Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/functions/intern/multi_function_procedure_executor.cc')
-rw-r--r--source/blender/functions/intern/multi_function_procedure_executor.cc1212
1 files changed, 1212 insertions, 0 deletions
diff --git a/source/blender/functions/intern/multi_function_procedure_executor.cc b/source/blender/functions/intern/multi_function_procedure_executor.cc
new file mode 100644
index 00000000000..38b26415779
--- /dev/null
+++ b/source/blender/functions/intern/multi_function_procedure_executor.cc
@@ -0,0 +1,1212 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include "FN_multi_function_procedure_executor.hh"
+
+#include "BLI_stack.hh"
+
+namespace blender::fn {
+
+MFProcedureExecutor::MFProcedureExecutor(std::string name, const MFProcedure &procedure)
+ : procedure_(procedure)
+{
+ MFSignatureBuilder signature(std::move(name));
+
+ for (const ConstMFParameter &param : procedure.params()) {
+ signature.add(param.variable->name(), MFParamType(param.type, param.variable->data_type()));
+ }
+
+ signature_ = signature.build();
+ this->set_signature(&signature_);
+}
+
+using IndicesSplitVectors = std::array<Vector<int64_t>, 2>;
+
+namespace {
+enum class ValueType {
+ GVArray = 0,
+ Span = 1,
+ GVVectorArray = 2,
+ GVectorArray = 3,
+ OneSingle = 4,
+ OneVector = 5,
+};
+constexpr int tot_variable_value_types = 6;
+} // namespace
+
+/**
+ * During evaluation, a variable may be stored in various different forms, depending on what
+ * instructions do with the variables.
+ */
+struct VariableValue {
+ ValueType type;
+
+ VariableValue(ValueType type) : type(type)
+ {
+ }
+};
+
+/* This variable is the unmodified virtual array from the caller. */
+struct VariableValue_GVArray : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::GVArray;
+ const GVArray &data;
+
+ VariableValue_GVArray(const GVArray &data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+/* This variable has a different value for every index. Some values may be uninitialized. The span
+ * may be owned by the caller. */
+struct VariableValue_Span : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::Span;
+ void *data;
+ bool owned;
+
+ VariableValue_Span(void *data, bool owned) : VariableValue(static_type), data(data), owned(owned)
+ {
+ }
+};
+
+/* This variable is the unmodified virtual vector array from the caller. */
+struct VariableValue_GVVectorArray : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::GVVectorArray;
+ const GVVectorArray &data;
+
+ VariableValue_GVVectorArray(const GVVectorArray &data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+/* This variable has a different vector for every index. */
+struct VariableValue_GVectorArray : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::GVectorArray;
+ GVectorArray &data;
+ bool owned;
+
+ VariableValue_GVectorArray(GVectorArray &data, bool owned)
+ : VariableValue(static_type), data(data), owned(owned)
+ {
+ }
+};
+
+/* This variable has the same value for every index. */
+struct VariableValue_OneSingle : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::OneSingle;
+ void *data;
+ bool is_initialized = false;
+
+ VariableValue_OneSingle(void *data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+/* This variable has the same vector for every index. */
+struct VariableValue_OneVector : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::OneVector;
+ GVectorArray &data;
+
+ VariableValue_OneVector(GVectorArray &data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+static_assert(std::is_trivially_destructible_v<VariableValue_GVArray>);
+static_assert(std::is_trivially_destructible_v<VariableValue_Span>);
+static_assert(std::is_trivially_destructible_v<VariableValue_GVVectorArray>);
+static_assert(std::is_trivially_destructible_v<VariableValue_GVectorArray>);
+static_assert(std::is_trivially_destructible_v<VariableValue_OneSingle>);
+static_assert(std::is_trivially_destructible_v<VariableValue_OneVector>);
+
+class VariableState;
+
+/**
+ * The #ValueAllocator is responsible for providing memory for variables and their values. It also
+ * manages the reuse of buffers to improve performance.
