Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/stroke/Operators.h')
-rwxr-xr-xsource/blender/freestyle/intern/stroke/Operators.h311
1 files changed, 311 insertions, 0 deletions
diff --git a/source/blender/freestyle/intern/stroke/Operators.h b/source/blender/freestyle/intern/stroke/Operators.h
new file mode 100755
index 00000000000..d705d5af5b2
--- /dev/null
+++ b/source/blender/freestyle/intern/stroke/Operators.h
@@ -0,0 +1,311 @@
+//
+// Filename : Operators.h
+// Author(s) : Stephane Grabli, Emmanuel Turquin
+// Purpose : Class gathering stroke creation algorithms
+// Date of creation : 01/07/2003
+//
+///////////////////////////////////////////////////////////////////////////////
+
+
+//
+// Copyright (C) : Please refer to the COPYRIGHT file distributed
+// with this source distribution.
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License
+// as published by the Free Software Foundation; either version 2
+// of the License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef OPERATORS_H
+# define OPERATORS_H
+
+# include "../view_map/Interface1D.h"
+# include <vector>
+# include <iostream>
+# include "Predicates1D.h"
+# include "Predicates0D.h"
+# include "../view_map/ViewMap.h"
+# include "Chain.h"
+# include "ChainingIterators.h"
+# include "../system/TimeStamp.h"
+# include "StrokeShader.h"
+
+/*! Class defining the operators used in a style module.
+ * There are 4 classes of operators: Selection, Chaining,
+ * Splitting and Creating. All these operators are user controlled
+ * in the scripting language through Functors, Predicates and Shaders
+ * that are taken as arguments.
+ */
+class LIB_STROKE_EXPORT Operators {
+
+public:
+
+ typedef vector<Interface1D*> I1DContainer;
+ typedef vector<Stroke*> StrokesContainer;
+
+
+ //
+ // Operators
+ //
+ ////////////////////////////////////////////////
+
+ /*! Selects the ViewEdges of the ViewMap verifying
+ * a specified condition.
+ * \param pred The predicate expressing this condition
+ */
+ static int select(UnaryPredicate1D& pred);
+
+ /*! Builds a set of chains from the current set of ViewEdges.
+ * Each ViewEdge of the current list starts a new chain. The chaining
+ * operator then iterates over the ViewEdges of the ViewMap using the
+ * user specified iterator.
+ * This operator only iterates using the increment operator and is
+ * therefore unidirectional.
+ * \param it
+ * The iterator on the ViewEdges of the ViewMap. It contains
+ * the chaining rule.
+ * \param pred
+ * The predicate on the ViewEdge that expresses the stopping
+ * condition.
+ * \param modifier
+ * A function that takes a ViewEdge as argument and that
+ * is used to modify the processed ViewEdge state (the timestamp
+ * incrementation is a typical illustration of such a modifier)
+ */
+ static int chain(ViewEdgeInternal::ViewEdgeIterator& it,
+ UnaryPredicate1D& pred,
+ UnaryFunction1D_void& modifier);
+
+ /*! Builds a set of chains from the current set of ViewEdges.
+ * Each ViewEdge of the current list starts a new chain. The chaining
+ * operator then iterates over the ViewEdges of the ViewMap using the
+ * user specified iterator.
+ * This operator only iterates using the increment operator and is
+ * therefore unidirectional.
+ * This chaining operator is different from the previous one because
+ * it doesn't take any modifier as argument. Indeed, the time stamp (insuring
+ * that a ViewEdge is processed one time) is automatically managed in this case.
+ * \param it
+ * The iterator on the ViewEdges of the ViewMap. It contains
+ * the chaining rule.
+ * \param pred
+ * The predicate on the ViewEdge that expresses the stopping
+ * condition.
+ */
+ static int chain(ViewEdgeInternal::ViewEdgeIterator& it,
+ UnaryPredicate1D& pred);
+
+ /*! Builds a set of chains from the current set of ViewEdges.
