Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/python/BPy_Operators.cpp')
-rw-r--r--source/blender/freestyle/intern/python/BPy_Operators.cpp398
1 files changed, 308 insertions, 90 deletions
diff --git a/source/blender/freestyle/intern/python/BPy_Operators.cpp b/source/blender/freestyle/intern/python/BPy_Operators.cpp
index 557143f22c2..79c3fb64a82 100644
--- a/source/blender/freestyle/intern/python/BPy_Operators.cpp
+++ b/source/blender/freestyle/intern/python/BPy_Operators.cpp
@@ -15,85 +15,6 @@ extern "C" {
///////////////////////////////////////////////////////////////////////////////////////////
-/*--------------- Python API function prototypes for Operators instance -----------*/
-static void Operators___dealloc__(BPy_Operators *self);
-
-static PyObject * Operators_select(BPy_Operators* self, PyObject *args);
-static PyObject * Operators_chain(BPy_Operators* self, PyObject *args);
-static PyObject * Operators_bidirectionalChain(BPy_Operators* self, PyObject *args);
-static PyObject * Operators_sequentialSplit(BPy_Operators* self, PyObject *args);
-static PyObject * Operators_recursiveSplit(BPy_Operators* self, PyObject *args);
-static PyObject * Operators_sort(BPy_Operators* self, PyObject *args);
-static PyObject * Operators_create(BPy_Operators* self, PyObject *args);
-static PyObject * Operators_getViewEdgesSize( BPy_Operators* self);
-static PyObject * Operators_getChainsSize( BPy_Operators* self);
-static PyObject * Operators_getStrokesSize( BPy_Operators* self);
-
-/*----------------------Operators instance definitions ----------------------------*/
-static PyMethodDef BPy_Operators_methods[] = {
- {"select", ( PyCFunction ) Operators_select, METH_VARARGS | METH_STATIC,
- "select operator"},
- {"chain", ( PyCFunction ) Operators_chain, METH_VARARGS | METH_STATIC,
- "chain operator"},
- {"bidirectionalChain", ( PyCFunction ) Operators_bidirectionalChain, METH_VARARGS | METH_STATIC,
- "bidirectionalChain operator"},
- {"sequentialSplit", ( PyCFunction ) Operators_sequentialSplit, METH_VARARGS | METH_STATIC,
- "sequentialSplit operator"},
- {"recursiveSplit", ( PyCFunction ) Operators_recursiveSplit, METH_VARARGS | METH_STATIC,
- "recursiveSplit operator"},
- {"sort", ( PyCFunction ) Operators_sort, METH_VARARGS | METH_STATIC,
- "sort operator"},
- {"create", ( PyCFunction ) Operators_create, METH_VARARGS | METH_STATIC,
- "create operator"},
- {"getViewEdgesSize", ( PyCFunction ) Operators_getViewEdgesSize, METH_NOARGS | METH_STATIC, ""},
- {"getChainsSize", ( PyCFunction ) Operators_getChainsSize, METH_NOARGS | METH_STATIC, ""},
- {"getStrokesSize", ( PyCFunction ) Operators_getStrokesSize, METH_NOARGS | METH_STATIC, ""},
- {NULL, NULL, 0, NULL}
-};
-
-/*-----------------------BPy_Operators type definition ------------------------------*/
-
-PyTypeObject Operators_Type = {
- PyVarObject_HEAD_INIT(NULL, 0)
- "Operators", /* tp_name */
- sizeof(BPy_Operators), /* tp_basicsize */
- 0, /* tp_itemsize */
- (destructor)Operators___dealloc__, /* tp_dealloc */
- 0, /* tp_print */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_reserved */
- 0, /* tp_repr */
- 0, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- 0, /* tp_hash */
- 0, /* tp_call */
- 0, /* tp_str */
- 0, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT, /* tp_flags */
- "Operators objects", /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- 0, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- BPy_Operators_methods, /* tp_methods */
- 0, /* tp_members */
- 0, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- PyType_GenericNew, /* tp_new */
-};
-
//-------------------MODULE INITIALIZATION--------------------------------
int Operators_Init( PyObject *module )
{
@@ -110,12 +31,27 @@ int Operators_Init( PyObject *module )
//------------------------INSTANCE METHODS ----------------------------------
-void Operators___dealloc__(BPy_Operators* self)
+static char Operators___doc__[] =
