Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/geometry/intern/solidify_nonmanifold.c')
-rw-r--r--source/blender/geometry/intern/solidify_nonmanifold.c2519
1 files changed, 2519 insertions, 0 deletions
diff --git a/source/blender/geometry/intern/solidify_nonmanifold.c b/source/blender/geometry/intern/solidify_nonmanifold.c
new file mode 100644
index 00000000000..ac01e0cabc9
--- /dev/null
+++ b/source/blender/geometry/intern/solidify_nonmanifold.c
@@ -0,0 +1,2519 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/** \file
+ * \ingroup modifiers
+ */
+
+#include "BKE_customdata.h"
+#include "BKE_mesh.h"
+
+#include "BLI_math.h"
+#include "BLI_utildefines.h"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_modifier_types.h"
+
+#include "GEO_solidifiy.h"
+
+#include "MEM_guardedalloc.h"
+
+#ifdef __GNUC__
+# pragma GCC diagnostic error "-Wsign-conversion"
+#endif
+
+/* -------------------------------------------------------------------- */
+/** \name Local Utilities
+ * \{ */
+
+/**
+ * Similar to #project_v3_v3v3_normalized that returns the dot-product.
+ */
+static float project_v3_v3(float r[3], const float a[3])
+{
+ float d = dot_v3v3(r, a);
+ r[0] -= a[0] * d;
+ r[1] -= a[1] * d;
+ r[2] -= a[2] * d;
+ return d;
+}
+
+static float angle_signed_on_axis_normalized_v3v3_v3(const float n[3],
+ const float ref_n[3],
+ const float axis[3])
+{
+ float d = dot_v3v3(n, ref_n);
+ CLAMP(d, -1, 1);
+ float angle = acosf(d);
+ float cross[3];
+ cross_v3_v3v3(cross, n, ref_n);
+ if (dot_v3v3(cross, axis) >= 0) {
+ angle = 2 * M_PI - angle;
+ }
+ return angle;
+}
+
+static float clamp_nonzero(const float value, const float epsilon)
+{
+ BLI_assert(!(epsilon < 0.0f));
+ if (value < 0.0f) {
+ return min_ff(value, -epsilon);
+ }
+ return max_ff(value, epsilon);
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Main Solidify Function
+ * \{ */
+
+/* Data structures for manifold solidify. */
+
+typedef struct NewFaceRef {
+ MPoly *face;
+ uint index;
+ bool reversed;
+ struct NewEdgeRef **link_edges;
+} NewFaceRef;
+
+typedef struct OldEdgeFaceRef {
+ uint *faces;
+ uint faces_len;
+ bool *faces_reversed;
+ uint used;
+} OldEdgeFaceRef;
+
+typedef struct OldVertEdgeRef {
+ uint *edges;
+ uint edges_len;
+} OldVertEdgeRef;
+
+typedef struct NewEdgeRef {
+ uint old_edge;
+ NewFaceRef *faces[2];
+ struct EdgeGroup *link_edge_groups[2];
+ float angle;
+ uint new_edge;
+} NewEdgeRef;
+
+typedef struct EdgeGroup {
+ bool valid;
+ NewEdgeRef **edges;
+ uint edges_len;
+ uint open_face_edge;
+ bool is_orig_closed;
+ bool is_even_split;
+ uint split;
+ bool is_singularity;
+ uint topo_group;
+ float co[3];
+ float no[3];
+ uint new_vert;
+} EdgeGroup;
+
+typedef struct FaceKeyPair {
+ float angle;
+ NewFaceRef *face;
+} FaceKeyPair;
+
+static int comp_float_int_pair(const void *a, const void *b)
+{
+ FaceKeyPair *x = (FaceKeyPair *)a;
+ FaceKeyPair *y = (FaceKeyPair *)b;
+ return (int)(x->angle > y->angle) - (int)(x->angle < y->angle);
+}
+
+/* NOLINTNEXTLINE: readability-function-size */
+Mesh *solidify_nonmanifold(const SolidifyData *solidify_data,
+ Mesh *mesh,
+ bool **r_shell_verts,
+ bool **r_rim_verts,
+ bool **r_shell_faces,
+ bool **r_rim_faces)
+{
+ Mesh *result;
+
+ MVert *mv, *mvert, *orig_mvert;
+ MEdge *ed, *medge, *orig_medge;
+ MLoop *ml, *mloop, *orig_mloop;
+ MPoly *mp, *mpoly, *orig_mpoly;
+ const uint numVerts = (uint)mesh->totvert;
+ const uint numEdges = (uint)mesh->totedge;
+ const uint numPolys = (uint)mesh->totpoly;
+ const uint numLoops = (uint)mesh->totloop;
+
+ if (numPolys == 0 && numVerts != 0) {
+ return mesh;
+ }
+
+ float(*poly_nors)[3] = NULL;
+
+ const float ofs_front = (solidify_data->offset_fac + 1.0f) * 0.5f * solidify_data->offset;
+ const float ofs_back = ofs_front - solidify_data->offset * solidify_data->offset_fac;
+ const float ofs_front_clamped = max_ff(1e-5f,
+ fabsf(solidify_data->offset > 0 ? ofs_front : ofs_back));
+ const float ofs_back_clamped = max_ff(1e-5f,
+ fabsf(solidify_data->offset > 0 ? ofs_back : ofs_front));
+ const float offset_fac_vg = solidify_data->offset_fac_vg;
+ const float offset_fac_vg_inv = 1.0f - solidify_data->offset_fac_vg;
+ const float offset = fabsf(solidify_data->offset) * solidify_data->offset_clamp;
+ const bool do_angle_clamp = solidify_data->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP;
+ const bool do_flip = (solidify_data->flag & MOD_SOLIDIFY_FLIP) != 0;
+ const bool do_rim = solidify_data->flag & MOD_SOLIDIFY_RIM;
+ const bool do_shell = solidify_data->flag & MOD_SOLIDIFY_SHELL;
+ const bool do_clamp = (solidify_data->offset_clamp != 0.0f);
+
+ const float bevel_convex = solidify_data->bevel_convex;
+
+ const bool do_flat_faces = solidify_data->flag & MOD_SOLIDIFY_NONMANIFOLD_FLAT_FACES;
+
+ orig_mvert = mesh->mvert;
+ orig_medge = mesh->medge;
+ orig_mloop = mesh->mloop;
+ orig_mpoly = mesh->mpoly;
+
+ uint numNewVerts = 0;
+ uint numNewEdges = 0;
+ uint numNewLoops = 0;
+ uint numNewPolys = 0;
+
+#define MOD_SOLIDIFY_EMPTY_TAG ((uint)-1)
+
+ /* Calculate only face normals. */
+ poly_nors = MEM_malloc_arrayN(numPolys, sizeof(*poly_nors), __func__);
+ BKE_mesh_calc_normals_poly(
+ orig_mvert, (int)numVerts, orig_mloop, (int)numLoops, orig_mpoly, (int)numPolys, poly_nors);
+
+ NewFaceRef *face_sides_arr = MEM_malloc_arrayN(
+ numPolys * 2, sizeof(*face_sides_arr), "face_sides_arr in solidify");
+ bool *null_faces = (solidify_data->nonmanifold_offset_mode ==
+ MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_CONSTRAINTS) ?
+ MEM_calloc_arrayN(
+ numPolys, sizeof(*null_faces), "null_faces in solidify") :
+ NULL;
+ uint largest_ngon = 3;
+ /* Calculate face to #NewFaceRef map. */
+ {
+ mp = orig_mpoly;
+ for (uint i = 0; i < numPolys; i++, mp++) {
+ /* Make normals for faces without area (should really be avoided though). */
+ if (len_squared_v3(poly_nors[i]) < 0.5f) {
+ MEdge *e = orig_medge + orig_mloop[mp->loopstart].e;
+ float edgedir[3];
+ sub_v3_v3v3(edgedir, orig_mvert[e->v2].co, orig_mvert[e->v1].co);
+ if (fabsf(edgedir[2]) < fabsf(edgedir[1])) {
+ poly_nors[i][2] = 1.0f;
+ }
+ else {
+ poly_nors[i][1] = 1.0f;
+ }
+ if (null_faces) {
+ null_faces[i] = true;
+ }
+ }
+
+ NewEdgeRef **link_edges = MEM_calloc_arrayN(
+ (uint)mp->totloop, sizeof(*link_edges), "NewFaceRef::link_edges in solidify");
+ face_sides_arr[i * 2] = (NewFaceRef){
+ .face = mp, .index = i, .reversed = false, .link_edges = link_edges};
+ link_edges = MEM_calloc_arrayN(
+ (uint)mp->totloop, sizeof(*link_edges), "NewFaceRef::link_edges in solidify");
+ face_sides_arr[i * 2 + 1] = (NewFaceRef){
+ .face = mp, .index = i, .reversed = true, .link_edges = link_edges};
+ if (mp->totloop > largest_ngon) {
+ largest_ngon = (uint)mp->totloop;
+ }
+ /* add to final mesh face count */
+ if (do_shell) {
+ numNewPolys += 2;
+ numNewLoops += (uint)mp->totloop * 2;
+ }
+ }
+ }
+
+ uint *edge_adj_faces_len = MEM_calloc_arrayN(
+ numEdges, sizeof(*edge_adj_faces_len), "edge_adj_faces_len in solidify");
+ /* Count for each edge how many faces it has adjacent. */
+ {
+ mp = orig_mpoly;
+ for (uint i = 0; i < numPolys; i++, mp++) {
+ ml = orig_mloop + mp->loopstart;
+ for (uint j = 0; j < mp->totloop; j++, ml++) {
+ edge_adj_faces_len[ml->e]++;
+ }
+ }
+ }
+
+ /* Original edge to #NewEdgeRef map. */
+ NewEdgeRef ***orig_edge_data_arr = MEM_calloc_arrayN(
+ numEdges, sizeof(*orig_edge_data_arr), "orig_edge_data_arr in solidify");
+ /* Original edge length cache. */
+ float *orig_edge_lengths = MEM_calloc_arrayN(
+ numEdges, sizeof(*orig_edge_lengths), "orig_edge_lengths in solidify");
+ /* Edge groups for every original vert. */
+ EdgeGroup **orig_vert_groups_arr = MEM_calloc_arrayN(
+ numVerts, sizeof(*orig_vert_groups_arr), "orig_vert_groups_arr in solidify");
+ /* vertex map used to map duplicates. */
+ uint *vm = MEM_malloc_arrayN(numVerts, sizeof(*vm), "orig_vert_map in solidify");
+ for (uint i = 0; i < numVerts; i++) {
+ vm[i] = i;
+ }
+
+ uint edge_index = 0;
+ uint loop_index = 0;
+ uint poly_index = 0;
+
+ bool has_singularities = false;
+
+ /* Vert edge adjacent map. */
+ OldVertEdgeRef **vert_adj_edges = MEM_calloc_arrayN(
+ numVerts, sizeof(*vert_adj_edges), "vert_adj_edges in solidify");
+ /* Original vertex positions (changed for degenerated geometry). */
+ float(*orig_mvert_co)[3] = MEM_malloc_arrayN(
+ numVerts, sizeof(*orig_mvert_co), "orig_mvert_co in solidify");
+ /* Fill in the original vertex positions. */
+ for (uint i = 0; i < numVerts; i++) {
+ orig_mvert_co[i][0] = orig_mvert[i].co[0];
+ orig_mvert_co[i][1] = orig_mvert[i].co[1];
+ orig_mvert_co[i][2] = orig_mvert[i].co[2];
+ }
+
+ /* Create edge to #NewEdgeRef map. */
+ {
+ OldEdgeFaceRef **edge_adj_faces = MEM_calloc_arrayN(
+ numEdges, sizeof(*edge_adj_faces), "edge_adj_faces in solidify");
+
+ /* Create link_faces for edges. */
+ {
+ mp = orig_mpoly;
+ for (uint i = 0; i < numPolys; i++, mp++) {
+ ml = orig_mloop + mp->loopstart;
+ for (uint j = 0; j < mp->totloop; j++, ml++) {
+ const uint edge = ml->e;
+ const bool reversed = orig_medge[edge].v2 != ml->v;
+ OldEdgeFaceRef *old_face_edge_ref = edge_adj_faces[edge];
+ if (old_face_edge_ref == NULL) {
+ const uint len = edge_adj_faces_len[edge];
+ BLI_assert(len > 0);
