Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/view_map/ViewMapBuilder.cpp')
-rwxr-xr-xsource/blender/freestyle/intern/view_map/ViewMapBuilder.cpp2300
1 files changed, 2300 insertions, 0 deletions
diff --git a/source/blender/freestyle/intern/view_map/ViewMapBuilder.cpp b/source/blender/freestyle/intern/view_map/ViewMapBuilder.cpp
new file mode 100755
index 00000000000..242b769e8b5
--- /dev/null
+++ b/source/blender/freestyle/intern/view_map/ViewMapBuilder.cpp
@@ -0,0 +1,2300 @@
+
+//
+// Copyright (C) : Please refer to the COPYRIGHT file distributed
+// with this source distribution.
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License
+// as published by the Free Software Foundation; either version 2
+// of the License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "ViewMapBuilder.h"
+#include <algorithm>
+#include <stdexcept>
+#include <memory>
+#include "../winged_edge/WFillGrid.h"
+#include "../../FRS_freestyle.h"
+#include "../geometry/GeomUtils.h"
+#include "../geometry/GridHelpers.h"
+#include "BoxGrid.h"
+#include "SphericalGrid.h"
+#include "OccluderSource.h"
+#include "CulledOccluderSource.h"
+#include "HeuristicGridDensityProviderFactory.h"
+
+#define logging 0
+
+using namespace std;
+
+template <typename G, typename I>
+static void findOccludee(FEdge *fe, G& grid, I& occluders, real epsilon, WFace** oaWFace,
+ Vec3r& u, Vec3r& A, Vec3r& origin, Vec3r& edge, vector<WVertex*>& faceVertices)
+{
+ WFace *face = 0;
+ if(fe->isSmooth()){
+ FEdgeSmooth * fes = dynamic_cast<FEdgeSmooth*>(fe);
+ face = (WFace*)fes->face();
+ }
+ WFace * oface;
+ bool skipFace;
+
+ WVertex::incoming_edge_iterator ie;
+
+ *oaWFace = 0;
+ if(((fe)->getNature() & Nature::SILHOUETTE) || ((fe)->getNature() & Nature::BORDER))
+ {
+ // we cast a ray from A in the same direction but looking behind
+ Vec3r v(-u[0],-u[1],-u[2]);
+ bool noIntersection = true;
+ real mint=FLT_MAX;
+
+ for( occluders.initAfterTarget(); occluders.validAfterTarget(); occluders.nextOccludee() )
+ {
+#if logging > 0
+ cout << "\t\tEvaluating intersection for occludee " << occluders.getWFace() << " and ray " << A << " * " << u << endl;
+#endif
+ oface = occluders.getWFace();
+ Polygon3r* p = occluders.getCameraSpacePolygon();
+ real d = -((p->getVertices())[0] * p->getNormal());
+ real t,t_u,t_v;
+
+ if(0 != face)
+ {
+ skipFace = false;
+
+ if(face == oface)
+ continue;
+
+ if(faceVertices.empty())
+ continue;
+
+ for(vector<WVertex*>::iterator fv=faceVertices.begin(), fvend=faceVertices.end();
+ fv!=fvend;
+ ++fv)
+ {
+ if((*fv)->isBoundary())
+ continue;
+ WVertex::incoming_edge_iterator iebegin=(*fv)->incoming_edges_begin();
+ WVertex::incoming_edge_iterator ieend=(*fv)->incoming_edges_end();
+ for(ie=iebegin;ie!=ieend; ++ie)
+ {
+ if((*ie) == 0)
+ continue;
+
+ WFace * sface = (*ie)->GetbFace();
+ if(sface == oface)
+ {
+ skipFace = true;
+ break;
+ }
+ }
+ if(skipFace)
+ break;
+ }
+ if(skipFace)
+ continue;
+ }
+ else
+ {
+ // check whether the edge and the polygon plane are coincident:
+ //-------------------------------------------------------------
+ //first let us compute the plane equation.
+ if(GeomUtils::COINCIDENT == GeomUtils::intersectRayPlane(origin, edge, p->getNormal(), d, t, epsilon)) {
+#if logging > 0
+cout << "\t\tRejecting occluder for target coincidence." << endl;
+#endif
+ continue;
+ }
+ }
+
+ if(p->rayIntersect(A, v, t, t_u, t_v))
+ {
+#if logging > 0
+cout << "\t\tRay " << A << " * " << v << " intersects at time " << t << endl;
+#endif
+#if logging > 0
+cout << "\t\t(v * normal) == " << (v * p->getNormal()) << " for normal " << p->getNormal() << endl;
+#endif
+ if (fabs(v * p->getNormal()) > 0.0001)
+ if ((t>0.0)) // && (t<1.0))
+ {
+ if (t<mint)
+ {
+ *oaWFace = oface;
+ mint = t;
+ noIntersection = false;
+ fe->setOccludeeIntersection(Vec3r(A+t*v));
+#if logging > 0
+cout << "\t\tIs occludee" << endl;
+#endif
+ }
+ }
+
+ occluders.reportDepth(A, v, t);
+ }
+
+ }
+
+ if(noIntersection)
+ *oaWFace = 0;
+ }
+}
+
+template <typename G, typename I>
+static void findOccludee(FEdge *fe, G& grid, real epsilon, ViewEdge* ve, WFace** oaFace)
+{
+ Vec3r A;
+ Vec3r edge;
+ Vec3r origin;
+ A = Vec3r(((fe)->vertexA()->point3D() + (fe)->vertexB()->point3D()) / 2.0);
+ edge = Vec3r((fe)->vertexB()->point3D()-(fe)->vertexA()->point3D());
+ origin = Vec3r((fe)->vertexA()->point3D());
+ Vec3r u;
+ if (grid.orthographicProjection()) {
+ u = Vec3r(0.0, 0.0, grid.viewpoint().z()-A.z());
+ } else {
+ u = Vec3r(grid.viewpoint()-A);
+ }
+ u.normalize();
+
+ vector<WVertex*> faceVertices;
+
+ WFace *face = 0;
+ if(fe->isSmooth()) {
+ FEdgeSmooth * fes = dynamic_cast<FEdgeSmooth*>(fe);
+ face = (WFace*)fes->face();
+ }
+
+ if(0 != face) {
+ face->RetrieveVertexList(faceVertices);
+ }
+
+ I occluders(grid, A, epsilon);
+ findOccludee<G, I>(fe, grid, occluders, epsilon, oaFace, u, A, origin, edge, faceVertices);
+}
+
+// computeVisibility takes a pointer to foundOccluders, instead of using a reference,
+// so that computeVeryFastVisibility can skip the AddOccluders step with minimal overhead.
+template <typename G, typename I>
+static int computeVisibility(ViewMap* viewMap, FEdge *fe, G& grid, real epsilon, ViewEdge* ve, WFace** oaWFace, set<ViewShape*>* foundOccluders)
+{
+ int qi = 0;
+
+ Vec3r center;
+ Vec3r edge;
+ Vec3r origin;
+
+ center = fe->center3d();
+ edge = Vec3r(fe->vertexB()->point3D() - fe->vertexA()->point3D());
+ origin = Vec3r(fe->vertexA()->point3D());
+
+ Vec3r vp;
+ if (grid.orthographicProjection()) {
+ vp = Vec3r(center.x(), center.y(), grid.viewpoint().z());
+ } else {
+ vp = Vec3r(grid.viewpoint());
+ }
+ Vec3r u(vp - center);
+ real raylength = u.norm();
+ u.normalize();
+
+ WFace *face = 0;
+ if(fe->isSmooth()){
+ FEdgeSmooth * fes = dynamic_cast<FEdgeSmooth*>(fe);
+ face = (WFace*)fes->face();
+ }
+ vector<WVertex*> faceVertices;
+ WVertex::incoming_edge_iterator ie;
+
+ WFace * oface;
+ bool skipFace;
+
+ if(face)
+ face->RetrieveVertexList(faceVertices);
+
+ I occluders(grid, center, epsilon);
+
+ for(occluders.initBeforeTarget(); occluders.validBeforeTarget(); occluders.nextOccluder())
+ {
+ // If we're dealing with an exact silhouette, check whether
+ // we must take care of this occluder of not.
+ // (Indeed, we don't consider the occluders that
+ // share at least one vertex with the face containing
+ // this edge).
+ //-----------
+ oface = occluders.getWFace();
+ Polygon3r* p = occluders.getCameraSpacePolygon();
+ real t, t_u, t_v;
+#if logging > 0
+ cout << "\t\tEvaluating intersection for occluder " << (p->getVertices())[0] << (p->getVertices())[1] << (p->getVertices())[2] << endl << "\t\t\tand ray " << vp << " * " << u << " (center " << center << ")" << endl;
+#endif
+
+#if logging > 0
+ Vec3r v(vp - center);
+ real rl = v.norm();
+ v.normalize();
+ vector<Vec3r> points;
+ // Iterate over vertices, storing projections in points
+ for(vector<WOEdge*>::const_iterator woe=oface->getEdgeList().begin(), woend=oface->getEdgeList().end(); woe!=woend; woe++) {
+ points.push_back(Vec3r((*woe)->GetaVertex()->GetVertex()));
+ }
+ Polygon3r p1(points, oface->GetNormal());
+ Vec3r v1((p1.getVertices())[0]);
+ real d = -(v1 * p->getNormal());
+ cout << "\t\tp: " << (p->getVertices())[0] << (p->getVertices())[1] << (p->getVertices())[2] << ", norm: " << p->getNormal() << endl;
+ cout << "\t\tp1: " << (p1.getVertices())[0] << (p1.getVertices())[1] << (p1.getVertices())[2] << ", norm: " << p1.getNormal() << endl;
+#else
+ real d = -((p->getVertices())[0] * p->getNormal());
+#endif
+
+ if(0 != face)
+ {
+#if logging > 0
+cout << "\t\tDetermining face adjacency...";
+#endif
+ skipFace = false;
+
+ if(face == oface) {
+#if logging > 0
+cout << " Rejecting occluder for face concurrency." << endl;
+#endif
+ continue;
+ }
+
+
+ for(vector<WVertex*>::iterator fv=faceVertices.begin(), fvend=faceVertices.end();
+ fv!=fvend;
+ ++fv)
+ {
+ if((*fv)->isBoundary())
+ continue;
+
+ WVertex::incoming_edge_iterator iebegin=(*fv)->incoming_edges_begin();
+ WVertex::incoming_edge_iterator ieend=(*fv)->incoming_edges_end();
+ for(ie=iebegin;ie!=ieend; ++ie)
+ {
+ if((*ie) == 0)
+ continue;
+
+ WFace * sface = (*ie)->GetbFace();
+ //WFace * sfacea = (*ie)->GetaFace();
+ //if((sface == oface) || (sfacea == oface))
+ if(sface == oface)
+ {
+ skipFace = true;
+ break;
+ }
+ }
+ if(skipFace)
+ break;
+ }
+ if(skipFace) {
+#if logging > 0
+cout << " Rejecting occluder for face adjacency." << endl;
+#endif
+ continue;
+ }
+ }
+ else
+ {
+ // check whether the edge and the polygon plane are coincident:
+ //-------------------------------------------------------------
+ //first let us compute the plane equation.