+"Class defining the operators used in a style module. There are five\n"
+"types of operators: Selection, chaining, splitting, sorting and\n"
+"creation. All these operators are user controlled through functors,\n"
+"predicates and shaders that are taken as arguments.\n";
+
+static void Operators___dealloc__(BPy_Operators* self)
{
Py_TYPE(self)->tp_free((PyObject*)self);
}
-PyObject * Operators_select(BPy_Operators* self, PyObject *args)
+static char Operators_select___doc__[] =
+".. staticmethod:: select(pred)\n"
+"\n"
+" Selects the ViewEdges of the ViewMap verifying a specified\n"
+" condition.\n"
+"\n"
+" :arg pred: The predicate expressing this condition.\n"
+" :type pred: UnaryPredicate1D\n";
+
+static PyObject * Operators_select(BPy_Operators* self, PyObject *args)
{
PyObject *obj = 0;
@@ -135,9 +71,49 @@ PyObject * Operators_select(BPy_Operators* self, PyObject *args)
Py_RETURN_NONE;
}
+static char Operators_chain___doc__[] =
+".. staticmethod:: chain(it, pred, modifier)\n"
+"\n"
+" Builds a set of chains from the current set of ViewEdges. Each\n"
+" ViewEdge of the current list starts a new chain. The chaining\n"
+" operator then iterates over the ViewEdges of the ViewMap using the\n"
+" user specified iterator. This operator only iterates using the\n"
+" increment operator and is therefore unidirectional.\n"
+"\n"
+" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
+" the chaining rule.\n"
+" :type it: :class:`ViewEdgeIterator`\n"
+" :arg pred: The predicate on the ViewEdge that expresses the\n"
+" stopping condition.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg modifier: A function that takes a ViewEdge as argument and\n"
+" that is used to modify the processed ViewEdge state (the\n"
+" timestamp incrementation is a typical illustration of such a\n"
+" modifier).\n"
+" :type modifier: :class:`UnaryFunction1DVoid`\n"
+"\n"
+".. staticmethod:: chain(it, pred)\n"
+"\n"
+" Builds a set of chains from the current set of ViewEdges. Each\n"
+" ViewEdge of the current list starts a new chain. The chaining\n"
+" operator then iterates over the ViewEdges of the ViewMap using the\n"
+" user specified iterator. This operator only iterates using the\n"
+" increment operator and is therefore unidirectional. This chaining\n"
+" operator is different from the previous one because it doesn't take\n"
+" any modifier as argument. Indeed, the time stamp (insuring that a\n"
+" ViewEdge is processed one time) is automatically managed in this\n"
+" case.\n"
+"\n"
+" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
+" the chaining rule. \n"
+" :type it: :class:`ViewEdgeIterator`\n"
+" :arg pred: The predicate on the ViewEdge that expresses the\n"
+" stopping condition.\n"
+" :type pred: :class:`UnaryPredicate1D`\n";
+
// CHANGE: first parameter is a chaining iterator, not just a view
-PyObject * Operators_chain(BPy_Operators* self, PyObject *args)
+static PyObject * Operators_chain(BPy_Operators* self, PyObject *args)
{
PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
@@ -182,7 +158,50 @@ PyObject * Operators_chain(BPy_Operators* self, PyObject *args)
Py_RETURN_NONE;
}
-PyObject * Operators_bidirectionalChain(BPy_Operators* self, PyObject *args)
+static char Operators_bidirectionalChain___doc__[] =
+".. staticmethod:: bidirectionalChain(it, pred)\n"
+"\n"
+" Builds a set of chains from the current set of ViewEdges. Each\n"
+" ViewEdge of the current list potentially starts a new chain. The\n"
+" chaining operator then iterates over the ViewEdges of the ViewMap\n"
+" using the user specified iterator. This operator iterates both using\n"
+" the increment and decrement operators and is therefore bidirectional.\n"
+" This operator works with a ChainingIterator which contains the\n"
+" chaining rules. It is this last one which can be told to chain only\n"
+" edges that belong to the selection or not to process twice a ViewEdge\n"
+" during the chaining. Each time a ViewEdge is added to a chain, its\n"
