Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/io/collada/AnimationImporter.cpp')
-rw-r--r--source/blender/io/collada/AnimationImporter.cpp2232
1 files changed, 2232 insertions, 0 deletions
diff --git a/source/blender/io/collada/AnimationImporter.cpp b/source/blender/io/collada/AnimationImporter.cpp
new file mode 100644
index 00000000000..715cd9e1a12
--- /dev/null
+++ b/source/blender/io/collada/AnimationImporter.cpp
@@ -0,0 +1,2232 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/** \file
+ * \ingroup collada
+ */
+
+#include <stddef.h>
+
+/* COLLADABU_ASSERT, may be able to remove later */
+#include "COLLADABUPlatform.h"
+
+#include "DNA_armature_types.h"
+
+#include "ED_keyframing.h"
+
+#include "BLI_listbase.h"
+#include "BLI_math.h"
+#include "BLI_string.h"
+#include "BLI_string_utils.h"
+
+#include "BLT_translation.h"
+
+#include "BKE_action.h"
+#include "BKE_armature.h"
+#include "BKE_fcurve.h"
+#include "BKE_object.h"
+
+#include "MEM_guardedalloc.h"
+
+#include "collada_utils.h"
+#include "AnimationImporter.h"
+#include "ArmatureImporter.h"
+#include "MaterialExporter.h"
+
+#include <algorithm>
+
+/* first try node name, if not available (since is optional), fall back to original id */
+template<class T> static const char *bc_get_joint_name(T *node)
+{
+ const std::string &id = node->getName();
+ return id.size() ? id.c_str() : node->getOriginalId().c_str();
+}
+
+FCurve *AnimationImporter::create_fcurve(int array_index, const char *rna_path)
+{
+ FCurve *fcu = (FCurve *)MEM_callocN(sizeof(FCurve), "FCurve");
+ fcu->flag = (FCURVE_VISIBLE | FCURVE_AUTO_HANDLES | FCURVE_SELECTED);
+ fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
+ fcu->array_index = array_index;
+ return fcu;
+}
+
+void AnimationImporter::add_bezt(FCurve *fcu,
+ float frame,
+ float value,
+ eBezTriple_Interpolation ipo)
+{
+ // float fps = (float)FPS;
+ BezTriple bez;
+ memset(&bez, 0, sizeof(BezTriple));
+ bez.vec[1][0] = frame;
+ bez.vec[1][1] = value;
+ bez.ipo = ipo; /* use default interpolation mode here... */
+ bez.f1 = bez.f2 = bez.f3 = SELECT;
+ bez.h1 = bez.h2 = HD_AUTO;
+ insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
+ calchandles_fcurve(fcu);
+}
+
+/* create one or several fcurves depending on the number of parameters being animated */
+void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
+{
+ COLLADAFW::FloatOrDoubleArray &input = curve->getInputValues();
+ COLLADAFW::FloatOrDoubleArray &output = curve->getOutputValues();
+
+ float fps = (float)FPS;
+ size_t dim = curve->getOutDimension();
+ unsigned int i;
+
+ std::vector<FCurve *> &fcurves = curve_map[curve->getUniqueId()];
+
+ switch (dim) {
+ case 1: /* X, Y, Z or angle */
+ case 3: /* XYZ */
+ case 4:
+ case 16: /* matrix */
+ {
+ for (i = 0; i < dim; i++) {
+ FCurve *fcu = (FCurve *)MEM_callocN(sizeof(FCurve), "FCurve");
+
+ fcu->flag = (FCURVE_VISIBLE | FCURVE_AUTO_HANDLES | FCURVE_SELECTED);
+ fcu->array_index = 0;
+ fcu->auto_smoothing = U.auto_smoothing_new;
+
+ for (unsigned int j = 0; j < curve->getKeyCount(); j++) {
+ BezTriple bez;
+ memset(&bez, 0, sizeof(BezTriple));
+
+ /* input, output */
+ bez.vec[1][0] = bc_get_float_value(input, j) * fps;
+ bez.vec[1][1] = bc_get_float_value(output, j * dim + i);
+ bez.h1 = bez.h2 = HD_AUTO;
+
+ if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER ||
+ curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_STEP) {
+ COLLADAFW::FloatOrDoubleArray &intan = curve->getInTangentValues();
+ COLLADAFW::FloatOrDoubleArray &outtan = curve->getOutTangentValues();
+
+ /* intangent */
+ unsigned int index = 2 * (j * dim + i);
