this\n"
- " resolution.)\n"
- " :type sampling: float");
+PyDoc_STRVAR(
+ Operators_recursive_split_doc,
+ ".. staticmethod:: recursive_split(func, pred_1d, sampling=0.0)\n"
+ " recursive_split(func, pred_0d, pred_1d, sampling=0.0)\n"
+ "\n"
+ " Splits the current set of chains in a recursive way. We process the\n"
+ " points of each chain (with a specified sampling) to find the point\n"
+ " minimizing a specified function. The chain is split in two at this\n"
+ " point and the two new chains are processed in the same way. The\n"
+ " recursivity level is controlled through a predicate 1D that expresses\n"
+ " a stopping condition on the chain that is about to be processed.\n"
+ "\n"
+ " The user can also specify a 0D predicate to make a first selection on the points\n"
+ " that can potentially be split. A point that doesn't verify the 0D\n"
+ " predicate won't be candidate in realizing the min.\n"
+ "\n"
+ " :arg func: The Unary Function evaluated at each point of the chain.\n"
+ " The splitting point is the point minimizing this function.\n"
+ " :type func: :class:`UnaryFunction0DDouble`\n"
+ " :arg pred_0d: The Unary Predicate 0D used to select the candidate\n"
+ " points where the split can occur. For example, it is very likely\n"
+ " that would rather have your chain splitting around its middle\n"
+ " point than around one of its extremities. A 0D predicate working\n"
+ " on the curvilinear abscissa allows to add this kind of constraints.\n"
+ " :type pred_0d: :class:`UnaryPredicate0D`\n"
+ " :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
+ " condition. This predicate is evaluated for each curve before it\n"
+ " actually gets split. If pred_1d(chain) is true, the curve won't be\n"
+ " split anymore.\n"
+ " :type pred_1d: :class:`UnaryPredicate1D`\n"
+ " :arg sampling: The resolution used to sample the chain for the\n"
+ " predicates evaluation. (The chain is not actually resampled; a\n"
+ " virtual point only progresses along the curve using this\n"
+ " resolution.)\n"
+ " :type sampling: float\n");
static PyObject *Operators_recursive_split(BPy_Operators * /*self*/,
PyObject *args,
PyObject *kwds)
{
- static const char *kwlist_1[] = {"func", "pred_1d", "sampling", NULL};
- static const char *kwlist_2[] = {"func", "pred_0d", "pred_1d", "sampling", NULL};
- PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
+ static const char *kwlist_1[] = {"func", "pred_1d", "sampling", nullptr};
+ static const char *kwlist_2[] = {"func", "pred_0d", "pred_1d", "sampling", nullptr};
+ PyObject *obj1 = nullptr, *obj2 = nullptr, *obj3 = nullptr;
float f = 0.0f;
if (PyArg_ParseTupleAndKeywords(args,
@@ -467,13 +400,13 @@ static PyObject *Operators_recursive_split(BPy_Operators * /*self*/,
PyErr_SetString(
PyExc_TypeError,
"Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
- return NULL;
+ return nullptr;
}
if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
PyErr_SetString(
PyExc_TypeError,
"Operators.recursive_split(): 2nd argument: invalid UnaryPredicate1D object");
- return NULL;
+ return nullptr;
}
if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
*(((BPy_UnaryPredicate1D *)obj2)->up1D),
@@ -481,7 +414,7 @@ static PyObject *Operators_recursive_split(BPy_Operators * /*self*/,
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
}
- return NULL;
+ return nullptr;
}
}
else if ((void)PyErr_Clear(),
@@ -501,19 +434,19 @@ static PyObject *Operators_recursive_split(BPy_Operators * /*self*/,
PyErr_SetString(
PyExc_TypeError,
"Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
- return NULL;
+ return nullptr;
}
if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
PyErr_SetString(
PyExc_TypeError,
"Operators.recursive_split(): 2nd argument: invalid UnaryPredicate0D object");
- return NULL;
+ return nullptr;
}
