Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/python/BPy_Operators.cpp')
-rw-r--r--source/blender/freestyle/intern/python/BPy_Operators.cpp743
1 files changed, 743 insertions, 0 deletions
diff --git a/source/blender/freestyle/intern/python/BPy_Operators.cpp b/source/blender/freestyle/intern/python/BPy_Operators.cpp
new file mode 100644
index 00000000000..a3f12f4d274
--- /dev/null
+++ b/source/blender/freestyle/intern/python/BPy_Operators.cpp
@@ -0,0 +1,743 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2010 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file source/blender/freestyle/intern/python/BPy_Operators.cpp
+ * \ingroup freestyle
+ */
+
+#include "BPy_Operators.h"
+
+#include "BPy_BinaryPredicate1D.h"
+#include "BPy_UnaryPredicate0D.h"
+#include "BPy_UnaryPredicate1D.h"
+#include "UnaryFunction0D/BPy_UnaryFunction0DDouble.h"
+#include "UnaryFunction1D/BPy_UnaryFunction1DVoid.h"
+#include "Iterator/BPy_ViewEdgeIterator.h"
+#include "Iterator/BPy_ChainingIterator.h"
+#include "BPy_StrokeShader.h"
+#include "BPy_Convert.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+///////////////////////////////////////////////////////////////////////////////////////////
+
+//-------------------MODULE INITIALIZATION--------------------------------
+int Operators_Init(PyObject *module)
+{
+ if (module == NULL)
+ return -1;
+
+ if (PyType_Ready(&Operators_Type) < 0)
+ return -1;
+ Py_INCREF(&Operators_Type);
+ PyModule_AddObject(module, "Operators", (PyObject *)&Operators_Type);
+
+ return 0;
+}
+
+//------------------------INSTANCE METHODS ----------------------------------
+
+PyDoc_STRVAR(Operators_doc,
+"Class defining the operators used in a style module. There are five\n"
+"types of operators: Selection, chaining, splitting, sorting and\n"
+"creation. All these operators are user controlled through functors,\n"
+"predicates and shaders that are taken as arguments.");
+
+static void Operators_dealloc(BPy_Operators *self)
+{
+ Py_TYPE(self)->tp_free((PyObject *)self);
+}
+
+PyDoc_STRVAR(Operators_select_doc,
+".. staticmethod:: select(pred)\n"
+"\n"
+" Selects the ViewEdges of the ViewMap verifying a specified\n"
+" condition.\n"
+"\n"
+" :arg pred: The predicate expressing this condition.\n"
+" :type pred: UnaryPredicate1D");
+
+static PyObject *Operators_select(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"pred", NULL};
+ PyObject *obj = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!", (char **)kwlist, &UnaryPredicate1D_Type, &obj))
+ return NULL;
+ if (!((BPy_UnaryPredicate1D *)obj)->up1D) {
+ PyErr_SetString(PyExc_TypeError, "Operators.select(): 1st argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::select(*(((BPy_UnaryPredicate1D *)obj)->up1D)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.select() failed");
+ return NULL;
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Operators_chain_doc,
+".. staticmethod:: chain(it, pred, modifier)\n"
+"\n"
+" Builds a set of chains from the current set of ViewEdges. Each\n"
+" ViewEdge of the current list starts a new chain. The chaining\n"
+" operator then iterates over the ViewEdges of the ViewMap using the\n"
+" user specified iterator. This operator only iterates using the\n"
+" increment operator and is therefore unidirectional.\n"
+"\n"
+" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
+" the chaining rule.\n"
+" :type it: :class:`ViewEdgeIterator`\n"
+" :arg pred: The predicate on the ViewEdge that expresses the\n"
+" stopping condition.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg modifier: A function that takes a ViewEdge as argument and\n"
+" that is used to modify the processed ViewEdge state (the\n"
+" timestamp incrementation is a typical illustration of such a\n"
+" modifier).\n"
+" :type modifier: :class:`UnaryFunction1DVoid`\n"
+"\n"
+".. staticmethod:: chain(it, pred)\n"
+"\n"
+" Builds a set of chains from the current set of ViewEdges. Each\n"
+" ViewEdge of the current list starts a new chain. The chaining\n"
+" operator then iterates over the ViewEdges of the ViewMap using the\n"
+" user specified iterator. This operator only iterates using the\n"