+ bez.vec[0][0] = bc_get_float_value(intan, index) * fps;
+ bez.vec[0][1] = bc_get_float_value(intan, index + 1);
+
+ /* outtangent */
+ bez.vec[2][0] = bc_get_float_value(outtan, index) * fps;
+ bez.vec[2][1] = bc_get_float_value(outtan, index + 1);
+ if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER) {
+ bez.ipo = BEZT_IPO_BEZ;
+ bez.h1 = bez.h2 = HD_AUTO_ANIM;
+ }
+ else {
+ bez.ipo = BEZT_IPO_CONST;
+ }
+ }
+ else {
+ bez.ipo = BEZT_IPO_LIN;
+ }
+#if 0
+ bez.ipo = U.ipo_new; /* use default interpolation mode here... */
+#endif
+ bez.f1 = bez.f2 = bez.f3 = SELECT;
+
+ insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
+ }
+
+ calchandles_fcurve(fcu);
+
+ fcurves.push_back(fcu);
+ unused_curves.push_back(fcu);
+ }
+ } break;
+ default:
+ fprintf(stderr,
+ "Output dimension of %d is not yet supported (animation id = %s)\n",
+ (int)dim,
+ curve->getOriginalId().c_str());
+ }
+}
+
+void AnimationImporter::fcurve_deg_to_rad(FCurve *cu)
+{
+ for (unsigned int i = 0; i < cu->totvert; i++) {
+ /* TODO convert handles too */
+ cu->bezt[i].vec[1][1] *= DEG2RADF(1.0f);
+ cu->bezt[i].vec[0][1] *= DEG2RADF(1.0f);
+ cu->bezt[i].vec[2][1] *= DEG2RADF(1.0f);
+ }
+}
+
+void AnimationImporter::fcurve_scale(FCurve *cu, int scale)
+{
+ for (unsigned int i = 0; i < cu->totvert; i++) {
+ /* TODO convert handles too */
+ cu->bezt[i].vec[1][1] *= scale;
+ cu->bezt[i].vec[0][1] *= scale;
+ cu->bezt[i].vec[2][1] *= scale;
+ }
+}
+
+void AnimationImporter::fcurve_is_used(FCurve *fcu)
+{
+ unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu),
+ unused_curves.end());
+}
+
+void AnimationImporter::add_fcurves_to_object(Main *bmain,
+ Object *ob,
+ std::vector<FCurve *> &curves,
+ char *rna_path,
+ int array_index,
+ Animation *animated)
+{
+ bAction *act;
+
+ if (!ob->adt || !ob->adt->action) {
+ act = ED_id_action_ensure(bmain, (ID *)&ob->id);
+ }
+ else {
+ act = ob->adt->action;
+ }
+
+ std::vector<FCurve *>::iterator it;
+ int i;
+
+#if 0
+ char *p = strstr(rna_path, "rotation_euler");
+ bool is_rotation = p && *(p + strlen("rotation_euler")) == '\0';
+
+ /* convert degrees to radians for rotation */
+ if (is_rotation) {
+ fcurve_deg_to_rad(fcu);
+ }
+#endif
+
+ for (it = curves.begin(), i = 0; it != curves.end(); it++, i++) {
+ FCurve *fcu = *it;
+ fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
+
+ if (array_index == -1) {
+ fcu->array_index = i;
+ }
+ else {
+ fcu->array_index = array_index;
+ }
+
+ if (ob->type == OB_ARMATURE) {
+ bActionGroup *grp = NULL;
+ const char *bone_name = bc_get_joint_name(animated->node);
+
+ if (bone_name) {
+ /* try to find group */
+ grp = BKE_action_group_find_name(act, bone_name);
+
+ /* no matching groups, so add one */
+ if (grp == NULL) {
+ /* Add a new group, and make it active */
+ grp = (bActionGroup *)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
+
+ grp->flag = AGRP_SELECTED;
+ BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
+
+ BLI_addtail(&act->groups, grp);
+ BLI_uniquename(&act->groups,
+ grp,
+ CTX_DATA_(BLT_I18NCONTEXT_ID_ACTION, "Group"),
+ '.',
+ offsetof(bActionGroup, name),
+ 64);
+ }
+
+ /* add F-Curve to group */
+ action_groups_add_channel(act, grp, fcu);
+ fcurve_is_used(fcu);
+ }
+#if 0
+ if (is_rotation) {
+ fcurves_actionGroup_map[grp].push_back(fcu);
+ }
+#endif
+ }
+ else {
+ BLI_addtail(&act->curves, fcu);
+ fcurve_is_used(fcu);
+ }
+ }
+}
+
+AnimationImporter::~AnimationImporter()
+{
+ /* free unused FCurves */
+ for (std::vector<FCurve *>::iterator it = unused_curves.begin(); it != unused_curves.end();
+ it++) {
+ free_fcurve(*it);
+ }