+
+ if(GeomUtils::COINCIDENT == GeomUtils::intersectRayPlane(origin, edge, p->getNormal(), d, t, epsilon)) {
+#if logging > 0
+cout << "\t\tRejecting occluder for target coincidence." << endl;
+#endif
+ continue;
+ }
+ }
+
+#if logging > 0
+
+ real x;
+ if ( p1.rayIntersect(center, v, x, t_u, t_v) ) {
+ cout << "\t\tRay should intersect at time " << (rl - x) << ". Center: " << center << ", V: " << v << ", RL: " << rl << ", T:" << x << endl;
+ } else {
+ cout << "\t\tRay should not intersect. Center: " << center << ", V: " << v << ", RL: " << rl << endl;
+ }
+
+#endif
+
+ if(p->rayIntersect(center, u, t, t_u, t_v))
+ {
+#if logging > 0
+cout << "\t\tRay " << center << " * " << u << " intersects at time " << t << " (raylength is " << raylength << ")" << endl;
+#endif
+#if logging > 0
+cout << "\t\t(u * normal) == " << (u * p->getNormal()) << " for normal " << p->getNormal() << endl;
+#endif
+ if (fabs(u * p->getNormal()) > 0.0001)
+ if ((t>0.0) && (t<raylength))
+ {
+#if logging > 0
+cout << "\t\tIs occluder" << endl;
+#endif
+ if ( foundOccluders != NULL ) {
+ ViewShape *vshape = viewMap->viewShape(oface->GetVertex(0)->shape()->GetId());
+ foundOccluders->insert(vshape);
+ }
+
+ ++qi;
+
+ if(! grid.enableQI())
+ break;
+ }
+
+ occluders.reportDepth(center, u, t);
+ }
+ }
+
+ // Find occludee
+ findOccludee<G, I>(fe, grid, occluders, epsilon, oaWFace, u, center, origin, edge, faceVertices);
+
+ return qi;
+}
+
+// computeCumulativeVisibility returns the lowest x such that the majority
+// of FEdges have QI <= x
+//
+// This was probably the original intention of the "normal" algorithm
+// on which computeDetailedVisibility is based. But because the "normal"
+// algorithm chooses the most popular QI, without considering any other
+// values, a ViewEdge with FEdges having QIs of 0, 21, 22, 23, 24 and 25
+// will end up having a total QI of 0, even though most of the FEdges are
+// heavily occluded. computeCumulativeVisibility will treat this case as
+// a QI of 22 because 3 out of 6 occluders have QI <= 22.
+
+template <typename G, typename I>
+static void computeCumulativeVisibility(ViewMap *ioViewMap, G& grid, real epsilon)
+{
+ vector<ViewEdge*>& vedges = ioViewMap->ViewEdges();
+
+ FEdge * fe, *festart;
+ int nSamples = 0;
+ vector<WFace*> wFaces;
+ WFace *wFace = 0;
+ unsigned tmpQI = 0;
+ unsigned qiClasses[256];
+ unsigned maxIndex, maxCard;
+ unsigned qiMajority;
+ for(vector<ViewEdge*>::iterator ve=vedges.begin(), veend=vedges.end(); ve!=veend; ve++) {
+#if logging > 0
+cout << "Processing ViewEdge " << (*ve)->getId() << endl;
+#endif
+ // Find an edge to test
+ if ( ! (*ve)->isInImage() ) {
+ // This view edge has been proscenium culled
+ (*ve)->setQI(255);
+ (*ve)->setaShape(0);
+#if logging > 0
+cout << "\tCulled." << endl;
+#endif
+ continue;
+ }
+
+ // Test edge
+ festart = (*ve)->fedgeA();
+ fe = (*ve)->fedgeA();
+ qiMajority = 0;
+ do {
+ if ( fe != NULL && fe->isInImage() ) {
+ qiMajority++;
+ }
+ fe = fe->nextEdge();
+ } while (fe && fe != festart);
+
+ if ( qiMajority == 0 ) {
+ // There are no occludable FEdges on this ViewEdge
+ // This should be impossible.
+ cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
+ // We can recover from this error:
+ // Treat this edge as fully visible with no occludee
+ (*ve)->setQI(0);
+ (*ve)->setaShape(0);
+ continue;
+ } else {
+ ++qiMajority;
+ qiMajority >>= 1;
+ }
+#if logging > 0
+cout << "\tqiMajority: " << qiMajority << endl;
+#endif
+
+ tmpQI = 0;
+ maxIndex = 0;
+ maxCard = 0;
+ nSamples = 0;
+ memset(qiClasses, 0, 256 * sizeof(*qiClasses));
+ set<ViewShape*> foundOccluders;
+
+ fe = (*ve)->fedgeA();
+ do
+ {
+ if ( fe == NULL || ! fe->isInImage() ) {
+ fe = fe->nextEdge();
+ continue;
+ }
+ if((maxCard < qiMajority)) {
+ tmpQI = computeVisibility<G, I>(ioViewMap, fe, grid, epsilon, *ve, &wFace, &foundOccluders); //ARB: change &wFace to wFace and use reference in called function
+#if logging > 0
+cout << "\tFEdge: visibility " << tmpQI << endl;
+#endif
+
+ //ARB: This is an error condition, not an alert condition.
+ // Some sort of recovery or abort is necessary.
+ if(tmpQI >= 256) {
+ cerr << "Warning: too many occluding levels" << endl;
+ //ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
+ tmpQI = 255;
+ }
+
+ if (++qiClasses[tmpQI] > maxCard) {
+ maxCard = qiClasses[tmpQI];
+ maxIndex = tmpQI;
+ }
+ } else {
+ //ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
+ findOccludee<G, I>(fe, grid, epsilon, *ve, &wFace); //ARB: change &wFace to wFace and use reference in called function
+#if logging > 0
+cout << "\tFEdge: occludee only (" << (wFace != NULL ? "found" : "not found") << ")" << endl;
+#endif
+ }
+
+ // Store test results
+ if(wFace) {
+ vector<Vec3r> vertices;
+ for ( int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i ) {
+ vertices.push_back(Vec3r(wFace->GetVertex(i)->GetVertex()));
+ }
+ Polygon3r poly(vertices, wFace->GetNormal());
+ poly.userdata = (void *) wFace;
+ fe->setaFace(poly);
+ wFaces.push_back(wFace);
+ fe->setOccludeeEmpty(false);
+#if logging > 0
+cout << "\tFound occludee" << endl;
+#endif
+ } else {
+ fe->setOccludeeEmpty(true);
+ }
+
+ ++nSamples;
+ fe = fe->nextEdge();
+ }
+ while((maxCard < qiMajority) && (0!=fe) && (fe!=festart));
+#if logging > 0
+cout << "\tFinished with " << nSamples << " samples, maxCard = " << maxCard << endl;
+#endif
+
+ // ViewEdge
+ // qi --
+ // Find the minimum value that is >= the majority of the QI
+ for ( unsigned count = 0, i = 0; i < 256; ++i ) {
+ count += qiClasses[i];
+ if ( count >= qiMajority ) {
+ (*ve)->setQI(i);
+ break;
+ }
+ }
+ // occluders --
+ // I would rather not have to go through the effort of creating this
+ // this set and then copying out its contents. Is there a reason why
+ // ViewEdge::_Occluders cannot be converted to a set<>?
+ for(set<ViewShape*>::iterator o=foundOccluders.begin(), oend=foundOccluders.end(); o!=oend; ++o) {
+ (*ve)->AddOccluder((*o));
+ }
+#if logging > 0
+cout << "\tConclusion: QI = " << maxIndex << ", " << (*ve)->occluders_size() << " occluders." << endl;
+#endif
+ // occludee --
+ if(!wFaces.empty())
+ {
+ if(wFaces.size() <= (float)nSamples/2.f)
+ {
+ (*ve)->setaShape(0);
+ }
+ else
+ {
+ ViewShape *vshape = ioViewMap->viewShape((*wFaces.begin())->GetVertex(0)->shape()->GetId());
+ (*ve)->setaShape(vshape);
+ }
+ }
+
+ wFaces.clear();
+ }
+}
+
+template <typename G, typename I>
+static void computeDetailedVisibility(ViewMap *ioViewMap, G& grid, real epsilon)
+{
+ vector<ViewEdge*>& vedges = ioViewMap->ViewEdges();
+
+ FEdge * fe, *festart;
+ int nSamples = 0;
+ vector<WFace*> wFaces;
+ WFace *wFace = 0;
+ unsigned tmpQI = 0;
+ unsigned qiClasses[256];
+ unsigned maxIndex, maxCard;
+ unsigned qiMajority;
+ for(vector<ViewEdge*>::iterator ve=vedges.begin(), veend=vedges.end(); ve!=veend; ve++) {
+#if logging > 0
+cout << "Processing ViewEdge " << (*ve)->getId() << endl;
+#endif
+ // Find an edge to test
+ if ( ! (*ve)->isInImage() ) {
+ // This view edge has been proscenium culled
+ (*ve)->setQI(255);
+ (*ve)->setaShape(0);
+#if logging > 0
+cout << "\tCulled." << endl;
+#endif
+ continue;
+ }
+
+ // Test edge
+ festart = (*ve)->fedgeA();
+ fe = (*ve)->fedgeA();
+ qiMajority = 0;
+ do {
+ if ( fe != NULL && fe->isInImage() ) {
+ qiMajority++;
+ }
+ fe = fe->nextEdge();
+ } while (fe && fe != festart);
+
+ if ( qiMajority == 0 ) {
+ // There are no occludable FEdges on this ViewEdge
+ // This should be impossible.
+ cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
+ // We can recover from this error:
+ // Treat this edge as fully visible with no occludee
+ (*ve)->setQI(0);
+ (*ve)->setaShape(0);
+ continue;
+ } else {
+ ++qiMajority;
+ qiMajority >>= 1;
+ }
+#if logging > 0
+cout << "\tqiMajority: " << qiMajority << endl;
+#endif
+
+ tmpQI = 0;
+ maxIndex = 0;
+ maxCard = 0;
+ nSamples = 0;
+ memset(qiClasses, 0, 256 * sizeof(*qiClasses));
+ set<ViewShape*> foundOccluders;
+
+ fe = (*ve)->fedgeA();
+ do
+ {
+ if ( fe == NULL || ! fe->isInImage() ) {
+ fe = fe->nextEdge();
+ continue;
+ }
+ if((maxCard < qiMajority)) {
+ tmpQI = computeVisibility<G, I>(ioViewMap, fe, grid, epsilon, *ve, &wFace, &foundOccluders); //ARB: change &wFace to wFace and use reference in called function
+#if logging > 0
+cout << "\tFEdge: visibility " << tmpQI << endl;
+#endif
+
+ //ARB: This is an error condition, not an alert condition.