+ * Each ViewEdge of the current list potentially starts a new chain. The chaining
+ * operator then iterates over the ViewEdges of the ViewMap using the
+ * user specified iterator.
+ * This operator iterates both using the increment and decrement operators and is
+ * therefore bidirectional.
+ * This operator works with a ChainingIterator which contains the
+ * chaining rules. It is this last one which can be told
+ * to chain only edges that belong to the selection or not to
+ * process twice a ViewEdge during the chaining.
+ * Each time a ViewEdge is added to a chain, its chaining time stamp
+ * is incremented. This allows you to keep track of
+ * the number of chains to which a ViewEdge belongs to.
+ * \param it
+ * The ChainingIterator on the ViewEdges of the ViewMap. It contains
+ * the chaining rule.
+ * \param pred
+ * The predicate on the ViewEdge that expresses the stopping
+ * condition.
+ */
+ static int bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred);
+
+ /*! The only difference with the above bidirectional chaining algorithm is
+ * that we don't need to pass a stopping criterion. This might be desirable
+ * when the stopping criterion is already contained in the iterator
+ * definition.
+ * Builds a set of chains from the current set of ViewEdges.
+ * Each ViewEdge of the current list potentially starts a new chain. The chaining
+ * operator then iterates over the ViewEdges of the ViewMap using the
+ * user specified iterator.
+ * This operator iterates both using the increment and decrement operators and is
+ * therefore bidirectional.
+ * This operator works with a ChainingIterator which contains the
+ * chaining rules. It is this last one which can be told
+ * to chain only edges that belong to the selection or not to
+ * process twice a ViewEdge during the chaining.
+ * Each time a ViewEdge is added to a chain, its chaining time stamp
+ * is incremented. This allows you to keep track of
+ * the number of chains to which a ViewEdge belongs to.
+ * \param it
+ * The ChainingIterator on the ViewEdges of the ViewMap. It contains
+ * the chaining rule.
+ */
+ static int bidirectionalChain(ChainingIterator& it);
+
+ /*! Splits each chain of the current set of chains in a sequential way.
+ * The points of each chain are processed (with a specified sampling) sequentially.
+ * Each time a user specified starting condition is verified, a new chain begins and
+ * ends as soon as a user-defined stopping predicate is verified.
+ * This allows chains overlapping rather than chains partitioning.
+ * The first point of the initial chain is the first point of one of the
+ * resulting chains.
+ * The splitting ends when no more chain can start.
+ * \param startingPred
+ * The predicate on a point that expresses the starting
+ * condition
+ * \param stoppingPred
+ * The predicate on a point that expresses the stopping
+ * condition
+ * \param sampling
+ * The resolution used to sample the chain for the predicates
+ * evaluation. (The chain is not actually resampled, a virtual point
+ * only progresses along the curve using this resolution)
+ */
+ static int sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred,
+ float sampling = 0.f);
+
+ /*! Splits each chain of the current set of chains in a sequential way.
+ * The points of each chain are processed (with a specified sampling) sequentially
+ * and each time a user specified condition is verified, the chain is split into two chains.
+ * The resulting set of chains is a partition of the initial chain
+ * \param pred
+ * The predicate on a point that expresses the splitting
+ * condition
+ * \param sampling
+ * The resolution used to sample the chain for the predicate
+ * evaluation. (The chain is not actually resampled, a virtual point
+ * only progresses along the curve using this resolution)
+ */
+ static int sequentialSplit(UnaryPredicate0D& pred,
+ float sampling = 0.f);
+
+ /*! Splits the current set of chains in a recursive way.
+ * We process the points of each chain (with a specified sampling) to find
+ * the point minimizing a specified function. The chain is split in two at this
+ * point and the two new chains are processed in the same way.
+ * The recursivity level is controlled through a predicate 1D that expresses a stopping condition
+ * on the chain that is about to be processed.