+ */
+class ValueAllocator : NonCopyable, NonMovable {
+ private:
+ /* Allocate with 64 byte alignment for better reusability of buffers and improved cache
+ * performance. */
+ static constexpr inline int min_alignment = 64;
+
+ /* Use stacks so that the most recently used buffers are reused first. This improves cache
+ * efficiency. */
+ std::array<Stack<VariableValue *>, tot_variable_value_types> values_free_lists_;
+ /* The integer key is the size of one element (e.g. 4 for an integer buffer). All buffers are
+ * aligned to #min_alignment bytes. */
+ Map<int, Stack<void *>> span_buffers_free_list_;
+
+ public:
+ ValueAllocator() = default;
+
+ ~ValueAllocator()
+ {
+ for (Stack<VariableValue *> &stack : values_free_lists_) {
+ while (!stack.is_empty()) {
+ MEM_freeN(stack.pop());
+ }
+ }
+ for (Stack<void *> &stack : span_buffers_free_list_.values()) {
+ while (!stack.is_empty()) {
+ MEM_freeN(stack.pop());
+ }
+ }
+ }
+
+ template<typename... Args> VariableState *obtain_variable_state(Args &&...args);
+
+ void release_variable_state(VariableState *state);
+
+ VariableValue_GVArray *obtain_GVArray(const GVArray &varray)
+ {
+ return this->obtain<VariableValue_GVArray>(varray);
+ }
+
+ VariableValue_GVVectorArray *obtain_GVVectorArray(const GVVectorArray &varray)
+ {
+ return this->obtain<VariableValue_GVVectorArray>(varray);
+ }
+
+ VariableValue_Span *obtain_Span_not_owned(void *buffer)
+ {
+ return this->obtain<VariableValue_Span>(buffer, false);
+ }
+
+ VariableValue_Span *obtain_Span(const CPPType &type, int size)
+ {
+ void *buffer = nullptr;
+
+ const int element_size = type.size();
+ const int alignment = type.alignment();
+
+ if (alignment > min_alignment) {
+ /* In this rare case we fallback to not reusing existing buffers. */
+ buffer = MEM_mallocN_aligned(element_size * size, alignment, __func__);
+ }
+ else {
+ Stack<void *> *stack = span_buffers_free_list_.lookup_ptr(element_size);
+ if (stack == nullptr || stack->is_empty()) {
+ buffer = MEM_mallocN_aligned(element_size * size, min_alignment, __func__);
+ }
+ else {
+ /* Reuse existing buffer. */
+ buffer = stack->pop();
+ }
+ }
+
+ return this->obtain<VariableValue_Span>(buffer, true);
+ }
+
+ VariableValue_GVectorArray *obtain_GVectorArray_not_owned(GVectorArray &data)
+ {
+ return this->obtain<VariableValue_GVectorArray>(data, false);
+ }
+
+ VariableValue_GVectorArray *obtain_GVectorArray(const CPPType &type, int size)
+ {
+ GVectorArray *vector_array = new GVectorArray(type, size);
+ return this->obtain<VariableValue_GVectorArray>(*vector_array, true);
+ }
+
+ VariableValue_OneSingle *obtain_OneSingle(const CPPType &type)
+ {
+ void *buffer = MEM_mallocN_aligned(type.size(), type.alignment(), __func__);
+ return this->obtain<VariableValue_OneSingle>(buffer);
+ }
+
+ VariableValue_OneVector *obtain_OneVector(const CPPType &type)
+ {
+ GVectorArray *vector_array = new GVectorArray(type, 1);
+ return this->obtain<VariableValue_OneVector>(*vector_array);
+ }
+
+ void release_value(VariableValue *value, const MFDataType &data_type)
+ {
+ switch (value->type) {
+ case ValueType::GVArray: {
+ break;
+ }
+ case ValueType::Span: {
+ auto *value_typed = static_cast<VariableValue_Span *>(value);
+ if (value_typed->owned) {
+ const CPPType &type = data_type.single_type();
+ /* Assumes all values in the buffer are uninitialized already. */
+ Stack<void *> &buffers = span_buffers_free_list_.lookup_or_add_default(type.size());
+ buffers.push(value_typed->data);
+ }
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ break;
+ }
+ case ValueType::GVectorArray: {
+ auto *value_typed = static_cast<VariableValue_GVectorArray *>(value);
+ if (value_typed->owned) {
+ delete &value_typed->data;
+ }
+ break;
+ }
+ case ValueType::OneSingle: {
+ auto *value_typed = static_cast<VariableValue_OneSingle *>(value);
+ if (value_typed->is_initialized) {
+ const CPPType &type = data_type.single_type();
+ type.destruct(value_typed->data);
+ }
+ MEM_freeN(value_typed->data);
+ break;
+ }
+ case ValueType::OneVector: {
+ auto *value_typed = static_cast<VariableValue_OneVector *>(value);
+ delete &value_typed->data;
+ break;
+ }
+ }
+
+ Stack<VariableValue *> &stack = values_free_lists_[(int)value->type];
+ stack.push(value);
+ }
+
+ private:
+ template<typename T, typename... Args> T *obtain(Args &&...args)
+ {
+ static_assert(std::is_base_of_v<VariableValue, T>);
+ Stack<VariableValue *> &stack = values_free_lists_[(int)T::static_type];
+ if (stack.is_empty()) {
+ void *buffer = MEM_mallocN(sizeof(T), __func__);
+ return new (buffer) T(std::forward<Args>(args)...);
+ }
+ return new (stack.pop()) T(std::forward<Args>(args)...);
+ }
+};
+
+/**
+ * This class keeps track of a single variable during evaluation.