+ // Some sort of recovery or abort is necessary.
+ if(tmpQI >= 256) {
+ cerr << "Warning: too many occluding levels" << endl;
+ //ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
+ tmpQI = 255;
+ }
+
+ if (++qiClasses[tmpQI] > maxCard) {
+ maxCard = qiClasses[tmpQI];
+ maxIndex = tmpQI;
+ }
+ } else {
+ //ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
+ findOccludee<G, I>(fe, grid, epsilon, *ve, &wFace); //ARB: change &wFace to wFace and use reference in called function
+#if logging > 0
+cout << "\tFEdge: occludee only (" << (wFace != NULL ? "found" : "not found") << ")" << endl;
+#endif
+ }
+
+ // Store test results
+ if(wFace) {
+ vector<Vec3r> vertices;
+ for ( int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i ) {
+ vertices.push_back(Vec3r(wFace->GetVertex(i)->GetVertex()));
+ }
+ Polygon3r poly(vertices, wFace->GetNormal());
+ poly.userdata = (void *) wFace;
+ fe->setaFace(poly);
+ wFaces.push_back(wFace);
+ fe->setOccludeeEmpty(false);
+#if logging > 0
+cout << "\tFound occludee" << endl;
+#endif
+ } else {
+ fe->setOccludeeEmpty(true);
+ }
+
+ ++nSamples;
+ fe = fe->nextEdge();
+ }
+ while((maxCard < qiMajority) && (0!=fe) && (fe!=festart));
+#if logging > 0
+cout << "\tFinished with " << nSamples << " samples, maxCard = " << maxCard << endl;
+#endif
+
+ // ViewEdge
+ // qi --
+ (*ve)->setQI(maxIndex);
+ // occluders --
+ // I would rather not have to go through the effort of creating this
+ // this set and then copying out its contents. Is there a reason why
+ // ViewEdge::_Occluders cannot be converted to a set<>?
+ for(set<ViewShape*>::iterator o=foundOccluders.begin(), oend=foundOccluders.end(); o!=oend; ++o) {
+ (*ve)->AddOccluder((*o));
+ }
+#if logging > 0
+cout << "\tConclusion: QI = " << maxIndex << ", " << (*ve)->occluders_size() << " occluders." << endl;
+#endif
+ // occludee --
+ if(!wFaces.empty())
+ {
+ if(wFaces.size() <= (float)nSamples/2.f)
+ {
+ (*ve)->setaShape(0);
+ }
+ else
+ {
+ ViewShape *vshape = ioViewMap->viewShape((*wFaces.begin())->GetVertex(0)->shape()->GetId());
+ (*ve)->setaShape(vshape);
+ }
+ }
+
+ wFaces.clear();
+ }
+}
+
+template <typename G, typename I>
+static void computeFastVisibility(ViewMap *ioViewMap, G& grid, real epsilon)
+{
+ vector<ViewEdge*>& vedges = ioViewMap->ViewEdges();
+
+ FEdge * fe, *festart;
+ unsigned nSamples = 0;
+ vector<WFace*> wFaces;
+ WFace *wFace = 0;
+ unsigned tmpQI = 0;
+ unsigned qiClasses[256];
+ unsigned maxIndex, maxCard;
+ unsigned qiMajority;
+ bool even_test;
+ for(vector<ViewEdge*>::iterator ve=vedges.begin(), veend=vedges.end(); ve!=veend; ve++) {
+ // Find an edge to test
+ if ( ! (*ve)->isInImage() ) {
+ // This view edge has been proscenium culled
+ (*ve)->setQI(255);
+ (*ve)->setaShape(0);
+ continue;
+ }
+
+ // Test edge
+ festart = (*ve)->fedgeA();
+ fe = (*ve)->fedgeA();
+
+ even_test = true;
+ qiMajority = 0;
+ do {
+ if ( even_test && fe != NULL && fe->isInImage() ) {
+ qiMajority++;
+ even_test = ! even_test;
+ }
+ fe = fe->nextEdge();
+ } while (fe && fe != festart);
+
+ if (qiMajority == 0 ) {
+ // There are no occludable FEdges on this ViewEdge
+ // This should be impossible.
+ cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
+ // We can recover from this error:
+ // Treat this edge as fully visible with no occludee
+ (*ve)->setQI(0);
+ (*ve)->setaShape(0);
+ continue;
+ } else {
+ ++qiMajority;
+ qiMajority >>= 1;
+ }
+
+ even_test = true;
+ maxIndex = 0;
+ maxCard = 0;
+ nSamples = 0;
+ memset(qiClasses, 0, 256 * sizeof(*qiClasses));
+ set<ViewShape*> foundOccluders;
+
+ fe = (*ve)->fedgeA();
+ do
+ {
+ if ( fe == NULL || ! fe->isInImage() ) {
+ fe = fe->nextEdge();
+ continue;
+ }
+ if (even_test)
+ {
+ if((maxCard < qiMajority)) {
+ tmpQI = computeVisibility<G, I>(ioViewMap, fe, grid, epsilon, *ve, &wFace, &foundOccluders); //ARB: change &wFace to wFace and use reference in called function
+
+ //ARB: This is an error condition, not an alert condition.
+ // Some sort of recovery or abort is necessary.
+ if(tmpQI >= 256) {
+ cerr << "Warning: too many occluding levels" << endl;
+ //ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
+ tmpQI = 255;
+ }
+
+ if (++qiClasses[tmpQI] > maxCard) {
+ maxCard = qiClasses[tmpQI];
+ maxIndex = tmpQI;
+ }
+ } else {
+ //ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
+ findOccludee<G, I>(fe, grid, epsilon, *ve, &wFace); //ARB: change &wFace to wFace and use reference in called function
+ }
+
+ if(wFace)
+ {
+ vector<Vec3r> vertices;
+ for ( int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i ) {
+ vertices.push_back(Vec3r(wFace->GetVertex(i)->GetVertex()));
+ }
+ Polygon3r poly(vertices, wFace->GetNormal());
+ poly.userdata = (void *) wFace;
+ fe->setaFace(poly);
+ wFaces.push_back(wFace);
+ }
+ ++nSamples;
+ }
+
+ even_test = ! even_test;
+ fe = fe->nextEdge();
+ } while ((maxCard < qiMajority) && (0!=fe) && (fe!=festart));
+
+ // qi --
+ (*ve)->setQI(maxIndex);
+
+ // occluders --
+ for(set<ViewShape*>::iterator o=foundOccluders.begin(), oend=foundOccluders.end(); o!=oend; ++o) {
+ (*ve)->AddOccluder((*o));
+ }
+
+ // occludee --
+ if(!wFaces.empty())
+ {
+ if(wFaces.size() < nSamples / 2)
+ {
+ (*ve)->setaShape(0);
+ }
+ else
+ {
+ ViewShape *vshape = ioViewMap->viewShape((*wFaces.begin())->GetVertex(0)->shape()->GetId());
+ (*ve)->setaShape(vshape);
+ }
+ }
+
+ wFaces.clear();
+ }
+}
+
+template <typename G, typename I>
+static void computeVeryFastVisibility(ViewMap *ioViewMap, G& grid, real epsilon)
+{
+ vector<ViewEdge*>& vedges = ioViewMap->ViewEdges();
+
+ FEdge* fe;
+ unsigned qi = 0;
+ WFace* wFace = 0;
+
+ for(vector<ViewEdge*>::iterator ve=vedges.begin(), veend=vedges.end(); ve!=veend; ve++)
+ {
+ // Find an edge to test
+ if ( ! (*ve)->isInImage() ) {
+ // This view edge has been proscenium culled
+ (*ve)->setQI(255);
+ (*ve)->setaShape(0);
+ continue;
+ }
+ fe = (*ve)->fedgeA();
+ // Find a FEdge inside the occluder proscenium to test for visibility
+ FEdge* festart = fe;
+ while ( fe != NULL && ! fe->isInImage() ) {
+ fe = fe->nextEdge();
+ if ( fe == festart ) {
+ break;
+ }
+ }
+
+ // Test edge
+ if ( fe == NULL || ! fe->isInImage() ) {
+ // There are no occludable FEdges on this ViewEdge
+ // This should be impossible.
+ cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
+ // We can recover from this error:
+ // Treat this edge as fully visible with no occludee
+ qi = 0;
+ wFace = NULL;
+ } else {
+ qi = computeVisibility<G, I>(ioViewMap, fe, grid, epsilon, *ve, &wFace, NULL);
+ }
+
+ // Store test results
+ if(wFace)
+ {
+ vector<Vec3r> vertices;
+ for ( int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i ) {
+ vertices.push_back(Vec3r(wFace->GetVertex(i)->GetVertex()));
+ }
+ Polygon3r poly(vertices, wFace->GetNormal());
+ poly.userdata = (void *) wFace;
+ fe->setaFace(poly); // This works because setaFace *copies* the polygon
+ ViewShape *vshape = ioViewMap->viewShape(wFace->GetVertex(0)->shape()->GetId());
+ (*ve)->setaShape(vshape);
+ }
+ else
+ {
+ (*ve)->setaShape(0);
+ }
+ (*ve)->setQI(qi);
+ }
+
+}
+
+void ViewMapBuilder::BuildGrid(WingedEdge& we, const BBox<Vec3r>& bbox, unsigned int sceneNumFaces) {
+ _Grid->clear();
+ Vec3r size;
+ for(unsigned int i=0; i<3; i++)
+ {
+ size[i] = fabs(bbox.getMax()[i] - bbox.getMin()[i]);
+ size[i] += size[i]/10.0; // let make the grid 1/10 bigger to avoid numerical errors while computing triangles/cells intersections
+ if(size[i]==0){
+ cout << "Warning: the bbox size is 0 in dimension "<<i<<endl;
+ }
+ }
+ _Grid->configure(Vec3r(bbox.getMin() - size / 20.0), size, sceneNumFaces);
+
+ // Fill in the grid:
+ WFillGrid fillGridRenderer(_Grid, &we);
+ fillGridRenderer.fillGrid();
+
+ // DEBUG
+ _Grid->displayDebug();
+}
+
+ViewMap* ViewMapBuilder::BuildViewMap(WingedEdge& we, visibility_algo iAlgo, real epsilon,
+ const BBox<Vec3r>& bbox, unsigned int sceneNumFaces) {
+ _ViewMap = new ViewMap;
+ _currentId = 1;
+ _currentFId = 0;
+ _currentSVertexId = 0;
+
+ // Builds initial view edges
+ computeInitialViewEdges(we);
+
+ // Detects cusps
+ computeCusps(_ViewMap);
+
+ // Compute intersections
+ ComputeIntersections(_ViewMap, sweep_line, epsilon);
+
+ // Compute visibility
+ ComputeEdgesVisibility(_ViewMap, we, bbox, sceneNumFaces, iAlgo, epsilon);
+
+ return _ViewMap;
+}
+
+static inline real distance2D(const Vec3r & point, const real origin[2]) {
+ return ::hypot((point[0] - origin[0]), (point[1] - origin[1]));
+}
+
+static inline bool crossesProscenium(real proscenium[4], FEdge *fe) {
+ Vec2r min(proscenium[0], proscenium[2]);
+ Vec2r max(proscenium[1], proscenium[3]);
+ Vec2r A(fe->vertexA()->getProjectedX(), fe->vertexA()->getProjectedY());
+ Vec2r B(fe->vertexB()->getProjectedX(), fe->vertexB()->getProjectedY());
+
+ return GeomUtils::intersect2dSeg2dArea (min, max, A, B);
+}
+
+static inline bool insideProscenium(real proscenium[4], const Vec3r& point) {
+ return ! ( point[0] < proscenium[0] || point[0] > proscenium[1] || point[1] < proscenium[2] || point[1] > proscenium[3] );
+}
+
+void ViewMapBuilder::CullViewEdges(ViewMap *ioViewMap, real viewProscenium[4], real occluderProscenium[4], bool extensiveFEdgeSearch) {
+ // Cull view edges by marking them as non-displayable.
