Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/gpu/shaders/gpu_shader_material.glsl')
-rw-r--r--source/blender/gpu/shaders/gpu_shader_material.glsl4304
1 files changed, 2301 insertions, 2003 deletions
diff --git a/source/blender/gpu/shaders/gpu_shader_material.glsl b/source/blender/gpu/shaders/gpu_shader_material.glsl
index 034f93cc273..545629dbfa0 100644
--- a/source/blender/gpu/shaders/gpu_shader_material.glsl
+++ b/source/blender/gpu/shaders/gpu_shader_material.glsl
@@ -13,1468 +13,1680 @@ uniform mat4 ModelMatrixInverse;
float convert_rgba_to_float(vec4 color)
{
- return dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
+ return dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
}
float exp_blender(float f)
{
- return pow(2.71828182846, f);
+ return pow(2.71828182846, f);
}
float compatible_pow(float x, float y)
{
- if (y == 0.0) /* x^0 -> 1, including 0^0 */
- return 1.0;
+ if (y == 0.0) /* x^0 -> 1, including 0^0 */
+ return 1.0;
- /* glsl pow doesn't accept negative x */
- if (x < 0.0) {
- if (mod(-y, 2.0) == 0.0)
- return pow(-x, y);
- else
- return -pow(-x, y);
- }
- else if (x == 0.0)
- return 0.0;
+ /* glsl pow doesn't accept negative x */
+ if (x < 0.0) {
+ if (mod(-y, 2.0) == 0.0)
+ return pow(-x, y);
+ else
+ return -pow(-x, y);
+ }
+ else if (x == 0.0)
+ return 0.0;
- return pow(x, y);
+ return pow(x, y);
}
void rgb_to_hsv(vec4 rgb, out vec4 outcol)
{
- float cmax, cmin, h, s, v, cdelta;
- vec3 c;
+ float cmax, cmin, h, s, v, cdelta;
+ vec3 c;
- cmax = max(rgb[0], max(rgb[1], rgb[2]));
- cmin = min(rgb[0], min(rgb[1], rgb[2]));
- cdelta = cmax - cmin;
+ cmax = max(rgb[0], max(rgb[1], rgb[2]));
+ cmin = min(rgb[0], min(rgb[1], rgb[2]));
+ cdelta = cmax - cmin;
- v = cmax;
- if (cmax != 0.0)
- s = cdelta / cmax;
- else {
- s = 0.0;
- h = 0.0;
- }
+ v = cmax;
+ if (cmax != 0.0)
+ s = cdelta / cmax;
+ else {
+ s = 0.0;
+ h = 0.0;
+ }
- if (s == 0.0) {
- h = 0.0;
- }
- else {
- c = (vec3(cmax) - rgb.xyz) / cdelta;
+ if (s == 0.0) {
+ h = 0.0;
+ }
+ else {
+ c = (vec3(cmax) - rgb.xyz) / cdelta;
- if (rgb.x == cmax) h = c[2] - c[1];
- else if (rgb.y == cmax) h = 2.0 + c[0] - c[2];
- else h = 4.0 + c[1] - c[0];
+ if (rgb.x == cmax)
+ h = c[2] - c[1];
+ else if (rgb.y == cmax)
+ h = 2.0 + c[0] - c[2];
+ else
+ h = 4.0 + c[1] - c[0];
- h /= 6.0;
+ h /= 6.0;
- if (h < 0.0)
- h += 1.0;
- }
+ if (h < 0.0)
+ h += 1.0;
+ }
- outcol = vec4(h, s, v, rgb.w);
+ outcol = vec4(h, s, v, rgb.w);
}
void hsv_to_rgb(vec4 hsv, out vec4 outcol)
{
- float i, f, p, q, t, h, s, v;
- vec3 rgb;
-
- h = hsv[0];
- s = hsv[1];
- v = hsv[2];
-
- if (s == 0.0) {
- rgb = vec3(v, v, v);
- }
- else {
- if (h == 1.0)
- h = 0.0;
-
- h *= 6.0;
- i = floor(h);
- f = h - i;
- rgb = vec3(f, f, f);
- p = v * (1.0 - s);
- q = v * (1.0 - (s * f));
- t = v * (1.0 - (s * (1.0 - f)));
-
- if (i == 0.0) rgb = vec3(v, t, p);
- else if (i == 1.0) rgb = vec3(q, v, p);
- else if (i == 2.0) rgb = vec3(p, v, t);
- else if (i == 3.0) rgb = vec3(p, q, v);
- else if (i == 4.0) rgb = vec3(t, p, v);
- else rgb = vec3(v, p, q);
- }
-
- outcol = vec4(rgb, hsv.w);
+ float i, f, p, q, t, h, s, v;
+ vec3 rgb;
+
+ h = hsv[0];
+ s = hsv[1];
+ v = hsv[2];
+
+ if (s == 0.0) {
+ rgb = vec3(v, v, v);
+ }
+ else {
+ if (h == 1.0)
+ h = 0.0;
+
+ h *= 6.0;
+ i = floor(h);
+ f = h - i;
+ rgb = vec3(f, f, f);
+ p = v * (1.0 - s);
+ q = v * (1.0 - (s * f));
+ t = v * (1.0 - (s * (1.0 - f)));
+
+ if (i == 0.0)
+ rgb = vec3(v, t, p);
+ else if (i == 1.0)
+ rgb = vec3(q, v, p);
+ else if (i == 2.0)
+ rgb = vec3(p, v, t);
+ else if (i == 3.0)
+ rgb = vec3(p, q, v);
+ else if (i == 4.0)
+ rgb = vec3(t, p, v);
+ else
+ rgb = vec3(v, p, q);
+ }
+
+ outcol = vec4(rgb, hsv.w);
}
float srgb_to_linearrgb(float c)
{
- if (c < 0.04045)
- return (c < 0.0) ? 0.0 : c * (1.0 / 12.92);
- else
- return pow((c + 0.055) * (1.0 / 1.055), 2.4);
+ if (c < 0.04045)
+ return (c < 0.0) ? 0.0 : c * (1.0 / 12.92);
+ else
+ return pow((c + 0.055) * (1.0 / 1.055), 2.4);
}
float linearrgb_to_srgb(float c)
{
- if (c < 0.0031308)
- return (c < 0.0) ? 0.0 : c * 12.92;
- else
- return 1.055 * pow(c, 1.0 / 2.4) - 0.055;
+ if (c < 0.0031308)
+ return (c < 0.0) ? 0.0 : c * 12.92;
+ else
+ return 1.055 * pow(c, 1.0 / 2.4) - 0.055;
}
void srgb_to_linearrgb(vec4 col_from, out vec4 col_to)
{
- col_to.r = srgb_to_linearrgb(col_from.r);
- col_to.g = srgb_to_linearrgb(col_from.g);
- col_to.b = srgb_to_linearrgb(col_from.b);
- col_to.a = col_from.a;
+ col_to.r = srgb_to_linearrgb(col_from.r);
+ col_to.g = srgb_to_linearrgb(col_from.g);
+ col_to.b = srgb_to_linearrgb(col_from.b);
+ col_to.a = col_from.a;
}
void linearrgb_to_srgb(vec4 col_from, out vec4 col_to)
{
- col_to.r = linearrgb_to_srgb(col_from.r);
- col_to.g = linearrgb_to_srgb(col_from.g);
- col_to.b = linearrgb_to_srgb(col_from.b);
- col_to.a = col_from.a;
+ col_to.r = linearrgb_to_srgb(col_from.r);
+ col_to.g = linearrgb_to_srgb(col_from.g);
+ col_to.b = linearrgb_to_srgb(col_from.b);
+ col_to.a = col_from.a;
}
void color_to_normal_new_shading(vec3 color, out vec3 normal)
{
- normal = vec3(2.0) * color - vec3(1.0);
+ normal = vec3(2.0) * color - vec3(1.0);
}
void color_to_blender_normal_new_shading(vec3 color, out vec3 normal)
{
- normal = vec3(2.0, -2.0, -2.0) * color - vec3(1.0);
+ normal = vec3(2.0, -2.0, -2.0) * color - vec3(1.0);
}
#ifndef M_PI
-#define M_PI 3.14159265358979323846
+# define M_PI 3.14159265358979323846
#endif
#ifndef M_1_PI
-#define M_1_PI 0.318309886183790671538
+# define M_1_PI 0.318309886183790671538
#endif
/*********** SHADER NODES ***************/
-void particle_info(
- vec4 sprops, vec4 loc, vec3 vel, vec3 avel,
- out float index, out float random, out float age,
- out float life_time, out vec3 location,
- out float size, out vec3 velocity, out vec3 angular_velocity)
-{
- index = sprops.x;
- random = loc.w;
- age = sprops.y;
- life_time = sprops.z;
- size = sprops.w;
-
- location = loc.xyz;
- velocity = vel;
- angular_velocity = avel;
+void particle_info(vec4 sprops,
+ vec4 loc,
+ vec3 vel,
+ vec3 avel,
+ out float index,
+ out float random,
+ out float age,
+ out float life_time,
+ out vec3 location,
+ out float size,
+ out vec3 velocity,
+ out vec3 angular_velocity)
+{
+ index = sprops.x;
+ random = loc.w;
+ age = sprops.y;
+ life_time = sprops.z;
+ size = sprops.w;
+
+ location = loc.xyz;
+ velocity = vel;
+ angular_velocity = avel;
}
void vect_normalize(vec3 vin, out vec3 vout)
{
- vout = normalize(vin);
+ vout = normalize(vin);
}
void direction_transform_m4v3(vec3 vin, mat4 mat, out vec3 vout)
{
- vout = (mat * vec4(vin, 0.0)).xyz;
+ vout = (mat * vec4(vin, 0.0)).xyz;
}
void mat3_mul(vec3 vin, mat3 mat, out vec3 vout)
{
- vout = mat * vin;
+ vout = mat * vin;
}
void point_transform_m4v3(vec3 vin, mat4 mat, out vec3 vout)
{
- vout = (mat * vec4(vin, 1.0)).xyz;
+ vout = (mat * vec4(vin, 1.0)).xyz;
}
void point_texco_remap_square(vec3 vin, out vec3 vout)
{
- vout = vin * 2.0 - 1.0;
+ vout = vin * 2.0 - 1.0;
}
void point_texco_clamp(vec3 vin, sampler2D ima, out vec3 vout)
{
- vec2 half_texel_size = 0.5 / vec2(textureSize(ima, 0).xy);
- vout = clamp(vin, half_texel_size.xyy, 1.0 - half_texel_size.xyy);
+ vec2 half_texel_size = 0.5 / vec2(textureSize(ima, 0).xy);
+ vout = clamp(vin, half_texel_size.xyy, 1.0 - half_texel_size.xyy);
}
void point_map_to_sphere(vec3 vin, out vec3 vout)
{
- float len = length(vin);
- float v, u;
- if (len > 0.0) {
- if (vin.x == 0.0 && vin.y == 0.0)
- u = 0.0;
- else
- u = (1.0 - atan(vin.x, vin.y) / M_PI) / 2.0;
+ float len = length(vin);
+ float v, u;
+ if (len > 0.0) {
+ if (vin.x == 0.0 && vin.y == 0.0)
+ u = 0.0;
+ else
+ u = (1.0 - atan(vin.x, vin.y) / M_PI) / 2.0;
- v = 1.0 - acos(vin.z / len) / M_PI;
- }
- else
- v = u = 0.0;
+ v = 1.0 - acos(vin.z / len) / M_PI;
+ }
+ else
+ v = u = 0.0;
- vout = vec3(u, v, 0.0);
+ vout = vec3(u, v, 0.0);
}
void point_map_to_tube(vec3 vin, out vec3 vout)
{
- float u, v;
- v = (vin.z + 1.0) * 0.5;
- float len = sqrt(vin.x * vin.x + vin.y * vin[1]);
- if (len > 0.0)
- u = (1.0 - (atan(vin.x / len, vin.y / len) / M_PI)) * 0.5;
- else
- v = u = 0.0;
+ float u, v;
+ v = (vin.z + 1.0) * 0.5;
+ float len = sqrt(vin.x * vin.x + vin.y * vin[1]);
+ if (len > 0.0)
+ u = (1.0 - (atan(vin.x / len, vin.y / len) / M_PI)) * 0.5;
+ else
+ v = u = 0.0;
- vout = vec3(u, v, 0.0);
+ vout = vec3(u, v, 0.0);
}
-void mapping(vec3 vec, vec4 m0, vec4 m1, vec4 m2, vec4 m3, vec3 minvec, vec3 maxvec, out vec3 outvec)
+void mapping(
+ vec3 vec, vec4 m0, vec4 m1, vec4 m2, vec4 m3, vec3 minvec, vec3 maxvec, out vec3 outvec)
{
- mat4 mat = mat4(m0, m1, m2, m3);
- outvec = (mat * vec4(vec, 1.0)).xyz;
- outvec = clamp(outvec, minvec, maxvec);
+ mat4 mat = mat4(m0, m1, m2, m3);
+ outvec = (mat * vec4(vec, 1.0)).xyz;
+ outvec = clamp(outvec, minvec, maxvec);
}
void camera(vec3 co, out vec3 outview, out float outdepth, out float outdist)
{
- outdepth = abs(co.z);
- outdist = length(co);
- outview = normalize(co);
+ outdepth = abs(co.z);
+ outdist = length(co);
+ outview = normalize(co);
}
void math_add(float val1, float val2, out float outval)
{
- outval = val1 + val2;
+ outval = val1 + val2;
}
void math_subtract(float val1, float val2, out float outval)
{
- outval = val1 - val2;
+ outval = val1 - val2;
}
void math_multiply(float val1, float val2, out float outval)
{
- outval = val1 * val2;
+ outval = val1 * val2;
}
void math_divide(float val1, float val2, out float outval)
{
- if (val2 == 0.0)
- outval = 0.0;
- else
- outval = val1 / val2;
+ if (val2 == 0.0)
+ outval = 0.0;
+ else
+ outval = val1 / val2;
}
void math_sine(float val, out float outval)
{
- outval = sin(val);
+ outval = sin(val);
}
void math_cosine(float val, out float outval)
{
- outval = cos(val);
+ outval = cos(val);
}
void math_tangent(float val, out float outval)
{
- outval = tan(val);
+ outval = tan(val);
}
void math_asin(float val, out float outval)
{
- if (val <= 1.0 && val >= -1.0)
- outval = asin(val);
- else
- outval = 0.0;
+ if (val <= 1.0 && val >= -1.0)
+ outval = asin(val);
+ else
+ outval = 0.0;
}
void math_acos(float val, out float outval)
{
- if (val <= 1.0 && val >= -1.0)
- outval = acos(val);
- else
- outval = 0.0;
+ if (val <= 1.0 && val >= -1.0)
+ outval = acos(val);
+ else
+ outval = 0.0;
}
void math_atan(float val, out float outval)
{
- outval = atan(val);
+ outval = atan(val);
}
void math_pow(float val1, float val2, out float outval)
{
- if (val1 >= 0.0) {
- outval = compatible_pow(val1, val2);
- }
- else {
- float val2_mod_1 = mod(abs(val2), 1.0);
+ if (val1 >= 0.0) {
+ outval = compatible_pow(val1, val2);
+ }
+ else {
+ float val2_mod_1 = mod(abs(val2), 1.0);
- if (val2_mod_1 > 0.999 || val2_mod_1 < 0.001)
- outval = compatible_pow(val1, floor(val2 + 0.5));
- else
- outval = 0.0;
- }
+ if (val2_mod_1 > 0.999 || val2_mod_1 < 0.001)
+ outval = compatible_pow(val1, floor(val2 + 0.5));
+ else
+ outval = 0.0;
+ }
}
void math_log(float val1, float val2, out float outval)
{
- if (val1 > 0.0 && val2 > 0.0)
- outval = log2(val1) / log2(val2);
- else
- outval = 0.0;
+ if (val1 > 0.0 && val2 > 0.0)
+ outval = log2(val1) / log2(val2);
+ else
+ outval = 0.0;
}
void math_max(float val1, float val2, out float outval)
{
- outval = max(val1, val2);
+ outval = max(val1, val2);
}
void math_min(float val1, float val2, out float outval)
{
- outval = min(val1, val2);
+ outval = min(val1, val2);
}
void math_round(float val, out float outval)
{
- outval = floor(val + 0.5);
+ outval = floor(val + 0.5);
}
void math_less_than(float val1, float val2, out float outval)
{
- if (val1 < val2)
- outval = 1.0;
- else
- outval = 0.0;
+ if (val1 < val2)
+ outval = 1.0;
+ else
+ outval = 0.0;
}
void math_greater_than(float val1, float val2, out float outval)
{
- if (val1 > val2)
- outval = 1.0;
- else
- outval = 0.0;
+ if (val1 > val2)
+ outval = 1.0;
+ else
+ outval = 0.0;
}
void math_modulo(float val1, float val2, out float outval)
{
- if (val2 == 0.0)
- outval = 0.0;
- else
- outval = mod(val1, val2);
+ if (val2 == 0.0)
+ outval = 0.0;
+ else
+ outval = mod(val1, val2);
- /* change sign to match C convention, mod in GLSL will take absolute for negative numbers,
- * see https://www.opengl.org/sdk/docs/man/html/mod.xhtml */
- outval = (val1 > 0.0) ? outval : outval - val2;
+ /* change sign to match C convention, mod in GLSL will take absolute for negative numbers,
+ * see https://www.opengl.org/sdk/docs/man/html/mod.xhtml */
+ outval = (val1 > 0.0) ? outval : outval - val2;
}
void math_abs(float val1, out float outval)
{
- outval = abs(val1);
+ outval = abs(val1);
}
void math_atan2(float val1, float val2, out float outval)
{
- outval = atan(val1, val2);
+ outval = atan(val1, val2);
}
void math_floor(float val, out float outval)
{
- outval = floor(val);
+ outval = floor(val);
}
void math_ceil(float val, out float outval)
{
- outval = ceil(val);
+ outval = ceil(val);
}
void math_fract(float val, out float outval)
{
- outval = val - floor(val);
+ outval = val - floor(val);
}
void math_sqrt(float val, out float outval)
{
- if (val > 0.0)
- outval = sqrt(val);
- else
- outval = 0.0;
+ if (val > 0.0)
+ outval = sqrt(val);
+ else
+ outval = 0.0;
}
void squeeze(float val, float width, float center, out float outval)
{
- outval = 1.0 / (1.0 + pow(2.71828183, -((val - center) * width)));
+ outval = 1.0 / (1.0 + pow(2.71828183, -((val - center) * width)));
}
void vec_math_add(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
- outvec = v1 + v2;
- outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
+ outvec = v1 + v2;
+ outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
}
void vec_math_sub(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
- outvec = v1 - v2;
- outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
+ outvec = v1 - v2;
+ outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
}
void vec_math_average(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
- outvec = v1 + v2;
- outval = length(outvec);
- outvec = normalize(outvec);
+ outvec = v1 + v2;
+ outval = length(outvec);
+ outvec = normalize(outvec);
}
void vec_math_mix(float strength, vec3 v1, vec3 v2, out vec3 outvec)
{
- outvec = strength * v1 + (1 - strength) * v2;
+ outvec = strength * v1 + (1 - strength) * v2;
}
void vec_math_dot(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
- outvec = vec3(0);
- outval = dot(v1, v2);
+ outvec = vec3(0);
+ outval = dot(v1, v2);
}
void vec_math_cross(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
- outvec = cross(v1, v2);
- outval = length(outvec);
- outvec /= outval;
+ outvec = cross(v1, v2);
+ outval = length(outvec);
+ outvec /= outval;
}
void vec_math_normalize(vec3 v, out vec3 outvec, out float outval)
{
- outval = length(v);
- outvec = normalize(v);
+ outval = length(v);
+ outvec = normalize(v);
}
void vec_math_negate(vec3 v, out vec3 outv)
{
- outv = -v;
+ outv = -v;
}
void invert_z(vec3 v, out vec3 outv)
{
- v.z = -v.z;
- outv = v;
+ v.z = -v.z;
+ outv = v;
}
void normal_new_shading(vec3 nor, vec3 dir, out vec3 outnor, out float outdot)
{
- outnor = dir;
- outdot = dot(normalize(nor), dir);
+ outnor = dir;
+ outdot = dot(normalize(nor), dir);
}
void curves_vec(float fac, vec3 vec, sampler1DArray curvemap, float layer, out vec3 outvec)
{
- vec4 co = vec4(vec * 0.5 + 0.5, layer);
- outvec.x = texture(curvemap, co.xw).x;
- outvec.y = texture(curvemap, co.yw).y;
- outvec.z = texture(curvemap, co.zw).z;
- outvec = mix(vec, outvec, fac);
+ vec4 co = vec4(vec * 0.5 + 0.5, layer);
+ outvec.x = texture(curvemap, co.xw).x;
+ outvec.y = texture(curvemap, co.yw).y;
+ outvec.z = texture(curvemap, co.zw).z;
+ outvec = mix(vec, outvec, fac);
}
/* ext is vec4(in_x, in_dy, out_x, out_dy). */
float curve_extrapolate(float x, float y, vec4 ext)
{
- if (x < 0.0) {
- return y + x * ext.y;
- }
- else if (x > 1.0) {
- return y + (x - 1.0) * ext.w;
- }
- else {
- return y;
- }
+ if (x < 0.0) {
+ return y + x * ext.y;
+ }
+ else if (x > 1.0) {
+ return y + (x - 1.0) * ext.w;
+ }
+ else {
+ return y;
+ }
}
#define RANGE_RESCALE(x, min, range) ((x - min) * range)
-void curves_rgb(
- float fac, vec4 col, sampler1DArray curvemap, float layer,
- vec4 range, vec4 ext_r, vec4 ext_g, vec4 ext_b, vec4 ext_a,
- out vec4 outcol)
+void curves_rgb(float fac,
+ vec4 col,
+ sampler1DArray curvemap,
+ float layer,
+ vec4 range,
+ vec4 ext_r,
+ vec4 ext_g,
+ vec4 ext_b,
+ vec4 ext_a,
+ out vec4 outcol)
{
- vec4 co = vec4(RANGE_RESCALE(col.rgb, ext_a.x, range.a), layer);
- vec3 samp;
- samp.r = texture(curvemap, co.xw).a;
- samp.g = texture(curvemap, co.yw).a;
- samp.b = texture(curvemap, co.zw).a;
+ vec4 co = vec4(RANGE_RESCALE(col.rgb, ext_a.x, range.a), layer);
+ vec3 samp;
+ samp.r = texture(curvemap, co.xw).a;
+ samp.g = texture(curvemap, co.yw).a;
+ samp.b = texture(curvemap, co.zw).a;
- samp.r = curve_extrapolate(co.x, samp.r, ext_a);
- samp.g = curve_extrapolate(co.y, samp.g, ext_a);
- samp.b = curve_extrapolate(co.z, samp.b, ext_a);
+ samp.r = curve_extrapolate(co.x, samp.r, ext_a);
+ samp.g = curve_extrapolate(co.y, samp.g, ext_a);
+ samp.b = curve_extrapolate(co.z, samp.b, ext_a);
- vec3 rgb_min = vec3(ext_r.x, ext_g.x, ext_b.x);
- co.xyz = RANGE_RESCALE(samp.rgb, rgb_min, range.rgb);
+ vec3 rgb_min = vec3(ext_r.x, ext_g.x, ext_b.x);
+ co.xyz = RANGE_RESCALE(samp.rgb, rgb_min, range.rgb);
- samp.r = texture(curvemap, co.xw).r;
- samp.g = texture(curvemap, co.yw).g;
- samp.b = texture(curvemap, co.zw).b;
+ samp.r = texture(curvemap, co.xw).r;
+ samp.g = texture(curvemap, co.yw).g;
+ samp.b = texture(curvemap, co.zw).b;
- outcol.r = curve_extrapolate(co.x, samp.r, ext_r);
- outcol.g = curve_extrapolate(co.y, samp.g, ext_g);
- outcol.b = curve_extrapolate(co.z, samp.b, ext_b);
- outcol.a = col.a;
+ outcol.r = curve_extrapolate(co.x, samp.r, ext_r);
+ outcol.g = curve_extrapolate(co.y, samp.g, ext_g);
+ outcol.b = curve_extrapolate(co.z, samp.b, ext_b);
+ outcol.a = col.a;
- outcol = mix(col, outcol, fac);
+ outcol = mix(col, outcol, fac);
}
-void curves_rgb_opti(
- float fac, vec4 col, sampler1DArray curvemap, float layer,
- vec4 range, vec4 ext_a,
- out vec4 outcol)
+void curves_rgb_opti(float fac,
+ vec4 col,
+ sampler1DArray curvemap,
+ float layer,
+ vec4 range,
+ vec4 ext_a,