+ * \param func
+ * The Unary Function evaluated at each point of the chain.
+ * The splitting point is the point minimizing this function
+ * \param pred
+ * The Unary Predicate ex pressing the recursivity stopping condition.
+ * This predicate is evaluated for each curve before it actually gets
+ * split. If pred(chain) is true, the curve won't be split anymore.
+ * \param sampling
+ * The resolution used to sample the chain for the predicates
+ * evaluation. (The chain is not actually resampled, a virtual point
+ * only progresses along the curve using this resolution)
+ */
+ static int recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0);
+
+ /*! Splits the current set of chains in a recursive way.
+ * We process the points of each chain (with a specified sampling) to find
+ * the point minimizing a specified function. The chain is split in two at this
+ * point and the two new chains are processed in the same way.
+ * The user can specify a 0D predicate to make a first selection
+ * on the points that can potentially be split.
+ * A point that doesn't verify the 0D predicate won't be candidate
+ * in realizing the min.
+ * The recursivity level is controlled through a predicate 1D that expresses a stopping condition
+ * on the chain that is about to be processed.
+ * \param func
+ * The Unary Function evaluated at each point of the chain.
+ * The splitting point is the point minimizing this function
+ * \param pred0d
+ * The Unary Predicate 0D used to select the candidate points
+ * where the split can occur.
+ * For example, it is very likely that would rather have
+ * your chain splitting around its middle point than around
+ * one of its extremities. A 0D predicate working on
+ * the curvilinear abscissa allows to add this kind of constraints.
+ * \param pred
+ * The Unary Predicate ex pressing the recursivity stopping condition.
+ * This predicate is evaluated for each curve before it actually gets
+ * split. If pred(chain) is true, the curve won't be split anymore.
+ * \param sampling
+ * The resolution used to sample the chain for the predicates
+ * evaluation. (The chain is not actually resampled, a virtual point
+ * only progresses along the curve using this resolution)
+ *
+ */
+ static int recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0);
+
+ /*! Sorts the current set of chains (or viewedges) according to the
+ * comparison predicate given as argument.
+ * \param pred
+ * The binary predicate used for the comparison
+ */
+ static int sort(BinaryPredicate1D& pred);
+
+ /*! Creates and shades the strokes from the current set of chains.
+ * A predicate can be specified to make a selection pass on the
+ * chains.
+ * \param pred
+ * The predicate that a chain must verify in order to
+ * be transform as a stroke
+ * \param shaders
+ * The list of shaders used to shade the strokes
+ */
+ static int create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders);
+
+ //
+ // Data access
+ //
+ ////////////////////////////////////////////////
+
+ static ViewEdge* getViewEdgeFromIndex(unsigned i) {
+ return dynamic_cast<ViewEdge*>(_current_view_edges_set[i]);
+ }
+
+ static Chain* getChainFromIndex(unsigned i) {
+ return dynamic_cast<Chain*>(_current_chains_set[i]);
+ }
+
+ static Stroke* getStrokeFromIndex(unsigned i) {
+ return _current_strokes_set[i];
+ }
+
+ static unsigned getViewEdgesSize() {
+ return _current_view_edges_set.size();
+ }
+
+ static unsigned getChainsSize() {
+ return _current_chains_set.size();
+ }
+
+ static unsigned getStrokesSize() {
+ return _current_strokes_set.size();
+ }
+
+ //
+ // Not exported in Python
+ //
+ //////////////////////////////////////////////////
+
+ static StrokesContainer* getStrokesSet() {
+ return &_current_strokes_set;
+ }
+
+ static void reset();
+
+private:
+
+ Operators() {}
+
+ static I1DContainer _current_view_edges_set;
+ static I1DContainer _current_chains_set;
+ static I1DContainer* _current_set;
+ static StrokesContainer _current_strokes_set;
+};
+
+#endif // OPERATORS_H