+ // This avoids the complications of trying to delete
+ // edges from the ViewMap.
+
+ // Non-displayable view edges will be skipped over during
+ // visibility calculation.
+
+ // View edges will be culled according to their position
+ // w.r.t. the viewport proscenium (viewport + 5% border,
+ // or some such).
+
+ // Get proscenium boundary for culling
+ GridHelpers::getDefaultViewProscenium(viewProscenium);
+ real prosceniumOrigin[2];
+ prosceniumOrigin[0] = (viewProscenium[1] - viewProscenium[0]) / 2.0;
+ prosceniumOrigin[1] = (viewProscenium[3] - viewProscenium[2]) / 2.0;
+ cout << "Proscenium culling:" << endl;
+ cout << "Proscenium: [" << viewProscenium[0] << ", " << viewProscenium[1] << ", " << viewProscenium[2] << ", " << viewProscenium[3] << "]"<< endl;
+ cout << "Origin: [" << prosceniumOrigin[0] << ", " << prosceniumOrigin[1] << "]"<< endl;
+
+ // A separate occluder proscenium will also be maintained,
+ // starting out the same as the viewport proscenium, and
+ // expanding as necessary so that it encompasses the center
+ // point of at least one feature edge in each retained view
+ // edge.
+ // The occluder proscenium will be used later to cull occluding
+ // triangles before they are inserted into the Grid.
+ // The occluder proscenium starts out the same size as the view
+ // proscenium
+ GridHelpers::getDefaultViewProscenium(occluderProscenium);
+
+ // N.B. Freestyle is inconsistent in its use of ViewMap::viewedges_container
+ // and vector<ViewEdge*>::iterator. Probably all occurences of vector<ViewEdge*>::iterator
+ // should be replaced ViewMap::viewedges_container throughout the code.
+ // For each view edge
+ ViewMap::viewedges_container::iterator ve, veend;
+
+ for(ve=ioViewMap->ViewEdges().begin(), veend=ioViewMap->ViewEdges().end(); ve!=veend; ve++) {
+ // Overview:
+ // Search for a visible feature edge
+ // If none: mark view edge as non-displayable
+ // Otherwise:
+ // Find a feature edge with center point inside occluder proscenium.
+ // If none exists, find the feature edge with center point
+ // closest to viewport origin.
+ // Expand occluder proscenium to enclose center point.
+
+ // For each feature edge, while bestOccluderTarget not found and view edge not visibile
+ bool bestOccluderTargetFound = false;
+ FEdge *bestOccluderTarget = NULL;
+ real bestOccluderDistance = 0.0;
+ FEdge *festart = (*ve)->fedgeA();
+ FEdge *fe = festart;
+ // All ViewEdges start culled
+ (*ve)->setIsInImage(false);
+
+ // For simple visibility calculation: mark a feature edge
+ // that is known to have a center point inside the occluder proscenium.
+ // Cull all other feature edges.
+ do {
+ // All FEdges start culled
+ fe->setIsInImage(false);
+
+ // Look for the visible edge that can most easily be included
+ // in the occluder proscenium.
+ if ( ! bestOccluderTargetFound ) {
+ // If center point is inside occluder proscenium,
+ if ( insideProscenium(occluderProscenium, fe->center2d()) ) {
+ // Use this feature edge for visibility deterimination
+ fe->setIsInImage(true);
+ // Mark bestOccluderTarget as found
+ bestOccluderTargetFound = true;
+ bestOccluderTarget = fe;
+ } else {
+ real d = distance2D(fe->center2d(), prosceniumOrigin);
+ // If center point is closer to viewport origin than current target
+ if ( bestOccluderTarget == NULL || d < bestOccluderDistance ) {
+ // Then store as bestOccluderTarget
+ bestOccluderDistance = d;
+ bestOccluderTarget = fe;
+ }
+ }
+ }
+
+ // If feature edge crosses the view proscenium
+ if ( ! (*ve)->isInImage() && crossesProscenium(viewProscenium, fe) ) {
+ // Then the view edge will be included in the image
+ (*ve)->setIsInImage(true);
+ }
+ fe = fe->nextEdge();
+ } while ( fe != NULL && fe != festart && ! ( bestOccluderTargetFound && (*ve)->isInImage() ) );
+
+ // Either we have run out of FEdges, or we already have the one edge we need to determine visibility
+ // Cull all remaining edges.
+ while ( fe != NULL && fe != festart ) {
+ fe->setIsInImage(false);
+ fe = fe->nextEdge();
+ }
+
+ // If bestOccluderTarget was not found inside the occluder proscenium,
+ // we need to expand the occluder proscenium to include it.
+ if ( (*ve)->isInImage() && bestOccluderTarget != NULL && ! bestOccluderTargetFound ) {
+ // Expand occluder proscenium to enclose bestOccluderTarget
+ Vec3r point = bestOccluderTarget->center2d();
+ if ( point[0] < occluderProscenium[0] ) {
+ occluderProscenium[0] = point[0];
+ } else if ( point[0] > occluderProscenium[1] ) {
+ occluderProscenium[1] = point[0];
+ }
+ if ( point[1] < occluderProscenium[2] ) {
+ occluderProscenium[2] = point[1];
+ } else if ( point[1] > occluderProscenium[3] ) {
+ occluderProscenium[3] = point[1];
+ }
+ // Use bestOccluderTarget for visibility determination
+ bestOccluderTarget->setIsInImage(true);
+ }
+ }
+
+ // We are done calculating the occluder proscenium.
+ // Expand the occluder proscenium by an epsilon to avoid rounding errors.
+ const real epsilon = 1.0e-6;
+ occluderProscenium[0] -= epsilon;
+ occluderProscenium[1] += epsilon;
+ occluderProscenium[2] -= epsilon;
+ occluderProscenium[3] += epsilon;
+
+ // For "Normal" or "Fast" style visibility computation only:
+
+ // For more detailed visibility calculation, make a second pass through
+ // the view map, marking all feature edges with center points inside
+ // the final occluder proscenium. All of these feature edges can be
+ // considered during visibility calculation.
+
+ // So far we have only found one FEdge per ViewEdge. The "Normal" and
+ // "Fast" styles of visibility computation want to consider many
+ // FEdges for each ViewEdge.
+ // Here we re-scan the view map to find any usable FEdges that we
+ // skipped on the first pass, or that have become usable because the
+ // occluder proscenium has been expanded since the edge was visited
+ // on the first pass.
+ if ( extensiveFEdgeSearch ) {
+ // For each view edge,
+ for(ve=ioViewMap->ViewEdges().begin(), veend=ioViewMap->ViewEdges().end(); ve!=veend; ve++) {
+ if ( ! (*ve)->isInImage() ) {
+ continue;
+ }
+ // For each feature edge,
+ FEdge *festart = (*ve)->fedgeA();
+ FEdge *fe = festart;
+ do {
+ // If not (already) visible and center point inside occluder proscenium,
+ if ( ! fe->isInImage() && insideProscenium(occluderProscenium, fe->center2d()) ) {
+ // Use the feature edge for visibility determination
+ fe->setIsInImage(true);
+ }
+ fe = fe->nextEdge();
+ } while ( fe != NULL && fe != festart );
+ }
+ }
+}
+
+void ViewMapBuilder::computeInitialViewEdges(WingedEdge& we)
+{
+ vector<WShape*> wshapes = we.getWShapes();
+ SShape* psShape;
+
+ for (vector<WShape*>::const_iterator it = wshapes.begin();
+ it != wshapes.end();
+ it++) {
+ // create the embedding
+ psShape = new SShape;
+ psShape->setId((*it)->GetId());
+ psShape->setName((*it)->getName());
+ psShape->setFrsMaterials((*it)->frs_materials()); // FIXME
+
+ // create the view shape
+ ViewShape * vshape = new ViewShape(psShape);
+ // add this view shape to the view map:
+ _ViewMap->AddViewShape(vshape);
+
+ _pViewEdgeBuilder->setCurrentViewId(_currentId); // we want to number the view edges in a unique way for the while scene.
+ _pViewEdgeBuilder->setCurrentFId(_currentFId); // we want to number the feature edges in a unique way for the while scene.
+ _pViewEdgeBuilder->setCurrentSVertexId(_currentFId); // we want to number the SVertex in a unique way for the while scene.
