Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/freestyle/intern/view_map/ViewMapBuilder.h')
-rwxr-xr-xsource/blender/freestyle/intern/view_map/ViewMapBuilder.h226
1 files changed, 226 insertions, 0 deletions
diff --git a/source/blender/freestyle/intern/view_map/ViewMapBuilder.h b/source/blender/freestyle/intern/view_map/ViewMapBuilder.h
new file mode 100755
index 00000000000..12b1266fa12
--- /dev/null
+++ b/source/blender/freestyle/intern/view_map/ViewMapBuilder.h
@@ -0,0 +1,226 @@
+//
+// Filename : ViewMapBuilder.h
+// Author(s) : Stephane Grabli
+// Purpose : Class to build silhouette edges from a
+// Winged-Edge structure
+// Date of creation : 25/03/2002
+//
+///////////////////////////////////////////////////////////////////////////////
+
+
+//
+// Copyright (C) : Please refer to the COPYRIGHT file distributed
+// with this source distribution.
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License
+// as published by the Free Software Foundation; either version 2
+// of the License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef VIEWMAPBUILDER_H
+# define VIEWMAPBUILDER_H
+
+# include "Silhouette.h"
+# include <vector>
+# include "../system/FreestyleConfig.h"
+# include "../geometry/Geom.h"
+# include "../scene_graph/NodeGroup.h"
+# include "../winged_edge/WXEdge.h"
+# include "../geometry/GeomUtils.h"
+# include "../geometry/Grid.h"
+# include "../system/ProgressBar.h"
+# include "../geometry/SweepLine.h"
+# include "ViewMap.h"
+# include "SilhouetteGeomEngine.h"
+# include "../scene_graph/TriangleRep.h"
+# include "../winged_edge/WEdge.h"
+# include "ViewEdgeXBuilder.h"
+
+
+using namespace Geometry;
+
+class LIB_VIEW_MAP_EXPORT ViewMapBuilder
+{
+private:
+
+ ViewMap * _ViewMap; // result
+ //SilhouetteGeomEngine _GeomEngine;
+ ProgressBar *_pProgressBar;
+ Vec3r _viewpoint;
+ bool _orthographicProjection;
+ Grid* _Grid;
+ ViewEdgeXBuilder *_pViewEdgeBuilder;
+ bool _EnableQI;
+ double _epsilon;
+
+ // tmp values:
+ int _currentId;
+ int _currentFId;
+ int _currentSVertexId;
+
+
+public:
+
+ typedef enum {
+ sweep_line
+ } intersection_algo;
+
+ typedef enum {
+ ray_casting,
+ ray_casting_fast,
+ ray_casting_very_fast
+ } visibility_algo;
+
+ inline ViewMapBuilder()
+ {
+ _pProgressBar = 0;
+ _Grid = 0;
+ _currentId = 1;
+ _currentFId = 0;
+ _currentSVertexId = 0;
+ _pViewEdgeBuilder = new ViewEdgeXBuilder;
+ _EnableQI = true;
+ }
+
+ inline ~ViewMapBuilder()
+ {
+ if(_pViewEdgeBuilder){
+ delete _pViewEdgeBuilder;
+ _pViewEdgeBuilder = 0;
+ }
+ }
+
+ /*! Compute Shapes from a WingedEdge containing a list of WShapes */
+ void computeInitialViewEdges(WingedEdge&);
+
+ /*! Compute Cusps */
+ void computeCusps(ViewMap *ioViewMap);
+ /*! Detects cusps (for a single ViewEdge) among SVertices and builds a ViewVertex on top of
+ * each cusp SVertex
+ * We use a hysteresis approach to avoid noise.
+ */
+ void DetectCusps(ViewEdge *ioEdge);
+
+
+ /*! Sets the current viewpoint */
+ inline void setViewpoint(const Vec3r& ivp) {_viewpoint = ivp; SilhouetteGeomEngine::setViewpoint(ivp);}
+
+ /*! Sets the current transformation
+ * iModelViewMatrix
+ * The 4x4 model view matrix, in column major order (openGL like).
+ * iProjection matrix
+ * The 4x4 projection matrix, in column major order (openGL like).