+ out vec4 outcol)
{
- vec4 co = vec4(RANGE_RESCALE(col.rgb, ext_a.x, range.a), layer);
- vec3 samp;
- samp.r = texture(curvemap, co.xw).a;
- samp.g = texture(curvemap, co.yw).a;
- samp.b = texture(curvemap, co.zw).a;
+ vec4 co = vec4(RANGE_RESCALE(col.rgb, ext_a.x, range.a), layer);
+ vec3 samp;
+ samp.r = texture(curvemap, co.xw).a;
+ samp.g = texture(curvemap, co.yw).a;
+ samp.b = texture(curvemap, co.zw).a;
- outcol.r = curve_extrapolate(co.x, samp.r, ext_a);
- outcol.g = curve_extrapolate(co.y, samp.g, ext_a);
- outcol.b = curve_extrapolate(co.z, samp.b, ext_a);
- outcol.a = col.a;
+ outcol.r = curve_extrapolate(co.x, samp.r, ext_a);
+ outcol.g = curve_extrapolate(co.y, samp.g, ext_a);
+ outcol.b = curve_extrapolate(co.z, samp.b, ext_a);
+ outcol.a = col.a;
- outcol = mix(col, outcol, fac);
+ outcol = mix(col, outcol, fac);
}
void set_value(float val, out float outval)
{
- outval = val;
+ outval = val;
}
void set_rgb(vec3 col, out vec3 outcol)
{
- outcol = col;
+ outcol = col;
}
void set_rgba(vec4 col, out vec4 outcol)
{
- outcol = col;
+ outcol = col;
}
void set_value_zero(out float outval)
{
- outval = 0.0;
+ outval = 0.0;
}
void set_value_one(out float outval)
{
- outval = 1.0;
+ outval = 1.0;
}
void set_rgb_zero(out vec3 outval)
{
- outval = vec3(0.0);
+ outval = vec3(0.0);
}
void set_rgb_one(out vec3 outval)
{
- outval = vec3(1.0);
+ outval = vec3(1.0);
}
void set_rgba_zero(out vec4 outval)
{
- outval = vec4(0.0);
+ outval = vec4(0.0);
}
void set_rgba_one(out vec4 outval)
{
- outval = vec4(1.0);
+ outval = vec4(1.0);
}
void brightness_contrast(vec4 col, float brightness, float contrast, out vec4 outcol)
{
- float a = 1.0 + contrast;
- float b = brightness - contrast * 0.5;
+ float a = 1.0 + contrast;
+ float b = brightness - contrast * 0.5;
- outcol.r = max(a * col.r + b, 0.0);
- outcol.g = max(a * col.g + b, 0.0);
- outcol.b = max(a * col.b + b, 0.0);
- outcol.a = col.a;
+ outcol.r = max(a * col.r + b, 0.0);
+ outcol.g = max(a * col.g + b, 0.0);
+ outcol.b = max(a * col.b + b, 0.0);
+ outcol.a = col.a;
}
void mix_blend(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol = mix(col1, col2, fac);
- outcol.a = col1.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol = mix(col1, col2, fac);
+ outcol.a = col1.a;
}
void mix_add(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol = mix(col1, col1 + col2, fac);
- outcol.a = col1.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol = mix(col1, col1 + col2, fac);
+ outcol.a = col1.a;
}
void mix_mult(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol = mix(col1, col1 * col2, fac);
- outcol.a = col1.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol = mix(col1, col1 * col2, fac);
+ outcol.a = col1.a;
}
void mix_screen(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- outcol = vec4(1.0) - (vec4(facm) + fac * (vec4(1.0) - col2)) * (vec4(1.0) - col1);
- outcol.a = col1.a;
+ outcol = vec4(1.0) - (vec4(facm) + fac * (vec4(1.0) - col2)) * (vec4(1.0) - col1);
+ outcol.a = col1.a;
}
void mix_overlay(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- outcol = col1;
+ outcol = col1;
- if (outcol.r < 0.5)
- outcol.r *= facm + 2.0 * fac * col2.r;
- else
- outcol.r = 1.0 - (facm + 2.0 * fac * (1.0 - col2.r)) * (1.0 - outcol.r);
+ if (outcol.r < 0.5)
+ outcol.r *= facm + 2.0 * fac * col2.r;
+ else
+ outcol.r = 1.0 - (facm + 2.0 * fac * (1.0 - col2.r)) * (1.0 - outcol.r);
- if (outcol.g < 0.5)
- outcol.g *= facm + 2.0 * fac * col2.g;
- else
- outcol.g = 1.0 - (facm + 2.0 * fac * (1.0 - col2.g)) * (1.0 - outcol.g);
+ if (outcol.g < 0.5)
+ outcol.g *= facm + 2.0 * fac * col2.g;
+ else
+ outcol.g = 1.0 - (facm + 2.0 * fac * (1.0 - col2.g)) * (1.0 - outcol.g);
- if (outcol.b < 0.5)
- outcol.b *= facm + 2.0 * fac * col2.b;
- else
- outcol.b = 1.0 - (facm + 2.0 * fac * (1.0 - col2.b)) * (1.0 - outcol.b);
+ if (outcol.b < 0.5)
+ outcol.b *= facm + 2.0 * fac * col2.b;
+ else
+ outcol.b = 1.0 - (facm + 2.0 * fac * (1.0 - col2.b)) * (1.0 - outcol.b);
}
void mix_sub(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol = mix(col1, col1 - col2, fac);
- outcol.a = col1.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol = mix(col1, col1 - col2, fac);
+ outcol.a = col1.a;
}
void mix_div(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- outcol = col1;
+ outcol = col1;
- if (col2.r != 0.0) outcol.r = facm * outcol.r + fac * outcol.r / col2.r;
- if (col2.g != 0.0) outcol.g = facm * outcol.g + fac * outcol.g / col2.g;
- if (col2.b != 0.0) outcol.b = facm * outcol.b + fac * outcol.b / col2.b;
+ if (col2.r != 0.0)
+ outcol.r = facm * outcol.r + fac * outcol.r / col2.r;
+ if (col2.g != 0.0)
+ outcol.g = facm * outcol.g + fac * outcol.g / col2.g;
+ if (col2.b != 0.0)
+ outcol.b = facm * outcol.b + fac * outcol.b / col2.b;
}
void mix_diff(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol = mix(col1, abs(col1 - col2), fac);
- outcol.a = col1.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol = mix(col1, abs(col1 - col2), fac);
+ outcol.a = col1.a;
}
void mix_dark(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol.rgb = min(col1.rgb, col2.rgb * fac);
- outcol.a = col1.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol.rgb = min(col1.rgb, col2.rgb * fac);
+ outcol.a = col1.a;
}
void mix_light(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol.rgb = max(col1.rgb, col2.rgb * fac);
- outcol.a = col1.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol.rgb = max(col1.rgb, col2.rgb * fac);
+ outcol.a = col1.a;
}
void mix_dodge(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol = col1;
-
- if (outcol.r != 0.0) {
- float tmp = 1.0 - fac * col2.r;
- if (tmp <= 0.0)
- outcol.r = 1.0;
- else if ((tmp = outcol.r / tmp) > 1.0)
- outcol.r = 1.0;
- else
- outcol.r = tmp;
- }
- if (outcol.g != 0.0) {
- float tmp = 1.0 - fac * col2.g;
- if (tmp <= 0.0)
- outcol.g = 1.0;
- else if ((tmp = outcol.g / tmp) > 1.0)
- outcol.g = 1.0;
- else
- outcol.g = tmp;
- }
- if (outcol.b != 0.0) {
- float tmp = 1.0 - fac * col2.b;
- if (tmp <= 0.0)
- outcol.b = 1.0;
- else if ((tmp = outcol.b / tmp) > 1.0)
- outcol.b = 1.0;
- else
- outcol.b = tmp;
- }
+ fac = clamp(fac, 0.0, 1.0);
+ outcol = col1;
+
+ if (outcol.r != 0.0) {
+ float tmp = 1.0 - fac * col2.r;
+ if (tmp <= 0.0)
+ outcol.r = 1.0;
+ else if ((tmp = outcol.r / tmp) > 1.0)
+ outcol.r = 1.0;
+ else
+ outcol.r = tmp;
+ }
+ if (outcol.g != 0.0) {
+ float tmp = 1.0 - fac * col2.g;
+ if (tmp <= 0.0)
+ outcol.g = 1.0;
+ else if ((tmp = outcol.g / tmp) > 1.0)
+ outcol.g = 1.0;
+ else
+ outcol.g = tmp;
+ }
+ if (outcol.b != 0.0) {
+ float tmp = 1.0 - fac * col2.b;
+ if (tmp <= 0.0)
+ outcol.b = 1.0;
+ else if ((tmp = outcol.b / tmp) > 1.0)
+ outcol.b = 1.0;
+ else
+ outcol.b = tmp;
+ }
}
void mix_burn(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float tmp, facm = 1.0 - fac;
-
- outcol = col1;
-
- tmp = facm + fac * col2.r;
- if (tmp <= 0.0)
- outcol.r = 0.0;
- else if ((tmp = (1.0 - (1.0 - outcol.r) / tmp)) < 0.0)
- outcol.r = 0.0;
- else if (tmp > 1.0)
- outcol.r = 1.0;
- else
- outcol.r = tmp;
-
- tmp = facm + fac * col2.g;
- if (tmp <= 0.0)
- outcol.g = 0.0;
- else if ((tmp = (1.0 - (1.0 - outcol.g) / tmp)) < 0.0)
- outcol.g = 0.0;
- else if (tmp > 1.0)
- outcol.g = 1.0;
- else
- outcol.g = tmp;
-
- tmp = facm + fac * col2.b;
- if (tmp <= 0.0)
- outcol.b = 0.0;
- else if ((tmp = (1.0 - (1.0 - outcol.b) / tmp)) < 0.0)
- outcol.b = 0.0;
- else if (tmp > 1.0)
- outcol.b = 1.0;
- else
- outcol.b = tmp;
+ fac = clamp(fac, 0.0, 1.0);
+ float tmp, facm = 1.0 - fac;
+
+ outcol = col1;
+
+ tmp = facm + fac * col2.r;
+ if (tmp <= 0.0)
+ outcol.r = 0.0;
+ else if ((tmp = (1.0 - (1.0 - outcol.r) / tmp)) < 0.0)
+ outcol.r = 0.0;
+ else if (tmp > 1.0)
+ outcol.r = 1.0;
+ else
+ outcol.r = tmp;
+
+ tmp = facm + fac * col2.g;
+ if (tmp <= 0.0)
+ outcol.g = 0.0;
+ else if ((tmp = (1.0 - (1.0 - outcol.g) / tmp)) < 0.0)
+ outcol.g = 0.0;
+ else if (tmp > 1.0)
+ outcol.g = 1.0;
+ else
+ outcol.g = tmp;
+
+ tmp = facm + fac * col2.b;
+ if (tmp <= 0.0)
+ outcol.b = 0.0;
+ else if ((tmp = (1.0 - (1.0 - outcol.b) / tmp)) < 0.0)
+ outcol.b = 0.0;
+ else if (tmp > 1.0)
+ outcol.b = 1.0;
+ else
+ outcol.b = tmp;
}
void mix_hue(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- outcol = col1;
+ outcol = col1;
- vec4 hsv, hsv2, tmp;
- rgb_to_hsv(col2, hsv2);
+ vec4 hsv, hsv2, tmp;
+ rgb_to_hsv(col2, hsv2);
- if (hsv2.y != 0.0) {
- rgb_to_hsv(outcol, hsv);
- hsv.x = hsv2.x;
- hsv_to_rgb(hsv, tmp);
+ if (hsv2.y != 0.0) {
+ rgb_to_hsv(outcol, hsv);
+ hsv.x = hsv2.x;
+ hsv_to_rgb(hsv, tmp);
- outcol = mix(outcol, tmp, fac);
- outcol.a = col1.a;
- }
+ outcol = mix(outcol, tmp, fac);
+ outcol.a = col1.a;
+ }
}
void mix_sat(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- outcol = col1;
+ outcol = col1;
- vec4 hsv, hsv2;
- rgb_to_hsv(outcol, hsv);
+ vec4 hsv, hsv2;
+ rgb_to_hsv(outcol, hsv);
- if (hsv.y != 0.0) {
- rgb_to_hsv(col2, hsv2);
+ if (hsv.y != 0.0) {
+ rgb_to_hsv(col2, hsv2);
- hsv.y = facm * hsv.y + fac * hsv2.y;
- hsv_to_rgb(hsv, outcol);
- }
+ hsv.y = facm * hsv.y + fac * hsv2.y;
+ hsv_to_rgb(hsv, outcol);
+ }
}
void mix_val(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- vec4 hsv, hsv2;
- rgb_to_hsv(col1, hsv);
- rgb_to_hsv(col2, hsv2);
+ vec4 hsv, hsv2;
+ rgb_to_hsv(col1, hsv);
+ rgb_to_hsv(col2, hsv2);
- hsv.z = facm * hsv.z + fac * hsv2.z;
- hsv_to_rgb(hsv, outcol);
+ hsv.z = facm * hsv.z + fac * hsv2.z;
+ hsv_to_rgb(hsv, outcol);
}
void mix_color(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- outcol = col1;
+ outcol = col1;
- vec4 hsv, hsv2, tmp;
- rgb_to_hsv(col2, hsv2);
+ vec4 hsv, hsv2, tmp;
+ rgb_to_hsv(col2, hsv2);
- if (hsv2.y != 0.0) {
- rgb_to_hsv(outcol, hsv);
- hsv.x = hsv2.x;
- hsv.y = hsv2.y;
- hsv_to_rgb(hsv, tmp);
+ if (hsv2.y != 0.0) {
+ rgb_to_hsv(outcol, hsv);
+ hsv.x = hsv2.x;
+ hsv.y = hsv2.y;
+ hsv_to_rgb(hsv, tmp);
- outcol = mix(outcol, tmp, fac);
- outcol.a = col1.a;
- }
+ outcol = mix(outcol, tmp, fac);
+ outcol.a = col1.a;
+ }
}
void mix_soft(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
- float facm = 1.0 - fac;
+ fac = clamp(fac, 0.0, 1.0);
+ float facm = 1.0 - fac;
- vec4 one = vec4(1.0);
- vec4 scr = one - (one - col2) * (one - col1);
- outcol = facm * col1 + fac * ((one - col1) * col2 * col1 + col1 * scr);
+ vec4 one = vec4(1.0);
+ vec4 scr = one - (one - col2) * (one - col1);
+ outcol = facm * col1 + fac * ((one - col1) * col2 * col1 + col1 * scr);
}
void mix_linear(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
- fac = clamp(fac, 0.0, 1.0);
+ fac = clamp(fac, 0.0, 1.0);
- outcol = col1 + fac * (2.0 * (col2 - vec4(0.5)));
+ outcol = col1 + fac * (2.0 * (col2 - vec4(0.5)));
}
-void valtorgb_opti_constant(float fac, float edge, vec4 color1, vec4 color2, out vec4 outcol, out float outalpha)
+void valtorgb_opti_constant(
+ float fac, float edge, vec4 color1, vec4 color2, out vec4 outcol, out float outalpha)
{
- outcol = (fac > edge) ? color2 : color1;
- outalpha = outcol.a;
+ outcol = (fac > edge) ? color2 : color1;
+ outalpha = outcol.a;
}
-void valtorgb_opti_linear(float fac, vec2 mulbias, vec4 color1, vec4 color2, out vec4 outcol, out float outalpha)
+void valtorgb_opti_linear(
+ float fac, vec2 mulbias, vec4 color1, vec4 color2, out vec4 outcol, out float outalpha)
{
- fac = clamp(fac * mulbias.x + mulbias.y, 0.0, 1.0);
- outcol = mix(color1, color2, fac);
- outalpha = outcol.a;
+ fac = clamp(fac * mulbias.x + mulbias.y, 0.0, 1.0);
+ outcol = mix(color1, color2, fac);
+ outalpha = outcol.a;
}
void valtorgb(float fac, sampler1DArray colormap, float layer, out vec4 outcol, out float outalpha)
{
- outcol = texture(colormap, vec2(fac, layer));
- outalpha = outcol.a;
+ outcol = texture(colormap, vec2(fac, layer));
+ outalpha = outcol.a;
}
-void valtorgb_nearest(float fac, sampler1DArray colormap, float layer, out vec4 outcol, out float outalpha)
+void valtorgb_nearest(
+ float fac, sampler1DArray colormap, float layer, out vec4 outcol, out float outalpha)
{
- fac = clamp(fac, 0.0, 1.0);
- outcol = texelFetch(colormap, ivec2(fac * (textureSize(colormap, 0).x - 1), layer), 0);
- outalpha = outcol.a;
+ fac = clamp(fac, 0.0, 1.0);
+ outcol = texelFetch(colormap, ivec2(fac * (textureSize(colormap, 0).x - 1), layer), 0);
+ outalpha = outcol.a;
}
void rgbtobw(vec4 color, out float outval)
{
- vec3 factors = vec3(0.2126, 0.7152, 0.0722);
- outval = dot(color.rgb, factors);
+ vec3 factors = vec3(0.2126, 0.7152, 0.0722);
+ outval = dot(color.rgb, factors);
}
void invert(float fac, vec4 col, out vec4 outcol)
{
- outcol.xyz = mix(col.xyz, vec3(1.0) - col.xyz, fac);
- outcol.w = col.w;
+ outcol.xyz = mix(col.xyz, vec3(1.0) - col.xyz, fac);
+ outcol.w = col.w;
}
void clamp_vec3(vec3 vec, vec3 min, vec3 max, out vec3 out_vec)
{
- out_vec = clamp(vec, min, max);
+ out_vec = clamp(vec, min, max);
}
void clamp_val(float value, float min, float max, out float out_value)
{
- out_value = clamp(value, min, max);
+ out_value = clamp(value, min, max);
}
void hue_sat(float hue, float sat, float value, float fac, vec4 col, out vec4 outcol)
{
- vec4 hsv;
+ vec4 hsv;
- rgb_to_hsv(col, hsv);
+ rgb_to_hsv(col, hsv);
- hsv[0] = fract(hsv[0] + hue + 0.5);
- hsv[1] = clamp(hsv[1] * sat, 0.0, 1.0);
- hsv[2] = hsv[2] * value;
+ hsv[0] = fract(hsv[0] + hue + 0.5);
+ hsv[1] = clamp(hsv[1] * sat, 0.0, 1.0);
+ hsv[2] = hsv[2] * value;
- hsv_to_rgb(hsv, outcol);
+ hsv_to_rgb(hsv, outcol);
- outcol = mix(col, outcol, fac);
+ outcol = mix(col, outcol, fac);
}
void separate_rgb(vec4 col, out float r, out float g, out float b)
{
- r = col.r;
- g = col.g;
- b = col.b;
+ r = col.r;
+ g = col.g;
+ b = col.b;
}
void combine_rgb(float r, float g, float b, out vec4 col)
{
- col = vec4(r, g, b, 1.0);
+ col = vec4(r, g, b, 1.0);
}
void separate_xyz(vec3 vec, out float x, out float y, out float z)
{
- x = vec.r;
- y = vec.g;
- z = vec.b;
+ x = vec.r;
+ y = vec.g;
+ z = vec.b;
}
void combine_xyz(float x, float y, float z, out vec3 vec)
{
- vec = vec3(x, y, z);
+ vec = vec3(x, y, z);
}
void separate_hsv(vec4 col, out float h, out float s, out float v)
{
- vec4 hsv;
+ vec4 hsv;
- rgb_to_hsv(col, hsv);
- h = hsv[0];
- s = hsv[1];
- v = hsv[2];
+ rgb_to_hsv(col, hsv);
+ h = hsv[0];
+ s = hsv[1];
+ v = hsv[2];
}
void combine_hsv(float h, float s, float v, out vec4 col)
{
- hsv_to_rgb(vec4(h, s, v, 1.0), col);
+ hsv_to_rgb(vec4(h, s, v, 1.0), col);
}
void output_node(vec4 rgb, float alpha, out vec4 outrgb)
{
- outrgb = vec4(rgb.rgb, alpha);
+ outrgb = vec4(rgb.rgb, alpha);
}
/*********** TEXTURES ***************/
void texco_norm(vec3 normal, out vec3 outnormal)
{
- /* corresponds to shi->orn, which is negated so cancels
- out blender normal negation */
- outnormal = normalize(normal);
+ /* corresponds to shi->orn, which is negated so cancels
+ out blender normal negation */
+ outnormal = normalize(normal);
}
vec3 mtex_2d_mapping(vec3 vec)
{
- return vec3(vec.xy * 0.5 + vec2(0.5), vec.z);
+ return vec3(vec.xy * 0.5 + vec2(0.5), vec.z);
}
/** helper method to extract the upper left 3x3 matrix from a 4x4 matrix */
mat3 to_mat3(mat4 m4)
{
- mat3 m3;
- m3[0] = m4[0].xyz;
- m3[1] = m4[1].xyz;
- m3[2] = m4[2].xyz;
- return m3;
+ mat3 m3;
+ m3[0] = m4[0].xyz;
+ m3[1] = m4[1].xyz;
+ m3[2] = m4[2].xyz;
+ return m3;
}
/*********** NEW SHADER UTILITIES **************/
float fresnel_dielectric_0(float eta)
{
- /* compute fresnel reflactance at normal incidence => cosi = 1.0 */
- float A = (eta - 1.0) / (eta + 1.0);
+ /* compute fresnel reflactance at normal incidence => cosi = 1.0 */
+ float A = (eta - 1.0) / (eta + 1.0);
- return A * A;
+ return A * A;
}
float fresnel_dielectric_cos(float cosi, float eta)
{
- /* compute fresnel reflectance without explicitly computing
- * the refracted direction */
- float c = abs(cosi);
- float g = eta * eta - 1.0 + c * c;
- float result;
+ /* compute fresnel reflectance without explicitly computing
+ * the refracted direction */
+ float c = abs(cosi);
+ float g = eta * eta - 1.0 + c * c;
+ float result;
- if (g > 0.0) {
- g = sqrt(g);
- float A = (g - c) / (g + c);
- float B = (c * (g + c) - 1.0) / (c * (g - c) + 1.0);
- result = 0.5 * A * A * (1.0 + B * B);
- }
- else {
- result = 1.0; /* TIR (no refracted component) */
- }
+ if (g > 0.0) {
+ g = sqrt(g);
+ float A = (g - c) / (g + c);
+ float B = (c * (g + c) - 1.0) / (c * (g - c) + 1.0);
+ result = 0.5 * A * A * (1.0 + B * B);
+ }
+ else {
+ result = 1.0; /* TIR (no refracted component) */
+ }
- return result;
+ return result;
}
float fresnel_dielectric(vec3 Incoming, vec3 Normal, float eta)
{
- /* compute fresnel reflectance without explicitly computing
- * the refracted direction */
- return fresnel_dielectric_cos(dot(Incoming, Normal), eta);
+ /* compute fresnel reflectance without explicitly computing
+ * the refracted direction */
+ return fresnel_dielectric_cos(dot(Incoming, Normal), eta);
}
float hypot(float x, float y)
{
- return sqrt(x * x + y * y);
+ return sqrt(x * x + y * y);
}
void generated_from_orco(vec3 orco, out vec3 generated)
{
#ifdef VOLUMETRICS
-#ifdef MESH_SHADER
- generated = volumeObjectLocalCoord;
-#else
- generated = worldPosition;
-#endif
+# ifdef MESH_SHADER
+ generated = volumeObjectLocalCoord;
+# else
+ generated = worldPosition;
+# endif
#else
- generated = orco;
+ generated = orco;
#endif
}
int floor_to_int(float x)
{
- return int(floor(x));
+ return int(floor(x));
}
int quick_floor(float x)
{
- return int(x) - ((x < 0) ? 1 : 0);
+ return int(x) - ((x < 0) ? 1 : 0);
}
float integer_noise(int n)
{
- int nn;
- n = (n + 1013) & 0x7fffffff;
- n = (n >> 13) ^ n;
- nn = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
- return 0.5 * (float(nn) / 1073741824.0);
+ int nn;
+ n = (n + 1013) & 0x7fffffff;
+ n = (n >> 13) ^ n;
+ nn = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
+ return 0.5 * (float(nn) / 1073741824.0);
}
uint hash(uint kx, uint ky, uint kz)
{
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
#define final(a, b, c) \
-{ \
- c ^= b; c -= rot(b, 14); \
- a ^= c; a -= rot(c, 11); \
- b ^= a; b -= rot(a, 25); \
- c ^= b; c -= rot(b, 16); \
- a ^= c; a -= rot(c, 4); \
- b ^= a; b -= rot(a, 14); \
- c ^= b; c -= rot(b, 24); \
-}
- // now hash the data!