+ uint *adj_faces = MEM_malloc_arrayN(
+ len, sizeof(*adj_faces), "OldEdgeFaceRef::faces in solidify");
+ bool *adj_faces_reversed = MEM_malloc_arrayN(
+ len, sizeof(*adj_faces_reversed), "OldEdgeFaceRef::reversed in solidify");
+ adj_faces[0] = i;
+ for (uint k = 1; k < len; k++) {
+ adj_faces[k] = MOD_SOLIDIFY_EMPTY_TAG;
+ }
+ adj_faces_reversed[0] = reversed;
+ OldEdgeFaceRef *ref = MEM_mallocN(sizeof(*ref), "OldEdgeFaceRef in solidify");
+ *ref = (OldEdgeFaceRef){adj_faces, len, adj_faces_reversed, 1};
+ edge_adj_faces[edge] = ref;
+ }
+ else {
+ for (uint k = 1; k < old_face_edge_ref->faces_len; k++) {
+ if (old_face_edge_ref->faces[k] == MOD_SOLIDIFY_EMPTY_TAG) {
+ old_face_edge_ref->faces[k] = i;
+ old_face_edge_ref->faces_reversed[k] = reversed;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ float edgedir[3] = {0, 0, 0};
+ uint *vert_adj_edges_len = MEM_calloc_arrayN(
+ numVerts, sizeof(*vert_adj_edges_len), "vert_adj_edges_len in solidify");
+
+ /* Calculate edge lengths and len vert_adj edges. */
+ {
+ bool *face_singularity = MEM_calloc_arrayN(
+ numPolys, sizeof(*face_singularity), "face_sides_arr in solidify");
+
+ const float merge_tolerance_sqr = solidify_data->merge_tolerance *
+ solidify_data->merge_tolerance;
+ uint *combined_verts = MEM_calloc_arrayN(
+ numVerts, sizeof(*combined_verts), "combined_verts in solidify");
+
+ ed = orig_medge;
+ for (uint i = 0; i < numEdges; i++, ed++) {
+ if (edge_adj_faces_len[i] > 0) {
+ uint v1 = vm[ed->v1];
+ uint v2 = vm[ed->v2];
+ if (v1 == v2) {
+ continue;
+ }
+
+ if (v2 < v1) {
+ SWAP(uint, v1, v2);
+ }
+ sub_v3_v3v3(edgedir, orig_mvert_co[v2], orig_mvert_co[v1]);
+ orig_edge_lengths[i] = len_squared_v3(edgedir);
+
+ if (orig_edge_lengths[i] <= merge_tolerance_sqr) {
+ /* Merge verts. But first check if that would create a higher poly count. */
+ /* This check is very slow. It would need the vertex edge links to get
+ * accelerated that are not yet available at this point. */
+ bool can_merge = true;
+ for (uint k = 0; k < numEdges && can_merge; k++) {
+ if (k != i && edge_adj_faces_len[k] > 0 &&
+ (ELEM(vm[orig_medge[k].v1], v1, v2) != ELEM(vm[orig_medge[k].v2], v1, v2))) {
+ for (uint j = 0; j < edge_adj_faces[k]->faces_len && can_merge; j++) {
+ mp = orig_mpoly + edge_adj_faces[k]->faces[j];
+ uint changes = 0;
+ int cur = mp->totloop - 1;
+ for (int next = 0; next < mp->totloop && changes <= 2; next++) {
+ uint cur_v = vm[orig_mloop[mp->loopstart + cur].v];
+ uint next_v = vm[orig_mloop[mp->loopstart + next].v];
+ changes += (ELEM(cur_v, v1, v2) != ELEM(next_v, v1, v2));
+ cur = next;
+ }
+ can_merge = can_merge && changes <= 2;
+ }
+ }
+ }
+
+ if (!can_merge) {
+ orig_edge_lengths[i] = 0.0f;
+ vert_adj_edges_len[v1]++;
+ vert_adj_edges_len[v2]++;
+ continue;
+ }
+
+ mul_v3_fl(edgedir,
+ (combined_verts[v2] + 1) /
+ (float)(combined_verts[v1] + combined_verts[v2] + 2));
+ add_v3_v3(orig_mvert_co[v1], edgedir);
+ for (uint j = v2; j < numVerts; j++) {
+ if (vm[j] == v2) {
+ vm[j] = v1;
+ }
+ }
+ vert_adj_edges_len[v1] += vert_adj_edges_len[v2];
+ vert_adj_edges_len[v2] = 0;
+ combined_verts[v1] += combined_verts[v2] + 1;
+
+ if (do_shell) {
+ numNewLoops -= edge_adj_faces_len[i] * 2;
+ }
+
+ edge_adj_faces_len[i] = 0;
+ MEM_freeN(edge_adj_faces[i]->faces);
+ MEM_freeN(edge_adj_faces[i]->faces_reversed);
+ MEM_freeN(edge_adj_faces[i]);
+ edge_adj_faces[i] = NULL;
+ }
+ else {
+ orig_edge_lengths[i] = sqrtf(orig_edge_lengths[i]);
+ vert_adj_edges_len[v1]++;
+ vert_adj_edges_len[v2]++;
+ }
+ }
+ }
+ /* remove zero faces in a second pass */
+ ed = orig_medge;
+ for (uint i = 0; i < numEdges; i++, ed++) {
+ const uint v1 = vm[ed->v1];
+ const uint v2 = vm[ed->v2];
+ if (v1 == v2 && edge_adj_faces[i]) {
+ /* Remove polys. */
+ for (uint j = 0; j < edge_adj_faces[i]->faces_len; j++) {
+ const uint face = edge_adj_faces[i]->faces[j];
+ if (!face_singularity[face]) {
+ bool is_singularity = true;
+ for (uint k = 0; k < orig_mpoly[face].totloop; k++) {
+ if (vm[orig_mloop[((uint)orig_mpoly[face].loopstart) + k].v] != v1) {
+ is_singularity = false;
+ break;
+ }
+ }
+ if (is_singularity) {
+ face_singularity[face] = true;
+ /* remove from final mesh poly count */
+ if (do_shell) {
+ numNewPolys -= 2;
+ }
+ }
+ }
+ }
+
+ if (do_shell) {
+ numNewLoops -= edge_adj_faces_len[i] * 2;
+ }
+
+ edge_adj_faces_len[i] = 0;
+ MEM_freeN(edge_adj_faces[i]->faces);
+ MEM_freeN(edge_adj_faces[i]->faces_reversed);
+ MEM_freeN(edge_adj_faces[i]);
+ edge_adj_faces[i] = NULL;
+ }
+ }
+
+ MEM_freeN(face_singularity);
+ MEM_freeN(combined_verts);
+ }
+
+ /* Create vert_adj_edges for verts. */
+ {
+ ed = orig_medge;
+ for (uint i = 0; i < numEdges; i++, ed++) {
+ if (edge_adj_faces_len[i] > 0) {
+ const uint vs[2] = {vm[ed->v1], vm[ed->v2]};
+ uint invalid_edge_index = 0;
+ bool invalid_edge_reversed = false;
+ for (uint j = 0; j < 2; j++) {
+ const uint vert = vs[j];
+ const uint len = vert_adj_edges_len[vert];
+ if (len > 0) {
+ OldVertEdgeRef *old_edge_vert_ref = vert_adj_edges[vert];
+ if (old_edge_vert_ref == NULL) {
+ uint *adj_edges = MEM_calloc_arrayN(
+ len, sizeof(*adj_edges), "OldVertEdgeRef::edges in solidify");
+ adj_edges[0] = i;
+ for (uint k = 1; k < len; k++) {
+ adj_edges[k] = MOD_SOLIDIFY_EMPTY_TAG;
+ }
+ OldVertEdgeRef *ref = MEM_mallocN(sizeof(*ref), "OldVertEdgeRef in solidify");
+ *ref = (OldVertEdgeRef){adj_edges, 1};
+ vert_adj_edges[vert] = ref;
+ }
+ else {
+ const uint *f = old_edge_vert_ref->edges;
+ for (uint k = 0; k < len && k <= old_edge_vert_ref->edges_len; k++, f++) {
+ const uint edge = old_edge_vert_ref->edges[k];
+ if (edge == MOD_SOLIDIFY_EMPTY_TAG || k == old_edge_vert_ref->edges_len) {
+ old_edge_vert_ref->edges[k] = i;
+ old_edge_vert_ref->edges_len++;
+ break;
+ }
+ if (vm[orig_medge[edge].v1] == vs[1 - j]) {
+ invalid_edge_index = edge + 1;
+ invalid_edge_reversed = (j == 0);
+ break;
+ }
+ if (vm[orig_medge[edge].v2] == vs[1 - j]) {
+ invalid_edge_index = edge + 1;
+ invalid_edge_reversed = (j == 1);
+ break;
+ }
+ }
+ if (invalid_edge_index) {
+ if (j == 1) {
+ /* Should never actually be executed. */
+ vert_adj_edges[vs[0]]->edges_len--;
+ }
+ break;
+ }
+ }
+ }
+ }
+ /* Remove zero faces that are in shape of an edge. */
+ if (invalid_edge_index) {
+ const uint tmp = invalid_edge_index - 1;
+ invalid_edge_index = i;
+ i = tmp;
+ OldEdgeFaceRef *i_adj_faces = edge_adj_faces[i];
+ OldEdgeFaceRef *invalid_adj_faces = edge_adj_faces[invalid_edge_index];
+ uint j = 0;
+ for (uint k = 0; k < i_adj_faces->faces_len; k++) {
+ for (uint l = 0; l < invalid_adj_faces->faces_len; l++) {
+ if (i_adj_faces->faces[k] == invalid_adj_faces->faces[l] &&
+ i_adj_faces->faces[k] != MOD_SOLIDIFY_EMPTY_TAG) {
+ i_adj_faces->faces[k] = MOD_SOLIDIFY_EMPTY_TAG;
+ invalid_adj_faces->faces[l] = MOD_SOLIDIFY_EMPTY_TAG;
+ j++;
+ }
+ }
+ }
+ /* remove from final face count */
+ if (do_shell) {
+ numNewPolys -= 2 * j;
+ numNewLoops -= 4 * j;
+ }
+ const uint len = i_adj_faces->faces_len + invalid_adj_faces->faces_len - 2 * j;
+ uint *adj_faces = MEM_malloc_arrayN(
+ len, sizeof(*adj_faces), "OldEdgeFaceRef::faces in solidify");
+ bool *adj_faces_loops_reversed = MEM_malloc_arrayN(
+ len, sizeof(*adj_faces_loops_reversed), "OldEdgeFaceRef::reversed in solidify");
+ /* Clean merge of adj_faces. */
+ j = 0;
+ for (uint k = 0; k < i_adj_faces->faces_len; k++) {
+ if (i_adj_faces->faces[k] != MOD_SOLIDIFY_EMPTY_TAG) {
+ adj_faces[j] = i_adj_faces->faces[k];
+ adj_faces_loops_reversed[j++] = i_adj_faces->faces_reversed[k];
+ }
+ }
+ for (uint k = 0; k < invalid_adj_faces->faces_len; k++) {
+ if (invalid_adj_faces->faces[k] != MOD_SOLIDIFY_EMPTY_TAG) {
+ adj_faces[j] = invalid_adj_faces->faces[k];
+ adj_faces_loops_reversed[j++] = (invalid_edge_reversed !=
+ invalid_adj_faces->faces_reversed[k]);
+ }
+ }
+ BLI_assert(j == len);
+ edge_adj_faces_len[invalid_edge_index] = 0;
+ edge_adj_faces_len[i] = len;
+ MEM_freeN(i_adj_faces->faces);
+ MEM_freeN(i_adj_faces->faces_reversed);
+ i_adj_faces->faces_len = len;
+ i_adj_faces->faces = adj_faces;
+ i_adj_faces->faces_reversed = adj_faces_loops_reversed;
+ i_adj_faces->used += invalid_adj_faces->used;
+ MEM_freeN(invalid_adj_faces->faces);
+ MEM_freeN(invalid_adj_faces->faces_reversed);
+ MEM_freeN(invalid_adj_faces);
+ edge_adj_faces[invalid_edge_index] = i_adj_faces;
+ /* Reset counter to continue. */
+ i = invalid_edge_index;
+ }
+ }
+ }
+ }
+
+ MEM_freeN(vert_adj_edges_len);
+
+ /* Filter duplicate polys. */
+ {
+ ed = orig_medge;
+ /* Iterate over edges and only check the faces around an edge for duplicates
+ * (performance optimization). */
+ for (uint i = 0; i < numEdges; i++, ed++) {
+ if (edge_adj_faces_len[i] > 0) {
+ const OldEdgeFaceRef *adj_faces = edge_adj_faces[i];
+ uint adj_len = adj_faces->faces_len;
+ /* Not that #adj_len doesn't need to equal edge_adj_faces_len anymore
+ * because #adj_len is shared when a face got collapsed to an edge. */
+ if (adj_len > 1) {
+ /* For each face pair check if they have equal verts. */
+ for (uint j = 0; j < adj_len; j++) {
+ const uint face = adj_faces->faces[j];
+ const int j_loopstart = orig_mpoly[face].loopstart;
+ const int totloop = orig_mpoly[face].totloop;
+ const uint j_first_v = vm[orig_mloop[j_loopstart].v];