+ _pViewEdgeBuilder->BuildViewEdges(dynamic_cast<WXShape*>(*it), vshape,
+ _ViewMap->ViewEdges(),
+ _ViewMap->ViewVertices(),
+ _ViewMap->FEdges(),
+ _ViewMap->SVertices());
+
+ _currentId = _pViewEdgeBuilder->currentViewId()+1;
+ _currentFId = _pViewEdgeBuilder->currentFId()+1;
+ _currentSVertexId = _pViewEdgeBuilder->currentSVertexId()+1;
+
+ psShape->ComputeBBox();
+ }
+}
+
+void ViewMapBuilder::computeCusps(ViewMap *ioViewMap){
+ vector<ViewVertex*> newVVertices;
+ vector<ViewEdge*> newVEdges;
+ ViewMap::viewedges_container& vedges = ioViewMap->ViewEdges();
+ ViewMap::viewedges_container::iterator ve=vedges.begin(), veend=vedges.end();
+ for(;
+ ve!=veend;
+ ++ve){
+ if((!((*ve)->getNature() & Nature::SILHOUETTE)) || (!((*ve)->fedgeA()->isSmooth())))
+ continue;
+ FEdge *fe = (*ve)->fedgeA();
+ FEdge * fefirst = fe;
+ bool first = true;
+ bool positive = true;
+ do{
+ FEdgeSmooth * fes = dynamic_cast<FEdgeSmooth*>(fe);
+ Vec3r A((fes)->vertexA()->point3d());
+ Vec3r B((fes)->vertexB()->point3d());
+ Vec3r AB(B-A);
+ AB.normalize();
+ Vec3r m((A+B)/2.0);
+ Vec3r crossP(AB^(fes)->normal());
+ crossP.normalize();
+ Vec3r viewvector;
+ if (_orthographicProjection) {
+ viewvector = Vec3r(0.0, 0.0, m.z()-_viewpoint.z());
+ } else {
+ viewvector = Vec3r(m-_viewpoint);
+ }
+ viewvector.normalize();
+ if(first){
+ if(((crossP)*(viewvector)) > 0)
+ positive = true;
+ else
+ positive = false;
+ first = false;
+ }
+ // If we're in a positive part, we need
+ // a stronger negative value to change
+ NonTVertex *cusp = 0;
+ if(positive){
+ if(((crossP)*(viewvector)) < -0.1){
+ // state changes
+ positive = false;
+ // creates and insert cusp
+ cusp = dynamic_cast<NonTVertex*>(ioViewMap->InsertViewVertex(fes->vertexA(), newVEdges));
+ if(cusp!=0)
+ cusp->setNature(cusp->getNature()|Nature::CUSP);
+ }
+
+ }else{
+ // If we're in a negative part, we need
+ // a stronger negative value to change
+ if(((crossP)*(viewvector)) > 0.1){
+ positive = true;
+ cusp = dynamic_cast<NonTVertex*>(ioViewMap->InsertViewVertex(fes->vertexA(), newVEdges));
+ if(cusp!=0)
+ cusp->setNature(cusp->getNature()|Nature::CUSP);
+ }
+ }
+ fe = fe->nextEdge();
+ }while((fe!=0) && (fe!=fefirst));
+ }
+ for(ve=newVEdges.begin(), veend=newVEdges.end();
+ ve!=veend;
+ ++ve){
+ (*ve)->viewShape()->AddEdge(*ve);
+ vedges.push_back(*ve);
+ }
+}
+
+void ViewMapBuilder::ComputeCumulativeVisibility(ViewMap *ioViewMap,
+ WingedEdge& we, const BBox<Vec3r>& bbox, real epsilon, bool cull, GridDensityProviderFactory& factory)
+{
+ auto_ptr<GridHelpers::Transform> transform;
+ auto_ptr<OccluderSource> source;
+
+ if ( _orthographicProjection ) {
+ transform.reset(new BoxGrid::Transform);
+ } else {
+ transform.reset(new SphericalGrid::Transform);
+ }
+
+ if ( cull ) {
+ source.reset(new CulledOccluderSource(*transform, we, *ioViewMap, true));
+ } else {
+ source.reset(new OccluderSource(*transform, we));
+ }
+
+ auto_ptr<GridDensityProvider> density(factory.newGridDensityProvider(*source, bbox, *transform));
+
+ if ( _orthographicProjection ) {
+ BoxGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
+ computeCumulativeVisibility<BoxGrid, BoxGrid::Iterator>(ioViewMap, grid, epsilon);
+ } else {
+ SphericalGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
+ computeCumulativeVisibility<SphericalGrid, SphericalGrid::Iterator>(ioViewMap, grid, epsilon);
+ }
+}
+
+void ViewMapBuilder::ComputeDetailedVisibility(ViewMap *ioViewMap,
+ WingedEdge& we, const BBox<Vec3r>& bbox, real epsilon, bool cull, GridDensityProviderFactory& factory)
+{
+ auto_ptr<GridHelpers::Transform> transform;
+ auto_ptr<OccluderSource> source;
+
+ if ( _orthographicProjection ) {
+ transform.reset(new BoxGrid::Transform);
+ } else {
+ transform.reset(new SphericalGrid::Transform);
+ }
+
+ if ( cull ) {
+ source.reset(new CulledOccluderSource(*transform, we, *ioViewMap, true));
+ } else {
+ source.reset(new OccluderSource(*transform, we));
+ }
+
+ auto_ptr<GridDensityProvider> density(factory.newGridDensityProvider(*source, bbox, *transform));
+
+ if ( _orthographicProjection ) {
+ BoxGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
+ computeDetailedVisibility<BoxGrid, BoxGrid::Iterator>(ioViewMap, grid, epsilon);
+ } else {
+ SphericalGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
+ computeDetailedVisibility<SphericalGrid, SphericalGrid::Iterator>(ioViewMap, grid, epsilon);
+ }
+}
+
+void ViewMapBuilder::ComputeEdgesVisibility(ViewMap *ioViewMap,
+ WingedEdge& we, const BBox<Vec3r>& bbox, unsigned int sceneNumFaces, visibility_algo iAlgo, real epsilon)
+{
+ switch(iAlgo)
+ {
+ case ray_casting:
+ cout << "Using ordinary ray casting" << endl;
+ BuildGrid(we, bbox, sceneNumFaces);
+ ComputeRayCastingVisibility(ioViewMap, epsilon);
+ break;
+ case ray_casting_fast:
+ cout << "Using fast ray casting" << endl;
+ BuildGrid(we, bbox, sceneNumFaces);
+ ComputeFastRayCastingVisibility(ioViewMap, epsilon);
+ break;
+ case ray_casting_very_fast:
+ cout << "Using very fast ray casting" << endl;
+ BuildGrid(we, bbox, sceneNumFaces);
+ ComputeVeryFastRayCastingVisibility(ioViewMap, epsilon);
+ break;
+ case ray_casting_culled_adaptive_traditional:
+ cout << "Using culled adaptive grid with heuristic density and traditional QI calculation" << endl;
+ try {
+ HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
+ ComputeDetailedVisibility(ioViewMap, we, bbox, epsilon, true, factory);
+ } catch (...) {
+ // Last resort catch to make sure RAII semantics hold for OptimizedGrid
+ // Can be replaced with try...catch block around main() if the program
+ // as a whole is converted to RAII
+
+ // This is the little-mentioned caveat of RAII: RAII does not work unless
+ // destructors are always called, but destructors are only called if all
+ // exceptions are caught (or std::terminate() is replaced).
+
+ // We don't actually handle the exception here, so re-throw it
+ // now that our destructors have had a chance to run.
+ throw;
+ }
+ break;
+ case ray_casting_adaptive_traditional:
+ cout << "Using unculled adaptive grid with heuristic density and traditional QI calculation" << endl;
+ try {
+ HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
+ ComputeDetailedVisibility(ioViewMap, we, bbox, epsilon, false, factory);
+ } catch (...) {
+ throw;
+ }
+ break;
+ case ray_casting_culled_adaptive_cumulative:
+ cout << "Using culled adaptive grid with heuristic density and cumulative QI calculation" << endl;
+ try {
+ HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
+ ComputeCumulativeVisibility(ioViewMap, we, bbox, epsilon, true, factory);
+ } catch (...) {
+ throw;
+ }
+ break;
+ case ray_casting_adaptive_cumulative:
+ cout << "Using unculled adaptive grid with heuristic density and cumulative QI calculation" << endl;
+ try {
+ HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
+ ComputeCumulativeVisibility(ioViewMap, we, bbox, epsilon, false, factory);
+ } catch (...) {
+ throw;
+ }
+ break;
+ default:
+ break;
+ }
+}
+
+static const unsigned gProgressBarMaxSteps = 10;
+static const unsigned gProgressBarMinSize = 2000;
+
+void ViewMapBuilder::ComputeRayCastingVisibility(ViewMap *ioViewMap, real epsilon)
+{
+ vector<ViewEdge*>& vedges = ioViewMap->ViewEdges();
+ bool progressBarDisplay = false;
+ unsigned progressBarStep = 0;
+ unsigned vEdgesSize = vedges.size();
+ unsigned fEdgesSize = ioViewMap->FEdges().size();
+
+ if(_pProgressBar != NULL && fEdgesSize > gProgressBarMinSize) {
+ unsigned progressBarSteps = min(gProgressBarMaxSteps, vEdgesSize);
+ progressBarStep = vEdgesSize / progressBarSteps;
+ _pProgressBar->reset();
+ _pProgressBar->setLabelText("Computing Ray casting Visibility");
+ _pProgressBar->setTotalSteps(progressBarSteps);
+ _pProgressBar->setProgress(0);
+ progressBarDisplay = true;
+ }
+
+ unsigned counter = progressBarStep;
+ FEdge * fe, *festart;
+ int nSamples = 0;
+ vector<Polygon3r*> aFaces;
+ Polygon3r *aFace = 0;
+ unsigned tmpQI = 0;
+ unsigned qiClasses[256];
+ unsigned maxIndex, maxCard;
+ unsigned qiMajority;
+ static unsigned timestamp = 1;
+ for(vector<ViewEdge*>::iterator ve=vedges.begin(), veend=vedges.end();
+ ve!=veend;
+ ve++)
+ {
+#if logging > 0
+cout << "Processing ViewEdge " << (*ve)->getId() << endl;
+#endif
+ festart = (*ve)->fedgeA();
+ fe = (*ve)->fedgeA();
+ qiMajority = 1;
+ do {
+ qiMajority++;
+ fe = fe->nextEdge();
+ } while (fe && fe != festart);
+ qiMajority >>= 1;
+#if logging > 0
+cout << "\tqiMajority: " << qiMajority << endl;
+#endif
+
+ tmpQI = 0;
+ maxIndex = 0;
+ maxCard = 0;
+ nSamples = 0;
+ fe = (*ve)->fedgeA();
+ memset(qiClasses, 0, 256 * sizeof(*qiClasses));
+ set<ViewShape*> occluders;
+ do
+ {
+ if((maxCard < qiMajority)) {
+ tmpQI = ComputeRayCastingVisibility(fe, _Grid, epsilon, occluders, &aFace, timestamp++);
+
+#if logging > 0
+cout << "\tFEdge: visibility " << tmpQI << endl;
+#endif
+ //ARB: This is an error condition, not an alert condition.
+ // Some sort of recovery or abort is necessary.