- uint a, b, c, len = 3u;
- a = b = c = 0xdeadbeefu + (len << 2u) + 13u;
-
- c += kz;
- b += ky;
- a += kx;
- final (a, b, c);
-
- return c;
+ { \
+ c ^= b; \
+ c -= rot(b, 14); \
+ a ^= c; \
+ a -= rot(c, 11); \
+ b ^= a; \
+ b -= rot(a, 25); \
+ c ^= b; \
+ c -= rot(b, 16); \
+ a ^= c; \
+ a -= rot(c, 4); \
+ b ^= a; \
+ b -= rot(a, 14); \
+ c ^= b; \
+ c -= rot(b, 24); \
+ }
+ // now hash the data!
+ uint a, b, c, len = 3u;
+ a = b = c = 0xdeadbeefu + (len << 2u) + 13u;
+
+ c += kz;
+ b += ky;
+ a += kx;
+ final(a, b, c);
+
+ return c;
#undef rot
#undef final
}
uint hash(int kx, int ky, int kz)
{
- return hash(uint(kx), uint(ky), uint(kz));
+ return hash(uint(kx), uint(ky), uint(kz));
}
float bits_to_01(uint bits)
{
- return (float(bits) / 4294967295.0);
+ return (float(bits) / 4294967295.0);
}
float cellnoise(vec3 p)
{
- int ix = quick_floor(p.x);
- int iy = quick_floor(p.y);
- int iz = quick_floor(p.z);
+ int ix = quick_floor(p.x);
+ int iy = quick_floor(p.y);
+ int iz = quick_floor(p.z);
- return bits_to_01(hash(uint(ix), uint(iy), uint(iz)));
+ return bits_to_01(hash(uint(ix), uint(iy), uint(iz)));
}
vec3 cellnoise_color(vec3 p)
{
- float r = cellnoise(p.xyz);
- float g = cellnoise(p.yxz);
- float b = cellnoise(p.yzx);
+ float r = cellnoise(p.xyz);
+ float g = cellnoise(p.yxz);
+ float b = cellnoise(p.yzx);
- return vec3(r, g, b);
+ return vec3(r, g, b);
}
float floorfrac(float x, out int i)
{
- i = floor_to_int(x);
- return x - i;
+ i = floor_to_int(x);
+ return x - i;
}
/* bsdfs */
vec3 tint_from_color(vec3 color)
{
- float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
- return (lum > 0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
+ float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
+ return (lum > 0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
}
-void convert_metallic_to_specular_tinted(
- vec3 basecol, vec3 basecol_tint, float metallic, float specular_fac, float specular_tint,
- out vec3 diffuse, out vec3 f0)
+void convert_metallic_to_specular_tinted(vec3 basecol,
+ vec3 basecol_tint,
+ float metallic,
+ float specular_fac,
+ float specular_tint,
+ out vec3 diffuse,
+ out vec3 f0)
{
- vec3 tmp_col = mix(vec3(1.0), basecol_tint, specular_tint);
- f0 = mix((0.08 * specular_fac) * tmp_col, basecol, metallic);
- diffuse = basecol * (1.0 - metallic);
+ vec3 tmp_col = mix(vec3(1.0), basecol_tint, specular_tint);
+ f0 = mix((0.08 * specular_fac) * tmp_col, basecol, metallic);
+ diffuse = basecol * (1.0 - metallic);
}
vec3 principled_sheen(float NV, vec3 basecol_tint, float sheen_tint)
{
- float f = 1.0 - NV;
- /* Temporary fix for T59784. Normal map seems to contain NaNs for tangent space normal maps, therefore we need to clamp value. */
- f = clamp(f, 0.0, 1.0);
- /* Empirical approximation (manual curve fitting). Can be refined. */
- float sheen = f*f*f*0.077 + f*0.01 + 0.00026;
- return sheen * mix(vec3(1.0), basecol_tint, sheen_tint);
+ float f = 1.0 - NV;
+ /* Temporary fix for T59784. Normal map seems to contain NaNs for tangent space normal maps, therefore we need to clamp value. */
+ f = clamp(f, 0.0, 1.0);
+ /* Empirical approximation (manual curve fitting). Can be refined. */
+ float sheen = f * f * f * 0.077 + f * 0.01 + 0.00026;
+ return sheen * mix(vec3(1.0), basecol_tint, sheen_tint);
}
#ifndef VOLUMETRICS
void node_bsdf_diffuse(vec4 color, float roughness, vec3 N, out Closure result)
{
- N = normalize(N);
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- eevee_closure_diffuse(N, color.rgb, 1.0, result.radiance);
- result.radiance *= color.rgb;
+ N = normalize(N);
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ eevee_closure_diffuse(N, color.rgb, 1.0, result.radiance);
+ result.radiance *= color.rgb;
}
void node_bsdf_glossy(vec4 color, float roughness, vec3 N, float ssr_id, out Closure result)
{
- N = normalize(N);
- vec3 out_spec, ssr_spec;
- eevee_closure_glossy(N, vec3(1.0), int(ssr_id), roughness, 1.0, out_spec, ssr_spec);
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = out_spec * color.rgb;
- result.ssr_data = vec4(ssr_spec * color.rgb, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
-}
-
-void node_bsdf_anisotropic(
- vec4 color, float roughness, float anisotropy, float rotation, vec3 N, vec3 T,
- out Closure result)
-{
- node_bsdf_glossy(color, roughness, N, -1, result);
-}
-
-void node_bsdf_glass(vec4 color, float roughness, float ior, vec3 N, float ssr_id, out Closure result)
-{
- N = normalize(N);
- vec3 out_spec, out_refr, ssr_spec;
- vec3 refr_color = (refractionDepth > 0.0) ? color.rgb * color.rgb : color.rgb; /* Simulate 2 transmission event */
- eevee_closure_glass(N, vec3(1.0), int(ssr_id), roughness, 1.0, ior, out_spec, out_refr, ssr_spec);
- out_refr *= refr_color;
- out_spec *= color.rgb;
- float fresnel = F_eta(ior, dot(N, cameraVec));
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = mix(out_refr, out_spec, fresnel);
- result.ssr_data = vec4(ssr_spec * color.rgb * fresnel, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
+ N = normalize(N);
+ vec3 out_spec, ssr_spec;
+ eevee_closure_glossy(N, vec3(1.0), int(ssr_id), roughness, 1.0, out_spec, ssr_spec);
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = out_spec * color.rgb;
+ result.ssr_data = vec4(ssr_spec * color.rgb, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
+}
+
+void node_bsdf_anisotropic(vec4 color,
+ float roughness,
+ float anisotropy,
+ float rotation,
+ vec3 N,
+ vec3 T,
+ out Closure result)
+{
+ node_bsdf_glossy(color, roughness, N, -1, result);
+}
+
+void node_bsdf_glass(
+ vec4 color, float roughness, float ior, vec3 N, float ssr_id, out Closure result)
+{
+ N = normalize(N);
+ vec3 out_spec, out_refr, ssr_spec;
+ vec3 refr_color = (refractionDepth > 0.0) ? color.rgb * color.rgb :
+ color.rgb; /* Simulate 2 transmission event */
+ eevee_closure_glass(
+ N, vec3(1.0), int(ssr_id), roughness, 1.0, ior, out_spec, out_refr, ssr_spec);
+ out_refr *= refr_color;
+ out_spec *= color.rgb;
+ float fresnel = F_eta(ior, dot(N, cameraVec));
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = mix(out_refr, out_spec, fresnel);
+ result.ssr_data = vec4(ssr_spec * color.rgb * fresnel, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
}
void node_bsdf_toon(vec4 color, float size, float tsmooth, vec3 N, out Closure result)
{
- node_bsdf_diffuse(color, 0.0, N, result);
-}
-
-void node_bsdf_principled(
- vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
- float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
- float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
- float sss_id, vec3 sss_scale, out Closure result)
-{
- N = normalize(N);
- ior = max(ior, 1e-5);
- metallic = saturate(metallic);
- transmission = saturate(transmission);
- float dielectric = 1.0 - metallic;
- transmission *= dielectric;
- sheen *= dielectric;
- subsurface_color *= dielectric;
-
- vec3 diffuse, f0, out_diff, out_spec, out_trans, out_refr, ssr_spec;
- vec3 ctint = tint_from_color(base_color.rgb);
- convert_metallic_to_specular_tinted(base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
-
- float NV = dot(N, cameraVec);
- vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
-
- /* Far from being accurate, but 2 glossy evaluation is too expensive.
- * Most noticeable difference is at grazing angles since the bsdf lut
- * f0 color interpolation is done on top of this interpolation. */
- vec3 f0_glass = mix(vec3(1.0), base_color.rgb, specular_tint);
- float fresnel = F_eta(ior, NV);
- vec3 spec_col = F_color_blend(ior, fresnel, f0_glass) * fresnel;
- f0 = mix(f0, spec_col, transmission);
-
- vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
-
- float sss_scalef = dot(sss_scale, vec3(1.0 / 3.0)) * subsurface;
- eevee_closure_principled(N, mixed_ss_base_color, f0, int(ssr_id), roughness,
- CN, clearcoat * 0.25, clearcoat_roughness, 1.0, sss_scalef, ior,
- out_diff, out_trans, out_spec, out_refr, ssr_spec);
-
- vec3 refr_color = base_color.rgb;
- refr_color *= (refractionDepth > 0.0) ? refr_color : vec3(1.0); /* Simulate 2 transmission event */
- out_refr *= refr_color * (1.0 - fresnel) * transmission;
-
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = out_spec + out_refr;
- result.radiance += out_diff * out_sheen; /* Coarse approx. */
-#ifndef USE_SSS
- result.radiance += (out_diff + out_trans) * mixed_ss_base_color * (1.0 - transmission);
-#endif
- result.ssr_data = vec4(ssr_spec, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
-#ifdef USE_SSS
- result.sss_data.a = sss_scalef;
- result.sss_data.rgb = out_diff + out_trans;
-# ifdef USE_SSS_ALBEDO
- result.sss_albedo.rgb = mixed_ss_base_color;
-# else
- result.sss_data.rgb *= mixed_ss_base_color;
+ node_bsdf_diffuse(color, 0.0, N, result);
+}
+
+void node_bsdf_principled(vec4 base_color,
+ float subsurface,
+ vec3 subsurface_radius,
+ vec4 subsurface_color,
+ float metallic,
+ float specular,
+ float specular_tint,
+ float roughness,
+ float anisotropic,
+ float anisotropic_rotation,
+ float sheen,
+ float sheen_tint,
+ float clearcoat,
+ float clearcoat_roughness,
+ float ior,
+ float transmission,
+ float transmission_roughness,
+ vec3 N,
+ vec3 CN,
+ vec3 T,
+ vec3 I,
+ float ssr_id,
+ float sss_id,
+ vec3 sss_scale,
+ out Closure result)
+{
+ N = normalize(N);
+ ior = max(ior, 1e-5);
+ metallic = saturate(metallic);
+ transmission = saturate(transmission);
+ float dielectric = 1.0 - metallic;
+ transmission *= dielectric;
+ sheen *= dielectric;
+ subsurface_color *= dielectric;
+
+ vec3 diffuse, f0, out_diff, out_spec, out_trans, out_refr, ssr_spec;
+ vec3 ctint = tint_from_color(base_color.rgb);
+ convert_metallic_to_specular_tinted(
+ base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
+
+ float NV = dot(N, cameraVec);
+ vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
+
+ /* Far from being accurate, but 2 glossy evaluation is too expensive.
+ * Most noticeable difference is at grazing angles since the bsdf lut
+ * f0 color interpolation is done on top of this interpolation. */
+ vec3 f0_glass = mix(vec3(1.0), base_color.rgb, specular_tint);
+ float fresnel = F_eta(ior, NV);
+ vec3 spec_col = F_color_blend(ior, fresnel, f0_glass) * fresnel;
+ f0 = mix(f0, spec_col, transmission);
+
+ vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
+
+ float sss_scalef = dot(sss_scale, vec3(1.0 / 3.0)) * subsurface;
+ eevee_closure_principled(N,
+ mixed_ss_base_color,
+ f0,
+ int(ssr_id),
+ roughness,
+ CN,
+ clearcoat * 0.25,
+ clearcoat_roughness,
+ 1.0,
+ sss_scalef,
+ ior,
+ out_diff,
+ out_trans,
+ out_spec,
+ out_refr,
+ ssr_spec);
+
+ vec3 refr_color = base_color.rgb;
+ refr_color *= (refractionDepth > 0.0) ? refr_color :
+ vec3(1.0); /* Simulate 2 transmission event */
+ out_refr *= refr_color * (1.0 - fresnel) * transmission;
+
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = out_spec + out_refr;
+ result.radiance += out_diff * out_sheen; /* Coarse approx. */
+# ifndef USE_SSS
+ result.radiance += (out_diff + out_trans) * mixed_ss_base_color * (1.0 - transmission);
+# endif
+ result.ssr_data = vec4(ssr_spec, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
+# ifdef USE_SSS
+ result.sss_data.a = sss_scalef;
+ result.sss_data.rgb = out_diff + out_trans;
+# ifdef USE_SSS_ALBEDO
+ result.sss_albedo.rgb = mixed_ss_base_color;
+# else
+ result.sss_data.rgb *= mixed_ss_base_color;
+# endif
+ result.sss_data.rgb *= (1.0 - transmission);
# endif
- result.sss_data.rgb *= (1.0 - transmission);
-#endif
-}
-
-void node_bsdf_principled_dielectric(
- vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
- float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
- float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
- float sss_id, vec3 sss_scale, out Closure result)
-{
- N = normalize(N);
- metallic = saturate(metallic);
- float dielectric = 1.0 - metallic;
-
- vec3 diffuse, f0, out_diff, out_spec, ssr_spec;
- vec3 ctint = tint_from_color(base_color.rgb);
- convert_metallic_to_specular_tinted(base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
-
- float NV = dot(N, cameraVec);
- vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
-
- eevee_closure_default(N, diffuse, f0, int(ssr_id), roughness, 1.0, out_diff, out_spec, ssr_spec);
-
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = out_spec + out_diff * (diffuse + out_sheen);
- result.ssr_data = vec4(ssr_spec, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
-}
-
-void node_bsdf_principled_metallic(
- vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
- float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
- float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
- float sss_id, vec3 sss_scale, out Closure result)
-{
- N = normalize(N);
- vec3 out_spec, ssr_spec;
-
- eevee_closure_glossy(N, base_color.rgb, int(ssr_id), roughness, 1.0, out_spec, ssr_spec);
-
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = out_spec;
- result.ssr_data = vec4(ssr_spec, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
-}
-
-void node_bsdf_principled_clearcoat(
- vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
- float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
- float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
- float sss_id, vec3 sss_scale, out Closure result)
-{
- vec3 out_spec, ssr_spec;
- N = normalize(N);
-
- eevee_closure_clearcoat(N, base_color.rgb, int(ssr_id), roughness, CN, clearcoat * 0.25, clearcoat_roughness,
- 1.0, out_spec, ssr_spec);
-
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = out_spec;
- result.ssr_data = vec4(ssr_spec, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
}
-void node_bsdf_principled_subsurface(
- vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
- float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
- float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
- float sss_id, vec3 sss_scale, out Closure result)
-{
- metallic = saturate(metallic);
- N = normalize(N);
-
- vec3 diffuse, f0, out_diff, out_spec, out_trans, ssr_spec;
- vec3 ctint = tint_from_color(base_color.rgb);
- convert_metallic_to_specular_tinted(base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
-
- subsurface_color = subsurface_color * (1.0 - metallic);
- vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
- float sss_scalef = dot(sss_scale, vec3(1.0 / 3.0)) * subsurface;
-
- float NV = dot(N, cameraVec);
- vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
-
- eevee_closure_skin(N, mixed_ss_base_color, f0, int(ssr_id), roughness, 1.0, sss_scalef,
- out_diff, out_trans, out_spec, ssr_spec);
-
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = out_spec;
- result.ssr_data = vec4(ssr_spec, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
-#ifdef USE_SSS
- result.sss_data.a = sss_scalef;
- result.sss_data.rgb = out_diff + out_trans;
-# ifdef USE_SSS_ALBEDO
- result.sss_albedo.rgb = mixed_ss_base_color;
+void node_bsdf_principled_dielectric(vec4 base_color,
+ float subsurface,
+ vec3 subsurface_radius,
+ vec4 subsurface_color,
+ float metallic,
+ float specular,
+ float specular_tint,
+ float roughness,
+ float anisotropic,
+ float anisotropic_rotation,
+ float sheen,
+ float sheen_tint,
+ float clearcoat,
+ float clearcoat_roughness,
+ float ior,
+ float transmission,
+ float transmission_roughness,
+ vec3 N,
+ vec3 CN,
+ vec3 T,
+ vec3 I,
+ float ssr_id,
+ float sss_id,
+ vec3 sss_scale,
+ out Closure result)
+{
+ N = normalize(N);
+ metallic = saturate(metallic);
+ float dielectric = 1.0 - metallic;
+
+ vec3 diffuse, f0, out_diff, out_spec, ssr_spec;
+ vec3 ctint = tint_from_color(base_color.rgb);
+ convert_metallic_to_specular_tinted(
+ base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
+
+ float NV = dot(N, cameraVec);
+ vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
+
+ eevee_closure_default(N, diffuse, f0, int(ssr_id), roughness, 1.0, out_diff, out_spec, ssr_spec);
+
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = out_spec + out_diff * (diffuse + out_sheen);
+ result.ssr_data = vec4(ssr_spec, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
+}
+
+void node_bsdf_principled_metallic(vec4 base_color,
+ float subsurface,
+ vec3 subsurface_radius,
+ vec4 subsurface_color,
+ float metallic,
+ float specular,
+ float specular_tint,
+ float roughness,
+ float anisotropic,
+ float anisotropic_rotation,
+ float sheen,
+ float sheen_tint,
+ float clearcoat,
+ float clearcoat_roughness,
+ float ior,
+ float transmission,
+ float transmission_roughness,
+ vec3 N,
+ vec3 CN,
+ vec3 T,
+ vec3 I,
+ float ssr_id,
+ float sss_id,
+ vec3 sss_scale,
+ out Closure result)
+{
+ N = normalize(N);
+ vec3 out_spec, ssr_spec;
+
+ eevee_closure_glossy(N, base_color.rgb, int(ssr_id), roughness, 1.0, out_spec, ssr_spec);
+
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = out_spec;
+ result.ssr_data = vec4(ssr_spec, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
+}
+
+void node_bsdf_principled_clearcoat(vec4 base_color,
+ float subsurface,
+ vec3 subsurface_radius,
+ vec4 subsurface_color,
+ float metallic,
+ float specular,
+ float specular_tint,
+ float roughness,
+ float anisotropic,
+ float anisotropic_rotation,
+ float sheen,
+ float sheen_tint,
+ float clearcoat,
+ float clearcoat_roughness,
+ float ior,
+ float transmission,
+ float transmission_roughness,
+ vec3 N,
+ vec3 CN,
+ vec3 T,
+ vec3 I,
+ float ssr_id,
+ float sss_id,
+ vec3 sss_scale,
+ out Closure result)
+{
+ vec3 out_spec, ssr_spec;
+ N = normalize(N);
+
+ eevee_closure_clearcoat(N,
+ base_color.rgb,
+ int(ssr_id),
+ roughness,
+ CN,
+ clearcoat * 0.25,
+ clearcoat_roughness,
+ 1.0,
+ out_spec,
+ ssr_spec);
+
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = out_spec;
+ result.ssr_data = vec4(ssr_spec, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
+}
+
+void node_bsdf_principled_subsurface(vec4 base_color,
+ float subsurface,
+ vec3 subsurface_radius,
+ vec4 subsurface_color,