+ for (uint k = j + 1; k < adj_len; k++) {
+ if (orig_mpoly[adj_faces->faces[k]].totloop != totloop) {
+ continue;
+ }
+ /* Find first face first loop vert in second face loops. */
+ const int k_loopstart = orig_mpoly[adj_faces->faces[k]].loopstart;
+ int l;
+ ml = orig_mloop + k_loopstart;
+ for (l = 0; l < totloop && vm[ml->v] != j_first_v; l++, ml++) {
+ /* Pass. */
+ }
+ if (l == totloop) {
+ continue;
+ }
+ /* Check if all following loops have equal verts. */
+ const bool reversed = adj_faces->faces_reversed[j] != adj_faces->faces_reversed[k];
+ const int count_dir = reversed ? -1 : 1;
+ bool has_diff = false;
+ ml = orig_mloop + j_loopstart;
+ for (int m = 0, n = l + totloop; m < totloop && !has_diff;
+ m++, n += count_dir, ml++) {
+ has_diff = has_diff || vm[ml->v] != vm[orig_mloop[k_loopstart + n % totloop].v];
+ }
+ /* If the faces are equal, discard one (j). */
+ if (!has_diff) {
+ ml = orig_mloop + j_loopstart;
+ uint del_loops = 0;
+ for (uint m = 0; m < totloop; m++, ml++) {
+ const uint e = ml->e;
+ OldEdgeFaceRef *e_adj_faces = edge_adj_faces[e];
+ if (e_adj_faces) {
+ uint face_index = j;
+ uint *e_adj_faces_faces = e_adj_faces->faces;
+ bool *e_adj_faces_reversed = e_adj_faces->faces_reversed;
+ const uint faces_len = e_adj_faces->faces_len;
+ if (e_adj_faces_faces != adj_faces->faces) {
+ /* Find index of e in #adj_faces. */
+ for (face_index = 0;
+ face_index < faces_len && e_adj_faces_faces[face_index] != face;
+ face_index++) {
+ /* Pass. */
+ }
+ /* If not found. */
+ if (face_index == faces_len) {
+ continue;
+ }
+ }
+ else {
+ /* If we shrink #edge_adj_faces[i] we need to update this field. */
+ adj_len--;
+ }
+ memmove(e_adj_faces_faces + face_index,
+ e_adj_faces_faces + face_index + 1,
+ (faces_len - face_index - 1) * sizeof(*e_adj_faces_faces));
+ memmove(e_adj_faces_reversed + face_index,
+ e_adj_faces_reversed + face_index + 1,
+ (faces_len - face_index - 1) * sizeof(*e_adj_faces_reversed));
+ e_adj_faces->faces_len--;
+ if (edge_adj_faces_len[e] > 0) {
+ edge_adj_faces_len[e]--;
+ if (edge_adj_faces_len[e] == 0) {
+ e_adj_faces->used--;
+ edge_adj_faces[e] = NULL;
+ }
+ }
+ else if (e_adj_faces->used > 1) {
+ for (uint n = 0; n < numEdges; n++) {
+ if (edge_adj_faces[n] == e_adj_faces && edge_adj_faces_len[n] > 0) {
+ edge_adj_faces_len[n]--;
+ if (edge_adj_faces_len[n] == 0) {
+ edge_adj_faces[n]->used--;
+ edge_adj_faces[n] = NULL;
+ }
+ break;
+ }
+ }
+ }
+ del_loops++;
+ }
+ }
+ if (do_shell) {
+ numNewPolys -= 2;
+ numNewLoops -= 2 * (uint)del_loops;
+ }
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* Create #NewEdgeRef array. */
+ {
+ ed = orig_medge;
+ for (uint i = 0; i < numEdges; i++, ed++) {
+ const uint v1 = vm[ed->v1];
+ const uint v2 = vm[ed->v2];
+ if (edge_adj_faces_len[i] > 0) {
+ if (LIKELY(orig_edge_lengths[i] > FLT_EPSILON)) {
+ sub_v3_v3v3(edgedir, orig_mvert_co[v2], orig_mvert_co[v1]);
+ mul_v3_fl(edgedir, 1.0f / orig_edge_lengths[i]);
+ }
+ else {
+ /* Smart fallback. */
+ /* This makes merging non essential, but correct
+ * merging will still give way better results. */
+ float pos[3];
+ copy_v3_v3(pos, orig_mvert_co[v2]);
+
+ OldVertEdgeRef *link1 = vert_adj_edges[v1];
+ float v1_dir[3];
+ zero_v3(v1_dir);
+ for (int j = 0; j < link1->edges_len; j++) {
+ uint e = link1->edges[j];
+ if (edge_adj_faces_len[e] > 0 && e != i) {
+ uint other_v =
+ vm[vm[orig_medge[e].v1] == v1 ? orig_medge[e].v2 : orig_medge[e].v1];
+ sub_v3_v3v3(edgedir, orig_mvert_co[other_v], pos);
+ add_v3_v3(v1_dir, edgedir);
+ }
+ }
+ OldVertEdgeRef *link2 = vert_adj_edges[v2];
+ float v2_dir[3];
+ zero_v3(v2_dir);
+ for (int j = 0; j < link2->edges_len; j++) {
+ uint e = link2->edges[j];
+ if (edge_adj_faces_len[e] > 0 && e != i) {
+ uint other_v =
+ vm[vm[orig_medge[e].v1] == v2 ? orig_medge[e].v2 : orig_medge[e].v1];
+ sub_v3_v3v3(edgedir, orig_mvert_co[other_v], pos);
+ add_v3_v3(v2_dir, edgedir);
+ }
+ }
+ sub_v3_v3v3(edgedir, v2_dir, v1_dir);
+ float len = normalize_v3(edgedir);
+ if (len == 0.0f) {
+ edgedir[0] = 0.0f;
+ edgedir[1] = 0.0f;
+ edgedir[2] = 1.0f;
+ }
+ }
+
+ OldEdgeFaceRef *adj_faces = edge_adj_faces[i];
+ const uint adj_len = adj_faces->faces_len;
+ const uint *adj_faces_faces = adj_faces->faces;
+ const bool *adj_faces_reversed = adj_faces->faces_reversed;
+ uint new_edges_len = 0;
+ FaceKeyPair *sorted_faces = MEM_malloc_arrayN(
+ adj_len, sizeof(*sorted_faces), "sorted_faces in solidify");
+ if (adj_len > 1) {
+ new_edges_len = adj_len;
+ /* Get keys for sorting. */
+ float ref_nor[3] = {0, 0, 0};
+ float nor[3];
+ for (uint j = 0; j < adj_len; j++) {
+ const bool reverse = adj_faces_reversed[j];
+ const uint face_i = adj_faces_faces[j];
+ if (reverse) {
+ negate_v3_v3(nor, poly_nors[face_i]);
+ }
+ else {
+ copy_v3_v3(nor, poly_nors[face_i]);
+ }
+ float d = 1;
+ if (orig_mpoly[face_i].totloop > 3) {
+ d = project_v3_v3(nor, edgedir);
+ if (LIKELY(d != 0)) {
+ d = normalize_v3(nor);
+ }
+ else {
+ d = 1;
+ }
+ }
+ if (UNLIKELY(d == 0.0f)) {
+ sorted_faces[j].angle = 0.0f;
+ }
+ else if (j == 0) {
+ copy_v3_v3(ref_nor, nor);
+ sorted_faces[j].angle = 0.0f;
+ }
+ else {
+ float angle = angle_signed_on_axis_normalized_v3v3_v3(nor, ref_nor, edgedir);
+ sorted_faces[j].angle = -angle;
+ }
+ sorted_faces[j].face = face_sides_arr + adj_faces_faces[j] * 2 +
+ (adj_faces_reversed[j] ? 1 : 0);
+ }
+ /* Sort faces by order around the edge (keep order in faces,
+ * reversed and face_angles the same). */
+ qsort(sorted_faces, adj_len, sizeof(*sorted_faces), comp_float_int_pair);
+ }
+ else {
+ new_edges_len = 2;
+ sorted_faces[0].face = face_sides_arr + adj_faces_faces[0] * 2 +
+ (adj_faces_reversed[0] ? 1 : 0);
+ if (do_rim) {
+ /* Only add the loops parallel to the edge for now. */
+ numNewLoops += 2;
+ numNewPolys++;
+ }
+ }
+
+ /* Create a list of new edges and fill it. */
+ NewEdgeRef **new_edges = MEM_malloc_arrayN(
+ new_edges_len + 1, sizeof(*new_edges), "new_edges in solidify");
+ new_edges[new_edges_len] = NULL;
+ NewFaceRef *faces[2];
+ for (uint j = 0; j < new_edges_len; j++) {
+ float angle;
+ if (adj_len > 1) {
+ const uint next_j = j + 1 == adj_len ? 0 : j + 1;
+ faces[0] = sorted_faces[j].face;
+ faces[1] = sorted_faces[next_j].face->reversed ? sorted_faces[next_j].face - 1 :
+ sorted_faces[next_j].face + 1;
+ angle = sorted_faces[next_j].angle - sorted_faces[j].angle;
+ if (angle < 0) {
+ angle += 2 * M_PI;
+ }
+ }
+ else {
+ faces[0] = sorted_faces[0].face->reversed ? sorted_faces[0].face - j :
+ sorted_faces[0].face + j;
+ faces[1] = NULL;
+ angle = 0;
+ }
+ NewEdgeRef *edge_data = MEM_mallocN(sizeof(*edge_data), "edge_data in solidify");
+ uint edge_data_edge_index = MOD_SOLIDIFY_EMPTY_TAG;
+ if (do_shell || (adj_len == 1 && do_rim)) {
+ edge_data_edge_index = 0;
+ }
+ *edge_data = (NewEdgeRef){.old_edge = i,
+ .faces = {faces[0], faces[1]},
+ .link_edge_groups = {NULL, NULL},
+ .angle = angle,
+ .new_edge = edge_data_edge_index};
+ new_edges[j] = edge_data;
+ for (uint k = 0; k < 2; k++) {
+ if (faces[k] != NULL) {
+ ml = orig_mloop + faces[k]->face->loopstart;
+ for (int l = 0; l < faces[k]->face->totloop; l++, ml++) {
+ if (edge_adj_faces[ml->e] == edge_adj_faces[i]) {
+ if (ml->e != i && orig_edge_data_arr[ml->e] == NULL) {
+ orig_edge_data_arr[ml->e] = new_edges;
+ }
+ faces[k]->link_edges[l] = edge_data;
+ break;
+ }
+ }
+ }
+ }
+ }
+ MEM_freeN(sorted_faces);
+ orig_edge_data_arr[i] = new_edges;
+ if (do_shell || (adj_len == 1 && do_rim)) {
+ numNewEdges += new_edges_len;
+ }
+ }
+ }
+ }
+
+ for (uint i = 0; i < numEdges; i++) {
+ if (edge_adj_faces[i]) {
+ if (edge_adj_faces[i]->used > 1) {
+ edge_adj_faces[i]->used--;
+ }
+ else {
+ MEM_freeN(edge_adj_faces[i]->faces);
+ MEM_freeN(edge_adj_faces[i]->faces_reversed);
+ MEM_freeN(edge_adj_faces[i]);
+ }
+ }
+ }
+ MEM_freeN(edge_adj_faces);
+ }
+
+ /* Create sorted edge groups for every vert. */
+ {
+ OldVertEdgeRef **adj_edges_ptr = vert_adj_edges;
+ for (uint i = 0; i < numVerts; i++, adj_edges_ptr++) {
+ if (*adj_edges_ptr != NULL && (*adj_edges_ptr)->edges_len >= 2) {
+ EdgeGroup *edge_groups;
+
+ int eg_index = -1;
+ bool contains_long_groups = false;
+ uint topo_groups = 0;
+
+ /* Initial sorted creation. */
+ {
+ const uint *adj_edges = (*adj_edges_ptr)->edges;
+ const uint tot_adj_edges = (*adj_edges_ptr)->edges_len;
+
+ uint unassigned_edges_len = 0;
+ for (uint j = 0; j < tot_adj_edges; j++) {
+ NewEdgeRef **new_edges = orig_edge_data_arr[adj_edges[j]];
+ /* TODO: check where the null pointer come from,
+ * because there should not be any... */
+ if (new_edges) {
+ /* count the number of new edges around the original vert */
+ while (*new_edges) {
+ unassigned_edges_len++;
+ new_edges++;
+ }
+ }
+ }
+ NewEdgeRef **unassigned_edges = MEM_malloc_arrayN(
+ unassigned_edges_len, sizeof(*unassigned_edges), "unassigned_edges in solidify");
+ for (uint j = 0, k = 0; j < tot_adj_edges; j++) {
+ NewEdgeRef **new_edges = orig_edge_data_arr[adj_edges[j]];
+ if (new_edges) {
+ while (*new_edges) {
+ unassigned_edges[k++] = *new_edges;
+ new_edges++;
+ }
+ }
+ }
+
+ /* An edge group will always contain min 2 edges
+ * so max edge group count can be calculated. */
+ uint edge_groups_len = unassigned_edges_len / 2;