+ if(tmpQI >= 256) {
+ cerr << "Warning: too many occluding levels" << endl;
+ //ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
+ tmpQI = 255;
+ }
+
+ if (++qiClasses[tmpQI] > maxCard) {
+ maxCard = qiClasses[tmpQI];
+ maxIndex = tmpQI;
+ }
+ } else {
+ //ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
+ FindOccludee(fe, _Grid, epsilon, &aFace, timestamp++);
+#if logging > 0
+cout << "\tFEdge: occludee only (" << (aFace != NULL ? "found" : "not found") << ")" << endl;
+#endif
+ }
+
+ if(aFace) {
+ fe->setaFace(*aFace);
+ aFaces.push_back(aFace);
+ fe->setOccludeeEmpty(false);
+#if logging > 0
+cout << "\tFound occludee" << endl;
+#endif
+ }
+ else
+ {
+ //ARB: We are arbitrarily using the last observed value for occludee
+ // (almost always the value observed for the edge before festart).
+ // Is that meaningful?
+ // ...in fact, _occludeeEmpty seems to be unused.
+ fe->setOccludeeEmpty(true);
+ }
+
+ ++nSamples;
+ fe = fe->nextEdge();
+ }
+ while((maxCard < qiMajority) && (0!=fe) && (fe!=festart));
+#if logging > 0
+cout << "\tFinished with " << nSamples << " samples, maxCard = " << maxCard << endl;
+#endif
+
+ // ViewEdge
+ // qi --
+ (*ve)->setQI(maxIndex);
+ // occluders --
+ for(set<ViewShape*>::iterator o=occluders.begin(), oend=occluders.end();
+ o!=oend;
+ ++o)
+ (*ve)->AddOccluder((*o));
+#if logging > 0
+cout << "\tConclusion: QI = " << maxIndex << ", " << (*ve)->occluders_size() << " occluders." << endl;
+#endif
+ // occludee --
+ if(!aFaces.empty())
+ {
+ if(aFaces.size() <= (float)nSamples/2.f)
+ {
+ (*ve)->setaShape(0);
+ }
+ else
+ {
+ vector<Polygon3r*>::iterator p = aFaces.begin();
+ WFace * wface = (WFace*)((*p)->userdata);
+ ViewShape *vshape = ioViewMap->viewShape(wface->GetVertex(0)->shape()->GetId());
+ ++p;
+ (*ve)->setaShape(vshape);
+ }
+ }
+
+ if(progressBarDisplay) {
+ counter--;
+ if (counter <= 0) {
+ counter = progressBarStep;
+ _pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
+ }
+ }
+ aFaces.clear();
+ }
+}
+
+void ViewMapBuilder::ComputeFastRayCastingVisibility(ViewMap *ioViewMap, real epsilon)
+{
+ vector<ViewEdge*>& vedges = ioViewMap->ViewEdges();
+ bool progressBarDisplay = false;
+ unsigned progressBarStep = 0;
+ unsigned vEdgesSize = vedges.size();
+ unsigned fEdgesSize = ioViewMap->FEdges().size();
+
+ if(_pProgressBar != NULL && fEdgesSize > gProgressBarMinSize) {
+ unsigned progressBarSteps = min(gProgressBarMaxSteps, vEdgesSize);
+ progressBarStep = vEdgesSize / progressBarSteps;
+ _pProgressBar->reset();
+ _pProgressBar->setLabelText("Computing Ray casting Visibility");
+ _pProgressBar->setTotalSteps(progressBarSteps);
+ _pProgressBar->setProgress(0);
+ progressBarDisplay = true;
+ }
+
+ unsigned counter = progressBarStep;
+ FEdge * fe, *festart;
+ unsigned nSamples = 0;
+ vector<Polygon3r*> aFaces;
+ Polygon3r *aFace = 0;
+ unsigned tmpQI = 0;
+ unsigned qiClasses[256];
+ unsigned maxIndex, maxCard;
+ unsigned qiMajority;
+ static unsigned timestamp = 1;
+ bool even_test;
+ for(vector<ViewEdge*>::iterator ve=vedges.begin(), veend=vedges.end();
+ ve!=veend;
+ ve++)
+ {
+ festart = (*ve)->fedgeA();
+ fe = (*ve)->fedgeA();
+ qiMajority = 1;
+ do {
+ qiMajority++;
+ fe = fe->nextEdge();
+ } while (fe && fe != festart);
+ if (qiMajority >= 4)
+ qiMajority >>= 2;
+ else
+ qiMajority = 1;
+
+ set<ViewShape*> occluders;
+
+ even_test = true;
+ maxIndex = 0;
+ maxCard = 0;
+ nSamples = 0;
+ memset(qiClasses, 0, 256 * sizeof(*qiClasses));
+ fe = (*ve)->fedgeA();
+ do
+ {
+ if (even_test)
+ {
+ if((maxCard < qiMajority)) {
+ tmpQI = ComputeRayCastingVisibility(fe, _Grid, epsilon, occluders, &aFace, timestamp++);
+
+ //ARB: This is an error condition, not an alert condition.
+ // Some sort of recovery or abort is necessary.
+ if(tmpQI >= 256) {
+ cerr << "Warning: too many occluding levels" << endl;
+ //ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
+ tmpQI = 255;
+ }
+
+ if (++qiClasses[tmpQI] > maxCard) {
+ maxCard = qiClasses[tmpQI];
+ maxIndex = tmpQI;
+ }
+ } else {
+ //ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
+ FindOccludee(fe, _Grid, epsilon, &aFace, timestamp++);
+ }
+
+ if(aFace)
+ {
+ fe->setaFace(*aFace);
+ aFaces.push_back(aFace);
+ }
+ ++nSamples;
+ even_test = false;
+ }
+ else
+ even_test = true;
+ fe = fe->nextEdge();
+ } while ((maxCard < qiMajority) && (0!=fe) && (fe!=festart));
+
+ (*ve)->setQI(maxIndex);
+
+ if(!aFaces.empty())
+ {
+ if(aFaces.size() < nSamples / 2)
+ {
+ (*ve)->setaShape(0);
+ }
+ else
+ {
+ vector<Polygon3r*>::iterator p = aFaces.begin();
+ WFace * wface = (WFace*)((*p)->userdata);
+ ViewShape *vshape = ioViewMap->viewShape(wface->GetVertex(0)->shape()->GetId());
+ ++p;
+ // for(;
+ // p!=pend;
+ // ++p)
+ // {
+ // WFace *f = (WFace*)((*p)->userdata);
+ // ViewShape *vs = ioViewMap->viewShape(f->GetVertex(0)->shape()->GetId());
+ // if(vs != vshape)
+ // {
+ // sameShape = false;
+ // break;
+ // }
+ // }
+ // if(sameShape)
+ (*ve)->setaShape(vshape);
+ }
+ }
+
+ //(*ve)->setaFace(aFace);
+
+ if(progressBarDisplay) {
+ counter--;
+ if (counter <= 0) {
+ counter = progressBarStep;
+ _pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
+ }
+ }
+ aFaces.clear();
+ }
+}
+
+void ViewMapBuilder::ComputeVeryFastRayCastingVisibility(ViewMap *ioViewMap, real epsilon)
+{
+ vector<ViewEdge*>& vedges = ioViewMap->ViewEdges();
+ bool progressBarDisplay = false;
+ unsigned progressBarStep = 0;
+ unsigned vEdgesSize = vedges.size();
+ unsigned fEdgesSize = ioViewMap->FEdges().size();
+
+ if(_pProgressBar != NULL && fEdgesSize > gProgressBarMinSize) {
+ unsigned progressBarSteps = min(gProgressBarMaxSteps, vEdgesSize);
+ progressBarStep = vEdgesSize / progressBarSteps;
+ _pProgressBar->reset();
+ _pProgressBar->setLabelText("Computing Ray casting Visibility");
+ _pProgressBar->setTotalSteps(progressBarSteps);
+ _pProgressBar->setProgress(0);
+ progressBarDisplay = true;
+ }
+
+ unsigned counter = progressBarStep;
+ FEdge* fe;
+ unsigned qi = 0;
+ Polygon3r *aFace = 0;
+ static unsigned timestamp = 1;
+ for(vector<ViewEdge*>::iterator ve=vedges.begin(), veend=vedges.end();
+ ve!=veend;
+ ve++)
+ {
+ set<ViewShape*> occluders;
+
+ fe = (*ve)->fedgeA();
+ qi = ComputeRayCastingVisibility(fe, _Grid, epsilon, occluders, &aFace, timestamp++);
+ if(aFace)
+ {
+ fe->setaFace(*aFace);
+ WFace * wface = (WFace*)(aFace->userdata);
+ ViewShape *vshape = ioViewMap->viewShape(wface->GetVertex(0)->shape()->GetId());
+ (*ve)->setaShape(vshape);
+ }
+ else
+ {
+ (*ve)->setaShape(0);
+ }
+
+ (*ve)->setQI(qi);
+
+ if(progressBarDisplay) {
+ counter--;
+ if (counter <= 0) {
+ counter = progressBarStep;
+ _pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
+ }
+ }
+ }
+}
+
+void ViewMapBuilder::FindOccludee(FEdge *fe, Grid* iGrid, real epsilon, Polygon3r** oaPolygon, unsigned timestamp,
+ Vec3r& u, Vec3r& A, Vec3r& origin, Vec3r& edge, vector<WVertex*>& faceVertices)
+{
+ WFace *face = 0;
+ if(fe->isSmooth()){
+ FEdgeSmooth * fes = dynamic_cast<FEdgeSmooth*>(fe);
+ face = (WFace*)fes->face();
+ }
+ OccludersSet occluders;
+ WFace * oface;
+ bool skipFace;
+
+ WVertex::incoming_edge_iterator ie;
+ OccludersSet::iterator p, pend;
+
+ *oaPolygon = 0;
+ if(((fe)->getNature() & Nature::SILHOUETTE) || ((fe)->getNature() & Nature::BORDER))
+ {
+ occluders.clear();
+ // we cast a ray from A in the same direction but looking behind
+ Vec3r v(-u[0],-u[1],-u[2]);
+ iGrid->castInfiniteRay(A, v, occluders, timestamp);
+
+ bool noIntersection = true;
+ real mint=FLT_MAX;
+ // we met some occluders, let us fill the aShape field
+ // with the first intersected occluder
+ for(p=occluders.begin(),pend=occluders.end();
+ p!=pend;
+ p++)
+ {
+ // check whether the edge and the polygon plane are coincident:
+ //-------------------------------------------------------------
+ //first let us compute the plane equation.