if (!((BPy_UnaryPredicate1D *)obj3)->up1D) {
PyErr_SetString(
PyExc_TypeError,
"Operators.recursive_split(): 3rd argument: invalid UnaryPredicate1D object");
- return NULL;
+ return nullptr;
}
if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
*(((BPy_UnaryPredicate0D *)obj2)->up0D),
@@ -522,12 +455,12 @@ static PyObject *Operators_recursive_split(BPy_Operators * /*self*/,
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
}
- return NULL;
+ return nullptr;
}
}
else {
PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
- return NULL;
+ return nullptr;
}
Py_RETURN_NONE;
}
@@ -543,23 +476,23 @@ PyDoc_STRVAR(Operators_sort_doc,
static PyObject *Operators_sort(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"pred", NULL};
- PyObject *obj = 0;
+ static const char *kwlist[] = {"pred", nullptr};
+ PyObject *obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(
args, kwds, "O!", (char **)kwlist, &BinaryPredicate1D_Type, &obj)) {
- return NULL;
+ return nullptr;
}
if (!((BPy_BinaryPredicate1D *)obj)->bp1D) {
PyErr_SetString(PyExc_TypeError,
"Operators.sort(): 1st argument: invalid BinaryPredicate1D object");
- return NULL;
+ return nullptr;
}
if (Operators::sort(*(((BPy_BinaryPredicate1D *)obj)->bp1D)) < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.sort() failed");
}
- return NULL;
+ return nullptr;
}
Py_RETURN_NONE;
}
@@ -578,8 +511,8 @@ PyDoc_STRVAR(Operators_create_doc,
static PyObject *Operators_create(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"pred", "shaders", NULL};
- PyObject *obj1 = 0, *obj2 = 0;
+ static const char *kwlist[] = {"pred", "shaders", nullptr};
+ PyObject *obj1 = nullptr, *obj2 = nullptr;
if (!PyArg_ParseTupleAndKeywords(args,
kwds,
@@ -589,12 +522,12 @@ static PyObject *Operators_create(BPy_Operators * /*self*/, PyObject *args, PyOb
&obj1,
&PyList_Type,
&obj2)) {
- return NULL;
+ return nullptr;
}
if (!((BPy_UnaryPredicate1D *)obj1)->up1D) {
PyErr_SetString(PyExc_TypeError,
"Operators.create(): 1st argument: invalid UnaryPredicate1D object");
- return NULL;
+ return nullptr;
}
vector<StrokeShader *> shaders;
shaders.reserve(PyList_Size(obj2));
@@ -603,7 +536,7 @@ static PyObject *Operators_create(BPy_Operators * /*self*/, PyObject *args, PyOb
if (!BPy_StrokeShader_Check(py_ss)) {
PyErr_SetString(PyExc_TypeError,
"Operators.create(): 2nd argument must be a list of StrokeShader objects");
- return NULL;
+ return nullptr;
}
StrokeShader *shader = ((BPy_StrokeShader *)py_ss)->ss;
if (!shader) {
@@ -612,7 +545,7 @@ static PyObject *Operators_create(BPy_Operators * /*self*/, PyObject *args, PyOb
<< " of the shaders list is invalid likely due to missing call of "
"StrokeShader.__init__()";
PyErr_SetString(PyExc_TypeError, ss.str().c_str());
- return NULL;
+ return nullptr;
}
shaders.push_back(shader);
}
@@ -620,7 +553,7 @@ static PyObject *Operators_create(BPy_Operators * /*self*/, PyObject *args, PyOb
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError, "Operators.create() failed");
}
- return NULL;
+ return nullptr;
}
Py_RETURN_NONE;
}
@@ -636,15 +569,15 @@ PyDoc_STRVAR(Operators_reset_doc,
static PyObject *Operators_reset(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"delete_strokes", NULL};
- PyObject *obj1 = 0;
+ static const char *kwlist[] = {"delete_strokes", nullptr};
+ PyObject *obj1 = nullptr;
if (PyArg_ParseTupleAndKeywords(args, kwds, "|O!", (char **)kwlist, &PyBool_Type, &obj1)) {
// true is the default
Operators::reset(obj1 ? bool_from_PyBool(obj1) : true);
}
else {
PyErr_SetString(PyExc_RuntimeError, "Operators.reset() failed");
- return NULL;
+ return nullptr;
}
Py_RETURN_NONE;
}
@@ -663,15 +596,15 @@ static PyObject *Operators_get_viewedge_from_index(BPy_Operators * /*self*/,
PyObject *args,
PyObject *kwds)
{
- static const char *kwlist[] = {"i", NULL};