+" chaining time stamp is incremented. This allows you to keep track of\n"
+" the number of chains to which a ViewEdge belongs to.\n"
+"\n"
+" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
+" contains the chaining rule.\n"
+" :type it: :class:`ChainingIterator`\n"
+" :arg pred: The predicate on the ViewEdge that expresses the\n"
+" stopping condition.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+"\n"
+".. staticmethod:: bidirectionalChain(it)\n"
+"\n"
+" The only difference with the above bidirectional chaining algorithm\n"
+" is that we don't need to pass a stopping criterion. This might be\n"
+" desirable when the stopping criterion is already contained in the\n"
+" iterator definition. Builds a set of chains from the current set of\n"
+" ViewEdges. Each ViewEdge of the current list potentially starts a new\n"
+" chain. The chaining operator then iterates over the ViewEdges of the\n"
+" ViewMap using the user specified iterator. This operator iterates\n"
+" both using the increment and decrement operators and is therefore\n"
+" bidirectional. This operator works with a ChainingIterator which\n"
+" contains the chaining rules. It is this last one which can be told to\n"
+" chain only edges that belong to the selection or not to process twice\n"
+" a ViewEdge during the chaining. Each time a ViewEdge is added to a\n"
+" chain, its chaining time stamp is incremented. This allows you to\n"
+" keep track of the number of chains to which a ViewEdge belongs to.\n"
+"\n"
+" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
+" contains the chaining rule.\n"
+" :type it: :class:`ChainingIterator`\n";
+
+static PyObject * Operators_bidirectionalChain(BPy_Operators* self, PyObject *args)
{
PyObject *obj1 = 0, *obj2 = 0;
@@ -219,7 +238,48 @@ PyObject * Operators_bidirectionalChain(BPy_Operators* self, PyObject *args)
Py_RETURN_NONE;
}
-PyObject * Operators_sequentialSplit(BPy_Operators* self, PyObject *args)
+static char Operators_sequentialSplit___doc__[] =
+".. staticmethod:: sequentialSplit(startingPred, stoppingPred, sampling=0.0)\n"
+"\n"
+" Splits each chain of the current set of chains in a sequential way.\n"
+" The points of each chain are processed (with a specified sampling)\n"
+" sequentially. Each time a user specified starting condition is\n"
+" verified, a new chain begins and ends as soon as a user-defined\n"
+" stopping predicate is verified. This allows chains overlapping rather\n"
+" than chains partitioning. The first point of the initial chain is the\n"
+" first point of one of the resulting chains. The splitting ends when\n"
+" no more chain can start.\n"
+"\n"
+" :arg startingPred: The predicate on a point that expresses the\n"
+" starting condition.\n"
+" :type startingPred: :class:`UnaryPredicate0D`\n"
+" :arg stoppingPred: The predicate on a point that expresses the\n"
+" stopping condition.\n"
+" :type stoppingPred: :class:`UnaryPredicate0D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicates evaluation. (The chain is not actually resampled;\n"
+" a virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float\n"
+"\n"
+".. staticmethod:: sequentialSplit(pred, sampling=0.0)\n"
+"\n"
+" Splits each chain of the current set of chains in a sequential way.\n"
+" The points of each chain are processed (with a specified sampling)\n"
+" sequentially and each time a user specified condition is verified,\n"
+" the chain is split into two chains. The resulting set of chains is a\n"
+" partition of the initial chain\n"
+"\n"
+" :arg pred: The predicate on a point that expresses the splitting\n"
+" condition.\n"
+" :type pred: :class:`UnaryPredicate0D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicate evaluation. (The chain is not actually resampled; a\n"
+" virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float\n";
+
+static PyObject * Operators_sequentialSplit(BPy_Operators* self, PyObject *args)
{
PyObject *obj1 = 0, *obj2 = 0;
float f = 0.0;