+ float metallic,
+ float specular,
+ float specular_tint,
+ float roughness,
+ float anisotropic,
+ float anisotropic_rotation,
+ float sheen,
+ float sheen_tint,
+ float clearcoat,
+ float clearcoat_roughness,
+ float ior,
+ float transmission,
+ float transmission_roughness,
+ vec3 N,
+ vec3 CN,
+ vec3 T,
+ vec3 I,
+ float ssr_id,
+ float sss_id,
+ vec3 sss_scale,
+ out Closure result)
+{
+ metallic = saturate(metallic);
+ N = normalize(N);
+
+ vec3 diffuse, f0, out_diff, out_spec, out_trans, ssr_spec;
+ vec3 ctint = tint_from_color(base_color.rgb);
+ convert_metallic_to_specular_tinted(
+ base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
+
+ subsurface_color = subsurface_color * (1.0 - metallic);
+ vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
+ float sss_scalef = dot(sss_scale, vec3(1.0 / 3.0)) * subsurface;
+
+ float NV = dot(N, cameraVec);
+ vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
+
+ eevee_closure_skin(N,
+ mixed_ss_base_color,
+ f0,
+ int(ssr_id),
+ roughness,
+ 1.0,
+ sss_scalef,
+ out_diff,
+ out_trans,
+ out_spec,
+ ssr_spec);
+
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = out_spec;
+ result.ssr_data = vec4(ssr_spec, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
+# ifdef USE_SSS
+ result.sss_data.a = sss_scalef;
+ result.sss_data.rgb = out_diff + out_trans;
+# ifdef USE_SSS_ALBEDO
+ result.sss_albedo.rgb = mixed_ss_base_color;
+# else
+ result.sss_data.rgb *= mixed_ss_base_color;
+# endif
# else
- result.sss_data.rgb *= mixed_ss_base_color;
+ result.radiance += (out_diff + out_trans) * mixed_ss_base_color;
# endif
-#else
- result.radiance += (out_diff + out_trans) * mixed_ss_base_color;
-#endif
- result.radiance += out_diff * out_sheen;
-}
-
-void node_bsdf_principled_glass(
- vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
- float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
- float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
- float sss_id, vec3 sss_scale, out Closure result)
-{
- ior = max(ior, 1e-5);
- N = normalize(N);
-
- vec3 f0, out_spec, out_refr, ssr_spec;
- f0 = mix(vec3(1.0), base_color.rgb, specular_tint);
-
- eevee_closure_glass(N, vec3(1.0), int(ssr_id), roughness, 1.0, ior, out_spec, out_refr, ssr_spec);
-
- vec3 refr_color = base_color.rgb;
- refr_color *= (refractionDepth > 0.0) ? refr_color : vec3(1.0); /* Simulate 2 transmission events */
- out_refr *= refr_color;
-
- float fresnel = F_eta(ior, dot(N, cameraVec));
- vec3 spec_col = F_color_blend(ior, fresnel, f0);
- out_spec *= spec_col;
- ssr_spec *= spec_col * fresnel;
-
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.radiance = mix(out_refr, out_spec, fresnel);
- result.ssr_data = vec4(ssr_spec, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
+ result.radiance += out_diff * out_sheen;
+}
+
+void node_bsdf_principled_glass(vec4 base_color,
+ float subsurface,
+ vec3 subsurface_radius,
+ vec4 subsurface_color,
+ float metallic,
+ float specular,
+ float specular_tint,
+ float roughness,
+ float anisotropic,
+ float anisotropic_rotation,
+ float sheen,
+ float sheen_tint,
+ float clearcoat,
+ float clearcoat_roughness,
+ float ior,
+ float transmission,
+ float transmission_roughness,
+ vec3 N,
+ vec3 CN,
+ vec3 T,
+ vec3 I,
+ float ssr_id,
+ float sss_id,
+ vec3 sss_scale,
+ out Closure result)
+{
+ ior = max(ior, 1e-5);
+ N = normalize(N);
+
+ vec3 f0, out_spec, out_refr, ssr_spec;
+ f0 = mix(vec3(1.0), base_color.rgb, specular_tint);
+
+ eevee_closure_glass(
+ N, vec3(1.0), int(ssr_id), roughness, 1.0, ior, out_spec, out_refr, ssr_spec);
+
+ vec3 refr_color = base_color.rgb;
+ refr_color *= (refractionDepth > 0.0) ? refr_color :
+ vec3(1.0); /* Simulate 2 transmission events */
+ out_refr *= refr_color;
+
+ float fresnel = F_eta(ior, dot(N, cameraVec));
+ vec3 spec_col = F_color_blend(ior, fresnel, f0);
+ out_spec *= spec_col;
+ ssr_spec *= spec_col * fresnel;
+
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.radiance = mix(out_refr, out_spec, fresnel);
+ result.ssr_data = vec4(ssr_spec, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
}
void node_bsdf_translucent(vec4 color, vec3 N, out Closure result)
{
- node_bsdf_diffuse(color, 0.0, -N, result);
+ node_bsdf_diffuse(color, 0.0, -N, result);
}
void node_bsdf_transparent(vec4 color, out Closure result)
{
- /* this isn't right */
- result = CLOSURE_DEFAULT;
- result.radiance = vec3(0.0);
- result.opacity = clamp(1.0 - dot(color.rgb, vec3(0.3333334)), 0.0, 1.0);
- result.ssr_id = TRANSPARENT_CLOSURE_FLAG;
+ /* this isn't right */
+ result = CLOSURE_DEFAULT;
+ result.radiance = vec3(0.0);
+ result.opacity = clamp(1.0 - dot(color.rgb, vec3(0.3333334)), 0.0, 1.0);
+ result.ssr_id = TRANSPARENT_CLOSURE_FLAG;
}
void node_bsdf_velvet(vec4 color, float sigma, vec3 N, out Closure result)
{
- node_bsdf_diffuse(color, 0.0, N, result);
-}
-
-void node_subsurface_scattering(
- vec4 color, float scale, vec3 radius, float sharpen, float texture_blur, vec3 N, float sss_id,
- out Closure result)
-{
-#if defined(USE_SSS)
- N = normalize(N);
- vec3 out_diff, out_trans;
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.ssr_data = vec4(0.0);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = -1;
- result.sss_data.a = scale;
- eevee_closure_subsurface(N, color.rgb, 1.0, scale, out_diff, out_trans);
- result.sss_data.rgb = out_diff + out_trans;
-# ifdef USE_SSS_ALBEDO
- /* Not perfect for texture_blur not exactly equal to 0.0 or 1.0. */
- result.sss_albedo.rgb = mix(color.rgb, vec3(1.0), texture_blur);
- result.sss_data.rgb *= mix(vec3(1.0), color.rgb, texture_blur);
+ node_bsdf_diffuse(color, 0.0, N, result);
+}
+
+void node_subsurface_scattering(vec4 color,
+ float scale,
+ vec3 radius,
+ float sharpen,
+ float texture_blur,
+ vec3 N,
+ float sss_id,
+ out Closure result)
+{
+# if defined(USE_SSS)
+ N = normalize(N);
+ vec3 out_diff, out_trans;
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.ssr_data = vec4(0.0);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = -1;
+ result.sss_data.a = scale;
+ eevee_closure_subsurface(N, color.rgb, 1.0, scale, out_diff, out_trans);
+ result.sss_data.rgb = out_diff + out_trans;
+# ifdef USE_SSS_ALBEDO
+ /* Not perfect for texture_blur not exactly equal to 0.0 or 1.0. */
+ result.sss_albedo.rgb = mix(color.rgb, vec3(1.0), texture_blur);
+ result.sss_data.rgb *= mix(vec3(1.0), color.rgb, texture_blur);
+# else
+ result.sss_data.rgb *= color.rgb;
+# endif
# else
- result.sss_data.rgb *= color.rgb;
+ node_bsdf_diffuse(color, 0.0, N, result);
# endif
-#else
- node_bsdf_diffuse(color, 0.0, N, result);
-#endif
}
void node_bsdf_refraction(vec4 color, float roughness, float ior, vec3 N, out Closure result)
{
- N = normalize(N);
- vec3 out_refr;
- color.rgb *= (refractionDepth > 0.0) ? color.rgb : vec3(1.0); /* Simulate 2 absorption event. */
- eevee_closure_refraction(N, roughness, ior, out_refr);
- vec3 vN = mat3(ViewMatrix) * N;
- result = CLOSURE_DEFAULT;
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.radiance = out_refr * color.rgb;
- result.ssr_id = REFRACT_CLOSURE_FLAG;
+ N = normalize(N);
+ vec3 out_refr;
+ color.rgb *= (refractionDepth > 0.0) ? color.rgb : vec3(1.0); /* Simulate 2 absorption event. */
+ eevee_closure_refraction(N, roughness, ior, out_refr);
+ vec3 vN = mat3(ViewMatrix) * N;
+ result = CLOSURE_DEFAULT;
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.radiance = out_refr * color.rgb;
+ result.ssr_id = REFRACT_CLOSURE_FLAG;
}
-void node_ambient_occlusion(vec4 color, float distance, vec3 normal, out vec4 result_color, out float result_ao)
+void node_ambient_occlusion(
+ vec4 color, float distance, vec3 normal, out vec4 result_color, out float result_ao)
{
- vec3 bent_normal;
- vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
- result_ao = occlusion_compute(normalize(normal), viewPosition, 1.0, rand, bent_normal);
- result_color = result_ao * color;
+ vec3 bent_normal;
+ vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
+ result_ao = occlusion_compute(normalize(normal), viewPosition, 1.0, rand, bent_normal);
+ result_color = result_ao * color;
}
#endif /* VOLUMETRICS */
@@ -1484,40 +1696,40 @@ void node_ambient_occlusion(vec4 color, float distance, vec3 normal, out vec4 re
void node_emission(vec4 color, float strength, vec3 vN, out Closure result)
{
#ifndef VOLUMETRICS
- color *= strength;
- result = CLOSURE_DEFAULT;
- result.radiance = color.rgb;
- result.opacity = color.a;
- result.ssr_normal = normal_encode(vN, viewCameraVec);
+ color *= strength;
+ result = CLOSURE_DEFAULT;
+ result.radiance = color.rgb;
+ result.opacity = color.a;
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
#else
- result = Closure(vec3(0.0), vec3(0.0), color.rgb * strength, 0.0);
+ result = Closure(vec3(0.0), vec3(0.0), color.rgb * strength, 0.0);
#endif
}
void node_wireframe(float size, vec2 barycentric, vec3 barycentric_dist, out float fac)
{
- vec3 barys = barycentric.xyy;
- barys.z = 1.0 - barycentric.x - barycentric.y;
+ vec3 barys = barycentric.xyy;
+ barys.z = 1.0 - barycentric.x - barycentric.y;
- size *= 0.5;
- vec3 s = step(-size, -barys * barycentric_dist);
+ size *= 0.5;
+ vec3 s = step(-size, -barys * barycentric_dist);
- fac = max(s.x, max(s.y, s.z));
+ fac = max(s.x, max(s.y, s.z));
}
void node_wireframe_screenspace(float size, vec2 barycentric, out float fac)
{
- vec3 barys = barycentric.xyy;
- barys.z = 1.0 - barycentric.x - barycentric.y;
+ vec3 barys = barycentric.xyy;
+ barys.z = 1.0 - barycentric.x - barycentric.y;
- size *= (1.0 / 3.0);
- vec3 dx = dFdx(barys);
- vec3 dy = dFdy(barys);
- vec3 deltas = sqrt(dx * dx + dy * dy);
+ size *= (1.0 / 3.0);
+ vec3 dx = dFdx(barys);
+ vec3 dy = dFdy(barys);
+ vec3 deltas = sqrt(dx * dx + dy * dy);
- vec3 s = step(-deltas * size, -barys);
+ vec3 s = step(-deltas * size, -barys);
- fac = max(s.x, max(s.y, s.z));
+ fac = max(s.x, max(s.y, s.z));
}
/* background */
@@ -1525,16 +1737,16 @@ void node_wireframe_screenspace(float size, vec2 barycentric, out float fac)
void node_tex_environment_texco(vec3 viewvec, out vec3 worldvec)
{
#ifdef MESH_SHADER
- worldvec = worldPosition;
+ worldvec = worldPosition;
#else
- vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(viewvec, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
- vec4 co_homogenous = (ProjectionMatrixInverse * v);
+ vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(viewvec, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
+ vec4 co_homogenous = (ProjectionMatrixInverse * v);
- vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
+ vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
# if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
- worldvec = (ViewMatrixInverse * co).xyz;
+ worldvec = (ViewMatrixInverse * co).xyz;
# else
- worldvec = (ModelViewMatrixInverse * co).xyz;
+ worldvec = (ModelViewMatrixInverse * co).xyz;
# endif
#endif
}
@@ -1542,12 +1754,12 @@ void node_tex_environment_texco(vec3 viewvec, out vec3 worldvec)
void node_background(vec4 color, float strength, out Closure result)
{
#ifndef VOLUMETRICS
- color *= strength;
- result = CLOSURE_DEFAULT;
- result.radiance = color.rgb;
- result.opacity = color.a;
+ color *= strength;
+ result = CLOSURE_DEFAULT;
+ result.radiance = color.rgb;
+ result.opacity = color.a;
#else
- result = CLOSURE_DEFAULT;
+ result = CLOSURE_DEFAULT;
#endif
}
@@ -1556,100 +1768,100 @@ void node_background(vec4 color, float strength, out Closure result)
void node_volume_scatter(vec4 color, float density, float anisotropy, out Closure result)
{
#ifdef VOLUMETRICS
- result = Closure(vec3(0.0), color.rgb * density, vec3(0.0), anisotropy);
+ result = Closure(vec3(0.0), color.rgb * density, vec3(0.0), anisotropy);
#else
- result = CLOSURE_DEFAULT;
+ result = CLOSURE_DEFAULT;
#endif
}
void node_volume_absorption(vec4 color, float density, out Closure result)
{
#ifdef VOLUMETRICS
- result = Closure((1.0 - color.rgb) * density, vec3(0.0), vec3(0.0), 0.0);
+ result = Closure((1.0 - color.rgb) * density, vec3(0.0), vec3(0.0), 0.0);
#else
- result = CLOSURE_DEFAULT;
+ result = CLOSURE_DEFAULT;
#endif
}
void node_blackbody(float temperature, sampler1DArray spectrummap, float layer, out vec4 color)
{
- if (temperature >= 12000.0) {
- color = vec4(0.826270103, 0.994478524, 1.56626022, 1.0);
- }
- else if (temperature < 965.0) {
- color = vec4(4.70366907, 0.0, 0.0, 1.0);
- }
- else {
- float t = (temperature - 965.0) / (12000.0 - 965.0);
- color = vec4(texture(spectrummap, vec2(t, layer)).rgb, 1.0);
- }
-}
-
-void node_volume_principled(
- vec4 color,
- float density,
- float anisotropy,
- vec4 absorption_color,
- float emission_strength,
- vec4 emission_color,
- float blackbody_intensity,
- vec4 blackbody_tint,
- float temperature,
- float density_attribute,
- vec4 color_attribute,
- float temperature_attribute,
- sampler1DArray spectrummap,
- float layer,
- out Closure result)
+ if (temperature >= 12000.0) {
+ color = vec4(0.826270103, 0.994478524, 1.56626022, 1.0);
+ }
+ else if (temperature < 965.0) {
+ color = vec4(4.70366907, 0.0, 0.0, 1.0);
+ }
+ else {
+ float t = (temperature - 965.0) / (12000.0 - 965.0);
+ color = vec4(texture(spectrummap, vec2(t, layer)).rgb, 1.0);
+ }
+}
+
+void node_volume_principled(vec4 color,
+ float density,
+ float anisotropy,
+ vec4 absorption_color,
+ float emission_strength,
+ vec4 emission_color,
+ float blackbody_intensity,
+ vec4 blackbody_tint,
+ float temperature,
+ float density_attribute,
+ vec4 color_attribute,
+ float temperature_attribute,
+ sampler1DArray spectrummap,
+ float layer,
+ out Closure result)
{
#ifdef VOLUMETRICS
- vec3 absorption_coeff = vec3(0.0);
- vec3 scatter_coeff = vec3(0.0);
- vec3 emission_coeff = vec3(0.0);
-
- /* Compute density. */
- density = max(density, 0.0);
-
- if (density > 1e-5) {
- density = max(density * density_attribute, 0.0);
- }
-
- if (density > 1e-5) {
- /* Compute scattering and absorption coefficients. */
- vec3 scatter_color = color.rgb * color_attribute.rgb;
-
- scatter_coeff = scatter_color * density;
- absorption_color.rgb = sqrt(max(absorption_color.rgb, 0.0));
- absorption_coeff = max(1.0 - scatter_color, 0.0) * max(1.0 - absorption_color.rgb, 0.0) * density;
- }
-
- /* Compute emission. */
- emission_strength = max(emission_strength, 0.0);
-
- if (emission_strength > 1e-5) {
- emission_coeff += emission_strength * emission_color.rgb;
- }
-
- if (blackbody_intensity > 1e-3) {
- /* Add temperature from attribute. */
- float T = max(temperature * max(temperature_attribute, 0.0), 0.0);
-
- /* Stefan-Boltzman law. */
- float T2 = T * T;
- float T4 = T2 * T2;
- float sigma = 5.670373e-8 * 1e-6 / M_PI;
- float intensity = sigma * mix(1.0, T4, blackbody_intensity);
-
- if (intensity > 1e-5) {
- vec4 bb;
- node_blackbody(T, spectrummap, layer, bb);
- emission_coeff += bb.rgb * blackbody_tint.rgb * intensity;
- }
- }
-
- result = Closure(absorption_coeff, scatter_coeff, emission_coeff, anisotropy);
+ vec3 absorption_coeff = vec3(0.0);
+ vec3 scatter_coeff = vec3(0.0);
+ vec3 emission_coeff = vec3(0.0);
+
+ /* Compute density. */
+ density = max(density, 0.0);
+
+ if (density > 1e-5) {
+ density = max(density * density_attribute, 0.0);
+ }
+
+ if (density > 1e-5) {
+ /* Compute scattering and absorption coefficients. */
+ vec3 scatter_color = color.rgb * color_attribute.rgb;
+
+ scatter_coeff = scatter_color * density;
+ absorption_color.rgb = sqrt(max(absorption_color.rgb, 0.0));
+ absorption_coeff = max(1.0 - scatter_color, 0.0) * max(1.0 - absorption_color.rgb, 0.0) *
+ density;
+ }
+
+ /* Compute emission. */
+ emission_strength = max(emission_strength, 0.0);
+
+ if (emission_strength > 1e-5) {
+ emission_coeff += emission_strength * emission_color.rgb;
+ }
+
+ if (blackbody_intensity > 1e-3) {
+ /* Add temperature from attribute. */
+ float T = max(temperature * max(temperature_attribute, 0.0), 0.0);
+
+ /* Stefan-Boltzman law. */
+ float T2 = T * T;
+ float T4 = T2 * T2;
+ float sigma = 5.670373e-8 * 1e-6 / M_PI;
+ float intensity = sigma * mix(1.0, T4, blackbody_intensity);
+
+ if (intensity > 1e-5) {
+ vec4 bb;
+ node_blackbody(T, spectrummap, layer, bb);
+ emission_coeff += bb.rgb * blackbody_tint.rgb * intensity;
+ }
+ }
+
+ result = Closure(absorption_coeff, scatter_coeff, emission_coeff, anisotropy);
#else
- result = CLOSURE_DEFAULT;
+ result = CLOSURE_DEFAULT;
#endif
}
@@ -1657,60 +1869,60 @@ void node_volume_principled(
void node_mix_shader(float fac, Closure shader1, Closure shader2, out Closure shader)
{
- shader = closure_mix(shader1, shader2, fac);
+ shader = closure_mix(shader1, shader2, fac);
}
void node_add_shader(Closure shader1, Closure shader2, out Closure shader)
{
- shader = closure_add(shader1, shader2);
+ shader = closure_add(shader1, shader2);
}
/* fresnel */
void node_fresnel(float ior, vec3 N, vec3 I, out float result)
{
- N = normalize(N);
- /* handle perspective/orthographic */
- vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
+ N = normalize(N);
+ /* handle perspective/orthographic */
+ vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
- float eta = max(ior, 0.00001);
- result = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? eta : 1.0 / eta);
+ float eta = max(ior, 0.00001);
+ result = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? eta : 1.0 / eta);
}
/* layer_weight */
void node_layer_weight(float blend, vec3 N, vec3 I, out float fresnel, out float facing)
{
- N = normalize(N);
+ N = normalize(N);
- /* fresnel */
- float eta = max(1.0 - blend, 0.00001);
- vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
+ /* fresnel */
+ float eta = max(1.0 - blend, 0.00001);
+ vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
- fresnel = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? 1.0 / eta : eta);
+ fresnel = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? 1.0 / eta : eta);
- /* facing */
- facing = abs(dot(I_view, N));
- if (blend != 0.5) {
- blend = clamp(blend, 0.0, 0.99999);