+ oface = (WFace*)(*p)->userdata;
+ Vec3r v1(((*p)->getVertices())[0]);
+ Vec3r normal((*p)->getNormal());
+ real d = -(v1 * normal);
+ real t,t_u,t_v;
+
+ if(0 != face)
+ {
+ skipFace = false;
+
+ if(face == oface)
+ continue;
+
+ if(faceVertices.empty())
+ continue;
+
+ for(vector<WVertex*>::iterator fv=faceVertices.begin(), fvend=faceVertices.end();
+ fv!=fvend;
+ ++fv)
+ {
+ if((*fv)->isBoundary())
+ continue;
+ WVertex::incoming_edge_iterator iebegin=(*fv)->incoming_edges_begin();
+ WVertex::incoming_edge_iterator ieend=(*fv)->incoming_edges_end();
+ for(ie=iebegin;ie!=ieend; ++ie)
+ {
+ if((*ie) == 0)
+ continue;
+
+ WFace * sface = (*ie)->GetbFace();
+ if(sface == oface)
+ {
+ skipFace = true;
+ break;
+ }
+ }
+ if(skipFace)
+ break;
+ }
+ if(skipFace)
+ continue;
+ }
+ else
+ {
+ if(GeomUtils::COINCIDENT == GeomUtils::intersectRayPlane(origin, edge, normal, d, t, epsilon))
+ continue;
+ }
+ if((*p)->rayIntersect(A, v, t,t_u,t_v))
+ {
+ if (fabs(v * normal) > 0.0001)
+ if ((t>0.0)) // && (t<1.0))
+ {
+ if (t<mint)
+ {
+ *oaPolygon = (*p);
+ mint = t;
+ noIntersection = false;
+ fe->setOccludeeIntersection(Vec3r(A+t*v));
+ }
+ }
+ }
+ }
+
+ if(noIntersection)
+ *oaPolygon = 0;
+ }
+}
+
+void ViewMapBuilder::FindOccludee(FEdge *fe, Grid* iGrid, real epsilon, Polygon3r** oaPolygon, unsigned timestamp)
+{
+ OccludersSet occluders;
+
+ Vec3r A;
+ Vec3r edge;
+ Vec3r origin;
+ A = Vec3r(((fe)->vertexA()->point3D() + (fe)->vertexB()->point3D())/2.0);
+ edge = Vec3r((fe)->vertexB()->point3D()-(fe)->vertexA()->point3D());
+ origin = Vec3r((fe)->vertexA()->point3D());
+ Vec3r u;
+ if (_orthographicProjection) {
+ u = Vec3r(0.0, 0.0, _viewpoint.z()-A.z());
+ } else {
+ u = Vec3r(_viewpoint-A);
+ }
+ u.normalize();
+ if(A < iGrid->getOrigin())
+ cerr << "Warning: point is out of the grid for fedge " << fe->getId().getFirst() << "-" << fe->getId().getSecond() << endl;
+
+ vector<WVertex*> faceVertices;
+
+ WFace *face = 0;
+ if(fe->isSmooth()){
+ FEdgeSmooth * fes = dynamic_cast<FEdgeSmooth*>(fe);
+ face = (WFace*)fes->face();
+ }
+ if(0 != face)
+ face->RetrieveVertexList(faceVertices);
+
+ return FindOccludee(fe,iGrid, epsilon, oaPolygon, timestamp,
+ u, A, origin, edge, faceVertices);
+}
+
+int ViewMapBuilder::ComputeRayCastingVisibility(FEdge *fe, Grid* iGrid, real epsilon, set<ViewShape*>& oOccluders,
+ Polygon3r** oaPolygon, unsigned timestamp)
+{
+ OccludersSet occluders;
+ int qi = 0;
+
+ Vec3r center;
+ Vec3r edge;
+ Vec3r origin;
+
+ center = fe->center3d();
+ edge = Vec3r(fe->vertexB()->point3D() - fe->vertexA()->point3D());
+ origin = Vec3r(fe->vertexA()->point3D());
+ //
+ // // Is the edge outside the view frustum ?
+ Vec3r gridOrigin(iGrid->getOrigin());
+ Vec3r gridExtremity(iGrid->getOrigin()+iGrid->gridSize());
+
+ if( (center.x() < gridOrigin.x()) || (center.y() < gridOrigin.y()) || (center.z() < gridOrigin.z())
+ ||(center.x() > gridExtremity.x()) || (center.y() > gridExtremity.y()) || (center.z() > gridExtremity.z())){
+ cerr << "Warning: point is out of the grid for fedge " << fe->getId() << endl;
+ //return 0;
+ }
+
+
+ // Vec3r A(fe->vertexA()->point2d());
+ // Vec3r B(fe->vertexB()->point2d());
+ // int viewport[4];
+ // SilhouetteGeomEngine::retrieveViewport(viewport);
+ // if( (A.x() < viewport[0]) || (A.x() > viewport[2]) || (A.y() < viewport[1]) || (A.y() > viewport[3])
+ // ||(B.x() < viewport[0]) || (B.x() > viewport[2]) || (B.y() < viewport[1]) || (B.y() > viewport[3])){
+ // cerr << "Warning: point is out of the grid for fedge " << fe->getId() << endl;
+ // //return 0;
+ // }
+
+ Vec3r vp;
+ if (_orthographicProjection) {
+ vp = Vec3r(center.x(), center.y(), _viewpoint.z());
+ } else {
+ vp = Vec3r(_viewpoint);
+ }
+ Vec3r u(vp - center);
+ real raylength = u.norm();
+ u.normalize();
+ //cout << "grid origin " << iGrid->getOrigin().x() << "," << iGrid->getOrigin().y() << "," << iGrid->getOrigin().z() << endl;
+ //cout << "center " << center.x() << "," << center.y() << "," << center.z() << endl;
+
+ iGrid->castRay(center, vp, occluders, timestamp);
+
+ WFace *face = 0;
+ if(fe->isSmooth()){
+ FEdgeSmooth * fes = dynamic_cast<FEdgeSmooth*>(fe);
+ face = (WFace*)fes->face();
+ }
+ vector<WVertex*> faceVertices;
+ WVertex::incoming_edge_iterator ie;
+
+ WFace * oface;
+ bool skipFace;
+ OccludersSet::iterator p, pend;
+ if(face)
+ face->RetrieveVertexList(faceVertices);
+
+ for(p=occluders.begin(),pend=occluders.end();
+ p!=pend;
+ p++)
+ {
+ // If we're dealing with an exact silhouette, check whether
+ // we must take care of this occluder of not.
+ // (Indeed, we don't consider the occluders that
+ // share at least one vertex with the face containing
+ // this edge).
+ //-----------
+ oface = (WFace*)(*p)->userdata;
+#if logging > 1
+cout << "\t\tEvaluating intersection for occluder " << ((*p)->getVertices())[0] << ((*p)->getVertices())[1] << ((*p)->getVertices())[2] << endl << "\t\t\tand ray " << vp << " * " << u << " (center " << center << ")" << endl;
+#endif
+ Vec3r v1(((*p)->getVertices())[0]);
+ Vec3r normal((*p)->getNormal());
+ real d = -(v1 * normal);
+ real t, t_u, t_v;
+
+#if logging > 1
+cout << "\t\tp: " << ((*p)->getVertices())[0] << ((*p)->getVertices())[1] << ((*p)->getVertices())[2] << ", norm: " << (*p)->getNormal() << endl;
+#endif
+
+ if(0 != face)
+ {
+#if logging > 1
+cout << "\t\tDetermining face adjacency...";
+#endif
+ skipFace = false;
+
+ if(face == oface) {
+#if logging > 1
+cout << " Rejecting occluder for face concurrency." << endl;
+#endif
+ continue;
+ }
+
+
+ for(vector<WVertex*>::iterator fv=faceVertices.begin(), fvend=faceVertices.end();
+ fv!=fvend;
+ ++fv)
+ {
+ if((*fv)->isBoundary())
+ continue;
+
+ WVertex::incoming_edge_iterator iebegin=(*fv)->incoming_edges_begin();
+ WVertex::incoming_edge_iterator ieend=(*fv)->incoming_edges_end();
+ for(ie=iebegin;ie!=ieend; ++ie)
+ {
+ if((*ie) == 0)
+ continue;
+
+ WFace * sface = (*ie)->GetbFace();
+ //WFace * sfacea = (*ie)->GetaFace();
+ //if((sface == oface) || (sfacea == oface))
+ if(sface == oface)
+ {
+ skipFace = true;
+ break;
+ }
+ }
+ if(skipFace)
+ break;
+ }
+ if(skipFace) {
+#if logging > 1
+cout << " Rejecting occluder for face adjacency." << endl;
+#endif
+ continue;
+ }
+ }
+ else
+ {
+ // check whether the edge and the polygon plane are coincident:
+ //-------------------------------------------------------------
+ //first let us compute the plane equation.