+ edge_groups = MEM_calloc_arrayN(
+ edge_groups_len + 1, sizeof(*edge_groups), "edge_groups in solidify");
+
+ uint assigned_edges_len = 0;
+ NewEdgeRef *found_edge = NULL;
+ uint found_edge_index = 0;
+ bool insert_at_start = false;
+ uint eg_capacity = 5;
+ NewFaceRef *eg_track_faces[2] = {NULL, NULL};
+ NewFaceRef *last_open_edge_track = NULL;
+
+ while (assigned_edges_len < unassigned_edges_len) {
+ found_edge = NULL;
+ insert_at_start = false;
+ if (eg_index >= 0 && edge_groups[eg_index].edges_len == 0) {
+ /* Called every time a new group was started in the last iteration. */
+ /* Find an unused edge to start the next group
+ * and setup variables to start creating it. */
+ uint j = 0;
+ NewEdgeRef *edge = NULL;
+ while (!edge && j < unassigned_edges_len) {
+ edge = unassigned_edges[j++];
+ if (edge && last_open_edge_track &&
+ (edge->faces[0] != last_open_edge_track || edge->faces[1] != NULL)) {
+ edge = NULL;
+ }
+ }
+ if (!edge && last_open_edge_track) {
+ topo_groups++;
+ last_open_edge_track = NULL;
+ edge_groups[eg_index].topo_group++;
+ j = 0;
+ while (!edge && j < unassigned_edges_len) {
+ edge = unassigned_edges[j++];
+ }
+ }
+ else if (!last_open_edge_track && eg_index > 0) {
+ topo_groups++;
+ edge_groups[eg_index].topo_group++;
+ }
+ BLI_assert(edge != NULL);
+ found_edge_index = j - 1;
+ found_edge = edge;
+ if (!last_open_edge_track && vm[orig_medge[edge->old_edge].v1] == i) {
+ eg_track_faces[0] = edge->faces[0];
+ eg_track_faces[1] = edge->faces[1];
+ if (edge->faces[1] == NULL) {
+ last_open_edge_track = edge->faces[0]->reversed ? edge->faces[0] - 1 :
+ edge->faces[0] + 1;
+ }
+ }
+ else {
+ eg_track_faces[0] = edge->faces[1];
+ eg_track_faces[1] = edge->faces[0];
+ }
+ }
+ else if (eg_index >= 0) {
+ NewEdgeRef **edge_ptr = unassigned_edges;
+ for (found_edge_index = 0; found_edge_index < unassigned_edges_len;
+ found_edge_index++, edge_ptr++) {
+ if (*edge_ptr) {
+ NewEdgeRef *edge = *edge_ptr;
+ if (edge->faces[0] == eg_track_faces[1]) {
+ insert_at_start = false;
+ eg_track_faces[1] = edge->faces[1];
+ found_edge = edge;
+ if (edge->faces[1] == NULL) {
+ edge_groups[eg_index].is_orig_closed = false;
+ last_open_edge_track = edge->faces[0]->reversed ? edge->faces[0] - 1 :
+ edge->faces[0] + 1;
+ }
+ break;
+ }
+ if (edge->faces[0] == eg_track_faces[0]) {
+ insert_at_start = true;
+ eg_track_faces[0] = edge->faces[1];
+ found_edge = edge;
+ if (edge->faces[1] == NULL) {
+ edge_groups[eg_index].is_orig_closed = false;
+ }
+ break;
+ }
+ if (edge->faces[1] != NULL) {
+ if (edge->faces[1] == eg_track_faces[1]) {
+ insert_at_start = false;
+ eg_track_faces[1] = edge->faces[0];
+ found_edge = edge;
+ break;
+ }
+ if (edge->faces[1] == eg_track_faces[0]) {
+ insert_at_start = true;
+ eg_track_faces[0] = edge->faces[0];
+ found_edge = edge;
+ break;
+ }
+ }
+ }
+ }
+ }
+ if (found_edge) {
+ unassigned_edges[found_edge_index] = NULL;
+ assigned_edges_len++;
+ const uint needed_capacity = edge_groups[eg_index].edges_len + 1;
+ if (needed_capacity > eg_capacity) {
+ eg_capacity = needed_capacity + 1;
+ NewEdgeRef **new_eg = MEM_calloc_arrayN(
+ eg_capacity, sizeof(*new_eg), "edge_group realloc in solidify");
+ if (insert_at_start) {
+ memcpy(new_eg + 1,
+ edge_groups[eg_index].edges,
+ edge_groups[eg_index].edges_len * sizeof(*new_eg));
+ }
+ else {
+ memcpy(new_eg,
+ edge_groups[eg_index].edges,
+ edge_groups[eg_index].edges_len * sizeof(*new_eg));
+ }
+ MEM_freeN(edge_groups[eg_index].edges);
+ edge_groups[eg_index].edges = new_eg;
+ }
+ else if (insert_at_start) {
+ memmove(edge_groups[eg_index].edges + 1,
+ edge_groups[eg_index].edges,
+ edge_groups[eg_index].edges_len * sizeof(*edge_groups[eg_index].edges));
+ }
+ edge_groups[eg_index].edges[insert_at_start ? 0 : edge_groups[eg_index].edges_len] =
+ found_edge;
+ edge_groups[eg_index].edges_len++;
+ if (edge_groups[eg_index].edges[edge_groups[eg_index].edges_len - 1]->faces[1] !=
+ NULL) {
+ last_open_edge_track = NULL;
+ }
+ if (edge_groups[eg_index].edges_len > 3) {
+ contains_long_groups = true;
+ }
+ }
+ else {
+ /* called on first iteration to clean up the eg_index = -1 and start the first group,
+ * or when the current group is found to be complete (no new found_edge) */
+ eg_index++;
+ BLI_assert(eg_index < edge_groups_len);
+ eg_capacity = 5;
+ NewEdgeRef **edges = MEM_calloc_arrayN(
+ eg_capacity, sizeof(*edges), "edge_group in solidify");
+ edge_groups[eg_index] = (EdgeGroup){
+ .valid = true,
+ .edges = edges,
+ .edges_len = 0,
+ .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
+ .is_orig_closed = true,
+ .is_even_split = false,
+ .split = 0,
+ .is_singularity = false,
+ .topo_group = topo_groups,
+ .co = {0.0f, 0.0f, 0.0f},
+ .no = {0.0f, 0.0f, 0.0f},
+ .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
+ };
+ eg_track_faces[0] = NULL;
+ eg_track_faces[1] = NULL;
+ }
+ }
+ /* #eg_index is the number of groups from here on. */
+ eg_index++;
+ /* #topo_groups is the number of topo groups from here on. */
+ topo_groups++;
+
+ MEM_freeN(unassigned_edges);
+
+ /* TODO: reshape the edge_groups array to its actual size
+ * after writing is finished to save on memory. */
+ }
+
+ /* Split of long self intersection groups */
+ {
+ uint splits = 0;
+ if (contains_long_groups) {
+ uint add_index = 0;
+ for (uint j = 0; j < eg_index; j++) {
+ const uint edges_len = edge_groups[j + add_index].edges_len;
+ if (edges_len > 3) {
+ bool has_doubles = false;
+ bool *doubles = MEM_calloc_arrayN(
+ edges_len, sizeof(*doubles), "doubles in solidify");
+ EdgeGroup g = edge_groups[j + add_index];
+ for (uint k = 0; k < edges_len; k++) {
+ for (uint l = k + 1; l < edges_len; l++) {
+ if (g.edges[k]->old_edge == g.edges[l]->old_edge) {
+ doubles[k] = true;
+ doubles[l] = true;
+ has_doubles = true;
+ }
+ }
+ }
+ if (has_doubles) {
+ const uint prior_splits = splits;
+ const uint prior_index = add_index;
+ int unique_start = -1;
+ int first_unique_end = -1;
+ int last_split = -1;
+ int first_split = -1;
+ bool first_even_split = false;
+ uint real_k = 0;
+ while (real_k < edges_len ||
+ (g.is_orig_closed &&
+ (real_k <=
+ (first_unique_end == -1 ? 0 : first_unique_end) + (int)edges_len ||
+ first_split != last_split))) {
+ const uint k = real_k % edges_len;
+ if (!doubles[k]) {
+ if (first_unique_end != -1 && unique_start == -1) {
+ unique_start = (int)real_k;
+ }
+ }
+ else if (first_unique_end == -1) {
+ first_unique_end = (int)k;
+ }
+ else if (unique_start != -1) {
+ const uint split = (((uint)unique_start + real_k + 1) / 2) % edges_len;
+ const bool is_even_split = (((uint)unique_start + real_k) & 1);
+ if (last_split != -1) {
+ /* Override g on first split (no insert). */
+ if (prior_splits != splits) {
+ memmove(edge_groups + j + add_index + 1,
+ edge_groups + j + add_index,
+ ((uint)eg_index - j) * sizeof(*edge_groups));
+ add_index++;
+ }
+ if (last_split > split) {
+ const uint size = (split + edges_len) - (uint)last_split;
+ NewEdgeRef **edges = MEM_malloc_arrayN(
+ size, sizeof(*edges), "edge_group split in solidify");
+ memcpy(edges,
+ g.edges + last_split,
+ (edges_len - (uint)last_split) * sizeof(*edges));
+ memcpy(edges + (edges_len - (uint)last_split),
+ g.edges,
+ split * sizeof(*edges));
+ edge_groups[j + add_index] = (EdgeGroup){
+ .valid = true,
+ .edges = edges,
+ .edges_len = size,
+ .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
+ .is_orig_closed = g.is_orig_closed,
+ .is_even_split = is_even_split,
+ .split = add_index - prior_index + 1 + (uint)!g.is_orig_closed,
+ .is_singularity = false,
+ .topo_group = g.topo_group,
+ .co = {0.0f, 0.0f, 0.0f},
+ .no = {0.0f, 0.0f, 0.0f},
+ .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
+ };
+ }
+ else {
+ const uint size = split - (uint)last_split;
+ NewEdgeRef **edges = MEM_malloc_arrayN(
+ size, sizeof(*edges), "edge_group split in solidify");
+ memcpy(edges, g.edges + last_split, size * sizeof(*edges));
+ edge_groups[j + add_index] = (EdgeGroup){
+ .valid = true,
+ .edges = edges,
+ .edges_len = size,
+ .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
+ .is_orig_closed = g.is_orig_closed,
+ .is_even_split = is_even_split,
+ .split = add_index - prior_index + 1 + (uint)!g.is_orig_closed,
+ .is_singularity = false,
+ .topo_group = g.topo_group,
+ .co = {0.0f, 0.0f, 0.0f},
+ .no = {0.0f, 0.0f, 0.0f},
+ .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
+ };
+ }
+ splits++;
+ }
+ last_split = (int)split;
+ if (first_split == -1) {
+ first_split = (int)split;
+ first_even_split = is_even_split;
+ }
+ unique_start = -1;
+ }
+ real_k++;
+ }
+ if (first_split != -1) {
+ if (!g.is_orig_closed) {
+ if (prior_splits != splits) {
+ memmove(edge_groups + (j + prior_index + 1),
+ edge_groups + (j + prior_index),
+ ((uint)eg_index + add_index - (j + prior_index)) *
+ sizeof(*edge_groups));
+ memmove(edge_groups + (j + add_index + 2),
+ edge_groups + (j + add_index + 1),
+ ((uint)eg_index - j) * sizeof(*edge_groups));
+ add_index++;
+ }
+ else {
+ memmove(edge_groups + (j + add_index + 2),
+ edge_groups + (j + add_index + 1),
+ ((uint)eg_index - j - 1) * sizeof(*edge_groups));
+ }
+ NewEdgeRef **edges = MEM_malloc_arrayN(
+ (uint)first_split, sizeof(*edges), "edge_group split in solidify");