+ */
+class VariableState : NonCopyable, NonMovable {
+ private:
+ /** The current value of the variable. The storage format may change over time. */
+ VariableValue *value_;
+ /** Number of indices that are currently initialized in this variable. */
+ int tot_initialized_;
+ /* This a non-owning pointer to either span buffer or #GVectorArray or null. */
+ void *caller_provided_storage_ = nullptr;
+
+ public:
+ VariableState(VariableValue &value, int tot_initialized, void *caller_provided_storage = nullptr)
+ : value_(&value),
+ tot_initialized_(tot_initialized),
+ caller_provided_storage_(caller_provided_storage)
+ {
+ }
+
+ void destruct_self(ValueAllocator &value_allocator, const MFDataType &data_type)
+ {
+ value_allocator.release_value(value_, data_type);
+ value_allocator.release_variable_state(this);
+ }
+
+ /* True if this contains only one value for all indices, i.e. the value for all indices is
+ * the same. */
+ bool is_one() const
+ {
+ switch (value_->type) {
+ case ValueType::GVArray:
+ return this->value_as<VariableValue_GVArray>()->data.is_single();
+ case ValueType::Span:
+ return tot_initialized_ == 0;
+ case ValueType::GVVectorArray:
+ return this->value_as<VariableValue_GVVectorArray>()->data.is_single_vector();
+ case ValueType::GVectorArray:
+ return tot_initialized_ == 0;
+ case ValueType::OneSingle:
+ return true;
+ case ValueType::OneVector:
+ return true;
+ }
+ BLI_assert_unreachable();
+ return false;
+ }
+
+ bool is_fully_initialized(const IndexMask full_mask)
+ {
+ return tot_initialized_ == full_mask.size();
+ }
+
+ bool is_fully_uninitialized(const IndexMask full_mask)
+ {
+ UNUSED_VARS(full_mask);
+ return tot_initialized_ == 0;
+ }
+
+ void add_as_input(MFParamsBuilder &params, IndexMask mask, const MFDataType &data_type) const
+ {
+ /* Sanity check to make sure that enough values are initialized. */
+ BLI_assert(mask.size() <= tot_initialized_);
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
+ break;
+ }
+ case ValueType::Span: {
+ const void *data = this->value_as<VariableValue_Span>()->data;
+ const GSpan span{data_type.single_type(), data, mask.min_array_size()};
+ params.add_readonly_single_input(span);
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
+ break;
+ }
+ case ValueType::GVectorArray: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_GVectorArray>()->data);
+ break;
+ }
+ case ValueType::OneSingle: {
+ const auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ const GPointer gpointer{data_type.single_type(), value_typed->data};
+ params.add_readonly_single_input(gpointer);
+ break;
+ }
+ case ValueType::OneVector: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data[0]);
+ break;
+ }
+ }
+ }
+
+ void ensure_is_mutable(IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ if (ELEM(value_->type, ValueType::Span, ValueType::GVectorArray)) {
+ return;
+ }
+
+ const int array_size = full_mask.min_array_size();
+
+ switch (data_type.category()) {
+ case MFDataType::Single: {
+ const CPPType &type = data_type.single_type();
+ VariableValue_Span *new_value = nullptr;
+ if (caller_provided_storage_ == nullptr) {
+ new_value = value_allocator.obtain_Span(type, array_size);
+ }
+ else {
+ /* Reuse the storage provided caller when possible. */
+ new_value = value_allocator.obtain_Span_not_owned(caller_provided_storage_);
+ }
+ if (value_->type == ValueType::GVArray) {
+ /* Fill new buffer with data from virtual array. */
+ this->value_as<VariableValue_GVArray>()->data.materialize_to_uninitialized(
+ full_mask, new_value->data);
+ }
+ else if (value_->type == ValueType::OneSingle) {
+ auto *old_value_typed_ = this->value_as<VariableValue_OneSingle>();
+ if (old_value_typed_->is_initialized) {
+ /* Fill the buffer with a single value. */
+ type.fill_construct_indices(old_value_typed_->data, new_value->data, full_mask);
+ }
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ case MFDataType::Vector: {
+ const CPPType &type = data_type.vector_base_type();
+ VariableValue_GVectorArray *new_value = nullptr;
+ if (caller_provided_storage_ == nullptr) {
+ new_value = value_allocator.obtain_GVectorArray(type, array_size);
+ }
+ else {
+ new_value = value_allocator.obtain_GVectorArray_not_owned(