- blend = (blend < 0.5) ? 2.0 * blend : 0.5 / (1.0 - blend);
- facing = pow(facing, blend);
- }
- facing = 1.0 - facing;
+ /* facing */
+ facing = abs(dot(I_view, N));
+ if (blend != 0.5) {
+ blend = clamp(blend, 0.0, 0.99999);
+ blend = (blend < 0.5) ? 2.0 * blend : 0.5 / (1.0 - blend);
+ facing = pow(facing, blend);
+ }
+ facing = 1.0 - facing;
}
/* gamma */
void node_gamma(vec4 col, float gamma, out vec4 outcol)
{
- outcol = col;
+ outcol = col;
- if (col.r > 0.0)
- outcol.r = compatible_pow(col.r, gamma);
- if (col.g > 0.0)
- outcol.g = compatible_pow(col.g, gamma);
- if (col.b > 0.0)
- outcol.b = compatible_pow(col.b, gamma);
+ if (col.r > 0.0)
+ outcol.r = compatible_pow(col.r, gamma);
+ if (col.g > 0.0)
+ outcol.g = compatible_pow(col.g, gamma);
+ if (col.b > 0.0)
+ outcol.b = compatible_pow(col.b, gamma);
}
/* geometry */
@@ -1718,13 +1930,13 @@ void node_gamma(vec4 col, float gamma, out vec4 outcol)
void node_attribute_volume_density(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
- vec3 cos = volumeObjectLocalCoord;
+ vec3 cos = volumeObjectLocalCoord;
#else
- vec3 cos = vec3(0.0);
+ vec3 cos = vec3(0.0);
#endif
- outvec = texture(tex, cos).aaa;
- outcol = vec4(outvec, 1.0);
- outf = dot(vec3(1.0 / 3.0), outvec);
+ outvec = texture(tex, cos).aaa;
+ outcol = vec4(outvec, 1.0);
+ outf = dot(vec3(1.0 / 3.0), outvec);
}
uniform vec3 volumeColor = vec3(1.0);
@@ -1732,353 +1944,401 @@ uniform vec3 volumeColor = vec3(1.0);
void node_attribute_volume_color(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
- vec3 cos = volumeObjectLocalCoord;
+ vec3 cos = volumeObjectLocalCoord;
#else
- vec3 cos = vec3(0.0);
+ vec3 cos = vec3(0.0);
#endif
- vec4 value = texture(tex, cos).rgba;
- /* Density is premultiplied for interpolation, divide it out here. */
- if (value.a > 1e-8)
- value.rgb /= value.a;
+ vec4 value = texture(tex, cos).rgba;
+ /* Density is premultiplied for interpolation, divide it out here. */
+ if (value.a > 1e-8)
+ value.rgb /= value.a;
- outvec = value.rgb * volumeColor;
- outcol = vec4(outvec, 1.0);
- outf = dot(vec3(1.0 / 3.0), outvec);
+ outvec = value.rgb * volumeColor;
+ outcol = vec4(outvec, 1.0);
+ outf = dot(vec3(1.0 / 3.0), outvec);
}
void node_attribute_volume_flame(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
- vec3 cos = volumeObjectLocalCoord;
+ vec3 cos = volumeObjectLocalCoord;
#else
- vec3 cos = vec3(0.0);
+ vec3 cos = vec3(0.0);
#endif
- outf = texture(tex, cos).r;
- outvec = vec3(outf, outf, outf);
- outcol = vec4(outf, outf, outf, 1.0);
+ outf = texture(tex, cos).r;
+ outvec = vec3(outf, outf, outf);
+ outcol = vec4(outf, outf, outf, 1.0);
}
-void node_attribute_volume_temperature(sampler3D tex, vec2 temperature, out vec4 outcol, out vec3 outvec, out float outf)
+void node_attribute_volume_temperature(
+ sampler3D tex, vec2 temperature, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
- vec3 cos = volumeObjectLocalCoord;
+ vec3 cos = volumeObjectLocalCoord;
#else
- vec3 cos = vec3(0.0);
+ vec3 cos = vec3(0.0);
#endif
- float flame = texture(tex, cos).r;
+ float flame = texture(tex, cos).r;
- outf = (flame > 0.01) ? temperature.x + flame * (temperature.y - temperature.x): 0.0;
- outvec = vec3(outf, outf, outf);
- outcol = vec4(outf, outf, outf, 1.0);
+ outf = (flame > 0.01) ? temperature.x + flame * (temperature.y - temperature.x) : 0.0;
+ outvec = vec3(outf, outf, outf);
+ outcol = vec4(outf, outf, outf, 1.0);
}
void node_attribute(vec3 attr, out vec4 outcol, out vec3 outvec, out float outf)
{
- outcol = vec4(attr, 1.0);
- outvec = attr;
- outf = dot(vec3(1.0 / 3.0), attr);
+ outcol = vec4(attr, 1.0);
+ outvec = attr;
+ outf = dot(vec3(1.0 / 3.0), attr);
}
void node_uvmap(vec3 attr_uv, out vec3 outvec)
{
- outvec = attr_uv;
+ outvec = attr_uv;
}
void tangent_orco_x(vec3 orco_in, out vec3 orco_out)
{
- orco_out = orco_in.xzy * vec3(0.0, -0.5, 0.5) + vec3(0.0, 0.25, -0.25);
+ orco_out = orco_in.xzy * vec3(0.0, -0.5, 0.5) + vec3(0.0, 0.25, -0.25);
}
void tangent_orco_y(vec3 orco_in, out vec3 orco_out)
{
- orco_out = orco_in.zyx * vec3(-0.5, 0.0, 0.5) + vec3(0.25, 0.0, -0.25);
+ orco_out = orco_in.zyx * vec3(-0.5, 0.0, 0.5) + vec3(0.25, 0.0, -0.25);
}
void tangent_orco_z(vec3 orco_in, out vec3 orco_out)
{
- orco_out = orco_in.yxz * vec3(-0.5, 0.5, 0.0) + vec3(0.25, -0.25, 0.0);
+ orco_out = orco_in.yxz * vec3(-0.5, 0.5, 0.0) + vec3(0.25, -0.25, 0.0);
}
void node_tangentmap(vec4 attr_tangent, mat4 toworld, out vec3 tangent)
{
- tangent = normalize((toworld * vec4(attr_tangent.xyz, 0.0)).xyz);
+ tangent = normalize((toworld * vec4(attr_tangent.xyz, 0.0)).xyz);
}
void node_tangent(vec3 N, vec3 orco, mat4 objmat, mat4 toworld, out vec3 T)
{
#ifndef VOLUMETRICS
- N = normalize(gl_FrontFacing ? worldNormal : -worldNormal);
+ N = normalize(gl_FrontFacing ? worldNormal : -worldNormal);
#else
- N = (toworld * vec4(N, 0.0)).xyz;
+ N = (toworld * vec4(N, 0.0)).xyz;
#endif
- T = (objmat * vec4(orco, 0.0)).xyz;
- T = cross(N, normalize(cross(T, N)));
-}
-
-void node_geometry(
- vec3 I, vec3 N, vec3 orco, mat4 objmat, mat4 toworld, vec2 barycentric,
- out vec3 position, out vec3 normal, out vec3 tangent,
- out vec3 true_normal, out vec3 incoming, out vec3 parametric,
- out float backfacing, out float pointiness)
-{
- /* handle perspective/orthographic */
- vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
- incoming = -(toworld * vec4(I_view, 0.0)).xyz;
+ T = (objmat * vec4(orco, 0.0)).xyz;
+ T = cross(N, normalize(cross(T, N)));
+}
+
+void node_geometry(vec3 I,
+ vec3 N,
+ vec3 orco,
+ mat4 objmat,
+ mat4 toworld,
+ vec2 barycentric,
+ out vec3 position,
+ out vec3 normal,
+ out vec3 tangent,
+ out vec3 true_normal,
+ out vec3 incoming,
+ out vec3 parametric,
+ out float backfacing,
+ out float pointiness)
+{
+ /* handle perspective/orthographic */
+ vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
+ incoming = -(toworld * vec4(I_view, 0.0)).xyz;
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
- position = -incoming;
- true_normal = normal = incoming;
- tangent = parametric = vec3(0.0);
- vec3(0.0);
- backfacing = 0.0;
- pointiness = 0.0;
+ position = -incoming;
+ true_normal = normal = incoming;
+ tangent = parametric = vec3(0.0);
+ vec3(0.0);
+ backfacing = 0.0;
+ pointiness = 0.0;
#else
- position = worldPosition;
+ position = worldPosition;
# ifndef VOLUMETRICS
- normal = normalize(gl_FrontFacing ? worldNormal : -worldNormal);
- vec3 B = dFdx(worldPosition);
- vec3 T = dFdy(worldPosition);
- true_normal = normalize(cross(B, T));
+ normal = normalize(gl_FrontFacing ? worldNormal : -worldNormal);
+ vec3 B = dFdx(worldPosition);
+ vec3 T = dFdy(worldPosition);
+ true_normal = normalize(cross(B, T));
# else
- normal = (toworld * vec4(N, 0.0)).xyz;
- true_normal = normal;
+ normal = (toworld * vec4(N, 0.0)).xyz;
+ true_normal = normal;
# endif
- tangent_orco_z(orco, orco);
- node_tangent(N, orco, objmat, toworld, tangent);
+ tangent_orco_z(orco, orco);
+ node_tangent(N, orco, objmat, toworld, tangent);
- parametric = vec3(barycentric, 0.0);
- backfacing = (gl_FrontFacing) ? 0.0 : 1.0;
- pointiness = 0.5;
+ parametric = vec3(barycentric, 0.0);
+ backfacing = (gl_FrontFacing) ? 0.0 : 1.0;
+ pointiness = 0.5;
#endif
}
void generated_texco(vec3 I, vec3 attr_orco, out vec3 generated)
{
- vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(I, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
- vec4 co_homogenous = (ProjectionMatrixInverse * v);
- vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
- co.xyz = normalize(co.xyz);
+ vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(I, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
+ vec4 co_homogenous = (ProjectionMatrixInverse * v);
+ vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
+ co.xyz = normalize(co.xyz);
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
- generated = (ViewMatrixInverse * co).xyz;
+ generated = (ViewMatrixInverse * co).xyz;
#else
- generated_from_orco(attr_orco, generated);
+ generated_from_orco(attr_orco, generated);
#endif
}
-void node_tex_coord(
- vec3 I, vec3 N, mat4 viewinvmat, mat4 obinvmat, vec4 camerafac,
- vec3 attr_orco, vec3 attr_uv,
- out vec3 generated, out vec3 normal, out vec3 uv, out vec3 object,
- out vec3 camera, out vec3 window, out vec3 reflection)
-{
- generated = attr_orco;
- normal = normalize(NormalMatrixInverse * N);
- uv = attr_uv;
- object = (obinvmat * (viewinvmat * vec4(I, 1.0))).xyz;
- camera = vec3(I.xy, -I.z);
- vec4 projvec = ProjectionMatrix * vec4(I, 1.0);
- window = vec3(mtex_2d_mapping(projvec.xyz / projvec.w).xy * camerafac.xy + camerafac.zw, 0.0);
-
- vec3 shade_I = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
- vec3 view_reflection = reflect(shade_I, normalize(N));
- reflection = (viewinvmat * vec4(view_reflection, 0.0)).xyz;
-}
-
-void node_tex_coord_background(
- vec3 I, vec3 N, mat4 viewinvmat, mat4 obinvmat, vec4 camerafac,
- vec3 attr_orco, vec3 attr_uv,
- out vec3 generated, out vec3 normal, out vec3 uv, out vec3 object,
- out vec3 camera, out vec3 window, out vec3 reflection)
-{
- vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(I, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
- vec4 co_homogenous = (ProjectionMatrixInverse * v);
-
- vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
-
- co = normalize(co);
+void node_tex_coord(vec3 I,
+ vec3 N,
+ mat4 viewinvmat,
+ mat4 obinvmat,
+ vec4 camerafac,
+ vec3 attr_orco,
+ vec3 attr_uv,
+ out vec3 generated,
+ out vec3 normal,
+ out vec3 uv,
+ out vec3 object,
+ out vec3 camera,
+ out vec3 window,
+ out vec3 reflection)
+{
+ generated = attr_orco;
+ normal = normalize(NormalMatrixInverse * N);
+ uv = attr_uv;
+ object = (obinvmat * (viewinvmat * vec4(I, 1.0))).xyz;
+ camera = vec3(I.xy, -I.z);
+ vec4 projvec = ProjectionMatrix * vec4(I, 1.0);
+ window = vec3(mtex_2d_mapping(projvec.xyz / projvec.w).xy * camerafac.xy + camerafac.zw, 0.0);
+
+ vec3 shade_I = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
+ vec3 view_reflection = reflect(shade_I, normalize(N));
+ reflection = (viewinvmat * vec4(view_reflection, 0.0)).xyz;
+}
+
+void node_tex_coord_background(vec3 I,
+ vec3 N,
+ mat4 viewinvmat,
+ mat4 obinvmat,
+ vec4 camerafac,
+ vec3 attr_orco,
+ vec3 attr_uv,
+ out vec3 generated,
+ out vec3 normal,
+ out vec3 uv,
+ out vec3 object,
+ out vec3 camera,
+ out vec3 window,
+ out vec3 reflection)
+{
+ vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(I, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
+ vec4 co_homogenous = (ProjectionMatrixInverse * v);
+
+ vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
+
+ co = normalize(co);
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
- vec3 coords = (ViewMatrixInverse * co).xyz;
+ vec3 coords = (ViewMatrixInverse * co).xyz;
#else
- vec3 coords = (ModelViewMatrixInverse * co).xyz;
+ vec3 coords = (ModelViewMatrixInverse * co).xyz;
#endif
- generated = coords;
- normal = -coords;
- uv = vec3(attr_uv.xy, 0.0);
- object = coords;
+ generated = coords;
+ normal = -coords;
+ uv = vec3(attr_uv.xy, 0.0);
+ object = coords;
- camera = vec3(co.xy, -co.z);
- window = vec3(mtex_2d_mapping(I).xy * camerafac.xy + camerafac.zw, 0.0);
+ camera = vec3(co.xy, -co.z);
+ window = vec3(mtex_2d_mapping(I).xy * camerafac.xy + camerafac.zw, 0.0);
- reflection = -coords;
+ reflection = -coords;
}
#if defined(WORLD_BACKGROUND) || (defined(PROBE_CAPTURE) && !defined(MESH_SHADER))
-#define node_tex_coord node_tex_coord_background
+# define node_tex_coord node_tex_coord_background
#endif
/* textures */
float calc_gradient(vec3 p, int gradient_type)
{
- float x, y, z;
- x = p.x;
- y = p.y;
- z = p.z;
- if (gradient_type == 0) { /* linear */
- return x;
- }
- else if (gradient_type == 1) { /* quadratic */
- float r = max(x, 0.0);
- return r * r;
- }
- else if (gradient_type == 2) { /* easing */
- float r = min(max(x, 0.0), 1.0);
- float t = r * r;
- return (3.0 * t - 2.0 * t * r);
- }
- else if (gradient_type == 3) { /* diagonal */
- return (x + y) * 0.5;
- }
- else if (gradient_type == 4) { /* radial */
- return atan(y, x) / (M_PI * 2) + 0.5;
- }
- else {
- /* Bias a little bit for the case where p is a unit length vector,
- * to get exactly zero instead of a small random value depending
- * on float precision. */
- float r = max(0.999999 - sqrt(x * x + y * y + z * z), 0.0);
- if (gradient_type == 5) { /* quadratic sphere */
- return r * r;
- }
- else if (gradient_type == 6) { /* sphere */
- return r;
- }
- }
- return 0.0;
+ float x, y, z;
+ x = p.x;
+ y = p.y;
+ z = p.z;
+ if (gradient_type == 0) { /* linear */
+ return x;
+ }
+ else if (gradient_type == 1) { /* quadratic */
+ float r = max(x, 0.0);
+ return r * r;
+ }
+ else if (gradient_type == 2) { /* easing */
+ float r = min(max(x, 0.0), 1.0);
+ float t = r * r;
+ return (3.0 * t - 2.0 * t * r);
+ }
+ else if (gradient_type == 3) { /* diagonal */
+ return (x + y) * 0.5;
+ }
+ else if (gradient_type == 4) { /* radial */
+ return atan(y, x) / (M_PI * 2) + 0.5;
+ }
+ else {
+ /* Bias a little bit for the case where p is a unit length vector,
+ * to get exactly zero instead of a small random value depending
+ * on float precision. */
+ float r = max(0.999999 - sqrt(x * x + y * y + z * z), 0.0);
+ if (gradient_type == 5) { /* quadratic sphere */
+ return r * r;
+ }
+ else if (gradient_type == 6) { /* sphere */
+ return r;
+ }
+ }
+ return 0.0;
}
void node_tex_gradient(vec3 co, float gradient_type, out vec4 color, out float fac)
{
- float f = calc_gradient(co, int(gradient_type));
- f = clamp(f, 0.0, 1.0);
+ float f = calc_gradient(co, int(gradient_type));
+ f = clamp(f, 0.0, 1.0);
- color = vec4(f, f, f, 1.0);
- fac = f;
+ color = vec4(f, f, f, 1.0);
+ fac = f;
}
-void node_tex_checker(vec3 co, vec4 color1, vec4 color2, float scale, out vec4 color, out float fac)
+void node_tex_checker(
+ vec3 co, vec4 color1, vec4 color2, float scale, out vec4 color, out float fac)
{
- vec3 p = co * scale;
+ vec3 p = co * scale;
- /* Prevent precision issues on unit coordinates. */
- p = (p + 0.000001) * 0.999999;
+ /* Prevent precision issues on unit coordinates. */
+ p = (p + 0.000001) * 0.999999;
- int xi = int(abs(floor(p.x)));
- int yi = int(abs(floor(p.y)));
- int zi = int(abs(floor(p.z)));
+ int xi = int(abs(floor(p.x)));
+ int yi = int(abs(floor(p.y)));
+ int zi = int(abs(floor(p.z)));
- bool check = ((mod(xi, 2) == mod(yi, 2)) == bool(mod(zi, 2)));
+ bool check = ((mod(xi, 2) == mod(yi, 2)) == bool(mod(zi, 2)));
- color = check ? color1 : color2;
- fac = check ? 1.0 : 0.0;
+ color = check ? color1 : color2;
+ fac = check ? 1.0 : 0.0;
}
-vec2 calc_brick_texture(vec3 p, float mortar_size, float mortar_smooth, float bias,
- float brick_width, float row_height,
- float offset_amount, int offset_frequency,
- float squash_amount, int squash_frequency)
+vec2 calc_brick_texture(vec3 p,
+ float mortar_size,
+ float mortar_smooth,
+ float bias,
+ float brick_width,
+ float row_height,
+ float offset_amount,
+ int offset_frequency,
+ float squash_amount,
+ int squash_frequency)
{
- int bricknum, rownum;
- float offset = 0.0;
- float x, y;
+ int bricknum, rownum;
+ float offset = 0.0;
+ float x, y;
- rownum = floor_to_int(p.y / row_height);
+ rownum = floor_to_int(p.y / row_height);
- if (offset_frequency != 0 && squash_frequency != 0) {
- brick_width *= (rownum % squash_frequency != 0) ? 1.0 : squash_amount; /* squash */
- offset = (rownum % offset_frequency != 0) ? 0.0 : (brick_width * offset_amount); /* offset */
- }
+ if (offset_frequency != 0 && squash_frequency != 0) {
+ brick_width *= (rownum % squash_frequency != 0) ? 1.0 : squash_amount; /* squash */
+ offset = (rownum % offset_frequency != 0) ? 0.0 : (brick_width * offset_amount); /* offset */
+ }
- bricknum = floor_to_int((p.x + offset) / brick_width);
+ bricknum = floor_to_int((p.x + offset) / brick_width);
- x = (p.x + offset) - brick_width * bricknum;
- y = p.y - row_height * rownum;
+ x = (p.x + offset) - brick_width * bricknum;
+ y = p.y - row_height * rownum;
- float tint = clamp((integer_noise((rownum << 16) + (bricknum & 0xFFFF)) + bias), 0.0, 1.0);
+ float tint = clamp((integer_noise((rownum << 16) + (bricknum & 0xFFFF)) + bias), 0.0, 1.0);
- float min_dist = min(min(x, y), min(brick_width - x, row_height - y));
- if (min_dist >= mortar_size) {
- return vec2(tint, 0.0);
- }
- else if (mortar_smooth == 0.0) {
- return vec2(tint, 1.0);
- }
- else {
- min_dist = 1.0 - min_dist/mortar_size;
- return vec2(tint, smoothstep(0.0, mortar_smooth, min_dist));
- }
+ float min_dist = min(min(x, y), min(brick_width - x, row_height - y));
+ if (min_dist >= mortar_size) {
+ return vec2(tint, 0.0);
+ }
+ else if (mortar_smooth == 0.0) {
+ return vec2(tint, 1.0);
+ }
+ else {
+ min_dist = 1.0 - min_dist / mortar_size;
+ return vec2(tint, smoothstep(0.0, mortar_smooth, min_dist));
+ }
}
void node_tex_brick(vec3 co,
- vec4 color1, vec4 color2,
- vec4 mortar, float scale,
- float mortar_size, float mortar_smooth, float bias,
- float brick_width, float row_height,
- float offset_amount, float offset_frequency,
- float squash_amount, float squash_frequency,
- out vec4 color, out float fac)
-{
- vec2 f2 = calc_brick_texture(co * scale,
- mortar_size, mortar_smooth, bias,
- brick_width, row_height,
- offset_amount, int(offset_frequency),
- squash_amount, int(squash_frequency));
- float tint = f2.x;
- float f = f2.y;
- if (f != 1.0) {
- float facm = 1.0 - tint;
- color1 = facm * color1 + tint * color2;
- }
- color = mix(color1, mortar, f);
- fac = f;
+ vec4 color1,
+ vec4 color2,
+ vec4 mortar,
+ float scale,
+ float mortar_size,
+ float mortar_smooth,
+ float bias,
+ float brick_width,
+ float row_height,
+ float offset_amount,
+ float offset_frequency,
+ float squash_amount,
+ float squash_frequency,
+ out vec4 color,
+ out float fac)
+{
+ vec2 f2 = calc_brick_texture(co * scale,
+ mortar_size,
+ mortar_smooth,
+ bias,
+ brick_width,
+ row_height,
+ offset_amount,
+ int(offset_frequency),