+" increment operator and is therefore unidirectional. This chaining\n"
+" operator is different from the previous one because it doesn't take\n"
+" any modifier as argument. Indeed, the time stamp (insuring that a\n"
+" ViewEdge is processed one time) is automatically managed in this\n"
+" case.\n"
+"\n"
+" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
+" the chaining rule. \n"
+" :type it: :class:`ViewEdgeIterator`\n"
+" :arg pred: The predicate on the ViewEdge that expresses the\n"
+" stopping condition.\n"
+" :type pred: :class:`UnaryPredicate1D`");
+
+static PyObject *Operators_chain(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"it", "pred", "modifier", NULL};
+ PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|O!", (char **)kwlist,
+ &ChainingIterator_Type, &obj1,
+ &UnaryPredicate1D_Type, &obj2,
+ &UnaryFunction1DVoid_Type, &obj3))
+ {
+ return NULL;
+ }
+ if (!((BPy_ChainingIterator *)obj1)->c_it) {
+ PyErr_SetString(PyExc_TypeError, "Operators.chain(): 1st argument: invalid ChainingIterator object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
+ PyErr_SetString(PyExc_TypeError, "Operators.chain(): 2nd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (!obj3) {
+ if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0)
+ {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
+ return NULL;
+ }
+ }
+ else {
+ if (!((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void) {
+ PyErr_SetString(PyExc_TypeError, "Operators.chain(): 3rd argument: invalid UnaryFunction1DVoid object");
+ return NULL;
+ }
+ if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D),
+ *(((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void)) < 0)
+ {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
+ return NULL;
+ }
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Operators_bidirectional_chain_doc,
+".. staticmethod:: bidirectional_chain(it, pred)\n"
+"\n"
+" Builds a set of chains from the current set of ViewEdges. Each\n"
+" ViewEdge of the current list potentially starts a new chain. The\n"
+" chaining operator then iterates over the ViewEdges of the ViewMap\n"
+" using the user specified iterator. This operator iterates both using\n"
+" the increment and decrement operators and is therefore bidirectional.\n"
+" This operator works with a ChainingIterator which contains the\n"
+" chaining rules. It is this last one which can be told to chain only\n"
+" edges that belong to the selection or not to process twice a ViewEdge\n"
+" during the chaining. Each time a ViewEdge is added to a chain, its\n"
+" chaining time stamp is incremented. This allows you to keep track of\n"
+" the number of chains to which a ViewEdge belongs to.\n"
+"\n"
+" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
+" contains the chaining rule.\n"
+" :type it: :class:`ChainingIterator`\n"
+" :arg pred: The predicate on the ViewEdge that expresses the\n"
+" stopping condition.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+"\n"
+".. staticmethod:: bidirectional_chain(it)\n"
+"\n"
+" The only difference with the above bidirectional chaining algorithm\n"
+" is that we don't need to pass a stopping criterion. This might be\n"
+" desirable when the stopping criterion is already contained in the\n"
+" iterator definition. Builds a set of chains from the current set of\n"
+" ViewEdges. Each ViewEdge of the current list potentially starts a new\n"
+" chain. The chaining operator then iterates over the ViewEdges of the\n"
+" ViewMap using the user specified iterator. This operator iterates\n"
+" both using the increment and decrement operators and is therefore\n"
+" bidirectional. This operator works with a ChainingIterator which\n"
+" contains the chaining rules. It is this last one which can be told to\n"
+" chain only edges that belong to the selection or not to process twice\n"
+" a ViewEdge during the chaining. Each time a ViewEdge is added to a\n"
+" chain, its chaining time stamp is incremented. This allows you to\n"
+" keep track of the number of chains to which a ViewEdge belongs to.\n"
+"\n"
+" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