+ *(GVectorArray *)caller_provided_storage_);
+ }
+ if (value_->type == ValueType::GVVectorArray) {
+ /* Fill new vector array with data from virtual vector array. */
+ new_value->data.extend(full_mask, this->value_as<VariableValue_GVVectorArray>()->data);
+ }
+ else if (value_->type == ValueType::OneVector) {
+ /* Fill all indices with the same value. */
+ const GSpan vector = this->value_as<VariableValue_OneVector>()->data[0];
+ new_value->data.extend(full_mask, GVVectorArray_For_SingleGSpan{vector, array_size});
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ }
+ }
+
+ void add_as_mutable(MFParamsBuilder &params,
+ IndexMask mask,
+ IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ /* Sanity check to make sure that enough values are initialized. */
+ BLI_assert(mask.size() <= tot_initialized_);
+
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::Span: {
+ void *data = this->value_as<VariableValue_Span>()->data;
+ const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
+ params.add_single_mutable(span);
+ break;
+ }
+ case ValueType::GVectorArray: {
+ params.add_vector_mutable(this->value_as<VariableValue_GVectorArray>()->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::GVVectorArray:
+ case ValueType::OneSingle:
+ case ValueType::OneVector: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ void add_as_output(MFParamsBuilder &params,
+ IndexMask mask,
+ IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ /* Sanity check to make sure that enough values are not initialized. */
+ BLI_assert(mask.size() <= full_mask.size() - tot_initialized_);
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::Span: {
+ void *data = this->value_as<VariableValue_Span>()->data;
+ const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
+ params.add_uninitialized_single_output(span);
+ break;
+ }
+ case ValueType::GVectorArray: {
+ params.add_vector_output(this->value_as<VariableValue_GVectorArray>()->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::GVVectorArray:
+ case ValueType::OneSingle:
+ case ValueType::OneVector: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+
+ tot_initialized_ += mask.size();
+ }
+
+ void add_as_input__one(MFParamsBuilder &params, const MFDataType &data_type) const
+ {
+ BLI_assert(this->is_one());
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
+ break;
+ }
+ case ValueType::OneSingle: {
+ const auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ GPointer ptr{data_type.single_type(), value_typed->data};
+ params.add_readonly_single_input(ptr);
+ break;
+ }
+ case ValueType::OneVector: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data);
+ break;
+ }
+ case ValueType::Span:
+ case ValueType::GVectorArray: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ void ensure_is_mutable__one(const MFDataType &data_type, ValueAllocator &value_allocator)
+ {
+ BLI_assert(this->is_one());
+ if (ELEM(value_->type, ValueType::OneSingle, ValueType::OneVector)) {
+ return;
+ }
+
+ switch (data_type.category()) {
+ case MFDataType::Single: {
+ const CPPType &type = data_type.single_type();
+ VariableValue_OneSingle *new_value = value_allocator.obtain_OneSingle(type);
+ if (value_->type == ValueType::GVArray) {
+ this->value_as<VariableValue_GVArray>()->data.get_internal_single_to_uninitialized(
+ new_value->data);
+ new_value->is_initialized = true;
+ }
+ else if (value_->type == ValueType::Span) {
+ BLI_assert(tot_initialized_ == 0);
+ /* Nothing to do, the single value is uninitialized already. */
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ case MFDataType::Vector: {
+ const CPPType &type = data_type.vector_base_type();
+ VariableValue_OneVector *new_value = value_allocator.obtain_OneVector(type);
+ if (value_->type == ValueType::GVVectorArray) {
+ const GVVectorArray &old_vector_array =
+ this->value_as<VariableValue_GVVectorArray>()->data;
+ new_value->data.extend(IndexRange(1), old_vector_array);
+ }
+ else if (value_->type == ValueType::GVectorArray) {
+ BLI_assert(tot_initialized_ == 0);
+ /* Nothing to do. */
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ }
+ }
+
+ void add_as_mutable__one(MFParamsBuilder &params,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ BLI_assert(this->is_one());