+ memcpy(edges, g.edges, (uint)first_split * sizeof(*edges));
+ edge_groups[j + prior_index] = (EdgeGroup){
+ .valid = true,
+ .edges = edges,
+ .edges_len = (uint)first_split,
+ .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
+ .is_orig_closed = g.is_orig_closed,
+ .is_even_split = first_even_split,
+ .split = 1,
+ .is_singularity = false,
+ .topo_group = g.topo_group,
+ .co = {0.0f, 0.0f, 0.0f},
+ .no = {0.0f, 0.0f, 0.0f},
+ .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
+ };
+ add_index++;
+ splits++;
+ edges = MEM_malloc_arrayN(edges_len - (uint)last_split,
+ sizeof(*edges),
+ "edge_group split in solidify");
+ memcpy(edges,
+ g.edges + last_split,
+ (edges_len - (uint)last_split) * sizeof(*edges));
+ edge_groups[j + add_index] = (EdgeGroup){
+ .valid = true,
+ .edges = edges,
+ .edges_len = (edges_len - (uint)last_split),
+ .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
+ .is_orig_closed = g.is_orig_closed,
+ .is_even_split = false,
+ .split = add_index - prior_index + 1,
+ .is_singularity = false,
+ .topo_group = g.topo_group,
+ .co = {0.0f, 0.0f, 0.0f},
+ .no = {0.0f, 0.0f, 0.0f},
+ .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
+ };
+ }
+ if (prior_splits != splits) {
+ MEM_freeN(g.edges);
+ }
+ }
+ if (first_unique_end != -1 && prior_splits == splits) {
+ has_singularities = true;
+ edge_groups[j + add_index].is_singularity = true;
+ }
+ }
+ MEM_freeN(doubles);
+ }
+ }
+ }
+ }
+
+ orig_vert_groups_arr[i] = edge_groups;
+ /* Count new edges, loops, polys and add to link_edge_groups. */
+ {
+ uint new_verts = 0;
+ bool contains_open_splits = false;
+ uint open_edges = 0;
+ uint contains_splits = 0;
+ uint last_added = 0;
+ uint first_added = 0;
+ bool first_set = false;
+ for (EdgeGroup *g = edge_groups; g->valid; g++) {
+ NewEdgeRef **e = g->edges;
+ for (uint j = 0; j < g->edges_len; j++, e++) {
+ const uint flip = (uint)(vm[orig_medge[(*e)->old_edge].v2] == i);
+ BLI_assert(flip || vm[orig_medge[(*e)->old_edge].v1] == i);
+ (*e)->link_edge_groups[flip] = g;
+ }
+ uint added = 0;
+ if (do_shell || (do_rim && !g->is_orig_closed)) {
+ BLI_assert(g->new_vert == MOD_SOLIDIFY_EMPTY_TAG);
+ g->new_vert = numNewVerts++;
+ if (do_rim || (do_shell && g->split)) {
+ new_verts++;
+ contains_splits += (g->split != 0);
+ contains_open_splits |= g->split && !g->is_orig_closed;
+ added = g->split;
+ }
+ }
+ open_edges += (uint)(added < last_added);
+ if (!first_set) {
+ first_set = true;
+ first_added = added;
+ }
+ last_added = added;
+ if (!(g + 1)->valid || g->topo_group != (g + 1)->topo_group) {
+ if (new_verts > 2) {
+ numNewPolys++;
+ numNewEdges += new_verts;
+ open_edges += (uint)(first_added < last_added);
+ open_edges -= (uint)(open_edges && !contains_open_splits);
+ if (do_shell && do_rim) {
+ numNewLoops += new_verts * 2;
+ }
+ else if (do_shell) {
+ numNewLoops += new_verts * 2 - open_edges;
+ }
+ else { // do_rim
+ numNewLoops += new_verts * 2 + open_edges - contains_splits;
+ }
+ }
+ else if (new_verts == 2) {
+ numNewEdges++;
+ numNewLoops += 2u - (uint)(!(do_rim && do_shell) && contains_open_splits);
+ }
+ new_verts = 0;
+ contains_open_splits = false;
+ contains_splits = 0;
+ open_edges = 0;
+ last_added = 0;
+ first_added = 0;
+ first_set = false;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* Free vert_adj_edges memory. */
+ {
+ uint i = 0;
+ for (OldVertEdgeRef **p = vert_adj_edges; i < numVerts; i++, p++) {
+ if (*p) {
+ MEM_freeN((*p)->edges);
+ MEM_freeN(*p);
+ }
+ }
+ MEM_freeN(vert_adj_edges);
+ }
+
+ /* TODO: create_regions if fix_intersections. */
+
+ /* General use pointer for #EdgeGroup iteration. */
+ EdgeGroup **gs_ptr;
+
+ /* Calculate EdgeGroup vertex coordinates. */
+ {
+ float *face_weight = NULL;
+
+ if (do_flat_faces) {
+ face_weight = MEM_malloc_arrayN(numPolys, sizeof(*face_weight), "face_weight in solidify");
+
+ mp = orig_mpoly;
+ for (uint i = 0; i < numPolys; i++, mp++) {
+ float scalar_vgroup = 1.0f;
+ int loopend = mp->loopstart + mp->totloop;
+ ml = orig_mloop + mp->loopstart;
+ for (int j = mp->loopstart; j < loopend; j++, ml++) {
+ scalar_vgroup = min_ff(solidify_data->distance[i], scalar_vgroup);
+ }
+ scalar_vgroup = offset_fac_vg + (scalar_vgroup * offset_fac_vg_inv);
+ face_weight[i] = scalar_vgroup;
+ }
+ }
+
+ mv = orig_mvert;
+ gs_ptr = orig_vert_groups_arr;
+ for (uint i = 0; i < numVerts; i++, mv++, gs_ptr++) {
+ if (*gs_ptr) {
+ EdgeGroup *g = *gs_ptr;
+ for (uint j = 0; g->valid; j++, g++) {
+ if (!g->is_singularity) {
+ float *nor = g->no;
+ float move_nor[3] = {0, 0, 0};
+ bool disable_boundary_fix = (solidify_data->nonmanifold_boundary_mode ==
+ MOD_SOLIDIFY_NONMANIFOLD_BOUNDARY_MODE_NONE ||
+ (g->is_orig_closed || g->split));
+ /* Constraints Method. */
+ if (solidify_data->nonmanifold_offset_mode ==
+ MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_CONSTRAINTS) {
+ NewEdgeRef *first_edge = NULL;
+ NewEdgeRef **edge_ptr = g->edges;
+ /* Contains normal and offset [nx, ny, nz, ofs]. */
+ float(*normals_queue)[4] = MEM_malloc_arrayN(
+ g->edges_len + 1, sizeof(*normals_queue), "normals_queue in solidify");
+ uint queue_index = 0;
+
+ float face_nors[3][3];
+ float nor_ofs[3];
+
+ const bool cycle = (g->is_orig_closed && !g->split) || g->is_even_split;
+ for (uint k = 0; k < g->edges_len; k++, edge_ptr++) {
+ if (!(k & 1) || (!cycle && k == g->edges_len - 1)) {
+ NewEdgeRef *edge = *edge_ptr;
+ for (uint l = 0; l < 2; l++) {
+ NewFaceRef *face = edge->faces[l];
+ if (face && (first_edge == NULL ||
+ (first_edge->faces[0] != face && first_edge->faces[1] != face))) {
+ float ofs = face->reversed ? ofs_back_clamped : ofs_front_clamped;
+ /* Use face_weight here to make faces thinner. */
+ if (do_flat_faces) {
+ ofs *= face_weight[face->index];
+ }
+
+ if (!null_faces[face->index]) {
+ /* And normal to the queue. */
+ mul_v3_v3fl(normals_queue[queue_index],
+ poly_nors[face->index],
+ face->reversed ? -1 : 1);
+ normals_queue[queue_index++][3] = ofs;
+ }
+ else {
+ /* Just use this approximate normal of the null face if there is no other
+ * normal to use. */
+ mul_v3_v3fl(face_nors[0], poly_nors[face->index], face->reversed ? -1 : 1);
+ nor_ofs[0] = ofs;
+ }
+ }
+ }
+ if ((cycle && k == 0) || (!cycle && k + 3 >= g->edges_len)) {
+ first_edge = edge;
+ }
+ }
+ }
+ uint face_nors_len = 0;
+ const float stop_explosion = 0.999f - fabsf(solidify_data->offset_fac) * 0.05f;
+ while (queue_index > 0) {
+ if (face_nors_len == 0) {
+ if (queue_index <= 2) {
+ for (uint k = 0; k < queue_index; k++) {
+ copy_v3_v3(face_nors[k], normals_queue[k]);
+ nor_ofs[k] = normals_queue[k][3];
+ }
+ face_nors_len = queue_index;
+ queue_index = 0;
+ }
+ else {
+ /* Find most different two normals. */
+ float min_p = 2;
+ uint min_n0 = 0;
+ uint min_n1 = 0;
+ for (uint k = 0; k < queue_index; k++) {
+ for (uint m = k + 1; m < queue_index; m++) {
+ float p = dot_v3v3(normals_queue[k], normals_queue[m]);
+ if (p <= min_p + FLT_EPSILON) {
+ min_p = p;
+ min_n0 = m;
+ min_n1 = k;
+ }
+ }
+ }
+ copy_v3_v3(face_nors[0], normals_queue[min_n0]);
+ copy_v3_v3(face_nors[1], normals_queue[min_n1]);
+ nor_ofs[0] = normals_queue[min_n0][3];
+ nor_ofs[1] = normals_queue[min_n1][3];
+ face_nors_len = 2;
+ queue_index--;
+ memmove(normals_queue + min_n0,
+ normals_queue + min_n0 + 1,
+ (queue_index - min_n0) * sizeof(*normals_queue));
+ queue_index--;
+ memmove(normals_queue + min_n1,
+ normals_queue + min_n1 + 1,
+ (queue_index - min_n1) * sizeof(*normals_queue));
+ min_p = 1;
+ min_n1 = 0;
+ float max_p = -1;
+ for (uint k = 0; k < queue_index; k++) {
+ max_p = -1;
+ for (uint m = 0; m < face_nors_len; m++) {
+ float p = dot_v3v3(face_nors[m], normals_queue[k]);
+ if (p > max_p + FLT_EPSILON) {
+ max_p = p;
+ }
+ }
+ if (max_p <= min_p + FLT_EPSILON) {
+ min_p = max_p;
+ min_n1 = k;
+ }
+ }
+ if (min_p < 0.8) {
+ copy_v3_v3(face_nors[2], normals_queue[min_n1]);
+ nor_ofs[2] = normals_queue[min_n1][3];
+ face_nors_len++;
+ queue_index--;
+ memmove(normals_queue + min_n1,
+ normals_queue + min_n1 + 1,
+ (queue_index - min_n1) * sizeof(*normals_queue));
+ }
+ }
+ }
+ else {
+ uint best = 0;
+ uint best_group = 0;
+ float best_p = -1.0f;
+ for (uint k = 0; k < queue_index; k++) {
+ for (uint m = 0; m < face_nors_len; m++) {
+ float p = dot_v3v3(face_nors[m], normals_queue[k]);
+ if (p > best_p + FLT_EPSILON) {
+ best_p = p;
+ best = m;
+ best_group = k;
+ }
+ }
+ }
+ add_v3_v3(face_nors[best], normals_queue[best_group]);
+ normalize_v3(face_nors[best]);
+ nor_ofs[best] = (nor_ofs[best] + normals_queue[best_group][3]) * 0.5f;
+ queue_index--;
+ memmove(normals_queue + best_group,
+ normals_queue + best_group + 1,
+ (queue_index - best_group) * sizeof(*normals_queue));
+ }
+ }
+ MEM_freeN(normals_queue);
+
+ /* When up to 3 constraint normals are found. */
+ if (ELEM(face_nors_len, 2, 3)) {
+ const float q = dot_v3v3(face_nors[0], face_nors[1]);
+ float d = 1.0f - q * q;
+ cross_v3_v3v3(move_nor, face_nors[0], face_nors[1]);
+ if (d > FLT_EPSILON * 10 && q < stop_explosion) {
+ d = 1.0f / d;
+ mul_v3_fl(face_nors[0], (nor_ofs[0] - nor_ofs[1] * q) * d);
+ mul_v3_fl(face_nors[1], (nor_ofs[1] - nor_ofs[0] * q) * d);
+ }
+ else {
+ d = 1.0f / (fabsf(q) + 1.0f);
+ mul_v3_fl(face_nors[0], nor_ofs[0] * d);