+ squash_amount,
+ int(squash_frequency));
+ float tint = f2.x;
+ float f = f2.y;
+ if (f != 1.0) {
+ float facm = 1.0 - tint;
+ color1 = facm * color1 + tint * color2;
+ }
+ color = mix(color1, mortar, f);
+ fac = f;
}
void node_tex_clouds(vec3 co, float size, out vec4 color, out float fac)
{
- color = vec4(1.0);
- fac = 1.0;
+ color = vec4(1.0);
+ fac = 1.0;
}
void node_tex_environment_equirectangular(vec3 co, float clamp_size, sampler2D ima, out vec3 uv)
{
- vec3 nco = normalize(co);
- uv.x = -atan(nco.y, nco.x) / (2.0 * M_PI) + 0.5;
- uv.y = atan(nco.z, hypot(nco.x, nco.y)) / M_PI + 0.5;
+ vec3 nco = normalize(co);
+ uv.x = -atan(nco.y, nco.x) / (2.0 * M_PI) + 0.5;
+ uv.y = atan(nco.z, hypot(nco.x, nco.y)) / M_PI + 0.5;
- /* Fix pole bleeding */
- float half_height = clamp_size / float(textureSize(ima, 0).y);
- uv.y = clamp(uv.y, half_height, 1.0 - half_height);
- uv.z = 0.0;
+ /* Fix pole bleeding */
+ float half_height = clamp_size / float(textureSize(ima, 0).y);
+ uv.y = clamp(uv.y, half_height, 1.0 - half_height);
+ uv.z = 0.0;
}
void node_tex_environment_mirror_ball(vec3 co, out vec3 uv)
{
- vec3 nco = normalize(co);
- nco.y -= 1.0;
+ vec3 nco = normalize(co);
+ nco.y -= 1.0;
- float div = 2.0 * sqrt(max(-0.5 * nco.y, 0.0));
- nco /= max(1e-8, div);
+ float div = 2.0 * sqrt(max(-0.5 * nco.y, 0.0));
+ nco /= max(1e-8, div);
- uv = 0.5 * nco.xzz + 0.5;
+ uv = 0.5 * nco.xzz + 0.5;
}
void node_tex_environment_empty(vec3 co, out vec4 color)
{
- color = vec4(1.0, 0.0, 1.0, 1.0);
+ color = vec4(1.0, 0.0, 1.0, 1.0);
}
/* 16bits floats limits. Higher/Lower values produce +/-inf. */
@@ -2086,200 +2346,185 @@ void node_tex_environment_empty(vec3 co, out vec4 color)
void node_tex_image_linear(vec3 co, sampler2D ima, out vec4 color, out float alpha)
{
- color = safe_color(texture(ima, co.xy));
- alpha = color.a;
+ color = safe_color(texture(ima, co.xy));
+ alpha = color.a;
}
void node_tex_image_linear_no_mip(vec3 co, sampler2D ima, out vec4 color, out float alpha)
{
- color = safe_color(textureLod(ima, co.xy, 0.0));
- alpha = color.a;
+ color = safe_color(textureLod(ima, co.xy, 0.0));
+ alpha = color.a;
}
void node_tex_image_nearest(vec3 co, sampler2D ima, out vec4 color, out float alpha)
{
- ivec2 pix = ivec2(fract(co.xy) * textureSize(ima, 0).xy);
- color = safe_color(texelFetch(ima, pix, 0));
- alpha = color.a;
+ ivec2 pix = ivec2(fract(co.xy) * textureSize(ima, 0).xy);
+ color = safe_color(texelFetch(ima, pix, 0));
+ alpha = color.a;
}
/* @arg f: signed distance to texel center. */
void cubic_bspline_coefs(vec2 f, out vec2 w0, out vec2 w1, out vec2 w2, out vec2 w3)
{
- vec2 f2 = f * f;
- vec2 f3 = f2 * f;
- /* Bspline coefs (optimized) */
- w3 = f3 / 6.0;
- w0 = -w3 + f2 * 0.5 - f * 0.5 + 1.0 / 6.0;
- w1 = f3 * 0.5 - f2 * 1.0 + 2.0 / 3.0;
- w2 = 1.0 - w0 - w1 - w3;
+ vec2 f2 = f * f;
+ vec2 f3 = f2 * f;
+ /* Bspline coefs (optimized) */
+ w3 = f3 / 6.0;
+ w0 = -w3 + f2 * 0.5 - f * 0.5 + 1.0 / 6.0;
+ w1 = f3 * 0.5 - f2 * 1.0 + 2.0 / 3.0;
+ w2 = 1.0 - w0 - w1 - w3;
}
-void node_tex_image_cubic_ex(vec3 co, sampler2D ima, float do_extend, out vec4 color, out float alpha)
+void node_tex_image_cubic_ex(
+ vec3 co, sampler2D ima, float do_extend, out vec4 color, out float alpha)
{
- vec2 tex_size = vec2(textureSize(ima, 0).xy);
+ vec2 tex_size = vec2(textureSize(ima, 0).xy);
- co.xy *= tex_size;
- /* texel center */
- vec2 tc = floor(co.xy - 0.5) + 0.5;
- vec2 w0, w1, w2, w3;
- cubic_bspline_coefs(co.xy - tc, w0, w1, w2, w3);
+ co.xy *= tex_size;
+ /* texel center */
+ vec2 tc = floor(co.xy - 0.5) + 0.5;
+ vec2 w0, w1, w2, w3;
+ cubic_bspline_coefs(co.xy - tc, w0, w1, w2, w3);
#if 1 /* Optimized version using 4 filtered tap. */
- vec2 s0 = w0 + w1;
- vec2 s1 = w2 + w3;
+ vec2 s0 = w0 + w1;
+ vec2 s1 = w2 + w3;
- vec2 f0 = w1 / (w0 + w1);
- vec2 f1 = w3 / (w2 + w3);
+ vec2 f0 = w1 / (w0 + w1);
+ vec2 f1 = w3 / (w2 + w3);
- vec4 final_co;
- final_co.xy = tc - 1.0 + f0;
- final_co.zw = tc + 1.0 + f1;
+ vec4 final_co;
+ final_co.xy = tc - 1.0 + f0;
+ final_co.zw = tc + 1.0 + f1;
- if (do_extend == 1.0) {
- final_co = clamp(final_co, vec4(0.5), tex_size.xyxy - 0.5);
- }
- final_co /= tex_size.xyxy;
+ if (do_extend == 1.0) {
+ final_co = clamp(final_co, vec4(0.5), tex_size.xyxy - 0.5);
+ }
+ final_co /= tex_size.xyxy;
- color = safe_color(textureLod(ima, final_co.xy, 0.0)) * s0.x * s0.y;
- color += safe_color(textureLod(ima, final_co.zy, 0.0)) * s1.x * s0.y;
- color += safe_color(textureLod(ima, final_co.xw, 0.0)) * s0.x * s1.y;
- color += safe_color(textureLod(ima, final_co.zw, 0.0)) * s1.x * s1.y;
+ color = safe_color(textureLod(ima, final_co.xy, 0.0)) * s0.x * s0.y;
+ color += safe_color(textureLod(ima, final_co.zy, 0.0)) * s1.x * s0.y;
+ color += safe_color(textureLod(ima, final_co.xw, 0.0)) * s0.x * s1.y;
+ color += safe_color(textureLod(ima, final_co.zw, 0.0)) * s1.x * s1.y;
#else /* Reference bruteforce 16 tap. */
- color = texelFetch(ima, ivec2(tc + vec2(-1.0, -1.0)), 0) * w0.x * w0.y;
- color += texelFetch(ima, ivec2(tc + vec2( 0.0, -1.0)), 0) * w1.x * w0.y;
- color += texelFetch(ima, ivec2(tc + vec2( 1.0, -1.0)), 0) * w2.x * w0.y;
- color += texelFetch(ima, ivec2(tc + vec2( 2.0, -1.0)), 0) * w3.x * w0.y;
-
- color += texelFetch(ima, ivec2(tc + vec2(-1.0, 0.0)), 0) * w0.x * w1.y;
- color += texelFetch(ima, ivec2(tc + vec2( 0.0, 0.0)), 0) * w1.x * w1.y;
- color += texelFetch(ima, ivec2(tc + vec2( 1.0, 0.0)), 0) * w2.x * w1.y;
- color += texelFetch(ima, ivec2(tc + vec2( 2.0, 0.0)), 0) * w3.x * w1.y;
-
- color += texelFetch(ima, ivec2(tc + vec2(-1.0, 1.0)), 0) * w0.x * w2.y;
- color += texelFetch(ima, ivec2(tc + vec2( 0.0, 1.0)), 0) * w1.x * w2.y;
- color += texelFetch(ima, ivec2(tc + vec2( 1.0, 1.0)), 0) * w2.x * w2.y;
- color += texelFetch(ima, ivec2(tc + vec2( 2.0, 1.0)), 0) * w3.x * w2.y;
-
- color += texelFetch(ima, ivec2(tc + vec2(-1.0, 2.0)), 0) * w0.x * w3.y;
- color += texelFetch(ima, ivec2(tc + vec2( 0.0, 2.0)), 0) * w1.x * w3.y;
- color += texelFetch(ima, ivec2(tc + vec2( 1.0, 2.0)), 0) * w2.x * w3.y;
- color += texelFetch(ima, ivec2(tc + vec2( 2.0, 2.0)), 0) * w3.x * w3.y;
+ color = texelFetch(ima, ivec2(tc + vec2(-1.0, -1.0)), 0) * w0.x * w0.y;
+ color += texelFetch(ima, ivec2(tc + vec2(0.0, -1.0)), 0) * w1.x * w0.y;
+ color += texelFetch(ima, ivec2(tc + vec2(1.0, -1.0)), 0) * w2.x * w0.y;
+ color += texelFetch(ima, ivec2(tc + vec2(2.0, -1.0)), 0) * w3.x * w0.y;
+
+ color += texelFetch(ima, ivec2(tc + vec2(-1.0, 0.0)), 0) * w0.x * w1.y;
+ color += texelFetch(ima, ivec2(tc + vec2(0.0, 0.0)), 0) * w1.x * w1.y;
+ color += texelFetch(ima, ivec2(tc + vec2(1.0, 0.0)), 0) * w2.x * w1.y;
+ color += texelFetch(ima, ivec2(tc + vec2(2.0, 0.0)), 0) * w3.x * w1.y;
+
+ color += texelFetch(ima, ivec2(tc + vec2(-1.0, 1.0)), 0) * w0.x * w2.y;
+ color += texelFetch(ima, ivec2(tc + vec2(0.0, 1.0)), 0) * w1.x * w2.y;
+ color += texelFetch(ima, ivec2(tc + vec2(1.0, 1.0)), 0) * w2.x * w2.y;
+ color += texelFetch(ima, ivec2(tc + vec2(2.0, 1.0)), 0) * w3.x * w2.y;
+
+ color += texelFetch(ima, ivec2(tc + vec2(-1.0, 2.0)), 0) * w0.x * w3.y;
+ color += texelFetch(ima, ivec2(tc + vec2(0.0, 2.0)), 0) * w1.x * w3.y;
+ color += texelFetch(ima, ivec2(tc + vec2(1.0, 2.0)), 0) * w2.x * w3.y;
+ color += texelFetch(ima, ivec2(tc + vec2(2.0, 2.0)), 0) * w3.x * w3.y;
#endif
- alpha = color.a;
+ alpha = color.a;
}
void node_tex_image_cubic(vec3 co, sampler2D ima, out vec4 color, out float alpha)
{
- node_tex_image_cubic_ex(co, ima, 0.0, color, alpha);
+ node_tex_image_cubic_ex(co, ima, 0.0, color, alpha);
}
void node_tex_image_cubic_extend(vec3 co, sampler2D ima, out vec4 color, out float alpha)
{
- node_tex_image_cubic_ex(co, ima, 1.0, color, alpha);
+ node_tex_image_cubic_ex(co, ima, 1.0, color, alpha);
}
void node_tex_image_smart(vec3 co, sampler2D ima, out vec4 color, out float alpha)
{
- /* use cubic for now */
- node_tex_image_cubic_ex(co, ima, 0.0, color, alpha);
-}
-
-void tex_box_sample_linear(vec3 texco,
- vec3 N,
- sampler2D ima,
- out vec4 color1,
- out vec4 color2,
- out vec4 color3)
-{
- /* X projection */
- vec2 uv = texco.yz;
- if (N.x < 0.0) {
- uv.x = 1.0 - uv.x;
- }
- color1 = texture(ima, uv);
- /* Y projection */
- uv = texco.xz;
- if (N.y > 0.0) {
- uv.x = 1.0 - uv.x;
- }
- color2 = texture(ima, uv);
- /* Z projection */
- uv = texco.yx;
- if (N.z > 0.0) {
- uv.x = 1.0 - uv.x;
- }
- color3 = texture(ima, uv);
-}
-
-void tex_box_sample_nearest(vec3 texco,
- vec3 N,
- sampler2D ima,
- out vec4 color1,
- out vec4 color2,
- out vec4 color3)
-{
- /* X projection */
- vec2 uv = texco.yz;
- if (N.x < 0.0) {
- uv.x = 1.0 - uv.x;
- }
- ivec2 pix = ivec2(uv.xy * textureSize(ima, 0).xy);
- color1 = texelFetch(ima, pix, 0);
- /* Y projection */
- uv = texco.xz;
- if (N.y > 0.0) {
- uv.x = 1.0 - uv.x;
- }
- pix = ivec2(uv.xy * textureSize(ima, 0).xy);
- color2 = texelFetch(ima, pix, 0);
- /* Z projection */
- uv = texco.yx;
- if (N.z > 0.0) {
- uv.x = 1.0 - uv.x;
- }
- pix = ivec2(uv.xy * textureSize(ima, 0).xy);
- color3 = texelFetch(ima, pix, 0);
-}
-
-void tex_box_sample_cubic(vec3 texco,
- vec3 N,
- sampler2D ima,
- out vec4 color1,
- out vec4 color2,
- out vec4 color3)
-{
- float alpha;
- /* X projection */
- vec2 uv = texco.yz;
- if (N.x < 0.0) {
- uv.x = 1.0 - uv.x;
- }
- node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color1, alpha);
- /* Y projection */
- uv = texco.xz;
- if (N.y > 0.0) {
- uv.x = 1.0 - uv.x;
- }
- node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color2, alpha);
- /* Z projection */
- uv = texco.yx;
- if (N.z > 0.0) {
- uv.x = 1.0 - uv.x;
- }
- node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color3, alpha);
-}
-
-void tex_box_sample_smart(vec3 texco,
- vec3 N,
- sampler2D ima,
- out vec4 color1,
- out vec4 color2,
- out vec4 color3)
-{
- tex_box_sample_cubic(texco, N, ima, color1, color2, color3);
+ /* use cubic for now */
+ node_tex_image_cubic_ex(co, ima, 0.0, color, alpha);
+}
+
+void tex_box_sample_linear(
+ vec3 texco, vec3 N, sampler2D ima, out vec4 color1, out vec4 color2, out vec4 color3)
+{
+ /* X projection */
+ vec2 uv = texco.yz;
+ if (N.x < 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ color1 = texture(ima, uv);
+ /* Y projection */
+ uv = texco.xz;
+ if (N.y > 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ color2 = texture(ima, uv);
+ /* Z projection */
+ uv = texco.yx;
+ if (N.z > 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ color3 = texture(ima, uv);
+}
+
+void tex_box_sample_nearest(
+ vec3 texco, vec3 N, sampler2D ima, out vec4 color1, out vec4 color2, out vec4 color3)
+{
+ /* X projection */
+ vec2 uv = texco.yz;
+ if (N.x < 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ ivec2 pix = ivec2(uv.xy * textureSize(ima, 0).xy);
+ color1 = texelFetch(ima, pix, 0);
+ /* Y projection */
+ uv = texco.xz;
+ if (N.y > 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ pix = ivec2(uv.xy * textureSize(ima, 0).xy);
+ color2 = texelFetch(ima, pix, 0);
+ /* Z projection */
+ uv = texco.yx;
+ if (N.z > 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ pix = ivec2(uv.xy * textureSize(ima, 0).xy);
+ color3 = texelFetch(ima, pix, 0);
+}
+
+void tex_box_sample_cubic(
+ vec3 texco, vec3 N, sampler2D ima, out vec4 color1, out vec4 color2, out vec4 color3)
+{
+ float alpha;
+ /* X projection */
+ vec2 uv = texco.yz;
+ if (N.x < 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color1, alpha);
+ /* Y projection */
+ uv = texco.xz;
+ if (N.y > 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color2, alpha);
+ /* Z projection */
+ uv = texco.yx;
+ if (N.z > 0.0) {
+ uv.x = 1.0 - uv.x;
+ }
+ node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color3, alpha);
+}
+
+void tex_box_sample_smart(
+ vec3 texco, vec3 N, sampler2D ima, out vec4 color1, out vec4 color2, out vec4 color3)
+{
+ tex_box_sample_cubic(texco, N, ima, color1, color2, color3);
}
void node_tex_image_box(vec3 texco,
@@ -2292,298 +2537,303 @@ void node_tex_image_box(vec3 texco,
out vec4 color,
out float alpha)
{
- /* project from direction vector to barycentric coordinates in triangles */
- N = abs(N);
- N /= dot(N, vec3(1.0));
-
- /* basic idea is to think of this as a triangle, each corner representing
- * one of the 3 faces of the cube. in the corners we have single textures,
- * in between we blend between two textures, and in the middle we a blend
- * between three textures.
- *
- * the Nxyz values are the barycentric coordinates in an equilateral
- * triangle, which in case of blending, in the middle has a smaller
- * equilateral triangle where 3 textures blend. this divides things into
- * 7 zones, with an if () test for each zone
- * EDIT: Now there is only 4 if's. */
-
- float limit = 0.5 + 0.5 * blend;
-
- vec3 weight;
- weight = N.xyz / (N.xyx + N.yzz);
- weight = clamp((weight - 0.5 * (1.0 - blend)) / max(1e-8, blend), 0.0, 1.0);
-
- /* test for mixes between two textures */
- if (N.z < (1.0 - limit) * (N.y + N.x)) {
- weight.z = 0.0;
- weight.y = 1.0 - weight.x;
- }
- else if (N.x < (1.0 - limit) * (N.y + N.z)) {
- weight.x = 0.0;
- weight.z = 1.0 - weight.y;
- }
- else if (N.y < (1.0 - limit) * (N.x + N.z)) {
- weight.y = 0.0;
- weight.x = 1.0 - weight.z;
- }
- else {
- /* last case, we have a mix between three */
- weight = ((2.0 - limit) * N + (limit - 1.0)) / max(1e-8, blend);
- }
-
- color = weight.x * color1 + weight.y * color2 + weight.z * color3;
- alpha = color.a;
+ /* project from direction vector to barycentric coordinates in triangles */
+ N = abs(N);
+ N /= dot(N, vec3(1.0));
+
+ /* basic idea is to think of this as a triangle, each corner representing
+ * one of the 3 faces of the cube. in the corners we have single textures,
+ * in between we blend between two textures, and in the middle we a blend
+ * between three textures.
+ *
+ * the Nxyz values are the barycentric coordinates in an equilateral
+ * triangle, which in case of blending, in the middle has a smaller
+ * equilateral triangle where 3 textures blend. this divides things into
+ * 7 zones, with an if () test for each zone
+ * EDIT: Now there is only 4 if's. */
+
+ float limit = 0.5 + 0.5 * blend;
+
+ vec3 weight;
+ weight = N.xyz / (N.xyx + N.yzz);
+ weight = clamp((weight - 0.5 * (1.0 - blend)) / max(1e-8, blend), 0.0, 1.0);
+
+ /* test for mixes between two textures */
+ if (N.z < (1.0 - limit) * (N.y + N.x)) {
+ weight.z = 0.0;
+ weight.y = 1.0 - weight.x;
+ }
+ else if (N.x < (1.0 - limit) * (N.y + N.z)) {
+ weight.x = 0.0;
+ weight.z = 1.0 - weight.y;
+ }
+ else if (N.y < (1.0 - limit) * (N.x + N.z)) {
+ weight.y = 0.0;
+ weight.x = 1.0 - weight.z;
+ }
+ else {
+ /* last case, we have a mix between three */
+ weight = ((2.0 - limit) * N + (limit - 1.0)) / max(1e-8, blend);
+ }
+
+ color = weight.x * color1 + weight.y * color2 + weight.z * color3;
+ alpha = color.a;
}
void tex_clip_linear(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
{
- vec2 tex_size = vec2(textureSize(ima, 0).xy);
- vec2 minco = min(co.xy, 1.0 - co.xy);
- minco = clamp(minco * tex_size + 0.5, 0.0, 1.0);
- float fac = minco.x * minco.y;
+ vec2 tex_size = vec2(textureSize(ima, 0).xy);
+ vec2 minco = min(co.xy, 1.0 - co.xy);
+ minco = clamp(minco * tex_size + 0.5, 0.0, 1.0);
+ float fac = minco.x * minco.y;
- color = mix(vec4(0.0), icolor, fac);
- alpha = color.a;
+ color = mix(vec4(0.0), icolor, fac);
+ alpha = color.a;
}
void tex_clip_nearest(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
{
- vec4 minco = vec4(co.xy, 1.0 - co.xy);
- color = (any(lessThan(minco, vec4(0.0)))) ? vec4(0.0) : icolor;
- alpha = color.a;
+ vec4 minco = vec4(co.xy, 1.0 - co.xy);
+ color = (any(lessThan(minco, vec4(0.0)))) ? vec4(0.0) : icolor;
+ alpha = color.a;
}
void tex_clip_cubic(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
{
- vec2 tex_size = vec2(textureSize(ima, 0).xy);
-
- co.xy *= tex_size;
- /* texel center */
- vec2 tc = floor(co.xy - 0.5) + 0.5;
- vec2 w0, w1, w2, w3;
- cubic_bspline_coefs(co.xy - tc, w0, w1, w2, w3);
-
- /* TODO Optimize this part. I'm sure there is a smarter way to do that.
- * Could do that when sampling? */
-#define CLIP_CUBIC_SAMPLE(samp, size) (float(all(greaterThan(samp, vec2(-0.5)))) * float(all(lessThan(ivec2(samp), itex_size))))
- ivec2 itex_size = textureSize(ima, 0).xy;
- float fac;
- fac = CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, -1.0), itex_size) * w0.x * w0.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, -1.0), itex_size) * w1.x * w0.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, -1.0), itex_size) * w2.x * w0.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, -1.0), itex_size) * w3.x * w0.y;
-
- fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 0.0), itex_size) * w0.x * w1.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, 0.0), itex_size) * w1.x * w1.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, 0.0), itex_size) * w2.x * w1.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, 0.0), itex_size) * w3.x * w1.y;
-
- fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 1.0), itex_size) * w0.x * w2.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, 1.0), itex_size) * w1.x * w2.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, 1.0), itex_size) * w2.x * w2.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, 1.0), itex_size) * w3.x * w2.y;
-
- fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 2.0), itex_size) * w0.x * w3.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, 2.0), itex_size) * w1.x * w3.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, 2.0), itex_size) * w2.x * w3.y;
- fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, 2.0), itex_size) * w3.x * w3.y;
+ vec2 tex_size = vec2(textureSize(ima, 0).xy);
+
+ co.xy *= tex_size;
+ /* texel center */
+ vec2 tc = floor(co.xy - 0.5) + 0.5;
+ vec2 w0, w1, w2, w3;
+ cubic_bspline_coefs(co.xy - tc, w0, w1, w2, w3);
+
+ /* TODO Optimize this part. I'm sure there is a smarter way to do that.