+ this->ensure_is_mutable__one(data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ params.add_single_mutable(GMutableSpan{data_type.single_type(), value_typed->data, 1});
+ break;
+ }
+ case ValueType::OneVector: {
+ params.add_vector_mutable(this->value_as<VariableValue_OneVector>()->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::Span:
+ case ValueType::GVVectorArray:
+ case ValueType::GVectorArray: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ void add_as_output__one(MFParamsBuilder &params,
+ IndexMask mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ BLI_assert(this->is_one());
+ this->ensure_is_mutable__one(data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(!value_typed->is_initialized);
+ params.add_uninitialized_single_output(
+ GMutableSpan{data_type.single_type(), value_typed->data, 1});
+ /* It becomes initialized when the multi-function is called. */
+ value_typed->is_initialized = true;
+ break;
+ }
+ case ValueType::OneVector: {
+ auto *value_typed = this->value_as<VariableValue_OneVector>();
+ BLI_assert(value_typed->data[0].is_empty());
+ params.add_vector_output(value_typed->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::Span:
+ case ValueType::GVVectorArray:
+ case ValueType::GVectorArray: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+
+ tot_initialized_ += mask.size();
+ }
+
+ void destruct(IndexMask mask,
+ IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ int new_tot_initialized = tot_initialized_ - mask.size();
+
+ /* Sanity check to make sure that enough indices can be destructed. */
+ BLI_assert(new_tot_initialized >= 0);
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ if (mask.size() == full_mask.size()) {
+ /* All elements are destructed. The elements are owned by the caller, so we don't
+ * actually destruct them. */
+ value_allocator.release_value(value_, data_type);
+ value_ = value_allocator.obtain_OneSingle(data_type.single_type());
+ }
+ else {
+ /* Not all elements are destructed. Since we can't work on the original array, we have to
+ * create a copy first. */
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+ BLI_assert(value_->type == ValueType::Span);
+ const CPPType &type = data_type.single_type();
+ type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
+ }
+ break;
+ }
+ case ValueType::Span: {
+ const CPPType &type = data_type.single_type();
+ type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
+ if (new_tot_initialized == 0) {
+ /* Release span when all values are initialized. */
+ value_allocator.release_value(value_, data_type);
+ value_ = value_allocator.obtain_OneSingle(data_type.single_type());
+ }
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ if (mask.size() == full_mask.size()) {
+ /* All elements are cleared. The elements are owned by the caller, so don't actually
+ * destruct them. */
+ value_allocator.release_value(value_, data_type);
+ value_ = value_allocator.obtain_OneVector(data_type.vector_base_type());
+ }
+ else {
+ /* Not all elements are cleared. Since we can't work on the original vector array, we
+ * have to create a copy first. A possible future optimization is to create the partial
+ * copy directly. */
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+ BLI_assert(value_->type == ValueType::GVectorArray);
+ this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
+ }
+ break;
+ }
+ case ValueType::GVectorArray: {
+ this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
+ break;
+ }
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ if (mask.size() == tot_initialized_) {
+ const CPPType &type = data_type.single_type();
+ type.destruct(value_typed->data);
+ value_typed->is_initialized = false;
+ }
+ break;
+ }
+ case ValueType::OneVector: {
+ auto *value_typed = this->value_as<VariableValue_OneVector>();
+ if (mask.size() == tot_initialized_) {
+ value_typed->data.clear({0});
+ }
+ break;
+ }
+ }
+
+ tot_initialized_ = new_tot_initialized;
+ }
+
+ void indices_split(IndexMask mask, IndicesSplitVectors &r_indices)
+ {
+ BLI_assert(mask.size() <= tot_initialized_);
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ const GVArray_Typed<bool> varray{this->value_as<VariableValue_GVArray>()->data};
+ for (const int i : mask) {