+ mul_v3_fl(face_nors[1], nor_ofs[1] * d);
+ }
+ add_v3_v3v3(nor, face_nors[0], face_nors[1]);
+ if (face_nors_len == 3) {
+ float *free_nor = move_nor;
+ mul_v3_fl(face_nors[2], nor_ofs[2]);
+ d = dot_v3v3(face_nors[2], free_nor);
+ if (LIKELY(fabsf(d) > FLT_EPSILON)) {
+ sub_v3_v3v3(face_nors[0], nor, face_nors[2]); /* Override face_nor[0]. */
+ mul_v3_fl(free_nor, dot_v3v3(face_nors[2], face_nors[0]) / d);
+ sub_v3_v3(nor, free_nor);
+ }
+ disable_boundary_fix = true;
+ }
+ }
+ else {
+ BLI_assert(face_nors_len < 2);
+ mul_v3_v3fl(nor, face_nors[0], nor_ofs[0]);
+ disable_boundary_fix = true;
+ }
+ }
+ /* Fixed/Even Method. */
+ else {
+ float total_angle = 0;
+ float total_angle_back = 0;
+ NewEdgeRef *first_edge = NULL;
+ NewEdgeRef **edge_ptr = g->edges;
+ float face_nor[3];
+ float nor_back[3] = {0, 0, 0};
+ bool has_back = false;
+ bool has_front = false;
+ bool cycle = (g->is_orig_closed && !g->split) || g->is_even_split;
+ for (uint k = 0; k < g->edges_len; k++, edge_ptr++) {
+ if (!(k & 1) || (!cycle && k == g->edges_len - 1)) {
+ NewEdgeRef *edge = *edge_ptr;
+ for (uint l = 0; l < 2; l++) {
+ NewFaceRef *face = edge->faces[l];
+ if (face && (first_edge == NULL ||
+ (first_edge->faces[0] != face && first_edge->faces[1] != face))) {
+ float angle = 1.0f;
+ float ofs = face->reversed ? -ofs_back_clamped : ofs_front_clamped;
+ /* Use face_weight here to make faces thinner. */
+ if (do_flat_faces) {
+ ofs *= face_weight[face->index];
+ }
+
+ if (solidify_data->nonmanifold_offset_mode ==
+ MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_EVEN) {
+ MLoop *ml_next = orig_mloop + face->face->loopstart;
+ ml = ml_next + (face->face->totloop - 1);
+ MLoop *ml_prev = ml - 1;
+ for (int m = 0; m < face->face->totloop && vm[ml->v] != i;
+ m++, ml_next++) {
+ ml_prev = ml;
+ ml = ml_next;
+ }
+ angle = angle_v3v3v3(orig_mvert_co[vm[ml_prev->v]],
+ orig_mvert_co[i],
+ orig_mvert_co[vm[ml_next->v]]);
+ if (face->reversed) {
+ total_angle_back += angle * ofs * ofs;
+ }
+ else {
+ total_angle += angle * ofs * ofs;
+ }
+ }
+ else {
+ if (face->reversed) {
+ total_angle_back++;
+ }
+ else {
+ total_angle++;
+ }
+ }
+ mul_v3_v3fl(face_nor, poly_nors[face->index], angle * ofs);
+ if (face->reversed) {
+ add_v3_v3(nor_back, face_nor);
+ has_back = true;
+ }
+ else {
+ add_v3_v3(nor, face_nor);
+ has_front = true;
+ }
+ }
+ }
+ if ((cycle && k == 0) || (!cycle && k + 3 >= g->edges_len)) {
+ first_edge = edge;
+ }
+ }
+ }
+
+ /* Set normal length with selected method. */
+ if (solidify_data->nonmanifold_offset_mode ==
+ MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_EVEN) {
+ if (has_front) {
+ float length_sq = len_squared_v3(nor);
+ if (LIKELY(length_sq > FLT_EPSILON)) {
+ mul_v3_fl(nor, total_angle / length_sq);
+ }
+ }
+ if (has_back) {
+ float length_sq = len_squared_v3(nor_back);
+ if (LIKELY(length_sq > FLT_EPSILON)) {
+ mul_v3_fl(nor_back, total_angle_back / length_sq);
+ }
+ if (!has_front) {
+ copy_v3_v3(nor, nor_back);
+ }
+ }
+ if (has_front && has_back) {
+ float nor_length = len_v3(nor);
+ float nor_back_length = len_v3(nor_back);
+ float q = dot_v3v3(nor, nor_back);
+ if (LIKELY(fabsf(q) > FLT_EPSILON)) {
+ q /= nor_length * nor_back_length;
+ }
+ float d = 1.0f - q * q;
+ if (LIKELY(d > FLT_EPSILON)) {
+ d = 1.0f / d;
+ if (LIKELY(nor_length > FLT_EPSILON)) {
+ mul_v3_fl(nor, (1 - nor_back_length * q / nor_length) * d);
+ }
+ if (LIKELY(nor_back_length > FLT_EPSILON)) {
+ mul_v3_fl(nor_back, (1 - nor_length * q / nor_back_length) * d);
+ }
+ add_v3_v3(nor, nor_back);
+ }
+ else {
+ mul_v3_fl(nor, 0.5f);
+ mul_v3_fl(nor_back, 0.5f);
+ add_v3_v3(nor, nor_back);
+ }
+ }
+ }
+ else {
+ if (has_front && total_angle > FLT_EPSILON) {
+ mul_v3_fl(nor, 1.0f / total_angle);
+ }
+ if (has_back && total_angle_back > FLT_EPSILON) {
+ mul_v3_fl(nor_back, 1.0f / total_angle_back);
+ add_v3_v3(nor, nor_back);
+ if (has_front && total_angle > FLT_EPSILON) {
+ mul_v3_fl(nor, 0.5f);
+ }
+ }
+ }
+ /* Set move_nor for boundary fix. */
+ if (!disable_boundary_fix && g->edges_len > 2) {
+ edge_ptr = g->edges + 1;
+ float tmp[3];
+ uint k;
+ for (k = 1; k + 1 < g->edges_len; k++, edge_ptr++) {
+ MEdge *e = orig_medge + (*edge_ptr)->old_edge;
+ sub_v3_v3v3(
+ tmp, orig_mvert_co[vm[e->v1] == i ? e->v2 : e->v1], orig_mvert_co[i]);
+ add_v3_v3(move_nor, tmp);
+ }
+ if (k == 1) {
+ disable_boundary_fix = true;
+ }
+ else {
+ disable_boundary_fix = normalize_v3(move_nor) == 0.0f;
+ }
+ }
+ else {
+ disable_boundary_fix = true;
+ }
+ }
+ /* Fix boundary verts. */
+ if (!disable_boundary_fix) {
+ /* Constraint normal, nor * constr_nor == 0 after this fix. */
+ float constr_nor[3];
+ MEdge *e0_edge = orig_medge + g->edges[0]->old_edge;
+ MEdge *e1_edge = orig_medge + g->edges[g->edges_len - 1]->old_edge;
+ float e0[3];
+ float e1[3];
+ sub_v3_v3v3(e0,
+ orig_mvert_co[vm[e0_edge->v1] == i ? e0_edge->v2 : e0_edge->v1],
+ orig_mvert_co[i]);
+ sub_v3_v3v3(e1,
+ orig_mvert_co[vm[e1_edge->v1] == i ? e1_edge->v2 : e1_edge->v1],
+ orig_mvert_co[i]);
+ if (solidify_data->nonmanifold_boundary_mode ==
+ MOD_SOLIDIFY_NONMANIFOLD_BOUNDARY_MODE_FLAT) {
+ cross_v3_v3v3(constr_nor, e0, e1);
+ }
+ else {
+ float f0[3];
+ float f1[3];
+ if (g->edges[0]->faces[0]->reversed) {
+ negate_v3_v3(f0, poly_nors[g->edges[0]->faces[0]->index]);
+ }
+ else {
+ copy_v3_v3(f0, poly_nors[g->edges[0]->faces[0]->index]);
+ }
+ if (g->edges[g->edges_len - 1]->faces[0]->reversed) {
+ negate_v3_v3(f1, poly_nors[g->edges[g->edges_len - 1]->faces[0]->index]);
+ }
+ else {
+ copy_v3_v3(f1, poly_nors[g->edges[g->edges_len - 1]->faces[0]->index]);
+ }
+ float n0[3];
+ float n1[3];
+ cross_v3_v3v3(n0, e0, f0);
+ cross_v3_v3v3(n1, f1, e1);
+ normalize_v3(n0);
+ normalize_v3(n1);
+ add_v3_v3v3(constr_nor, n0, n1);
+ }
+ float d = dot_v3v3(constr_nor, move_nor);
+ if (LIKELY(fabsf(d) > FLT_EPSILON)) {
+ mul_v3_fl(move_nor, dot_v3v3(constr_nor, nor) / d);
+ sub_v3_v3(nor, move_nor);
+ }
+ }
+ float scalar_vgroup = 1;
+ /* Use vertex group. */
+ if (!do_flat_faces) {
+ scalar_vgroup = solidify_data->distance[i];
+ scalar_vgroup = offset_fac_vg + (scalar_vgroup * offset_fac_vg_inv);
+ }
+ /* Do clamping. */
+ if (do_clamp) {
+ if (do_angle_clamp) {
+ if (g->edges_len > 2) {
+ float min_length = 0;
+ float angle = 0.5f * M_PI;
+ uint k = 0;
+ for (NewEdgeRef **p = g->edges; k < g->edges_len; k++, p++) {
+ float length = orig_edge_lengths[(*p)->old_edge];
+ float e_ang = (*p)->angle;
+ if (e_ang > angle) {
+ angle = e_ang;
+ }
+ if (length < min_length || k == 0) {
+ min_length = length;
+ }
+ }
+ float cos_ang = cosf(angle * 0.5f);
+ if (cos_ang > 0) {
+ float max_off = min_length * 0.5f / cos_ang;
+ if (max_off < offset * 0.5f) {
+ scalar_vgroup *= max_off / offset * 2;
+ }
+ }
+ }
+ }
+ else {
+ float min_length = 0;
+ uint k = 0;
+ for (NewEdgeRef **p = g->edges; k < g->edges_len; k++, p++) {
+ float length = orig_edge_lengths[(*p)->old_edge];
+ if (length < min_length || k == 0) {
+ min_length = length;
+ }
+ }
+ if (min_length < offset) {
+ scalar_vgroup *= min_length / offset;
+ }
+ }
+ }
+ mul_v3_fl(nor, scalar_vgroup);
+ add_v3_v3v3(g->co, nor, orig_mvert_co[i]);
+ }
+ else {
+ copy_v3_v3(g->co, orig_mvert_co[i]);
+ }
+ }
+ }
+ }
+
+ if (do_flat_faces) {
+ MEM_freeN(face_weight);
+ }
+ }
+
+ MEM_freeN(orig_mvert_co);
+ if (null_faces) {
+ MEM_freeN(null_faces);
+ }
+
+ /* TODO: create vertdata for intersection fixes (intersection fixing per topology region). */
+
+ /* Correction for adjacent one sided groups around a vert to
+ * prevent edge duplicates and null polys. */
+ uint(*singularity_edges)[2] = NULL;
+ uint totsingularity = 0;
+ if (has_singularities) {
+ has_singularities = false;
+ uint i = 0;
+ uint singularity_edges_len = 1;
+ singularity_edges = MEM_malloc_arrayN(
+ singularity_edges_len, sizeof(*singularity_edges), "singularity_edges in solidify");
+ for (NewEdgeRef ***new_edges = orig_edge_data_arr; i < numEdges; i++, new_edges++) {
+ if (*new_edges && (do_shell || edge_adj_faces_len[i] == 1) && (**new_edges)->old_edge == i) {
+ for (NewEdgeRef **l = *new_edges; *l; l++) {
+ if ((*l)->link_edge_groups[0]->is_singularity &&
+ (*l)->link_edge_groups[1]->is_singularity) {
+ const uint v1 = (*l)->link_edge_groups[0]->new_vert;
+ const uint v2 = (*l)->link_edge_groups[1]->new_vert;
+ bool exists_already = false;
+ uint j = 0;
+ for (uint(*p)[2] = singularity_edges; j < totsingularity; p++, j++) {
+ if (((*p)[0] == v1 && (*p)[1] == v2) || ((*p)[0] == v2 && (*p)[1] == v1)) {
+ exists_already = true;
+ break;
+ }
+ }
+ if (!exists_already) {
+ has_singularities = true;
+ if (singularity_edges_len <= totsingularity) {
+ singularity_edges_len = totsingularity + 1;
+ singularity_edges = MEM_reallocN_id(singularity_edges,
+ singularity_edges_len *
+ sizeof(*singularity_edges),
+ "singularity_edges in solidify");
+ }
+ singularity_edges[totsingularity][0] = v1;
+ singularity_edges[totsingularity][1] = v2;
+ totsingularity++;
+ if (edge_adj_faces_len[i] == 1 && do_rim) {
+ numNewLoops -= 2;
+ numNewPolys--;
+ }
+ }
+ else {
+ numNewEdges--;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* Create Mesh *result with proper capacity. */
+ result = BKE_mesh_new_nomain_from_template(