+" contains the chaining rule.\n"
+" :type it: :class:`ChainingIterator`");
+
+static PyObject *Operators_bidirectional_chain(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"it", "pred", NULL};
+ PyObject *obj1 = 0, *obj2 = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!|O!", (char **)kwlist,
+ &ChainingIterator_Type, &obj1, &UnaryPredicate1D_Type, &obj2))
+ {
+ return NULL;
+ }
+ if (!((BPy_ChainingIterator *)obj1)->c_it) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.bidirectional_chain(): 1st argument: invalid ChainingIterator object");
+ return NULL;
+ }
+ if (!obj2) {
+ if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
+ return NULL;
+ }
+ }
+ else {
+ if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.bidirectional_chain(): 2nd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0)
+ {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
+ return NULL;
+ }
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Operators_sequential_split_doc,
+".. staticmethod:: sequential_split(starting_pred, stopping_pred, sampling=0.0)\n"
+"\n"
+" Splits each chain of the current set of chains in a sequential way.\n"
+" The points of each chain are processed (with a specified sampling)\n"
+" sequentially. Each time a user specified starting condition is\n"
+" verified, a new chain begins and ends as soon as a user-defined\n"
+" stopping predicate is verified. This allows chains overlapping rather\n"
+" than chains partitioning. The first point of the initial chain is the\n"
+" first point of one of the resulting chains. The splitting ends when\n"
+" no more chain can start.\n"
+"\n"
+" :arg starting_pred: The predicate on a point that expresses the\n"
+" starting condition.\n"
+" :type starting_pred: :class:`UnaryPredicate0D`\n"
+" :arg stopping_pred: The predicate on a point that expresses the\n"
+" stopping condition.\n"
+" :type stopping_pred: :class:`UnaryPredicate0D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicates evaluation. (The chain is not actually resampled;\n"
+" a virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float\n"
+"\n"
+".. staticmethod:: sequential_split(pred, sampling=0.0)\n"
+"\n"
+" Splits each chain of the current set of chains in a sequential way.\n"
+" The points of each chain are processed (with a specified sampling)\n"
+" sequentially and each time a user specified condition is verified,\n"
+" the chain is split into two chains. The resulting set of chains is a\n"
+" partition of the initial chain\n"
+"\n"
+" :arg pred: The predicate on a point that expresses the splitting\n"
+" condition.\n"
+" :type pred: :class:`UnaryPredicate0D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicate evaluation. (The chain is not actually resampled; a\n"
+" virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float");
+
+static PyObject *Operators_sequential_split(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist_1[] = {"starting_pred", "stopping_pred", "sampling", NULL};
+ static const char *kwlist_2[] = {"pred", "sampling", NULL};
+ PyObject *obj1 = 0, *obj2 = 0;
+ float f = 0.0f;
+
+ if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|f", (char **)kwlist_1,
+ &UnaryPredicate0D_Type, &obj1, &UnaryPredicate0D_Type, &obj2, &f))
+ {
+ if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.sequential_split(): 2nd argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D),
+ *(((BPy_UnaryPredicate0D *)obj2)->up0D),
+ f) < 0)
+ {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
+ return NULL;
+ }
+ }
+ else if (PyErr_Clear(), (f = 0.0f),
+ PyArg_ParseTupleAndKeywords(args, kwds, "O!|f", (char **)kwlist_2,
+ &UnaryPredicate0D_Type, &obj1, &f))
+ {
+ if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D), f) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
+ return NULL;
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Operators_recursive_split_doc,
+".. staticmethod:: recursive_split(func, pred_1d, sampling=0.0)\n"
+"\n"
+" Splits the current set of chains in a recursive way. We process the\n"
+" points of each chain (with a specified sampling) to find the point\n"