@@ -265,7 +325,63 @@ PyObject * Operators_sequentialSplit(BPy_Operators* self, PyObject *args)
Py_RETURN_NONE;
}
-PyObject * Operators_recursiveSplit(BPy_Operators* self, PyObject *args)
+static char Operators_recursiveSplit___doc__[] =
+".. staticmethod:: recursiveSplit(func, pred, sampling=0.0)\n"
+"\n"
+" Splits the current set of chains in a recursive way. We process the\n"
+" points of each chain (with a specified sampling) to find the point\n"
+" minimizing a specified function. The chain is split in two at this\n"
+" point and the two new chains are processed in the same way. The\n"
+" recursivity level is controlled through a predicate 1D that expresses\n"
+" a stopping condition on the chain that is about to be processed.\n"
+"\n"
+" :arg func: The Unary Function evaluated at each point of the chain.\n"
+" The splitting point is the point minimizing this function.\n"
+" :type func: :class:`UnaryFunction0DDouble`\n"
+" :arg pred: The Unary Predicate expressing the recursivity stopping\n"
+" condition. This predicate is evaluated for each curve before it\n"
+" actually gets split. If pred(chain) is true, the curve won't be\n"
+" split anymore.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicates evaluation. (The chain is not actually resampled, a\n"
+" virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float\n"
+"\n"
+".. staticmethod:: recursiveSplit(func, pred0d, pred, sampling=0.0)\n"
+"\n"
+" Splits the current set of chains in a recursive way. We process the\n"
+" points of each chain (with a specified sampling) to find the point\n"
+" minimizing a specified function. The chain is split in two at this\n"
+" point and the two new chains are processed in the same way. The user\n"
+" can specify a 0D predicate to make a first selection on the points\n"
+" that can potentially be split. A point that doesn't verify the 0D\n"
+" predicate won't be candidate in realizing the min. The recursivity\n"
+" level is controlled through a predicate 1D that expresses a stopping\n"
+" condition on the chain that is about to be processed.\n"
+"\n"
+" :arg func: The Unary Function evaluated at each point of the chain.\n"
+" The splitting point is the point minimizing this function.\n"
+" :type func: :class:`UnaryFunction0DDouble`\n"
+" :arg pred0d: The Unary Predicate 0D used to select the candidate\n"
+" points where the split can occur. For example, it is very likely\n"
+" that would rather have your chain splitting around its middle\n"
+" point than around one of its extremities. A 0D predicate working\n"
+" on the curvilinear abscissa allows to add this kind of constraints.\n"
+" :type pred0d: :class:`UnaryPredicate0D`\n"
+" :arg pred: The Unary Predicate expressing the recursivity stopping\n"
+" condition. This predicate is evaluated for each curve before it\n"
+" actually gets split. If pred(chain) is true, the curve won't be\n"
+" split anymore.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicates evaluation. (The chain is not actually resampled; a\n"
+" virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float\n";
+
+static PyObject * Operators_recursiveSplit(BPy_Operators* self, PyObject *args)
{
PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
float f = 0.0;
@@ -322,7 +438,16 @@ PyObject * Operators_recursiveSplit(BPy_Operators* self, PyObject *args)
Py_RETURN_NONE;
}
-PyObject * Operators_sort(BPy_Operators* self, PyObject *args)
+static char Operators_sort___doc__[] =
+".. staticmethod:: sort(pred)\n"
+"\n"
+" Sorts the current set of chains (or viewedges) according to the\n"
+" comparison predicate given as argument.\n"
+"\n"
+" :arg pred: The binary predicate used for the comparison.\n"
+" :type pred: BinaryPredicate1D\n";
+
+static PyObject * Operators_sort(BPy_Operators* self, PyObject *args)
{
PyObject *obj = 0;
@@ -341,7 +466,19 @@ PyObject * Operators_sort(BPy_Operators* self, PyObject *args)
Py_RETURN_NONE;
}
-PyObject * Operators_create(BPy_Operators* self, PyObject *args)
+static char Operators_create___doc__[] =