+ mesh, (int)(numNewVerts), (int)(numNewEdges), 0, (int)(numNewLoops), (int)(numNewPolys));
+
+ mpoly = result->mpoly;
+ mloop = result->mloop;
+ medge = result->medge;
+ mvert = result->mvert;
+
+ int *origindex_edge = CustomData_get_layer(&result->edata, CD_ORIGINDEX);
+ int *origindex_poly = CustomData_get_layer(&result->pdata, CD_ORIGINDEX);
+
+ if (bevel_convex != 0.0f) {
+ /* make sure bweight is enabled */
+ result->cd_flag |= ME_CDFLAG_EDGE_BWEIGHT;
+ }
+
+ *r_shell_verts = MEM_malloc_arrayN(
+ (size_t)result->totvert, sizeof(bool), "shell verts selection in solidify");
+
+ for (int i = 0; i < result->totvert; i++) {
+ (*r_shell_verts)[i] = false;
+ }
+
+ *r_rim_verts = MEM_malloc_arrayN(
+ (size_t)result->totvert, sizeof(bool), "rim verts selection in solidify");
+
+ for (int i = 0; i < result->totvert; i++) {
+ (*r_rim_verts)[i] = false;
+ }
+
+ *r_shell_faces = MEM_malloc_arrayN(
+ (size_t)result->totpoly, sizeof(bool), "shell faces selection in solidify");
+
+ for (int i = 0; i < result->totpoly; i++) {
+ (*r_shell_faces)[i] = false;
+ }
+
+ *r_rim_faces = MEM_malloc_arrayN(
+ (size_t)result->totpoly, sizeof(bool), "rim faces selection in solidify");
+
+ for (int i = 0; i < result->totpoly; i++) {
+ (*r_rim_faces)[i] = false;
+ }
+
+ /* Make_new_verts. */
+ {
+ gs_ptr = orig_vert_groups_arr;
+ for (uint i = 0; i < numVerts; i++, gs_ptr++) {
+ EdgeGroup *gs = *gs_ptr;
+ if (gs) {
+ EdgeGroup *g = gs;
+ for (uint j = 0; g->valid; j++, g++) {
+ if (g->new_vert != MOD_SOLIDIFY_EMPTY_TAG) {
+ CustomData_copy_data(&mesh->vdata, &result->vdata, (int)i, (int)g->new_vert, 1);
+ copy_v3_v3(mvert[g->new_vert].co, g->co);
+ mvert[g->new_vert].flag = orig_mvert[i].flag;
+ }
+ }
+ }
+ }
+ }
+
+ result->runtime.cd_dirty_vert |= CD_MASK_NORMAL;
+
+ /* Make edges. */
+ {
+ uint i = 0;
+ edge_index += totsingularity;
+ for (NewEdgeRef ***new_edges = orig_edge_data_arr; i < numEdges; i++, new_edges++) {
+ if (*new_edges && (do_shell || edge_adj_faces_len[i] == 1) && (**new_edges)->old_edge == i) {
+ for (NewEdgeRef **l = *new_edges; *l; l++) {
+ if ((*l)->new_edge != MOD_SOLIDIFY_EMPTY_TAG) {
+ const uint v1 = (*l)->link_edge_groups[0]->new_vert;
+ const uint v2 = (*l)->link_edge_groups[1]->new_vert;
+ uint insert = edge_index;
+ if (has_singularities && ((*l)->link_edge_groups[0]->is_singularity &&
+ (*l)->link_edge_groups[1]->is_singularity)) {
+ uint j = 0;
+ for (uint(*p)[2] = singularity_edges; j < totsingularity; p++, j++) {
+ if (((*p)[0] == v1 && (*p)[1] == v2) || ((*p)[0] == v2 && (*p)[1] == v1)) {
+ insert = j;
+ break;
+ }
+ }
+ BLI_assert(insert == j);
+ }
+ else {
+ edge_index++;
+ }
+ CustomData_copy_data(&mesh->edata, &result->edata, (int)i, (int)insert, 1);
+ BLI_assert(v1 != MOD_SOLIDIFY_EMPTY_TAG);
+ BLI_assert(v2 != MOD_SOLIDIFY_EMPTY_TAG);
+ medge[insert].v1 = v1;
+ medge[insert].v2 = v2;
+ medge[insert].flag = orig_medge[(*l)->old_edge].flag | ME_EDGEDRAW | ME_EDGERENDER;
+ medge[insert].crease = orig_medge[(*l)->old_edge].crease;
+ medge[insert].bweight = orig_medge[(*l)->old_edge].bweight;
+ if (bevel_convex != 0.0f && (*l)->faces[1] != NULL) {
+ medge[insert].bweight = (char)clamp_i(
+ (int)medge[insert].bweight + (int)(((*l)->angle > M_PI + FLT_EPSILON ?
+ clamp_f(bevel_convex, 0.0f, 1.0f) :
+ ((*l)->angle < M_PI - FLT_EPSILON ?
+ clamp_f(bevel_convex, -1.0f, 0.0f) :
+ 0)) *
+ 255),
+ 0,
+ 255);
+ }
+ (*l)->new_edge = insert;
+ }
+ }
+ }
+ }
+ }
+ if (singularity_edges) {
+ MEM_freeN(singularity_edges);
+ }
+
+ /* DEBUG CODE FOR BUG-FIXING (can not be removed because every bug-fix needs this badly!). */
+#if 0
+ {
+ /* this code will output the content of orig_vert_groups_arr.
+ * in orig_vert_groups_arr these conditions must be met for every vertex:
+ * - new_edge value should have no duplicates
+ * - every old_edge value should appear twice
+ * - every group should have at least two members (edges)
+ * NOTE: that there can be vertices that only have one group. They are called singularities.
+ * These vertices will only have one side (there is no way of telling apart front
+ * from back like on a mobius strip)
+ */
+
+ /* Debug output format:
+ * <original vertex id>:
+ * {
+ * { <old edge id>/<new edge id>, } \
+ * (tg:<topology group id>)(s:<is split group>,c:<is closed group (before splitting)>)
+ * }
+ */
+ gs_ptr = orig_vert_groups_arr;
+ for (uint i = 0; i < numVerts; i++, gs_ptr++) {
+ EdgeGroup *gs = *gs_ptr;
+ /* check if the vertex is present (may be dissolved because of proximity) */
+ if (gs) {
+ printf("%d:\n", i);
+ for (EdgeGroup *g = gs; g->valid; g++) {
+ NewEdgeRef **e = g->edges;
+ for (uint j = 0; j < g->edges_len; j++, e++) {
+ printf("%u/%d, ", (*e)->old_edge, (int)(*e)->new_edge);
+ }
+ printf("(tg:%u)(s:%u,c:%d)\n", g->topo_group, g->split, g->is_orig_closed);
+ }
+ }
+ }
+ }
+#endif
+
+ /* Make boundary edges/faces. */
+ {
+ gs_ptr = orig_vert_groups_arr;
+ mv = orig_mvert;
+ for (uint i = 0; i < numVerts; i++, gs_ptr++, mv++) {
+ EdgeGroup *gs = *gs_ptr;
+ if (gs) {
+ EdgeGroup *g = gs;
+ EdgeGroup *g2 = gs;
+ EdgeGroup *last_g = NULL;
+ EdgeGroup *first_g = NULL;
+ /* Data calculation cache. */
+ char max_crease;
+ char last_max_crease = 0;
+ char first_max_crease = 0;
+ char max_bweight;
+ char last_max_bweight = 0;
+ char first_max_bweight = 0;
+ short flag;
+ short last_flag = 0;
+ short first_flag = 0;
+ for (uint j = 0; g->valid; g++) {
+ if ((do_rim && !g->is_orig_closed) || (do_shell && g->split)) {
+ max_crease = 0;
+ max_bweight = 0;
+ flag = 0;
+
+ BLI_assert(g->edges_len >= 2);
+
+ if (g->edges_len == 2) {
+ max_crease = min_cc(orig_medge[g->edges[0]->old_edge].crease,
+ orig_medge[g->edges[1]->old_edge].crease);
+ }
+ else {
+ for (uint k = 1; k < g->edges_len - 1; k++) {
+ ed = orig_medge + g->edges[k]->old_edge;
+ if (ed->crease > max_crease) {
+ max_crease = ed->crease;
+ }
+ if (g->edges[k]->new_edge != MOD_SOLIDIFY_EMPTY_TAG) {
+ char bweight = medge[g->edges[k]->new_edge].bweight;
+ if (bweight > max_bweight) {
+ max_bweight = bweight;
+ }
+ }
+ flag |= ed->flag;
+ }
+ }
+
+ const char bweight_open_edge = min_cc(
+ orig_medge[g->edges[0]->old_edge].bweight,
+ orig_medge[g->edges[g->edges_len - 1]->old_edge].bweight);
+ if (bweight_open_edge > 0) {
+ max_bweight = min_cc(bweight_open_edge, max_bweight);
+ }
+ else {
+ if (bevel_convex < 0.0f) {
+ max_bweight = 0;
+ }
+ }
+ if (!first_g) {
+ first_g = g;
+ first_max_crease = max_crease;
+ first_max_bweight = max_bweight;
+ first_flag = flag;
+ }
+ else {
+ last_g->open_face_edge = edge_index;
+ CustomData_copy_data(&mesh->edata,
+ &result->edata,
+ (int)last_g->edges[0]->old_edge,
+ (int)edge_index,
+ 1);
+ if (origindex_edge) {
+ origindex_edge[edge_index] = ORIGINDEX_NONE;
+ }
+ medge[edge_index].v1 = last_g->new_vert;
+ medge[edge_index].v2 = g->new_vert;
+ medge[edge_index].flag = ME_EDGEDRAW | ME_EDGERENDER |
+ ((last_flag | flag) & (ME_SEAM | ME_SHARP));
+ medge[edge_index].crease = min_cc(last_max_crease, max_crease);
+ medge[edge_index++].bweight = max_cc(mv->bweight,
+ min_cc(last_max_bweight, max_bweight));
+ }
+ last_g = g;
+ last_max_crease = max_crease;
+ last_max_bweight = max_bweight;
+ last_flag = flag;
+ j++;
+ }
+ if (!(g + 1)->valid || g->topo_group != (g + 1)->topo_group) {
+ if (j == 2) {
+ last_g->open_face_edge = edge_index - 1;
+ }
+ if (j > 2) {
+ CustomData_copy_data(&mesh->edata,
+ &result->edata,
+ (int)last_g->edges[0]->old_edge,
+ (int)edge_index,
+ 1);
+ if (origindex_edge) {
+ origindex_edge[edge_index] = ORIGINDEX_NONE;
+ }
+ last_g->open_face_edge = edge_index;
+ medge[edge_index].v1 = last_g->new_vert;
+ medge[edge_index].v2 = first_g->new_vert;
+ medge[edge_index].flag = ME_EDGEDRAW | ME_EDGERENDER |
+ ((last_flag | first_flag) & (ME_SEAM | ME_SHARP));
+ medge[edge_index].crease = min_cc(last_max_crease, first_max_crease);
+ medge[edge_index++].bweight = max_cc(mv->bweight,
+ min_cc(last_max_bweight, first_max_bweight));
+
+ /* Loop data. */
+ int *loops = MEM_malloc_arrayN(j, sizeof(*loops), "loops in solidify");
+
+ if (origindex_poly) {
+ origindex_poly[poly_index] = ORIGINDEX_NONE;
+ }
+ mpoly[poly_index].loopstart = (int)loop_index;
+ mpoly[poly_index].totloop = (int)j;
+
+ if (g->is_orig_closed || !do_rim) {
+ (*r_rim_faces)[poly_index] = true;
+ }
+
+ poly_index++;
+
+ for (uint k = 0; g2->valid && k < j; g2++) {
+ if ((do_rim && !g2->is_orig_closed) || (do_shell && g2->split)) {
+ MPoly *face = g2->edges[0]->faces[0]->face;
+ ml = orig_mloop + face->loopstart;
+ for (int l = 0; l < face->totloop; l++, ml++) {
+ if (vm[ml->v] == i) {
+ loops[k] = face->loopstart + l;
+ break;
+ }
+ }
+ k++;
+ }
+ }
+
+ if (!do_flip) {
+ for (uint k = 0; k < j; k++) {
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loops[k], (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge_index - j + k].v1;
+ mloop[loop_index++].e = edge_index - j + k;
+ }
+ }
+ else {
+ for (uint k = 1; k <= j; k++) {
+ CustomData_copy_data(
+ &mesh->ldata, &result->ldata, loops[j - k], (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge_index - k].v2;
+ mloop[loop_index++].e = edge_index - k;
+ }
+ }
+ MEM_freeN(loops);
+ }
+ /* Reset everything for the next poly. */
+ j = 0;
+ last_g = NULL;
+ first_g = NULL;