+ * Could do that when sampling? */
+#define CLIP_CUBIC_SAMPLE(samp, size) \
+ (float(all(greaterThan(samp, vec2(-0.5)))) * float(all(lessThan(ivec2(samp), itex_size))))
+ ivec2 itex_size = textureSize(ima, 0).xy;
+ float fac;
+ fac = CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, -1.0), itex_size) * w0.x * w0.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(0.0, -1.0), itex_size) * w1.x * w0.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(1.0, -1.0), itex_size) * w2.x * w0.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(2.0, -1.0), itex_size) * w3.x * w0.y;
+
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 0.0), itex_size) * w0.x * w1.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(0.0, 0.0), itex_size) * w1.x * w1.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(1.0, 0.0), itex_size) * w2.x * w1.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(2.0, 0.0), itex_size) * w3.x * w1.y;
+
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 1.0), itex_size) * w0.x * w2.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(0.0, 1.0), itex_size) * w1.x * w2.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(1.0, 1.0), itex_size) * w2.x * w2.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(2.0, 1.0), itex_size) * w3.x * w2.y;
+
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 2.0), itex_size) * w0.x * w3.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(0.0, 2.0), itex_size) * w1.x * w3.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(1.0, 2.0), itex_size) * w2.x * w3.y;
+ fac += CLIP_CUBIC_SAMPLE(tc + vec2(2.0, 2.0), itex_size) * w3.x * w3.y;
#undef CLIP_CUBIC_SAMPLE
- color = mix(vec4(0.0), icolor, fac);
- alpha = color.a;
+ color = mix(vec4(0.0), icolor, fac);
+ alpha = color.a;
}
void tex_clip_smart(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
{
- tex_clip_cubic(co, ima, icolor, color, alpha);
+ tex_clip_cubic(co, ima, icolor, color, alpha);
}
void node_tex_image_empty(vec3 co, out vec4 color, out float alpha)
{
- color = vec4(0.0);
- alpha = 0.0;
-}
-
-void node_tex_magic(vec3 co, float scale, float distortion, float depth, out vec4 color, out float fac)
-{
- vec3 p = co * scale;
- float x = sin((p.x + p.y + p.z) * 5.0);
- float y = cos((-p.x + p.y - p.z) * 5.0);
- float z = -cos((-p.x - p.y + p.z) * 5.0);
-
- if (depth > 0) {
- x *= distortion;
- y *= distortion;
- z *= distortion;
- y = -cos(x - y + z);
- y *= distortion;
- if (depth > 1) {
- x = cos(x - y - z);
- x *= distortion;
- if (depth > 2) {
- z = sin(-x - y - z);
- z *= distortion;
- if (depth > 3) {
- x = -cos(-x + y - z);
- x *= distortion;
- if (depth > 4) {
- y = -sin(-x + y + z);
- y *= distortion;
- if (depth > 5) {
- y = -cos(-x + y + z);
- y *= distortion;
- if (depth > 6) {
- x = cos(x + y + z);
- x *= distortion;
- if (depth > 7) {
- z = sin(x + y - z);
- z *= distortion;
- if (depth > 8) {
- x = -cos(-x - y + z);
- x *= distortion;
- if (depth > 9) {
- y = -sin(x - y + z);
- y *= distortion;
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- if (distortion != 0.0) {
- distortion *= 2.0;
- x /= distortion;
- y /= distortion;
- z /= distortion;
- }
-
- color = vec4(0.5 - x, 0.5 - y, 0.5 - z, 1.0);
- fac = (color.x + color.y + color.z) / 3.0;
+ color = vec4(0.0);
+ alpha = 0.0;
+}
+
+void node_tex_magic(
+ vec3 co, float scale, float distortion, float depth, out vec4 color, out float fac)
+{
+ vec3 p = co * scale;
+ float x = sin((p.x + p.y + p.z) * 5.0);
+ float y = cos((-p.x + p.y - p.z) * 5.0);
+ float z = -cos((-p.x - p.y + p.z) * 5.0);
+
+ if (depth > 0) {
+ x *= distortion;
+ y *= distortion;
+ z *= distortion;
+ y = -cos(x - y + z);
+ y *= distortion;
+ if (depth > 1) {
+ x = cos(x - y - z);
+ x *= distortion;
+ if (depth > 2) {
+ z = sin(-x - y - z);
+ z *= distortion;
+ if (depth > 3) {
+ x = -cos(-x + y - z);
+ x *= distortion;
+ if (depth > 4) {
+ y = -sin(-x + y + z);
+ y *= distortion;
+ if (depth > 5) {
+ y = -cos(-x + y + z);
+ y *= distortion;
+ if (depth > 6) {
+ x = cos(x + y + z);
+ x *= distortion;
+ if (depth > 7) {
+ z = sin(x + y - z);
+ z *= distortion;
+ if (depth > 8) {
+ x = -cos(-x - y + z);
+ x *= distortion;
+ if (depth > 9) {
+ y = -sin(x - y + z);
+ y *= distortion;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ if (distortion != 0.0) {
+ distortion *= 2.0;
+ x /= distortion;
+ y /= distortion;
+ z /= distortion;
+ }
+
+ color = vec4(0.5 - x, 0.5 - y, 0.5 - z, 1.0);
+ fac = (color.x + color.y + color.z) / 3.0;
}
float noise_fade(float t)
{
- return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
+ return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
}
float noise_scale3(float result)
{
- return 0.9820 * result;
+ return 0.9820 * result;
}
float noise_nerp(float t, float a, float b)
{
- return (1.0 - t) * a + t * b;
+ return (1.0 - t) * a + t * b;
}
float noise_grad(uint hash, float x, float y, float z)
{
- uint h = hash & 15u;
- float u = h < 8u ? x : y;
- float vt = ((h == 12u) || (h == 14u)) ? x : z;
- float v = h < 4u ? y : vt;
- return (((h & 1u) != 0u) ? -u : u) + (((h & 2u) != 0u) ? -v : v);
+ uint h = hash & 15u;
+ float u = h < 8u ? x : y;
+ float vt = ((h == 12u) || (h == 14u)) ? x : z;
+ float v = h < 4u ? y : vt;
+ return (((h & 1u) != 0u) ? -u : u) + (((h & 2u) != 0u) ? -v : v);
}
float noise_perlin(float x, float y, float z)
{
- int X; float fx = floorfrac(x, X);
- int Y; float fy = floorfrac(y, Y);
- int Z; float fz = floorfrac(z, Z);
+ int X;
+ float fx = floorfrac(x, X);
+ int Y;
+ float fy = floorfrac(y, Y);
+ int Z;
+ float fz = floorfrac(z, Z);
- float u = noise_fade(fx);
- float v = noise_fade(fy);
- float w = noise_fade(fz);
+ float u = noise_fade(fx);
+ float v = noise_fade(fy);
+ float w = noise_fade(fz);
- float noise_u[2], noise_v[2];
+ float noise_u[2], noise_v[2];
- noise_u[0] = noise_nerp(u,
- noise_grad(hash(X, Y, Z), fx, fy, fz),
- noise_grad(hash(X + 1, Y, Z), fx - 1.0, fy, fz));
+ noise_u[0] = noise_nerp(
+ u, noise_grad(hash(X, Y, Z), fx, fy, fz), noise_grad(hash(X + 1, Y, Z), fx - 1.0, fy, fz));
- noise_u[1] = noise_nerp(u,
- noise_grad(hash(X, Y + 1, Z), fx, fy - 1.0, fz),
- noise_grad(hash(X + 1, Y + 1, Z), fx - 1.0, fy - 1.0, fz));
+ noise_u[1] = noise_nerp(u,
+ noise_grad(hash(X, Y + 1, Z), fx, fy - 1.0, fz),
+ noise_grad(hash(X + 1, Y + 1, Z), fx - 1.0, fy - 1.0, fz));
- noise_v[0] = noise_nerp(v, noise_u[0], noise_u[1]);
+ noise_v[0] = noise_nerp(v, noise_u[0], noise_u[1]);
- noise_u[0] = noise_nerp(u,
- noise_grad(hash(X, Y, Z + 1), fx, fy, fz - 1.0),
- noise_grad(hash(X + 1, Y, Z + 1), fx - 1.0, fy, fz - 1.0));
+ noise_u[0] = noise_nerp(u,
+ noise_grad(hash(X, Y, Z + 1), fx, fy, fz - 1.0),
+ noise_grad(hash(X + 1, Y, Z + 1), fx - 1.0, fy, fz - 1.0));
- noise_u[1] = noise_nerp(u,
- noise_grad(hash(X, Y + 1, Z + 1), fx, fy - 1.0, fz - 1.0),
- noise_grad(hash(X + 1, Y + 1, Z + 1), fx - 1.0, fy - 1.0, fz - 1.0));
+ noise_u[1] = noise_nerp(u,
+ noise_grad(hash(X, Y + 1, Z + 1), fx, fy - 1.0, fz - 1.0),
+ noise_grad(hash(X + 1, Y + 1, Z + 1), fx - 1.0, fy - 1.0, fz - 1.0));
- noise_v[1] = noise_nerp(v, noise_u[0], noise_u[1]);
+ noise_v[1] = noise_nerp(v, noise_u[0], noise_u[1]);
- return noise_scale3(noise_nerp(w, noise_v[0], noise_v[1]));
+ return noise_scale3(noise_nerp(w, noise_v[0], noise_v[1]));
}
float noise(vec3 p)
{
- return 0.5 * noise_perlin(p.x, p.y, p.z) + 0.5;
+ return 0.5 * noise_perlin(p.x, p.y, p.z) + 0.5;
}
float snoise(vec3 p)
{
- return noise_perlin(p.x, p.y, p.z);
+ return noise_perlin(p.x, p.y, p.z);
}
float noise_turbulence(vec3 p, float octaves, int hard)
{
- float fscale = 1.0;
- float amp = 1.0;
- float sum = 0.0;
- octaves = clamp(octaves, 0.0, 16.0);
- int n = int(octaves);
- for (int i = 0; i <= n; i++) {
- float t = noise(fscale * p);
- if (hard != 0) {
- t = abs(2.0 * t - 1.0);
- }
- sum += t * amp;
- amp *= 0.5;
- fscale *= 2.0;
- }
- float rmd = octaves - floor(octaves);
- if (rmd != 0.0) {
- float t = noise(fscale * p);
- if (hard != 0) {
- t = abs(2.0 * t - 1.0);
- }
- float sum2 = sum + t * amp;
- sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
- sum2 *= (float(1 << (n + 1)) / float((1 << (n + 2)) - 1));
- return (1.0 - rmd) * sum + rmd * sum2;
- }
- else {
- sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
- return sum;
- }
-}
-
-void node_tex_noise(vec3 co, float scale, float detail, float distortion, out vec4 color, out float fac)
-{
- vec3 p = co * scale;
- int hard = 0;
- if (distortion != 0.0) {
- vec3 r, offset = vec3(13.5, 13.5, 13.5);
- r.x = noise(p + offset) * distortion;
- r.y = noise(p) * distortion;
- r.z = noise(p - offset) * distortion;
- p += r;
- }
-
- fac = noise_turbulence(p, detail, hard);
- color = vec4(fac,
- noise_turbulence(vec3(p.y, p.x, p.z), detail, hard),
- noise_turbulence(vec3(p.y, p.z, p.x), detail, hard),
- 1);
+ float fscale = 1.0;
+ float amp = 1.0;
+ float sum = 0.0;
+ octaves = clamp(octaves, 0.0, 16.0);
+ int n = int(octaves);
+ for (int i = 0; i <= n; i++) {
+ float t = noise(fscale * p);
+ if (hard != 0) {
+ t = abs(2.0 * t - 1.0);
+ }
+ sum += t * amp;
+ amp *= 0.5;
+ fscale *= 2.0;
+ }
+ float rmd = octaves - floor(octaves);
+ if (rmd != 0.0) {
+ float t = noise(fscale * p);
+ if (hard != 0) {
+ t = abs(2.0 * t - 1.0);
+ }
+ float sum2 = sum + t * amp;
+ sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
+ sum2 *= (float(1 << (n + 1)) / float((1 << (n + 2)) - 1));
+ return (1.0 - rmd) * sum + rmd * sum2;
+ }
+ else {
+ sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
+ return sum;
+ }
+}
+
+void node_tex_noise(
+ vec3 co, float scale, float detail, float distortion, out vec4 color, out float fac)
+{
+ vec3 p = co * scale;
+ int hard = 0;
+ if (distortion != 0.0) {
+ vec3 r, offset = vec3(13.5, 13.5, 13.5);
+ r.x = noise(p + offset) * distortion;
+ r.y = noise(p) * distortion;
+ r.z = noise(p - offset) * distortion;
+ p += r;
+ }
+
+ fac = noise_turbulence(p, detail, hard);
+ color = vec4(fac,
+ noise_turbulence(vec3(p.y, p.x, p.z), detail, hard),
+ noise_turbulence(vec3(p.y, p.z, p.x), detail, hard),
+ 1);
}
/* Musgrave fBm
@@ -2597,22 +2847,22 @@ void node_tex_noise(vec3 co, float scale, float detail, float distortion, out ve
float noise_musgrave_fBm(vec3 p, float H, float lacunarity, float octaves)
{
- float rmd;
- float value = 0.0;
- float pwr = 1.0;
- float pwHL = pow(lacunarity, -H);
+ float rmd;
+ float value = 0.0;
+ float pwr = 1.0;
+ float pwHL = pow(lacunarity, -H);
- for (int i = 0; i < int(octaves); i++) {
- value += snoise(p) * pwr;
- pwr *= pwHL;
- p *= lacunarity;
- }
+ for (int i = 0; i < int(octaves); i++) {
+ value += snoise(p) * pwr;
+ pwr *= pwHL;
+ p *= lacunarity;
+ }
- rmd = octaves - floor(octaves);
- if (rmd != 0.0)
- value += rmd * snoise(p) * pwr;
+ rmd = octaves - floor(octaves);
+ if (rmd != 0.0)
+ value += rmd * snoise(p) * pwr;
- return value;
+ return value;
}
/* Musgrave Multifractal
@@ -2624,22 +2874,22 @@ float noise_musgrave_fBm(vec3 p, float H, float lacunarity, float octaves)
float noise_musgrave_multi_fractal(vec3 p, float H, float lacunarity, float octaves)
{
- float rmd;
- float value = 1.0;
- float pwr = 1.0;
- float pwHL = pow(lacunarity, -H);
+ float rmd;
+ float value = 1.0;
+ float pwr = 1.0;
+ float pwHL = pow(lacunarity, -H);
- for (int i = 0; i < int(octaves); i++) {
- value *= (pwr * snoise(p) + 1.0);
- pwr *= pwHL;
- p *= lacunarity;
- }
+ for (int i = 0; i < int(octaves); i++) {
+ value *= (pwr * snoise(p) + 1.0);
+ pwr *= pwHL;
+ p *= lacunarity;
+ }
- rmd = octaves - floor(octaves);
- if (rmd != 0.0)
- value *= (rmd * pwr * snoise(p) + 1.0); /* correct? */
+ rmd = octaves - floor(octaves);
+ if (rmd != 0.0)
+ value *= (rmd * pwr * snoise(p) + 1.0); /* correct? */
- return value;
+ return value;
}
/* Musgrave Heterogeneous Terrain
@@ -2652,28 +2902,28 @@ float noise_musgrave_multi_fractal(vec3 p, float H, float lacunarity, float octa
float noise_musgrave_hetero_terrain(vec3 p, float H, float lacunarity, float octaves, float offset)
{
- float value, increment, rmd;
- float pwHL = pow(lacunarity, -H);
- float pwr = pwHL;
+ float value, increment, rmd;
+ float pwHL = pow(lacunarity, -H);
+ float pwr = pwHL;
- /* first unscaled octave of function; later octaves are scaled */
- value = offset + snoise(p);
- p *= lacunarity;
+ /* first unscaled octave of function; later octaves are scaled */
+ value = offset + snoise(p);
+ p *= lacunarity;
- for (int i = 1; i < int(octaves); i++) {
- increment = (snoise(p) + offset) * pwr * value;
- value += increment;
- pwr *= pwHL;
- p *= lacunarity;
- }
+ for (int i = 1; i < int(octaves); i++) {
+ increment = (snoise(p) + offset) * pwr * value;
+ value += increment;
+ pwr *= pwHL;
+ p *= lacunarity;
+ }
- rmd = octaves - floor(octaves);
- if (rmd != 0.0) {
- increment = (snoise(p) + offset) * pwr * value;
- value += rmd * increment;
- }
+ rmd = octaves - floor(octaves);
+ if (rmd != 0.0) {
+ increment = (snoise(p) + offset) * pwr * value;
+ value += rmd * increment;
+ }
- return value;
+ return value;
}
/* Hybrid Additive/Multiplicative Multifractal Terrain
@@ -2684,32 +2934,33 @@ float noise_musgrave_hetero_terrain(vec3 p, float H, float lacunarity, float oct
* offset: raises the terrain from `sea level'
*/
-float noise_musgrave_hybrid_multi_fractal(vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
+float noise_musgrave_hybrid_multi_fractal(
+ vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
{
- float result, signal, weight, rmd;
- float pwHL = pow(lacunarity, -H);
- float pwr = pwHL;
+ float result, signal, weight, rmd;
+ float pwHL = pow(lacunarity, -H);
+ float pwr = pwHL;
- result = snoise(p) + offset;
- weight = gain * result;
- p *= lacunarity;
+ result = snoise(p) + offset;
+ weight = gain * result;
+ p *= lacunarity;
- for (int i = 1; (weight > 0.001f) && (i < int(octaves)); i++) {
- if (weight > 1.0)
- weight = 1.0;
+ for (int i = 1; (weight > 0.001f) && (i < int(octaves)); i++) {
+ if (weight > 1.0)
+ weight = 1.0;
- signal = (snoise(p) + offset) * pwr;
- pwr *= pwHL;
- result += weight * signal;
- weight *= gain * signal;
- p *= lacunarity;
- }
+ signal = (snoise(p) + offset) * pwr;
+ pwr *= pwHL;
+ result += weight * signal;
+ weight *= gain * signal;
+ p *= lacunarity;
+ }
- rmd = octaves - floor(octaves);
- if (rmd != 0.0)
- result += rmd * ((snoise(p) + offset) * pwr);
+ rmd = octaves - floor(octaves);
+ if (rmd != 0.0)
+ result += rmd * ((snoise(p) + offset) * pwr);
- return result;
+ return result;
}
/* Ridged Multifractal Terrain
@@ -2720,28 +2971,29 @@ float noise_musgrave_hybrid_multi_fractal(vec3 p, float H, float lacunarity, flo
* offset: raises the terrain from `sea level'
*/
-float noise_musgrave_ridged_multi_fractal(vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
+float noise_musgrave_ridged_multi_fractal(
+ vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
{
- float result, signal, weight;
- float pwHL = pow(lacunarity, -H);
- float pwr = pwHL;
+ float result, signal, weight;
+ float pwHL = pow(lacunarity, -H);
+ float pwr = pwHL;
- signal = offset - abs(snoise(p));
- signal *= signal;
- result = signal;
- weight = 1.0;
+ signal = offset - abs(snoise(p));
+ signal *= signal;
+ result = signal;
+ weight = 1.0;
- for (int i = 1; i < int(octaves); i++) {
- p *= lacunarity;
- weight = clamp(signal * gain, 0.0, 1.0);
- signal = offset - abs(snoise(p));
- signal *= signal;
- signal *= weight;
- result += signal * pwr;
- pwr *= pwHL;
- }
+ for (int i = 1; i < int(octaves); i++) {
+ p *= lacunarity;
+ weight = clamp(signal * gain, 0.0, 1.0);
+ signal = offset - abs(snoise(p));
+ signal *= signal;
+ signal *= weight;
+ result += signal * pwr;
+ pwr *= pwHL;
+ }
- return result;
+ return result;
}
float svm_musgrave(int type,
@@ -2753,17 +3005,19 @@ float svm_musgrave(int type,
float gain,
vec3 p)
{
- if (type == 0 /* NODE_MUSGRAVE_MULTIFRACTAL */)
- return intensity * noise_musgrave_multi_fractal(p, dimension, lacunarity, octaves);
- else if (type == 1 /* NODE_MUSGRAVE_FBM */)
- return intensity * noise_musgrave_fBm(p, dimension, lacunarity, octaves);
- else if (type == 2 /* NODE_MUSGRAVE_HYBRID_MULTIFRACTAL */)
- return intensity * noise_musgrave_hybrid_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
- else if (type == 3 /* NODE_MUSGRAVE_RIDGED_MULTIFRACTAL */)
- return intensity * noise_musgrave_ridged_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
- else if (type == 4 /* NODE_MUSGRAVE_HETERO_TERRAIN */)
- return intensity * noise_musgrave_hetero_terrain(p, dimension, lacunarity, octaves, offset);
- return 0.0;
+ if (type == 0 /* NODE_MUSGRAVE_MULTIFRACTAL */)
+ return intensity * noise_musgrave_multi_fractal(p, dimension, lacunarity, octaves);
+ else if (type == 1 /* NODE_MUSGRAVE_FBM */)
+ return intensity * noise_musgrave_fBm(p, dimension, lacunarity, octaves);
+ else if (type == 2 /* NODE_MUSGRAVE_HYBRID_MULTIFRACTAL */)
+ return intensity *
+ noise_musgrave_hybrid_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
+ else if (type == 3 /* NODE_MUSGRAVE_RIDGED_MULTIFRACTAL */)
+ return intensity *
+ noise_musgrave_ridged_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
+ else if (type == 4 /* NODE_MUSGRAVE_HETERO_TERRAIN */)
+ return intensity * noise_musgrave_hetero_terrain(p, dimension, lacunarity, octaves, offset);
+ return 0.0;
}
void node_tex_musgrave(vec3 co,
@@ -2777,308 +3031,337 @@ void node_tex_musgrave(vec3 co,
out vec4 color,
out float fac)
{
- fac = svm_musgrave(int(type),
- dimension,
- lacunarity,
- detail,
- offset,
- 1.0,
- gain,
- co * scale);
+ fac = svm_musgrave(int(type), dimension, lacunarity, detail, offset, 1.0, gain, co *scale);
- color = vec4(fac, fac, fac, 1.0);
+ color = vec4(fac, fac, fac, 1.0);
}
void node_tex_sky(vec3 co, out vec4 color)
{
- color = vec4(1.0);
-}
-
-void node_tex_voronoi(vec3 co, float scale, float exponent, float coloring, float metric, float feature, out vec4 color, out float fac)
-{
- vec3 p = co * scale;
- int xx, yy, zz, xi, yi, zi;
- vec4 da = vec4(1e10);
- vec3 pa[4] = vec3[4](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
-
- xi = floor_to_int(p[0]);
- yi = floor_to_int(p[1]);
- zi = floor_to_int(p[2]);
-
- for (xx = xi - 1; xx <= xi + 1; xx++) {
- for (yy = yi - 1; yy <= yi + 1; yy++) {
- for (zz = zi - 1; zz <= zi + 1; zz++) {
- vec3 ip = vec3(xx, yy, zz);
- vec3 vp = cellnoise_color(ip);
- vec3 pd = p - (vp + ip);
-
- float d = 0.0;
- if (metric == 0.0) { /* SHD_VORONOI_DISTANCE 0 */
- d = dot(pd, pd);
- }
- else if (metric == 1.0) { /* SHD_VORONOI_MANHATTAN 1 */
- d = abs(pd[0]) + abs(pd[1]) + abs(pd[2]);
- }
- else if (metric == 2.0) { /* SHD_VORONOI_CHEBYCHEV 2 */
- d = max(abs(pd[0]), max(abs(pd[1]), abs(pd[2])));
- }
- else if (metric == 3.0) { /* SHD_VORONOI_MINKOWSKI 3 */
- d = pow(pow(abs(pd[0]), exponent) + pow(abs(pd[1]), exponent) + pow(abs(pd[2]), exponent), 1.0/exponent);
- }
-
- vp += vec3(xx, yy, zz);
- if (d < da[0]) {