+".. staticmethod:: create(pred, shaders)\n"
+"\n"
+" Creates and shades the strokes from the current set of chains. A\n"
+" predicate can be specified to make a selection pass on the chains.\n"
+"\n"
+" :arg pred: The predicate that a chain must verify in order to be\n"
+" transform as a stroke.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg shaders: The list of shaders used to shade the strokes.\n"
+" :type shaders: List of StrokeShader objects\n";
+
+static PyObject * Operators_create(BPy_Operators* self, PyObject *args)
{
PyObject *obj1 = 0, *obj2 = 0;
@@ -372,18 +509,99 @@ PyObject * Operators_create(BPy_Operators* self, PyObject *args)
Py_RETURN_NONE;
}
-PyObject * Operators_getViewEdgesSize( BPy_Operators* self) {
+static char Operators_getViewEdgesSize___doc__[] =
+".. staticmethod:: getViewEdgesSize()\n"
+"\n"
+" Returns the number of ViewEdges.\n"
+"\n"
+" :return: The number of ViewEdges.\n"
+" :rtype: int\n";
+
+static PyObject * Operators_getViewEdgesSize( BPy_Operators* self) {
return PyLong_FromLong( Operators::getViewEdgesSize() );
}
-PyObject * Operators_getChainsSize( BPy_Operators* self ) {
+static char Operators_getChainsSize___doc__[] =
+".. staticmethod:: getChainsSize()\n"
+"\n"
+" Returns the number of Chains.\n"
+"\n"
+" :return: The number of Chains.\n"
+" :rtype: int\n";
+
+static PyObject * Operators_getChainsSize( BPy_Operators* self ) {
return PyLong_FromLong( Operators::getChainsSize() );
}
-PyObject * Operators_getStrokesSize( BPy_Operators* self) {
+static char Operators_getStrokesSize___doc__[] =
+".. staticmethod:: getStrokesSize()\n"
+"\n"
+" Returns the number of Strokes.\n"
+"\n"
+" :return: The number of Strokes.\n"
+" :rtype: int\n";
+
+static PyObject * Operators_getStrokesSize( BPy_Operators* self) {
return PyLong_FromLong( Operators::getStrokesSize() );
}
+/*----------------------Operators instance definitions ----------------------------*/
+static PyMethodDef BPy_Operators_methods[] = {
+ {"select", ( PyCFunction ) Operators_select, METH_VARARGS | METH_STATIC, Operators_select___doc__},
+ {"chain", ( PyCFunction ) Operators_chain, METH_VARARGS | METH_STATIC, Operators_chain___doc__},
+ {"bidirectionalChain", ( PyCFunction ) Operators_bidirectionalChain, METH_VARARGS | METH_STATIC, Operators_bidirectionalChain___doc__},
+ {"sequentialSplit", ( PyCFunction ) Operators_sequentialSplit, METH_VARARGS | METH_STATIC, Operators_sequentialSplit___doc__},
+ {"recursiveSplit", ( PyCFunction ) Operators_recursiveSplit, METH_VARARGS | METH_STATIC, Operators_recursiveSplit___doc__},
+ {"sort", ( PyCFunction ) Operators_sort, METH_VARARGS | METH_STATIC, Operators_sort___doc__},
+ {"create", ( PyCFunction ) Operators_create, METH_VARARGS | METH_STATIC, Operators_create___doc__},
+ {"getViewEdgesSize", ( PyCFunction ) Operators_getViewEdgesSize, METH_NOARGS | METH_STATIC, Operators_getViewEdgesSize___doc__},
+ {"getChainsSize", ( PyCFunction ) Operators_getChainsSize, METH_NOARGS | METH_STATIC, Operators_getChainsSize___doc__},
+ {"getStrokesSize", ( PyCFunction ) Operators_getStrokesSize, METH_NOARGS | METH_STATIC, Operators_getStrokesSize___doc__},
+ {NULL, NULL, 0, NULL}
+};
+
+/*-----------------------BPy_Operators type definition ------------------------------*/
+
+PyTypeObject Operators_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "Operators", /* tp_name */
+ sizeof(BPy_Operators), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ (destructor)Operators___dealloc__, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_reserved */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ 0, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT, /* tp_flags */
+ Operators___doc__, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ BPy_Operators_methods, /* tp_methods */
+ 0, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ PyType_GenericNew, /* tp_new */
+};
///////////////////////////////////////////////////////////////////////////////////////////