+ * iViewport
+ * The viewport. 4 real array: origin.x, origin.y, width, length
+ */
+ inline void setTransform(const real iModelViewMatrix[4][4],
+ const real iProjectionMatrix[4][4],
+ const int iViewport[4],
+ real iFocalLength,
+ real iAspect,
+ real iFovy) {
+ _orthographicProjection = (iProjectionMatrix[3][3] != 0.0);
+ SilhouetteGeomEngine::setTransform(iModelViewMatrix, iProjectionMatrix, iViewport, iFocalLength);
+ }
+
+ inline void setFrustum(real iZnear, real iZfar) {
+ SilhouetteGeomEngine::setFrustum(iZnear, iZfar);
+ }
+
+ /*! Builds the scene view map
+ * returns the list the view map
+ * it is up to the caller to delete this ViewMap
+ * iWRoot
+ * The root group node containing the WEdge structured scene
+ */
+
+ ViewMap* BuildViewMap(WingedEdge& we, visibility_algo iAlgo = ray_casting, real epsilon=1e-06) ;
+ /*! computes the intersection between all 2D
+ * feature edges of the scene.
+ * ioViewMap
+ * The view map. It is modified by the method.
+ * The list of all features edges of the scene.
+ * Each time an intersection is found, the 2 intersecting
+ * edges are splitted (creating 2 new vertices)
+ * At the end, this list is updated with the adding
+ * of all new created edges (resulting from splitting).
+ * iAlgo
+ * The algo to use for computing the intersections
+ */
+ void ComputeIntersections(ViewMap *ioViewMap, intersection_algo iAlgo = sweep_line, real epsilon=1e-06);
+
+ /*! Computes the 2D scene silhouette edges visibility
+ * iGrid
+ * For the Ray Casting algorithm.
+ */
+ void ComputeEdgesVisibility(ViewMap *ioViewMap, visibility_algo iAlgo= ray_casting, Grid* iGrid = 0, real epsilon=1e-6);
+
+ void setGrid(Grid *iGrid) {_Grid = iGrid;}
+
+ /*! accessors */
+
+ /*! Modifiers */
+ inline void setProgressBar(ProgressBar *iProgressBar) {_pProgressBar = iProgressBar;}
+ inline void setEnableQI(bool iBool) {_EnableQI = iBool;}
+
+protected:
+
+ /*! Computes intersections on all edges of the scene using a sweep line
+ * algorithm*/
+ void ComputeSweepLineIntersections(ViewMap *ioViewMap, real epsilon = 1e-6);
+
+ /*! Computes the 2D scene silhouette edges visibility
+ * using a ray casting. On each edge, a ray is cast
+ * to check its quantitative invisibility. The list
+ * of occluders are each time stored in the tested edge.
+ * ioViewMap
+ * The view map.
+ * The 2D scene silhouette edges as FEdges.
+ * These edges have already been splitted at their intersections points.
+ * Thus, these edges do not intersect anymore.
+ * The visibility corresponding to each edge of ioScene is set is this
+ * edge.
+ */
+ void ComputeRayCastingVisibility(ViewMap *ioViewMap, Grid *iGrid, real epsilon=1e-6);
+ void ComputeFastRayCastingVisibility(ViewMap *ioViewMap, Grid *iGrid, real epsilon=1e-6);
+ void ComputeVeryFastRayCastingVisibility(ViewMap *ioViewMap, Grid *iGrid, real epsilon=1e-6);
+
+ /*! Compute the visibility for the FEdge fe.
+ * The occluders are added to fe occluders list.
+ * fe
+ * The FEdge
+ * iGrid
+ * The grid used to compute the ray casting visibility
+ * epsilon
+ * The epsilon used for computation
+ * oShapeId
+ * fe is the border (in 2D) between 2 2D spaces.
+ * if fe is a silhouette,
+ * One of these 2D spaces is occupied by the shape
+ * to which fe belongs (on its left) and the other one is either occupied
+ * by another shape or empty or occupied by the same shape.
+ * We use this ray csating operation to determine which shape
+ * lies on fe's right.
+ * The result is the shape id stored in oShapeId
+ */
+ int ComputeRayCastingVisibility(FEdge *fe, Grid* iGrid, real epsilon, set<ViewShape*>& oOccluders,
+ Polygon3r** oaPolygon, unsigned timestamp);
+ // FIXME
+ void FindOccludee(FEdge *fe, Grid* iGrid, real epsilon, Polygon3r** oaPolygon, unsigned timestamp);
+ void FindOccludee(FEdge *fe, Grid* iGrid, real epsilon, Polygon3r** oaPolygon, unsigned timestamp,
+ Vec3r& u, Vec3r& A, Vec3r& origin, Vec3r& edge, vector<WVertex*>& faceVertices);
+
+};
+
+#endif // VIEWMAPBUILDER_H