+ last_max_crease = 0;
+ first_max_crease = 0;
+ last_max_bweight = 0;
+ first_max_bweight = 0;
+ last_flag = 0;
+ first_flag = 0;
+ }
+ }
+ }
+ }
+ }
+
+ /* Make boundary faces. */
+ if (do_rim) {
+ for (uint i = 0; i < numEdges; i++) {
+ if (edge_adj_faces_len[i] == 1 && orig_edge_data_arr[i] &&
+ (*orig_edge_data_arr[i])->old_edge == i) {
+ NewEdgeRef **new_edges = orig_edge_data_arr[i];
+
+ NewEdgeRef *edge1 = new_edges[0];
+ NewEdgeRef *edge2 = new_edges[1];
+ const bool v1_singularity = edge1->link_edge_groups[0]->is_singularity &&
+ edge2->link_edge_groups[0]->is_singularity;
+ const bool v2_singularity = edge1->link_edge_groups[1]->is_singularity &&
+ edge2->link_edge_groups[1]->is_singularity;
+ if (v1_singularity && v2_singularity) {
+ continue;
+ }
+
+ MPoly *face = (*new_edges)->faces[0]->face;
+ CustomData_copy_data(
+ &mesh->pdata, &result->pdata, (int)(*new_edges)->faces[0]->index, (int)poly_index, 1);
+ mpoly[poly_index].loopstart = (int)loop_index;
+ mpoly[poly_index].totloop = 4 - (int)(v1_singularity || v2_singularity);
+
+ (*r_rim_faces)[poly_index] = true;
+ mpoly[poly_index].flag = face->flag;
+ poly_index++;
+
+ int loop1 = -1;
+ int loop2 = -1;
+ ml = orig_mloop + face->loopstart;
+ const uint old_v1 = vm[orig_medge[edge1->old_edge].v1];
+ const uint old_v2 = vm[orig_medge[edge1->old_edge].v2];
+ for (uint j = 0; j < face->totloop; j++, ml++) {
+ if (vm[ml->v] == old_v1) {
+ loop1 = face->loopstart + (int)j;
+ }
+ else if (vm[ml->v] == old_v2) {
+ loop2 = face->loopstart + (int)j;
+ }
+ }
+ BLI_assert(loop1 != -1 && loop2 != -1);
+ MEdge *open_face_edge;
+ uint open_face_edge_index;
+ if (!do_flip) {
+ (*r_rim_verts)[medge[edge1->new_edge].v1] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge1->new_edge].v1;
+ mloop[loop_index++].e = edge1->new_edge;
+
+ if (!v2_singularity) {
+ open_face_edge_index = edge1->link_edge_groups[1]->open_face_edge;
+
+ (*r_rim_verts)[medge[edge1->new_edge].v2] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge1->new_edge].v2;
+ open_face_edge = medge + open_face_edge_index;
+ if (ELEM(medge[edge2->new_edge].v2, open_face_edge->v1, open_face_edge->v2)) {
+ mloop[loop_index++].e = open_face_edge_index;
+ }
+ else {
+ mloop[loop_index++].e = edge2->link_edge_groups[1]->open_face_edge;
+ }
+ }
+ (*r_rim_verts)[medge[edge2->new_edge].v2] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge2->new_edge].v2;
+ mloop[loop_index++].e = edge2->new_edge;
+
+ if (!v1_singularity) {
+ open_face_edge_index = edge2->link_edge_groups[0]->open_face_edge;
+
+ (*r_rim_verts)[medge[edge2->new_edge].v1] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge2->new_edge].v1;
+ open_face_edge = medge + open_face_edge_index;
+ if (ELEM(medge[edge1->new_edge].v1, open_face_edge->v1, open_face_edge->v2)) {
+ mloop[loop_index++].e = open_face_edge_index;
+ }
+ else {
+ mloop[loop_index++].e = edge1->link_edge_groups[0]->open_face_edge;
+ }
+ }
+ }
+ else {
+ if (!v1_singularity) {
+ open_face_edge_index = edge1->link_edge_groups[0]->open_face_edge;
+
+ (*r_rim_verts)[medge[edge1->new_edge].v1] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge1->new_edge].v1;
+ open_face_edge = medge + open_face_edge_index;
+ if (ELEM(medge[edge2->new_edge].v1, open_face_edge->v1, open_face_edge->v2)) {
+ mloop[loop_index++].e = open_face_edge_index;
+ }
+ else {
+ mloop[loop_index++].e = edge2->link_edge_groups[0]->open_face_edge;
+ }
+ }
+
+ (*r_rim_verts)[medge[edge2->new_edge].v1] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge2->new_edge].v1;
+ mloop[loop_index++].e = edge2->new_edge;
+
+ if (!v2_singularity) {
+ open_face_edge_index = edge2->link_edge_groups[1]->open_face_edge;
+
+ (*r_rim_verts)[medge[edge2->new_edge].v2] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge2->new_edge].v2;
+ open_face_edge = medge + open_face_edge_index;
+ if (ELEM(medge[edge1->new_edge].v2, open_face_edge->v1, open_face_edge->v2)) {
+ mloop[loop_index++].e = open_face_edge_index;
+ }
+ else {
+ mloop[loop_index++].e = edge1->link_edge_groups[1]->open_face_edge;
+ }
+ }
+
+ (*r_rim_verts)[medge[edge1->new_edge].v2] = true;
+
+ CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
+ mloop[loop_index].v = medge[edge1->new_edge].v2;
+ mloop[loop_index++].e = edge1->new_edge;
+ }
+ }
+ }
+ }
+
+ /* Make faces. */
+ if (do_shell) {
+ NewFaceRef *fr = face_sides_arr;
+ uint *face_loops = MEM_malloc_arrayN(
+ largest_ngon * 2, sizeof(*face_loops), "face_loops in solidify");
+
+ uint *face_verts = MEM_malloc_arrayN(
+ largest_ngon * 2, sizeof(*face_verts), "face_verts in solidify");
+
+ uint *face_edges = MEM_malloc_arrayN(
+ largest_ngon * 2, sizeof(*face_edges), "face_edges in solidify");
+
+ for (uint i = 0; i < numPolys * 2; i++, fr++) {
+ const uint loopstart = (uint)fr->face->loopstart;
+ uint totloop = (uint)fr->face->totloop;
+ uint valid_edges = 0;
+ uint k = 0;
+ while (totloop > 0 && (!fr->link_edges[totloop - 1] ||
+ fr->link_edges[totloop - 1]->new_edge == MOD_SOLIDIFY_EMPTY_TAG)) {
+ totloop--;
+ }
+ if (totloop > 0) {
+ NewEdgeRef *prior_edge = fr->link_edges[totloop - 1];
+ uint prior_flip = (uint)(vm[orig_medge[prior_edge->old_edge].v1] ==
+ vm[orig_mloop[loopstart + (totloop - 1)].v]);
+ for (uint j = 0; j < totloop; j++) {
+ NewEdgeRef *new_edge = fr->link_edges[j];
+ if (new_edge && new_edge->new_edge != MOD_SOLIDIFY_EMPTY_TAG) {
+ valid_edges++;
+ const uint flip = (uint)(vm[orig_medge[new_edge->old_edge].v2] ==
+ vm[orig_mloop[loopstart + j].v]);
+ BLI_assert(flip ||
+ vm[orig_medge[new_edge->old_edge].v1] == vm[orig_mloop[loopstart + j].v]);
+ /* The vert that's in the current loop. */
+ const uint new_v1 = new_edge->link_edge_groups[flip]->new_vert;
+ /* The vert that's in the next loop. */
+ const uint new_v2 = new_edge->link_edge_groups[1 - flip]->new_vert;
+ if (k == 0 || face_verts[k - 1] != new_v1) {
+ face_loops[k] = loopstart + j;
+ if (fr->reversed) {
+ face_edges[k] = prior_edge->link_edge_groups[prior_flip]->open_face_edge;
+ }
+ else {
+ face_edges[k] = new_edge->link_edge_groups[flip]->open_face_edge;
+ }
+ BLI_assert(k == 0 || medge[face_edges[k]].v2 == face_verts[k - 1] ||
+ medge[face_edges[k]].v1 == face_verts[k - 1]);
+ BLI_assert(face_edges[k] == MOD_SOLIDIFY_EMPTY_TAG ||
+ medge[face_edges[k]].v2 == new_v1 || medge[face_edges[k]].v1 == new_v1);
+ face_verts[k++] = new_v1;
+ }
+ prior_edge = new_edge;
+ prior_flip = 1 - flip;
+ if (j < totloop - 1 || face_verts[0] != new_v2) {
+ face_loops[k] = loopstart + (j + 1) % totloop;
+ face_edges[k] = new_edge->new_edge;
+ face_verts[k++] = new_v2;
+ }
+ else {
+ face_edges[0] = new_edge->new_edge;
+ }
+ }
+ }
+ if (k > 2 && valid_edges > 2) {
+ CustomData_copy_data(&mesh->pdata, &result->pdata, (int)(i / 2), (int)poly_index, 1);
+ mpoly[poly_index].loopstart = (int)loop_index;
+ mpoly[poly_index].totloop = (int)k;
+
+ if (fr->reversed != do_flip) {
+ (*r_shell_faces)[poly_index] = true;
+ }
+ mpoly[poly_index].flag = fr->face->flag;
+ if (fr->reversed != do_flip) {
+ for (int l = (int)k - 1; l >= 0; l--) {
+ (*r_shell_verts)[face_verts[l]] = true;
+
+ CustomData_copy_data(
+ &mesh->ldata, &result->ldata, (int)face_loops[l], (int)loop_index, 1);
+ mloop[loop_index].v = face_verts[l];
+ mloop[loop_index++].e = face_edges[l];
+ }
+ }
+ else {
+ uint l = k - 1;
+ for (uint next_l = 0; next_l < k; next_l++) {
+ CustomData_copy_data(
+ &mesh->ldata, &result->ldata, (int)face_loops[l], (int)loop_index, 1);
+ mloop[loop_index].v = face_verts[l];
+ mloop[loop_index++].e = face_edges[next_l];
+ l = next_l;
+ }
+ }
+ poly_index++;
+ }
+ }
+ }
+ MEM_freeN(face_loops);
+ MEM_freeN(face_verts);
+ MEM_freeN(face_edges);
+ }
+ /* Haven't found a good way to generalize this. */
+ // if (edge_index != numNewEdges) {
+ /*BKE_modifier_set_error(ctx->object,
+ md,A
+ "Internal Error: edges array wrong size: %u instead of %u",
+ numNewEdges,
+ edge_index);*/
+ //}
+ // if (poly_index != numNewPolys) {
+ /*BKE_modifier_set_error(ctx->object,
+ md,
+ "Internal Error: polys array wrong size: %u instead of %u",
+ numNewPolys,f
+ poly_index);*/
+ //}
+ // if (loop_index != numNewLoops) {
+ /*BKE_modifier_set_error(ctx->object,
+ md,
+ "Internal Error: loops array wrong size: %u instead of %u",
+ numNewLoops,
+ loop_index);*/
+ //}
+ BLI_assert(edge_index == numNewEdges);
+ BLI_assert(poly_index == numNewPolys);
+ BLI_assert(loop_index == numNewLoops);
+
+ /* Free remaining memory */
+ {
+ MEM_freeN(vm);
+ MEM_freeN(edge_adj_faces_len);
+ uint i = 0;
+ for (EdgeGroup **p = orig_vert_groups_arr; i < numVerts; i++, p++) {
+ if (*p) {
+ for (EdgeGroup *eg = *p; eg->valid; eg++) {
+ MEM_freeN(eg->edges);
+ }
+ MEM_freeN(*p);
+ }
+ }
+ MEM_freeN(orig_vert_groups_arr);
+ i = numEdges;
+ for (NewEdgeRef ***p = orig_edge_data_arr + (numEdges - 1); i > 0; i--, p--) {
+ if (*p && (**p)->old_edge == i - 1) {
+ for (NewEdgeRef **l = *p; *l; l++) {
+ MEM_freeN(*l);
+ }
+ MEM_freeN(*p);
+ }
+ }
+ MEM_freeN(orig_edge_data_arr);
+ MEM_freeN(orig_edge_lengths);
+ i = 0;
+ for (NewFaceRef *p = face_sides_arr; i < numPolys * 2; i++, p++) {
+ MEM_freeN(p->link_edges);
+ }
+ MEM_freeN(face_sides_arr);
+ MEM_freeN(poly_nors);
+ }
+
+#undef MOD_SOLIDIFY_EMPTY_TAG
+
+ return result;
+}
+
+/** \} */