+ r_indices[varray[i]].append(i);
+ }
+ break;
+ }
+ case ValueType::Span: {
+ const Span<bool> span((bool *)this->value_as<VariableValue_Span>()->data,
+ mask.min_array_size());
+ for (const int i : mask) {
+ r_indices[span[i]].append(i);
+ }
+ break;
+ }
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ const bool condition = *(bool *)value_typed->data;
+ r_indices[condition].extend(mask);
+ break;
+ }
+ case ValueType::GVVectorArray:
+ case ValueType::GVectorArray:
+ case ValueType::OneVector: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ template<typename T> T *value_as()
+ {
+ BLI_assert(value_->type == T::static_type);
+ return static_cast<T *>(value_);
+ }
+
+ template<typename T> const T *value_as() const
+ {
+ BLI_assert(value_->type == T::static_type);
+ return static_cast<T *>(value_);
+ }
+};
+
+template<typename... Args> VariableState *ValueAllocator::obtain_variable_state(Args &&...args)
+{
+ return new VariableState(std::forward<Args>(args)...);
+}
+
+void ValueAllocator::release_variable_state(VariableState *state)
+{
+ delete state;
+}
+
+/** Keeps track of the states of all variables during evaluation. */
+class VariableStates {
+ private:
+ ValueAllocator value_allocator_;
+ Map<const MFVariable *, VariableState *> variable_states_;
+ IndexMask full_mask_;
+
+ public:
+ VariableStates(IndexMask full_mask) : full_mask_(full_mask)
+ {
+ }
+
+ ~VariableStates()
+ {
+ for (auto &&item : variable_states_.items()) {
+ const MFVariable *variable = item.key;
+ VariableState *state = item.value;
+ state->destruct_self(value_allocator_, variable->data_type());
+ }
+ }
+
+ ValueAllocator &value_allocator()
+ {
+ return value_allocator_;
+ }
+
+ const IndexMask &full_mask() const
+ {
+ return full_mask_;
+ }
+
+ void add_initial_variable_states(const MFProcedureExecutor &fn,
+ const MFProcedure &procedure,
+ MFParams &params)
+ {
+ for (const int param_index : fn.param_indices()) {
+ MFParamType param_type = fn.param_type(param_index);
+ const MFVariable *variable = procedure.params()[param_index].variable;
+
+ auto add_state = [&](VariableValue *value,
+ bool input_is_initialized,
+ void *caller_provided_storage = nullptr) {
+ const int tot_initialized = input_is_initialized ? full_mask_.size() : 0;
+ variable_states_.add_new(variable,
+ value_allocator_.obtain_variable_state(
+ *value, tot_initialized, caller_provided_storage));
+ };
+
+ switch (param_type.category()) {
+ case MFParamType::SingleInput: {
+ const GVArray &data = params.readonly_single_input(param_index);
+ add_state(value_allocator_.obtain_GVArray(data), true);
+ break;
+ }
+ case MFParamType::VectorInput: {
+ const GVVectorArray &data = params.readonly_vector_input(param_index);
+ add_state(value_allocator_.obtain_GVVectorArray(data), true);
+ break;
+ }
+ case MFParamType::SingleOutput: {
+ GMutableSpan data = params.uninitialized_single_output(param_index);
+ add_state(value_allocator_.obtain_Span_not_owned(data.data()), false, data.data());
+ break;
+ }
+ case MFParamType::VectorOutput: {
+ GVectorArray &data = params.vector_output(param_index);
+ add_state(value_allocator_.obtain_GVectorArray_not_owned(data), false, &data);
+ break;
+ }
+ case MFParamType::SingleMutable: {
+ GMutableSpan data = params.single_mutable(param_index);
+ add_state(value_allocator_.obtain_Span_not_owned(data.data()), true, data.data());
+ break;
+ }
+ case MFParamType::VectorMutable: {
+ GVectorArray &data = params.vector_mutable(param_index);
+ add_state(value_allocator_.obtain_GVectorArray_not_owned(data), true, &data);
+ break;
+ }
+ }
+ }
+ }
+
+ void add_as_param(VariableState &variable_state,
+ MFParamsBuilder &params,
+ const MFParamType &param_type,
+ const IndexMask &mask)
+ {
+ const MFDataType data_type = param_type.data_type();
+ switch (param_type.interface_type()) {
+ case MFParamType::Input: {
+ variable_state.add_as_input(params, mask, data_type);
+ break;
+ }
+ case MFParamType::Mutable: {
+ variable_state.add_as_mutable(params, mask, full_mask_, data_type, value_allocator_);
+ break;
+ }
+ case MFParamType::Output: {
+ variable_state.add_as_output(params, mask, full_mask_, data_type, value_allocator_);
+ break;
+ }
+ }
+ }
+
+ void add_as_param__one(VariableState &variable_state,