+" minimizing a specified function. The chain is split in two at this\n"
+" point and the two new chains are processed in the same way. The\n"
+" recursivity level is controlled through a predicate 1D that expresses\n"
+" a stopping condition on the chain that is about to be processed.\n"
+"\n"
+" :arg func: The Unary Function evaluated at each point of the chain.\n"
+" The splitting point is the point minimizing this function.\n"
+" :type func: :class:`UnaryFunction0DDouble`\n"
+" :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
+" condition. This predicate is evaluated for each curve before it\n"
+" actually gets split. If pred_1d(chain) is true, the curve won't be\n"
+" split anymore.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicates evaluation. (The chain is not actually resampled, a\n"
+" virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float\n"
+"\n"
+".. staticmethod:: recursive_split(func, pred_0d, pred_1d, sampling=0.0)\n"
+"\n"
+" Splits the current set of chains in a recursive way. We process the\n"
+" points of each chain (with a specified sampling) to find the point\n"
+" minimizing a specified function. The chain is split in two at this\n"
+" point and the two new chains are processed in the same way. The user\n"
+" can specify a 0D predicate to make a first selection on the points\n"
+" that can potentially be split. A point that doesn't verify the 0D\n"
+" predicate won't be candidate in realizing the min. The recursivity\n"
+" level is controlled through a predicate 1D that expresses a stopping\n"
+" condition on the chain that is about to be processed.\n"
+"\n"
+" :arg func: The Unary Function evaluated at each point of the chain.\n"
+" The splitting point is the point minimizing this function.\n"
+" :type func: :class:`UnaryFunction0DDouble`\n"
+" :arg pred_0d: The Unary Predicate 0D used to select the candidate\n"
+" points where the split can occur. For example, it is very likely\n"
+" that would rather have your chain splitting around its middle\n"
+" point than around one of its extremities. A 0D predicate working\n"
+" on the curvilinear abscissa allows to add this kind of constraints.\n"
+" :type pred_0d: :class:`UnaryPredicate0D`\n"
+" :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
+" condition. This predicate is evaluated for each curve before it\n"
+" actually gets split. If pred_1d(chain) is true, the curve won't be\n"
+" split anymore.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg sampling: The resolution used to sample the chain for the\n"
+" predicates evaluation. (The chain is not actually resampled; a\n"
+" virtual point only progresses along the curve using this\n"
+" resolution.)\n"
+" :type sampling: float");
+
+static PyObject *Operators_recursive_split(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist_1[] = {"func", "pred_1d", "sampling", NULL};
+ static const char *kwlist_2[] = {"func", "pred_0d", "pred_1d", "sampling", NULL};
+ PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
+ float f = 0.0f;
+
+ if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|f", (char **)kwlist_1,
+ &UnaryFunction0DDouble_Type, &obj1, &UnaryPredicate1D_Type, &obj2, &f))
+ {
+ if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.recursive_split(): 2nd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D),
+ f) < 0)
+ {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
+ return NULL;
+ }
+ }
+ else if (PyErr_Clear(), (f = 0.0f),
+ PyArg_ParseTupleAndKeywords(args, kwds, "O!O!O!|f", (char **)kwlist_2,
+ &UnaryFunction0DDouble_Type, &obj1, &UnaryPredicate0D_Type, &obj2,
+ &UnaryPredicate1D_Type, &obj3, &f))
+ {
+ if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.recursive_split(): 2nd argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj3)->up1D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.recursive_split(): 3rd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
+ *(((BPy_UnaryPredicate0D *)obj2)->up0D),
+ *(((BPy_UnaryPredicate1D *)obj3)->up1D),
+ f) < 0)
+ {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
+ return NULL;
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Operators_sort_doc,