- da.yzw = da.xyz;
- da[0] = d;
-
- pa[3] = pa[2];
- pa[2] = pa[1];
- pa[1] = pa[0];
- pa[0] = vp;
- }
- else if (d < da[1]) {
- da.zw = da.yz;
- da[1] = d;
-
- pa[3] = pa[2];
- pa[2] = pa[1];
- pa[1] = vp;
- }
- else if (d < da[2]) {
- da[3] = da[2];
- da[2] = d;
-
- pa[3] = pa[2];
- pa[2] = vp;
- }
- else if (d < da[3]) {
- da[3] = d;
- pa[3] = vp;
- }
- }
- }
- }
-
- if (coloring == 0.0) {
- /* Intensity output */
- if (feature == 0.0) { /* F1 */
- fac = abs(da[0]);
- }
- else if (feature == 1.0) { /* F2 */
- fac = abs(da[1]);
- }
- else if (feature == 2.0) { /* F3 */
- fac = abs(da[2]);
- }
- else if (feature == 3.0) { /* F4 */
- fac = abs(da[3]);
- }
- else if (feature == 4.0) { /* F2F1 */
- fac = abs(da[1] - da[0]);
- }
- color = vec4(fac, fac, fac, 1.0);
- }
- else {
- /* Color output */
- vec3 col = vec3(fac, fac, fac);
- if (feature == 0.0) { /* F1 */
- col = pa[0];
- }
- else if (feature == 1.0) { /* F2 */
- col = pa[1];
- }
- else if (feature == 2.0) { /* F3 */
- col = pa[2];
- }
- else if (feature == 3.0) { /* F4 */
- col = pa[3];
- }
- else if (feature == 4.0) { /* F2F1 */
- col = abs(pa[1] - pa[0]);
- }
-
- color = vec4(cellnoise_color(col), 1.0);
- fac = (color.x + color.y + color.z) * (1.0 / 3.0);
- }
-}
-
-float calc_wave(vec3 p, float distortion, float detail, float detail_scale, int wave_type, int wave_profile)
-{
- float n;
-
- if (wave_type == 0) /* type bands */
- n = (p.x + p.y + p.z) * 10.0;
- else /* type rings */
- n = length(p) * 20.0;
-
- if (distortion != 0.0)
- n += distortion * noise_turbulence(p * detail_scale, detail, 0);
-
- if (wave_profile == 0) { /* profile sin */
- return 0.5 + 0.5 * sin(n);
- }
- else { /* profile saw */
- n /= 2.0 * M_PI;
- n -= int(n);
- return (n < 0.0) ? n + 1.0 : n;
- }
-}
-
-void node_tex_wave(
- vec3 co, float scale, float distortion, float detail, float detail_scale, float wave_type, float wave_profile,
- out vec4 color, out float fac)
-{
- float f;
- f = calc_wave(co * scale, distortion, detail, detail_scale, int(wave_type), int(wave_profile));
-
- color = vec4(f, f, f, 1.0);
- fac = f;
+ color = vec4(1.0);
+}
+
+void node_tex_voronoi(vec3 co,
+ float scale,
+ float exponent,
+ float coloring,
+ float metric,
+ float feature,
+ out vec4 color,
+ out float fac)
+{
+ vec3 p = co * scale;
+ int xx, yy, zz, xi, yi, zi;
+ vec4 da = vec4(1e10);
+ vec3 pa[4] = vec3[4](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
+
+ xi = floor_to_int(p[0]);
+ yi = floor_to_int(p[1]);
+ zi = floor_to_int(p[2]);
+
+ for (xx = xi - 1; xx <= xi + 1; xx++) {
+ for (yy = yi - 1; yy <= yi + 1; yy++) {
+ for (zz = zi - 1; zz <= zi + 1; zz++) {
+ vec3 ip = vec3(xx, yy, zz);
+ vec3 vp = cellnoise_color(ip);
+ vec3 pd = p - (vp + ip);
+
+ float d = 0.0;
+ if (metric == 0.0) { /* SHD_VORONOI_DISTANCE 0 */
+ d = dot(pd, pd);
+ }
+ else if (metric == 1.0) { /* SHD_VORONOI_MANHATTAN 1 */
+ d = abs(pd[0]) + abs(pd[1]) + abs(pd[2]);
+ }
+ else if (metric == 2.0) { /* SHD_VORONOI_CHEBYCHEV 2 */
+ d = max(abs(pd[0]), max(abs(pd[1]), abs(pd[2])));
+ }
+ else if (metric == 3.0) { /* SHD_VORONOI_MINKOWSKI 3 */
+ d = pow(pow(abs(pd[0]), exponent) + pow(abs(pd[1]), exponent) +
+ pow(abs(pd[2]), exponent),
+ 1.0 / exponent);
+ }
+
+ vp += vec3(xx, yy, zz);
+ if (d < da[0]) {
+ da.yzw = da.xyz;
+ da[0] = d;
+
+ pa[3] = pa[2];
+ pa[2] = pa[1];
+ pa[1] = pa[0];
+ pa[0] = vp;
+ }
+ else if (d < da[1]) {
+ da.zw = da.yz;
+ da[1] = d;
+
+ pa[3] = pa[2];
+ pa[2] = pa[1];
+ pa[1] = vp;
+ }
+ else if (d < da[2]) {
+ da[3] = da[2];
+ da[2] = d;
+
+ pa[3] = pa[2];
+ pa[2] = vp;
+ }
+ else if (d < da[3]) {
+ da[3] = d;
+ pa[3] = vp;
+ }
+ }
+ }
+ }
+
+ if (coloring == 0.0) {
+ /* Intensity output */
+ if (feature == 0.0) { /* F1 */
+ fac = abs(da[0]);
+ }
+ else if (feature == 1.0) { /* F2 */
+ fac = abs(da[1]);
+ }
+ else if (feature == 2.0) { /* F3 */
+ fac = abs(da[2]);
+ }
+ else if (feature == 3.0) { /* F4 */
+ fac = abs(da[3]);
+ }
+ else if (feature == 4.0) { /* F2F1 */
+ fac = abs(da[1] - da[0]);
+ }
+ color = vec4(fac, fac, fac, 1.0);
+ }
+ else {
+ /* Color output */
+ vec3 col = vec3(fac, fac, fac);
+ if (feature == 0.0) { /* F1 */
+ col = pa[0];
+ }
+ else if (feature == 1.0) { /* F2 */
+ col = pa[1];
+ }
+ else if (feature == 2.0) { /* F3 */
+ col = pa[2];
+ }
+ else if (feature == 3.0) { /* F4 */
+ col = pa[3];
+ }
+ else if (feature == 4.0) { /* F2F1 */
+ col = abs(pa[1] - pa[0]);
+ }
+
+ color = vec4(cellnoise_color(col), 1.0);
+ fac = (color.x + color.y + color.z) * (1.0 / 3.0);
+ }
+}
+
+float calc_wave(
+ vec3 p, float distortion, float detail, float detail_scale, int wave_type, int wave_profile)
+{
+ float n;
+
+ if (wave_type == 0) /* type bands */
+ n = (p.x + p.y + p.z) * 10.0;
+ else /* type rings */
+ n = length(p) * 20.0;
+
+ if (distortion != 0.0)
+ n += distortion * noise_turbulence(p * detail_scale, detail, 0);
+
+ if (wave_profile == 0) { /* profile sin */
+ return 0.5 + 0.5 * sin(n);
+ }
+ else { /* profile saw */
+ n /= 2.0 * M_PI;
+ n -= int(n);
+ return (n < 0.0) ? n + 1.0 : n;
+ }
+}
+
+void node_tex_wave(vec3 co,
+ float scale,
+ float distortion,
+ float detail,
+ float detail_scale,
+ float wave_type,
+ float wave_profile,
+ out vec4 color,
+ out float fac)
+{
+ float f;
+ f = calc_wave(co * scale, distortion, detail, detail_scale, int(wave_type), int(wave_profile));
+
+ color = vec4(f, f, f, 1.0);
+ fac = f;
}
/* light path */
-void node_light_path(
- out float is_camera_ray,
- out float is_shadow_ray,
- out float is_diffuse_ray,
- out float is_glossy_ray,
- out float is_singular_ray,
- out float is_reflection_ray,
- out float is_transmission_ray,
- out float ray_length,
- out float ray_depth,
- out float diffuse_depth,
- out float glossy_depth,
- out float transparent_depth,
- out float transmission_depth)
-{
- /* Supported. */
- is_camera_ray = (rayType == EEVEE_RAY_CAMERA) ? 1.0 : 0.0;
- is_shadow_ray = (rayType == EEVEE_RAY_SHADOW) ? 1.0 : 0.0;
- is_diffuse_ray = (rayType == EEVEE_RAY_DIFFUSE) ? 1.0 : 0.0;
- is_glossy_ray = (rayType == EEVEE_RAY_GLOSSY) ? 1.0 : 0.0;
- /* Kind of supported. */
- is_singular_ray = is_glossy_ray;
- is_reflection_ray = is_glossy_ray;
- is_transmission_ray = is_glossy_ray;
- ray_depth = rayDepth;
- diffuse_depth = (is_diffuse_ray == 1.0) ? rayDepth : 0.0;
- glossy_depth = (is_glossy_ray == 1.0) ? rayDepth : 0.0;
- transmission_depth = (is_transmission_ray == 1.0) ? glossy_depth : 0.0;
- /* Not supported. */
- ray_length = 1.0;
- transparent_depth = 0.0;
-}
-
-void node_light_falloff(float strength, float tsmooth, out float quadratic, out float linear, out float constant)
-{
- quadratic = strength;
- linear = strength;
- constant = strength;
-}
-
-void node_object_info(mat4 obmat, vec4 info, out vec3 location, out float object_index, out float material_index, out float random)
-{
- location = obmat[3].xyz;
- object_index = info.x;
- material_index = info.y;
- random = info.z;
+void node_light_path(out float is_camera_ray,
+ out float is_shadow_ray,
+ out float is_diffuse_ray,
+ out float is_glossy_ray,
+ out float is_singular_ray,
+ out float is_reflection_ray,
+ out float is_transmission_ray,
+ out float ray_length,
+ out float ray_depth,
+ out float diffuse_depth,
+ out float glossy_depth,
+ out float transparent_depth,
+ out float transmission_depth)
+{
+ /* Supported. */
+ is_camera_ray = (rayType == EEVEE_RAY_CAMERA) ? 1.0 : 0.0;
+ is_shadow_ray = (rayType == EEVEE_RAY_SHADOW) ? 1.0 : 0.0;
+ is_diffuse_ray = (rayType == EEVEE_RAY_DIFFUSE) ? 1.0 : 0.0;
+ is_glossy_ray = (rayType == EEVEE_RAY_GLOSSY) ? 1.0 : 0.0;
+ /* Kind of supported. */
+ is_singular_ray = is_glossy_ray;
+ is_reflection_ray = is_glossy_ray;
+ is_transmission_ray = is_glossy_ray;
+ ray_depth = rayDepth;
+ diffuse_depth = (is_diffuse_ray == 1.0) ? rayDepth : 0.0;
+ glossy_depth = (is_glossy_ray == 1.0) ? rayDepth : 0.0;
+ transmission_depth = (is_transmission_ray == 1.0) ? glossy_depth : 0.0;
+ /* Not supported. */
+ ray_length = 1.0;
+ transparent_depth = 0.0;
+}
+
+void node_light_falloff(
+ float strength, float tsmooth, out float quadratic, out float linear, out float constant)
+{
+ quadratic = strength;
+ linear = strength;
+ constant = strength;
+}
+
+void node_object_info(mat4 obmat,
+ vec4 info,
+ out vec3 location,
+ out float object_index,
+ out float material_index,
+ out float random)
+{
+ location = obmat[3].xyz;
+ object_index = info.x;
+ material_index = info.y;
+ random = info.z;
}
void node_normal_map(vec4 info, vec4 tangent, vec3 normal, vec3 texnormal, out vec3 outnormal)
{
- if (all(equal(tangent, vec4(0.0, 0.0, 0.0, 1.0)))) {
- outnormal = normal;
- return;
- }
- tangent *= (gl_FrontFacing ? 1.0 : -1.0);
- vec3 B = tangent.w * cross(normal, tangent.xyz) * info.w;
+ if (all(equal(tangent, vec4(0.0, 0.0, 0.0, 1.0)))) {
+ outnormal = normal;
+ return;
+ }
+ tangent *= (gl_FrontFacing ? 1.0 : -1.0);
+ vec3 B = tangent.w * cross(normal, tangent.xyz) * info.w;
- outnormal = texnormal.x * tangent.xyz + texnormal.y * B + texnormal.z * normal;
- outnormal = normalize(outnormal);
+ outnormal = texnormal.x * tangent.xyz + texnormal.y * B + texnormal.z * normal;
+ outnormal = normalize(outnormal);
}
-void node_bump(float strength, float dist, float height, vec3 N, vec3 surf_pos, float invert, out vec3 result)
+void node_bump(
+ float strength, float dist, float height, vec3 N, vec3 surf_pos, float invert, out vec3 result)
{
- N = mat3(ViewMatrix) * normalize(N);
- dist *= invert;
+ N = mat3(ViewMatrix) * normalize(N);
+ dist *= invert;
- vec3 dPdx = dFdx(surf_pos);
- vec3 dPdy = dFdy(surf_pos);
+ vec3 dPdx = dFdx(surf_pos);
+ vec3 dPdy = dFdy(surf_pos);
- /* Get surface tangents from normal. */
- vec3 Rx = cross(dPdy, N);
- vec3 Ry = cross(N, dPdx);
+ /* Get surface tangents from normal. */
+ vec3 Rx = cross(dPdy, N);
+ vec3 Ry = cross(N, dPdx);
- /* Compute surface gradient and determinant. */
- float det = dot(dPdx, Rx);
+ /* Compute surface gradient and determinant. */
+ float det = dot(dPdx, Rx);
- float dHdx = dFdx(height);
- float dHdy = dFdy(height);
- vec3 surfgrad = dHdx * Rx + dHdy * Ry;
+ float dHdx = dFdx(height);
+ float dHdy = dFdy(height);
+ vec3 surfgrad = dHdx * Rx + dHdy * Ry;
- strength = max(strength, 0.0);
+ strength = max(strength, 0.0);
- result = normalize(abs(det) * N - dist * sign(det) * surfgrad);
- result = normalize(mix(N, result, strength));
+ result = normalize(abs(det) * N - dist * sign(det) * surfgrad);
+ result = normalize(mix(N, result, strength));
- result = mat3(ViewMatrixInverse) * result;
+ result = mat3(ViewMatrixInverse) * result;
}
void node_bevel(float radius, vec3 N, out vec3 result)
{
- result = N;
+ result = N;
}
-void node_hair_info(out float is_strand, out float intercept, out float thickness, out vec3 tangent, out float random)
+void node_hair_info(out float is_strand,
+ out float intercept,
+ out float thickness,
+ out vec3 tangent,
+ out float random)
{
#ifdef HAIR_SHADER
- is_strand = 1.0;
- intercept = hairTime;
- thickness = hairThickness;
- tangent = normalize(hairTangent);
- random = wang_hash_noise(uint(hairStrandID)); /* TODO: could be precomputed per strand instead. */
+ is_strand = 1.0;
+ intercept = hairTime;
+ thickness = hairThickness;
+ tangent = normalize(hairTangent);
+ random = wang_hash_noise(
+ uint(hairStrandID)); /* TODO: could be precomputed per strand instead. */
#else
- is_strand = 0.0;
- intercept = 0.0;
- thickness = 0.0;
- tangent = vec3(1.0);
- random = 0.0;
+ is_strand = 0.0;
+ intercept = 0.0;
+ thickness = 0.0;
+ tangent = vec3(1.0);
+ random = 0.0;
#endif
}
-void node_displacement_object(float height, float midlevel, float scale, vec3 N, mat4 obmat, out vec3 result)
+void node_displacement_object(
+ float height, float midlevel, float scale, vec3 N, mat4 obmat, out vec3 result)
{
- N = (vec4(N, 0.0) * obmat).xyz;
- result = (height - midlevel) * scale * normalize(N);
- result = (obmat * vec4(result, 0.0)).xyz;
+ N = (vec4(N, 0.0) * obmat).xyz;
+ result = (height - midlevel) * scale * normalize(N);
+ result = (obmat * vec4(result, 0.0)).xyz;
}
void node_displacement_world(float height, float midlevel, float scale, vec3 N, out vec3 result)
{
- result = (height - midlevel) * scale * normalize(N);
+ result = (height - midlevel) * scale * normalize(N);
}
-void node_vector_displacement_tangent(vec4 vector, float midlevel, float scale, vec4 tangent, vec3 normal, mat4 obmat, mat4 viewmat, out vec3 result)
+void node_vector_displacement_tangent(vec4 vector,
+ float midlevel,
+ float scale,
+ vec4 tangent,
+ vec3 normal,
+ mat4 obmat,
+ mat4 viewmat,
+ out vec3 result)
{
- vec3 N_object = normalize(((vec4(normal, 0.0) * viewmat) * obmat).xyz);
- vec3 T_object = normalize(((vec4(tangent.xyz, 0.0) * viewmat) * obmat).xyz);
- vec3 B_object = tangent.w * normalize(cross(N_object, T_object));
+ vec3 N_object = normalize(((vec4(normal, 0.0) * viewmat) * obmat).xyz);
+ vec3 T_object = normalize(((vec4(tangent.xyz, 0.0) * viewmat) * obmat).xyz);
+ vec3 B_object = tangent.w * normalize(cross(N_object, T_object));
- vec3 offset = (vector.xyz - vec3(midlevel)) * scale;
- result = offset.x * T_object + offset.y * N_object + offset.z * B_object;
- result = (obmat * vec4(result, 0.0)).xyz;
+ vec3 offset = (vector.xyz - vec3(midlevel)) * scale;
+ result = offset.x * T_object + offset.y * N_object + offset.z * B_object;
+ result = (obmat * vec4(result, 0.0)).xyz;
}
-void node_vector_displacement_object(vec4 vector, float midlevel, float scale, mat4 obmat, out vec3 result)
+void node_vector_displacement_object(
+ vec4 vector, float midlevel, float scale, mat4 obmat, out vec3 result)
{
- result = (vector.xyz - vec3(midlevel)) * scale;
- result = (obmat * vec4(result, 0.0)).xyz;
+ result = (vector.xyz - vec3(midlevel)) * scale;
+ result = (obmat * vec4(result, 0.0)).xyz;
}
void node_vector_displacement_world(vec4 vector, float midlevel, float scale, out vec3 result)
{
- result = (vector.xyz - vec3(midlevel)) * scale;
+ result = (vector.xyz - vec3(midlevel)) * scale;
}
/* output */
@@ -3086,9 +3369,9 @@ void node_vector_displacement_world(vec4 vector, float midlevel, float scale, ou
void node_output_material(Closure surface, Closure volume, vec3 displacement, out Closure result)
{
#ifdef VOLUMETRICS
- result = volume;
+ result = volume;
#else
- result = surface;
+ result = surface;
#endif
}
@@ -3097,10 +3380,10 @@ uniform float backgroundAlpha;
void node_output_world(Closure surface, Closure volume, out Closure result)
{
#ifndef VOLUMETRICS
- result.radiance = surface.radiance * backgroundAlpha;
- result.opacity = backgroundAlpha;
+ result.radiance = surface.radiance * backgroundAlpha;
+ result.opacity = backgroundAlpha;
#else
- result = volume;
+ result = volume;
#endif /* VOLUMETRICS */
}
@@ -3109,65 +3392,80 @@ void node_output_world(Closure surface, Closure volume, out Closure result)
/* EEVEE output */
void world_normals_get(out vec3 N)
{
-#ifdef HAIR_SHADER
- vec3 B = normalize(cross(worldNormal, hairTangent));
- float cos_theta;
- if (hairThicknessRes == 1) {
- vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
- /* Random cosine normal distribution on the hair surface. */
- cos_theta = rand.x * 2.0 - 1.0;
- }
- else {
- /* Shade as a cylinder. */
- cos_theta = hairThickTime / hairThickness;
- }
- float sin_theta = sqrt(max(0.0, 1.0f - cos_theta*cos_theta));
- N = normalize(worldNormal * sin_theta + B * cos_theta);
-#else
- N = gl_FrontFacing ? worldNormal : -worldNormal;
-#endif
+# ifdef HAIR_SHADER
+ vec3 B = normalize(cross(worldNormal, hairTangent));
+ float cos_theta;
+ if (hairThicknessRes == 1) {
+ vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
+ /* Random cosine normal distribution on the hair surface. */
+ cos_theta = rand.x * 2.0 - 1.0;
+ }
+ else {
+ /* Shade as a cylinder. */
+ cos_theta = hairThickTime / hairThickness;
+ }
+ float sin_theta = sqrt(max(0.0, 1.0f - cos_theta * cos_theta));
+ N = normalize(worldNormal * sin_theta + B * cos_theta);
+# else
+ N = gl_FrontFacing ? worldNormal : -worldNormal;
+# endif
}
-void node_eevee_specular(
- vec4 diffuse, vec4 specular, float roughness, vec4 emissive, float transp, vec3 normal,
- float clearcoat, float clearcoat_roughness, vec3 clearcoat_normal,
- float occlusion, float ssr_id, out Closure result)
-{
- vec3 out_diff, out_spec, ssr_spec;
- eevee_closure_default(normal, diffuse.rgb, specular.rgb, int(ssr_id), roughness, occlusion,
- out_diff, out_spec, ssr_spec);
-
- vec3 vN = normalize(mat3(ViewMatrix) * normal);
- result = CLOSURE_DEFAULT;
- result.radiance = out_diff * diffuse.rgb + out_spec + emissive.rgb;
- result.opacity = 1.0 - transp;
- result.ssr_data = vec4(ssr_spec, roughness);
- result.ssr_normal = normal_encode(vN, viewCameraVec);
- result.ssr_id = int(ssr_id);
+void node_eevee_specular(vec4 diffuse,
+ vec4 specular,
+ float roughness,
+ vec4 emissive,
+ float transp,
+ vec3 normal,
+ float clearcoat,
+ float clearcoat_roughness,
+ vec3 clearcoat_normal,
+ float occlusion,
+ float ssr_id,
+ out Closure result)
+{
+ vec3 out_diff, out_spec, ssr_spec;
+ eevee_closure_default(normal,
+ diffuse.rgb,
+ specular.rgb,
+ int(ssr_id),
+ roughness,
+ occlusion,
+ out_diff,
+ out_spec,
+ ssr_spec);
+
+ vec3 vN = normalize(mat3(ViewMatrix) * normal);
+ result = CLOSURE_DEFAULT;
+ result.radiance = out_diff * diffuse.rgb + out_spec + emissive.rgb;
+ result.opacity = 1.0 - transp;
+ result.ssr_data = vec4(ssr_spec, roughness);
+ result.ssr_normal = normal_encode(vN, viewCameraVec);
+ result.ssr_id = int(ssr_id);
}
void node_shader_to_rgba(Closure cl, out vec4 outcol, out float outalpha)
{
- vec4 spec_accum = vec4(0.0);
- if (ssrToggle && cl.ssr_id == outputSsrId) {
- vec3 V = cameraVec;
- vec3 vN = normal_decode(cl.ssr_normal, viewCameraVec);
- vec3 N = transform_direction(ViewMatrixInverse, vN);
- float roughness = cl.ssr_data.a;
- float roughnessSquared = max(1e-3, roughness * roughness);
- fallback_cubemap(N, V, worldPosition, viewPosition, roughness, roughnessSquared, spec_accum);
- }
-
- outalpha = cl.opacity;
- outcol = vec4((spec_accum.rgb * cl.ssr_data.rgb) + cl.radiance, 1.0);
-
-# ifdef USE_SSS
-# ifdef USE_SSS_ALBEDO
- outcol.rgb += cl.sss_data.rgb * cl.sss_albedo;
-# else
- outcol.rgb += cl.sss_data.rgb;
-# endif
-# endif
+ vec4 spec_accum = vec4(0.0);
+ if (ssrToggle && cl.ssr_id == outputSsrId) {
+ vec3 V = cameraVec;
+ vec3 vN = normal_decode(cl.ssr_normal, viewCameraVec);
+ vec3 N = transform_direction(ViewMatrixInverse, vN);
+ float roughness = cl.ssr_data.a;
+ float roughnessSquared = max(1e-3, roughness * roughness);
+ fallback_cubemap(N, V, worldPosition, viewPosition, roughness, roughnessSquared, spec_accum);
+ }
+
+ outalpha = cl.opacity;
+ outcol = vec4((spec_accum.rgb * cl.ssr_data.rgb) + cl.radiance, 1.0);
+
+# ifdef USE_SSS
+# ifdef USE_SSS_ALBEDO
+ outcol.rgb += cl.sss_data.rgb * cl.sss_albedo;
+# else
+ outcol.rgb += cl.sss_data.rgb;
+# endif
+# endif
}
#endif /* VOLUMETRICS */