+ MFParamsBuilder &params,
+ const MFParamType &param_type,
+ const IndexMask &mask)
+ {
+ const MFDataType data_type = param_type.data_type();
+ switch (param_type.interface_type()) {
+ case MFParamType::Input: {
+ variable_state.add_as_input__one(params, data_type);
+ break;
+ }
+ case MFParamType::Mutable: {
+ variable_state.add_as_mutable__one(params, data_type, value_allocator_);
+ break;
+ }
+ case MFParamType::Output: {
+ variable_state.add_as_output__one(params, mask, data_type, value_allocator_);
+ break;
+ }
+ }
+ }
+
+ void destruct(const MFVariable &variable, const IndexMask &mask)
+ {
+ VariableState &variable_state = this->get_variable_state(variable);
+ variable_state.destruct(mask, full_mask_, variable.data_type(), value_allocator_);
+ }
+
+ VariableState &get_variable_state(const MFVariable &variable)
+ {
+ return *variable_states_.lookup_or_add_cb(
+ &variable, [&]() { return this->create_new_state_for_variable(variable); });
+ }
+
+ VariableState *create_new_state_for_variable(const MFVariable &variable)
+ {
+ MFDataType data_type = variable.data_type();
+ switch (data_type.category()) {
+ case MFDataType::Single: {
+ const CPPType &type = data_type.single_type();
+ return value_allocator_.obtain_variable_state(*value_allocator_.obtain_OneSingle(type), 0);
+ }
+ case MFDataType::Vector: {
+ const CPPType &type = data_type.vector_base_type();
+ return value_allocator_.obtain_variable_state(*value_allocator_.obtain_OneVector(type), 0);
+ }
+ }
+ BLI_assert_unreachable();
+ return nullptr;
+ }
+};
+
+static bool evaluate_as_one(const MultiFunction &fn,
+ Span<VariableState *> param_variable_states,
+ const IndexMask &mask,
+ const IndexMask &full_mask)
+{
+ if (fn.depends_on_context()) {
+ return false;
+ }
+ if (mask.size() < full_mask.size()) {
+ return false;
+ }
+ for (VariableState *state : param_variable_states) {
+ if (!state->is_one()) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static void execute_call_instruction(const MFCallInstruction &instruction,
+ IndexMask mask,
+ VariableStates &variable_states,
+ const MFContext &context)
+{
+ const MultiFunction &fn = instruction.fn();
+
+ Vector<VariableState *> param_variable_states;
+ param_variable_states.resize(fn.param_amount());
+
+ for (const int param_index : fn.param_indices()) {
+ const MFVariable *variable = instruction.params()[param_index];
+ VariableState &variable_state = variable_states.get_variable_state(*variable);
+ param_variable_states[param_index] = &variable_state;
+ }
+
+ /* If all inputs to the function are constant, it's enough to call the function only once instead
+ * of for every index. */
+ if (evaluate_as_one(fn, param_variable_states, mask, variable_states.full_mask())) {
+ MFParamsBuilder params(fn, 1);
+
+ for (const int param_index : fn.param_indices()) {
+ const MFParamType param_type = fn.param_type(param_index);
+ VariableState &variable_state = *param_variable_states[param_index];
+ variable_states.add_as_param__one(variable_state, params, param_type, mask);
+ }
+
+ fn.call(IndexRange(1), params, context);
+ }
+ else {
+ MFParamsBuilder params(fn, mask.min_array_size());
+
+ for (const int param_index : fn.param_indices()) {
+ const MFParamType param_type = fn.param_type(param_index);
+ VariableState &variable_state = *param_variable_states[param_index];
+ variable_states.add_as_param(variable_state, params, param_type, mask);
+ }
+
+ fn.call(mask, params, context);
+ }
+}
+
+/** An index mask, that might own the indices if necessary. */
+struct InstructionIndices {
+ bool is_owned;
+ Vector<int64_t> owned_indices;
+ IndexMask referenced_indices;
+
+ IndexMask mask() const
+ {
+ if (this->is_owned) {
+ return this->owned_indices.as_span();
+ }
+ return this->referenced_indices;
+ }
+};
+
+/** Contains information about the next instruction that should be executed. */
+struct NextInstructionInfo {
+ const MFInstruction *instruction = nullptr;
+ InstructionIndices indices;
+
+ IndexMask mask() const
+ {
+ return this->indices.mask();
+ }
+
+ operator bool() const
+ {
+ return this->instruction != nullptr;
+ }
+};
+
+/**
+ * Keeps track of the next instruction for all indices and decides in which order instructions are
+ * evaluated.