+".. staticmethod:: sort(pred)\n"
+"\n"
+" Sorts the current set of chains (or viewedges) according to the\n"
+" comparison predicate given as argument.\n"
+"\n"
+" :arg pred: The binary predicate used for the comparison.\n"
+" :type pred: BinaryPredicate1D");
+
+static PyObject *Operators_sort(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"pred", NULL};
+ PyObject *obj = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!", (char **)kwlist, &BinaryPredicate1D_Type, &obj))
+ return NULL;
+ if (!((BPy_BinaryPredicate1D *)obj)->bp1D) {
+ PyErr_SetString(PyExc_TypeError, "Operators.sort(): 1st argument: invalid BinaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::sort(*(((BPy_BinaryPredicate1D *)obj)->bp1D)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.sort() failed");
+ return NULL;
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Operators_create_doc,
+".. staticmethod:: create(pred, shaders)\n"
+"\n"
+" Creates and shades the strokes from the current set of chains. A\n"
+" predicate can be specified to make a selection pass on the chains.\n"
+"\n"
+" :arg pred: The predicate that a chain must verify in order to be\n"
+" transform as a stroke.\n"
+" :type pred: :class:`UnaryPredicate1D`\n"
+" :arg shaders: The list of shaders used to shade the strokes.\n"
+" :type shaders: List of StrokeShader objects");
+
+static PyObject *Operators_create(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"pred", "shaders", NULL};
+ PyObject *obj1 = 0, *obj2 = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!O!", (char **)kwlist,
+ &UnaryPredicate1D_Type, &obj1, &PyList_Type, &obj2))
+ {
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj1)->up1D) {
+ PyErr_SetString(PyExc_TypeError, "Operators.create(): 1st argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ vector<StrokeShader *> shaders;
+ for (int i = 0; i < PyList_Size(obj2); i++) {
+ PyObject *py_ss = PyList_GetItem(obj2, i);
+ if (!BPy_StrokeShader_Check(py_ss)) {
+ PyErr_SetString(PyExc_TypeError, "Operators.create(): 2nd argument must be a list of StrokeShader objects");
+ return NULL;
+ }
+ shaders.push_back(((BPy_StrokeShader *)py_ss)->ss);
+ }
+ if (Operators::create(*(((BPy_UnaryPredicate1D *)obj1)->up1D), shaders) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.create() failed");
+ return NULL;
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Operators_get_viewedge_from_index_doc,
+".. staticmethod:: get_viewedge_from_index(i)\n"
+"\n"
+" Returns the ViewEdge at the index in the current set of ViewEdges.\n"
+"\n"
+" :arg i: index (0 <= i < Operators.get_view_edges_size()).\n"
+" :type i: int\n"
+" :return: The ViewEdge object.\n"
+" :rtype: :class:`ViewEdge`");
+
+static PyObject *Operators_get_viewedge_from_index(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"i", NULL};
+ unsigned int i;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
+ return NULL;
+ if (i >= Operators::getViewEdgesSize()) {
+ PyErr_SetString(PyExc_IndexError, "index out of range");
+ return NULL;
+ }
+ return BPy_ViewEdge_from_ViewEdge(*(Operators::getViewEdgeFromIndex(i)));
+}
+
+PyDoc_STRVAR(Operators_get_chain_from_index_doc,
+".. staticmethod:: get_chain_from_index(i)\n"
+"\n"
+" Returns the Chain at the index in the current set of Chains.\n"
+"\n"
+" :arg i: index (0 <= i < Operators.get_chains_size()).\n"
+" :type i: int\n"
+" :return: The Chain object.\n"
+" :rtype: :class:`Chain`");
+
+static PyObject *Operators_get_chain_from_index(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"i", NULL};
+ unsigned int i;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
+ return NULL;
+ if (i >= Operators::getChainsSize()) {
+ PyErr_SetString(PyExc_IndexError, "index out of range");
+ return NULL;
+ }
+ return BPy_Chain_from_Chain(*(Operators::getChainFromIndex(i)));
+}
+
+PyDoc_STRVAR(Operators_get_stroke_from_index_doc,
+".. staticmethod:: get_stroke_from_index(i)\n"
+"\n"
+" Returns the Stroke at the index in the current set of Strokes.\n"
+"\n"
+" :arg i: index (0 <= i < Operators.get_strokes_size()).\n"
+" :type i: int\n"