+
+ if(GeomUtils::COINCIDENT == GeomUtils::intersectRayPlane(origin, edge, normal, d, t, epsilon)) {
+#if logging > 1
+cout << "\t\tRejecting occluder for target coincidence." << endl;
+#endif
+ continue;
+ }
+ }
+
+ if((*p)->rayIntersect(center, u, t, t_u, t_v))
+ {
+#if logging > 1
+cout << "\t\tRay " << vp << " * " << u << " intersects at time " << t << " (raylength is " << raylength << ")" << endl;
+#endif
+#if logging > 1
+cout << "\t\t(u * normal) == " << (u * normal) << " for normal " << normal << endl;
+#endif
+ if (fabs(u * normal) > 0.0001)
+ if ((t>0.0) && (t<raylength))
+ {
+#if logging > 1
+cout << "\t\tIs occluder" << endl;
+#endif
+ WFace *f = (WFace*)((*p)->userdata);
+ ViewShape *vshape = _ViewMap->viewShape(f->GetVertex(0)->shape()->GetId());
+ oOccluders.insert(vshape);
+ ++qi;
+ if(!_EnableQI)
+ break;
+ }
+ }
+ }
+
+ // Find occludee
+ FindOccludee(fe,iGrid, epsilon, oaPolygon, timestamp,
+ u, center, edge, origin, faceVertices);
+
+ return qi;
+}
+
+void ViewMapBuilder::ComputeIntersections(ViewMap *ioViewMap, intersection_algo iAlgo, real epsilon)
+{
+ switch(iAlgo)
+ {
+ case sweep_line:
+ ComputeSweepLineIntersections(ioViewMap, epsilon);
+ break;
+ default:
+ break;
+ }
+ ViewMap::viewvertices_container& vvertices = ioViewMap->ViewVertices();
+ for(ViewMap::viewvertices_container::iterator vv=vvertices.begin(), vvend=vvertices.end();
+ vv!=vvend;
+ ++vv)
+ {
+ if((*vv)->getNature() == Nature::T_VERTEX)
+ {
+ TVertex *tvertex = (TVertex*)(*vv);
+ cout << "TVertex " << tvertex->getId() << " has :" << endl;
+ cout << "FrontEdgeA: " << tvertex->frontEdgeA().first << endl;
+ cout << "FrontEdgeB: " << tvertex->frontEdgeB().first << endl;
+ cout << "BackEdgeA: " << tvertex->backEdgeA().first << endl;
+ cout << "BackEdgeB: " << tvertex->backEdgeB().first << endl << endl;
+ }
+ }
+}
+
+struct less_SVertex2D : public binary_function<SVertex*, SVertex*, bool>
+{
+ real epsilon;
+ less_SVertex2D(real eps)
+ : binary_function<SVertex*,SVertex*,bool>()
+ {
+ epsilon = eps;
+ }
+ bool operator()(SVertex* x, SVertex* y)
+ {
+ Vec3r A = x->point2D();
+ Vec3r B = y->point2D();
+ for(unsigned int i=0; i<3; i++)
+ {
+ if((fabs(A[i] - B[i])) < epsilon)
+ continue;
+ if(A[i] < B[i])
+ return true;
+ if(A[i] > B[i])
+ return false;
+ }
+
+ return false;
+ }
+};
+
+typedef Segment<FEdge*,Vec3r > segment;
+typedef Intersection<segment> intersection;
+
+struct less_Intersection : public binary_function<intersection*, intersection*, bool>
+{
+ segment *edge;
+ less_Intersection(segment *iEdge)
+ : binary_function<intersection*,intersection*,bool>()
+ {
+ edge = iEdge;
+ }
+ bool operator()(intersection* x, intersection* y)
+ {
+ real tx = x->getParameter(edge);
+ real ty = y->getParameter(edge);
+ if(tx > ty)
+ return true;
+ return false;
+ }
+};
+
+struct silhouette_binary_rule : public binary_rule<segment,segment>
+{
+ silhouette_binary_rule() : binary_rule<segment,segment>() {}
+ virtual bool operator() (segment& s1, segment& s2)
+ {
+ FEdge * f1 = s1.edge();
+ FEdge * f2 = s2.edge();
+
+ if((!(((f1)->getNature() & Nature::SILHOUETTE) || ((f1)->getNature() & Nature::BORDER))) && (!(((f2)->getNature() & Nature::SILHOUETTE) || ((f2)->getNature() & Nature::BORDER))))
+ return false;
+
+ return true;
+ }
+};
+
+void ViewMapBuilder::ComputeSweepLineIntersections(ViewMap *ioViewMap, real epsilon)
+{
+ vector<SVertex*>& svertices = ioViewMap->SVertices();
+ bool progressBarDisplay = false;
+ unsigned sVerticesSize = svertices.size();
+ unsigned fEdgesSize = ioViewMap->FEdges().size();
+ // ViewMap::fedges_container& fedges = ioViewMap->FEdges();
+ // for(ViewMap::fedges_container::const_iterator f=fedges.begin(), end=fedges.end();
+ // f!=end;
+ // ++f){
+ // cout << (*f)->aMaterialIndex() << "-" << (*f)->bMaterialIndex() << endl;
+ // }
+
+ unsigned progressBarStep = 0;
+
+ if(_pProgressBar != NULL && fEdgesSize > gProgressBarMinSize) {
+ unsigned progressBarSteps = min(gProgressBarMaxSteps, sVerticesSize);
+ progressBarStep = sVerticesSize / progressBarSteps;
+ _pProgressBar->reset();
+ _pProgressBar->setLabelText("Computing Sweep Line Intersections");
+ _pProgressBar->setTotalSteps(progressBarSteps);
+ _pProgressBar->setProgress(0);
+ progressBarDisplay = true;
+ }
+
+ unsigned counter = progressBarStep;
+
+ sort(svertices.begin(), svertices.end(), less_SVertex2D(epsilon));
+
+ SweepLine<FEdge*,Vec3r> SL;
+
+ vector<FEdge*>& ioEdges = ioViewMap->FEdges();
+
+ vector<segment* > segments;
+
+ vector<FEdge*>::iterator fe,fend;
+
+ for(fe=ioEdges.begin(), fend=ioEdges.end();
+ fe!=fend;
+ fe++)
+ {
+ segment * s = new segment((*fe), (*fe)->vertexA()->point2D(), (*fe)->vertexB()->point2D());
+ (*fe)->userdata = s;
+ segments.push_back(s);
+ }
+
+ vector<segment*> vsegments;
+ for(vector<SVertex*>::iterator sv=svertices.begin(),svend=svertices.end();
+ sv!=svend;
+ sv++)
+ {
+ const vector<FEdge*>& vedges = (*sv)->fedges();
+
+ for(vector<FEdge*>::const_iterator sve=vedges.begin(), sveend=vedges.end();
+ sve!=sveend;
+ sve++)
+ {
+ vsegments.push_back((segment*)((*sve)->userdata));
+ }
+
+ Vec3r evt((*sv)->point2D());
+ silhouette_binary_rule sbr;
+ SL.process(evt, vsegments, sbr, epsilon);
+
+ if(progressBarDisplay) {
+ counter--;
+ if (counter <= 0) {
+ counter = progressBarStep;
+ _pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
+ }
+ }
+ vsegments.clear();
+ }
+
+ // reset userdata:
+ for(fe=ioEdges.begin(), fend=ioEdges.end();
+ fe!=fend;
+ fe++)
+ (*fe)->userdata = NULL;
+
+ // list containing the new edges resulting from splitting operations.
+ vector<FEdge*> newEdges;
+
+ // retrieve the intersected edges:
+ vector<segment* >& iedges = SL.intersectedEdges();
+ // retrieve the intersections:
+ vector<intersection*>& intersections = SL.intersections();
+
+ int id=0;
+ // create a view vertex for each intersection and linked this one
+ // with the intersection object
+ vector<intersection*>::iterator i, iend;
+ for(i=intersections.begin(),iend=intersections.end();
+ i!=iend;
+ i++)
+ {
+ FEdge *fA = (*i)->EdgeA->edge();
+ FEdge *fB = (*i)->EdgeB->edge();
+
+ Vec3r A1 = fA->vertexA()->point3D();
+ Vec3r A2 = fA->vertexB()->point3D();
+ Vec3r B1 = fB->vertexA()->point3D();
+ Vec3r B2 = fB->vertexB()->point3D();
+
+ Vec3r a1 = fA->vertexA()->point2D();
+ Vec3r a2 = fA->vertexB()->point2D();
+ Vec3r b1 = fB->vertexA()->point2D();
+ Vec3r b2 = fB->vertexB()->point2D();
+
+ real ta = (*i)->tA;
+ real tb = (*i)->tB;
+
+ if((ta < -epsilon) || (ta > 1+epsilon))
+ cerr << "Warning: 2D intersection out of range for edge " << fA->vertexA()->getId() << " - " << fA->vertexB()->getId() << endl;
+
+ if((tb < -epsilon) || (tb > 1+epsilon))
+ cerr << "Warning: 2D intersection out of range for edge " << fB->vertexA()->getId() << " - " << fB->vertexB()->getId() << endl;
+
+ real Ta = SilhouetteGeomEngine::ImageToWorldParameter(fA, ta);
+ real Tb = SilhouetteGeomEngine::ImageToWorldParameter(fB, tb);
+
+ if((Ta < -epsilon) || (Ta > 1+epsilon))
+ cerr << "Warning: 3D intersection out of range for edge " << fA->vertexA()->getId() << " - " << fA->vertexB()->getId() << endl;
+
+ if((Tb < -epsilon) || (Tb > 1+epsilon))
+ cerr << "Warning: 3D intersection out of range for edge " << fB->vertexA()->getId() << " - " << fB->vertexB()->getId() << endl;
+
+#if 0
+ if((Ta < -epsilon) || (Ta > 1+epsilon) || (Tb < -epsilon) || (Tb > 1+epsilon)) {
+ printf("ta %.12e\n", ta);
+ printf("tb %.12e\n", tb);
+ printf("a1 %e, %e -- b1 %e, %e\n", a1[0], a1[1], b1[0], b1[1]);
+ printf("a2 %e, %e -- b2 %e, %e\n", a2[0], a2[1], b2[0], b2[1]);
+ if((Ta < -epsilon) || (Ta > 1+epsilon))
+ printf("Ta %.12e\n", Ta);
+ if((Tb < -epsilon) || (Tb > 1+epsilon))
+ printf("Tb %.12e\n", Tb);
+ printf("A1 %e, %e, %e -- B1 %e, %e, %e\n", A1[0], A1[1], A1[2], B1[0], B1[1], B1[2]);
+ printf("A2 %e, %e, %e -- B2 %e, %e, %e\n", A2[0], A2[1], A2[2], B2[0], B2[1], B2[2]);
+ }
+#endif
+
+ TVertex * tvertex = ioViewMap->CreateTVertex(Vec3r(A1 + Ta*(A2-A1)), Vec3r(a1 + ta*(a2-a1)), fA,
+ Vec3r(B1 + Tb*(B2-B1)), Vec3r(b1 + tb*(b2-b1)), fB, id);
+
+ (*i)->userdata = tvertex;
+ ++id;
+ }
+
+ progressBarStep = 0;
+
+ if(progressBarDisplay) {
+ unsigned iEdgesSize = iedges.size();
+ unsigned progressBarSteps = min(gProgressBarMaxSteps, iEdgesSize);
+ progressBarStep = iEdgesSize / progressBarSteps;
+ _pProgressBar->reset();
+ _pProgressBar->setLabelText("Splitting intersected edges");
+ _pProgressBar->setTotalSteps(progressBarSteps);
+ _pProgressBar->setProgress(0);
+ }
+
+ counter = progressBarStep;
+
+ vector<TVertex*> edgeVVertices;
+ vector<ViewEdge*> newVEdges;
+ vector<segment* >::iterator s, send;
+ for(s=iedges.begin(),send=iedges.end();
+ s!=send;
+ s++)
+ {
+ edgeVVertices.clear();
+ newEdges.clear();
+ newVEdges.clear();
+
+ FEdge* fedge = (*s)->edge();
+ ViewEdge *vEdge = fedge->viewedge();
+ ViewShape *shape = vEdge->viewShape();
+
+ vector<intersection*>& eIntersections = (*s)->intersections();
+ // we first need to sort these intersections from farther to closer to A
+ sort(eIntersections.begin(), eIntersections.end(), less_Intersection(*s));
+ for(i=eIntersections.begin(),iend=eIntersections.end();
+ i!=iend;
+ i++)
+ edgeVVertices.push_back((TVertex*)(*i)->userdata);
+
+ shape->SplitEdge(fedge, edgeVVertices, ioViewMap->FEdges(), ioViewMap->ViewEdges());
+
+ if(progressBarDisplay) {
+ counter--;
+ if (counter <= 0) {
+ counter = progressBarStep;
+ _pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
+ }
+ }
+ }
+
+ // reset userdata:
+ for(fe=ioEdges.begin(), fend=ioEdges.end();
+ fe!=fend;
+ fe++)
+ (*fe)->userdata = NULL;
+
+ // delete segments
+ if(!segments.empty()){
+ for(s=segments.begin(),send=segments.end();
+ s!=send;
+ s++){
+ delete *s;
+ }
+ }
+}
+