+ */
+class InstructionScheduler {
+ private:
+ Map<const MFInstruction *, Vector<InstructionIndices>> indices_by_instruction_;
+
+ public:
+ InstructionScheduler() = default;
+
+ void add_referenced_indices(const MFInstruction &instruction, IndexMask mask)
+ {
+ if (mask.is_empty()) {
+ return;
+ }
+ InstructionIndices new_indices;
+ new_indices.is_owned = false;
+ new_indices.referenced_indices = mask;
+ indices_by_instruction_.lookup_or_add_default(&instruction).append(std::move(new_indices));
+ }
+
+ void add_owned_indices(const MFInstruction &instruction, Vector<int64_t> indices)
+ {
+ if (indices.is_empty()) {
+ return;
+ }
+ BLI_assert(IndexMask::indices_are_valid_index_mask(indices));
+
+ InstructionIndices new_indices;
+ new_indices.is_owned = true;
+ new_indices.owned_indices = std::move(indices);
+ indices_by_instruction_.lookup_or_add_default(&instruction).append(std::move(new_indices));
+ }
+
+ void add_previous_instruction_indices(const MFInstruction &instruction,
+ NextInstructionInfo &instr_info)
+ {
+ indices_by_instruction_.lookup_or_add_default(&instruction)
+ .append(std::move(instr_info.indices));
+ }
+
+ NextInstructionInfo pop_next()
+ {
+ if (indices_by_instruction_.is_empty()) {
+ return {};
+ }
+ /* TODO: Implement better mechanism to determine next instruction. */
+ const MFInstruction *instruction = *indices_by_instruction_.keys().begin();
+
+ NextInstructionInfo next_instruction_info;
+ next_instruction_info.instruction = instruction;
+ next_instruction_info.indices = this->pop_indices_array(instruction);
+ return next_instruction_info;
+ }
+
+ private:
+ InstructionIndices pop_indices_array(const MFInstruction *instruction)
+ {
+ Vector<InstructionIndices> *indices = indices_by_instruction_.lookup_ptr(instruction);
+ if (indices == nullptr) {
+ return {};
+ }
+ InstructionIndices r_indices = (*indices).pop_last();
+ BLI_assert(!r_indices.mask().is_empty());
+ if (indices->is_empty()) {
+ indices_by_instruction_.remove_contained(instruction);
+ }
+ return r_indices;
+ }
+};
+
+void MFProcedureExecutor::call(IndexMask full_mask, MFParams params, MFContext context) const
+{
+ BLI_assert(procedure_.validate());
+
+ LinearAllocator<> allocator;
+
+ VariableStates variable_states{full_mask};
+ variable_states.add_initial_variable_states(*this, procedure_, params);
+
+ InstructionScheduler scheduler;
+ scheduler.add_referenced_indices(*procedure_.entry(), full_mask);
+
+ /* Loop until all indices got to a return instruction. */
+ while (NextInstructionInfo instr_info = scheduler.pop_next()) {
+ const MFInstruction &instruction = *instr_info.instruction;
+ switch (instruction.type()) {
+ case MFInstructionType::Call: {
+ const MFCallInstruction &call_instruction = static_cast<const MFCallInstruction &>(
+ instruction);
+ execute_call_instruction(call_instruction, instr_info.mask(), variable_states, context);
+ scheduler.add_previous_instruction_indices(*call_instruction.next(), instr_info);
+ break;
+ }
+ case MFInstructionType::Branch: {
+ const MFBranchInstruction &branch_instruction = static_cast<const MFBranchInstruction &>(
+ instruction);
+ const MFVariable *condition_var = branch_instruction.condition();
+ VariableState &variable_state = variable_states.get_variable_state(*condition_var);
+
+ IndicesSplitVectors new_indices;
+ variable_state.indices_split(instr_info.mask(), new_indices);
+ scheduler.add_owned_indices(*branch_instruction.branch_false(), new_indices[false]);
+ scheduler.add_owned_indices(*branch_instruction.branch_true(), new_indices[true]);
+ break;
+ }
+ case MFInstructionType::Destruct: {
+ const MFDestructInstruction &destruct_instruction =
+ static_cast<const MFDestructInstruction &>(instruction);
+ const MFVariable *variable = destruct_instruction.variable();
+ variable_states.destruct(*variable, instr_info.mask());
+ scheduler.add_previous_instruction_indices(*destruct_instruction.next(), instr_info);
+ break;
+ }
+ case MFInstructionType::Dummy: {
+ const MFDummyInstruction &dummy_instruction = static_cast<const MFDummyInstruction &>(
+ instruction);
+ scheduler.add_previous_instruction_indices(*dummy_instruction.next(), instr_info);
+ break;
+ }
+ case MFInstructionType::Return: {
+ /* Don't insert the indices back into the scheduler. */
+ break;
+ }
+ }
+ }
+
+ for (const int param_index : this->param_indices()) {
+ const MFParamType param_type = this->param_type(param_index);
+ const MFVariable *variable = procedure_.params()[param_index].variable;
+ VariableState &variable_state = variable_states.get_variable_state(*variable);
+ switch (param_type.interface_type()) {
+ case MFParamType::Input: {
+ /* Input variables must be destructed in the end. */
+ BLI_assert(variable_state.is_fully_uninitialized(full_mask));
+ break;
+ }
+ case MFParamType::Mutable:
+ case MFParamType::Output: {
+ /* Mutable and output variables must be initialized in the end. */
+ BLI_assert(variable_state.is_fully_initialized(full_mask));
+ /* Make sure that the data is in the memory provided by the caller. */
+ variable_state.ensure_is_mutable(
+ full_mask, param_type.data_type(), variable_states.value_allocator());
+ break;
+ }
+ }
+ }
+}
+
+} // namespace blender::fn