+ static const char *kwlist[] = {"i", nullptr};
unsigned int i;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i)) {
- return NULL;
+ return nullptr;
}
if (i >= Operators::getViewEdgesSize()) {
PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
+ return nullptr;
}
return BPy_ViewEdge_from_ViewEdge(*(Operators::getViewEdgeFromIndex(i)));
}
@@ -690,15 +623,15 @@ static PyObject *Operators_get_chain_from_index(BPy_Operators * /*self*/,
PyObject *args,
PyObject *kwds)
{
- static const char *kwlist[] = {"i", NULL};
+ static const char *kwlist[] = {"i", nullptr};
unsigned int i;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i)) {
- return NULL;
+ return nullptr;
}
if (i >= Operators::getChainsSize()) {
PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
+ return nullptr;
}
return BPy_Chain_from_Chain(*(Operators::getChainFromIndex(i)));
}
@@ -717,15 +650,15 @@ static PyObject *Operators_get_stroke_from_index(BPy_Operators * /*self*/,
PyObject *args,
PyObject *kwds)
{
- static const char *kwlist[] = {"i", NULL};
+ static const char *kwlist[] = {"i", nullptr};
unsigned int i;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i)) {
- return NULL;
+ return nullptr;
}
if (i >= Operators::getStrokesSize()) {
PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
+ return nullptr;
}
return BPy_Stroke_from_Stroke(*(Operators::getStrokeFromIndex(i)));
}
@@ -827,49 +760,53 @@ static PyMethodDef BPy_Operators_methods[] = {
(PyCFunction)Operators_get_strokes_size,
METH_NOARGS | METH_STATIC,
Operators_get_strokes_size_doc},
- {NULL, NULL, 0, NULL},
+ {nullptr, nullptr, 0, nullptr},
};
/*-----------------------BPy_Operators type definition ------------------------------*/
PyTypeObject Operators_Type = {
- PyVarObject_HEAD_INIT(NULL, 0) "Operators", /* tp_name */
- sizeof(BPy_Operators), /* tp_basicsize */
- 0, /* tp_itemsize */
- (destructor)Operators_dealloc, /* tp_dealloc */
- 0, /* tp_print */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_reserved */
- 0, /* tp_repr */
- 0, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- 0, /* tp_hash */
- 0, /* tp_call */
- 0, /* tp_str */
- 0, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT, /* tp_flags */
- Operators_doc, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- 0, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- BPy_Operators_methods, /* tp_methods */
- 0, /* tp_members */
- 0, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- PyType_GenericNew, /* tp_new */
+ PyVarObject_HEAD_INIT(nullptr, 0) "Operators", /* tp_name */
+ sizeof(BPy_Operators), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ (destructor)Operators_dealloc, /* tp_dealloc */
+#if PY_VERSION_HEX >= 0x03080000
+ 0, /* tp_vectorcall_offset */
+#else
+ nullptr, /* tp_print */
+#endif
+ nullptr, /* tp_getattr */
+ nullptr, /* tp_setattr */
+ nullptr, /* tp_reserved */
+ nullptr, /* tp_repr */
+ nullptr, /* tp_as_number */
+ nullptr, /* tp_as_sequence */
+ nullptr, /* tp_as_mapping */
+ nullptr, /* tp_hash */
+ nullptr, /* tp_call */
+ nullptr, /* tp_str */
+ nullptr, /* tp_getattro */
+ nullptr, /* tp_setattro */
+ nullptr, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT, /* tp_flags */
+ Operators_doc, /* tp_doc */
+ nullptr, /* tp_traverse */
+ nullptr, /* tp_clear */
+ nullptr, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ nullptr, /* tp_iter */
+ nullptr, /* tp_iternext */
+ BPy_Operators_methods, /* tp_methods */
+ nullptr, /* tp_members */
+ nullptr, /* tp_getset */
+ nullptr, /* tp_base */
+ nullptr, /* tp_dict */
+ nullptr, /* tp_descr_get */
+ nullptr, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ nullptr, /* tp_init */
+ nullptr, /* tp_alloc */
+ PyType_GenericNew, /* tp_new */
};
///////////////////////////////////////////////////////////////////////////////////////////