+" :return: The Stroke object.\n"
+" :rtype: :class:`Stroke`");
+
+static PyObject *Operators_get_stroke_from_index(BPy_Operators *self, PyObject *args, PyObject *kwds)
+{
+ static const char *kwlist[] = {"i", NULL};
+ unsigned int i;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
+ return NULL;
+ if (i >= Operators::getStrokesSize()) {
+ PyErr_SetString(PyExc_IndexError, "index out of range");
+ return NULL;
+ }
+ return BPy_Stroke_from_Stroke(*(Operators::getStrokeFromIndex(i)));
+}
+
+PyDoc_STRVAR(Operators_get_view_edges_size_doc,
+".. staticmethod:: get_view_edges_size()\n"
+"\n"
+" Returns the number of ViewEdges.\n"
+"\n"
+" :return: The number of ViewEdges.\n"
+" :rtype: int");
+
+static PyObject *Operators_get_view_edges_size(BPy_Operators *self)
+{
+ return PyLong_FromLong(Operators::getViewEdgesSize());
+}
+
+PyDoc_STRVAR(Operators_get_chains_size_doc,
+".. staticmethod:: get_chains_size()\n"
+"\n"
+" Returns the number of Chains.\n"
+"\n"
+" :return: The number of Chains.\n"
+" :rtype: int");
+
+static PyObject *Operators_get_chains_size(BPy_Operators *self)
+{
+ return PyLong_FromLong(Operators::getChainsSize());
+}
+
+PyDoc_STRVAR(Operators_get_strokes_size_doc,
+".. staticmethod:: get_strokes_size()\n"
+"\n"
+" Returns the number of Strokes.\n"
+"\n"
+" :return: The number of Strokes.\n"
+" :rtype: int");
+
+static PyObject *Operators_get_strokes_size(BPy_Operators *self)
+{
+ return PyLong_FromLong(Operators::getStrokesSize());
+}
+
+/*----------------------Operators instance definitions ----------------------------*/
+static PyMethodDef BPy_Operators_methods[] = {
+ {"select", (PyCFunction) Operators_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_select_doc},
+ {"chain", (PyCFunction) Operators_chain, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_chain_doc},
+ {"bidirectional_chain", (PyCFunction) Operators_bidirectional_chain, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_bidirectional_chain_doc},
+ {"sequential_split", (PyCFunction) Operators_sequential_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_sequential_split_doc},
+ {"recursive_split", (PyCFunction) Operators_recursive_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_recursive_split_doc},
+ {"sort", (PyCFunction) Operators_sort, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_sort_doc},
+ {"create", (PyCFunction) Operators_create, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_create_doc},
+ {"get_viewedge_from_index", (PyCFunction) Operators_get_viewedge_from_index,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_get_viewedge_from_index_doc},
+ {"get_chain_from_index", (PyCFunction) Operators_get_chain_from_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_get_chain_from_index_doc},
+ {"get_stroke_from_index", (PyCFunction) Operators_get_stroke_from_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_get_stroke_from_index_doc},
+ {"get_view_edges_size", (PyCFunction) Operators_get_view_edges_size, METH_NOARGS | METH_STATIC,
+ Operators_get_view_edges_size_doc},
+ {"get_chains_size", (PyCFunction) Operators_get_chains_size, METH_NOARGS | METH_STATIC,
+ Operators_get_chains_size_doc},
+ {"get_strokes_size", (PyCFunction) Operators_get_strokes_size, METH_NOARGS | METH_STATIC,
+ Operators_get_strokes_size_doc},
+ {NULL, NULL, 0, NULL}
+};
+
+/*-----------------------BPy_Operators type definition ------------------------------*/
+
+PyTypeObject Operators_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "Operators", /* tp_name */
+ sizeof(BPy_Operators), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ (destructor)Operators_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_reserved */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ 0, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT, /* tp_flags */
+ Operators_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ BPy_Operators_methods, /* tp_methods */
+ 0, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ PyType_GenericNew, /* tp_new */
+};
+
+///////////////////////////////////////////////////////////////////////////////////////////
+
+#ifdef __cplusplus
+}
+#endif