+
+ if (unused_curves.size()) {
+ fprintf(stderr, "removed %d unused curves\n", (int)unused_curves.size());
+ }
+}
+
+bool AnimationImporter::write_animation(const COLLADAFW::Animation *anim)
+{
+ if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) {
+ COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve *)anim;
+
+ /* XXX Don't know if it's necessary
+ * Should we check outPhysicalDimension? */
+ if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) {
+ fprintf(stderr, "Inputs physical dimension is not time.\n");
+ return true;
+ }
+
+ /* a curve can have mixed interpolation type,
+ * in this case curve->getInterpolationTypes returns a list of interpolation types per key */
+ COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType();
+
+ if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) {
+ switch (interp) {
+ case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR:
+ case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER:
+ case COLLADAFW::AnimationCurve::INTERPOLATION_STEP:
+ animation_to_fcurves(curve);
+ break;
+ default:
+ /* TODO there're also CARDINAL, HERMITE, BSPLINE and STEP types */
+ fprintf(stderr,
+ "CARDINAL, HERMITE and BSPLINE anim interpolation types not supported yet.\n");
+ break;
+ }
+ }
+ else {
+ /* not supported yet */
+ fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n");
+ }
+ }
+ else {
+ fprintf(stderr, "FORMULA animation type is not supported yet.\n");
+ }
+
+ return true;
+}
+
+/* called on post-process stage after writeVisualScenes */
+bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList *animlist)
+{
+ const COLLADAFW::UniqueId &animlist_id = animlist->getUniqueId();
+ animlist_map[animlist_id] = animlist;
+
+#if 0
+
+ /* should not happen */
+ if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) {
+ return true;
+ }
+
+ /* for bones rna_path is like: pose.bones["bone-name"].rotation */
+
+#endif
+
+ return true;
+}
+
+/* \todo refactor read_node_transform to not automatically apply anything,
+ * but rather return the transform matrix, so caller can do with it what is
+ * necessary. Same for \ref get_node_mat */
+void AnimationImporter::read_node_transform(COLLADAFW::Node *node, Object *ob)
+{
+ float mat[4][4];
+ TransformReader::get_node_mat(mat, node, &uid_animated_map, ob);
+ if (ob) {
+ copy_m4_m4(ob->obmat, mat);
+ BKE_object_apply_mat4(ob, ob->obmat, 0, 0);
+ }
+}
+
+#if 0
+virtual void AnimationImporter::change_eul_to_quat(Object *ob, bAction *act)
+{
+ bActionGroup *grp;
+ int i;
+
+ for (grp = (bActionGroup *)act->groups.first; grp; grp = grp->next) {
+
+ FCurve *eulcu[3] = {NULL, NULL, NULL};
+
+ if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end()) {
+ continue;
+ }
+
+ std::vector<FCurve *> &rot_fcurves = fcurves_actionGroup_map[grp];
+
+ if (rot_fcurves.size() > 3) {
+ continue;
+ }
+
+ for (i = 0; i < rot_fcurves.size(); i++) {
+ eulcu[rot_fcurves[i]->array_index] = rot_fcurves[i];
+ }
+
+ char joint_path[100];
+ char rna_path[100];
+
+ BLI_snprintf(joint_path, sizeof(joint_path), "pose.bones[\"%s\"]", grp->name);
+ BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_quaternion", joint_path);
+
+ FCurve *quatcu[4] = {
+ create_fcurve(0, rna_path),
+ create_fcurve(1, rna_path),
+ create_fcurve(2, rna_path),
+ create_fcurve(3, rna_path),
+ };
+
+ bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, grp->name);
+
+ float m4[4][4], irest[3][3];
+ invert_m4_m4(m4, chan->bone->arm_mat);
+ copy_m3_m4(irest, m4);
+
+ for (i = 0; i < 3; i++) {
+
+ FCurve *cu = eulcu[i];
+
+ if (!cu) {
+ continue;
+ }
+
+ for (int j = 0; j < cu->totvert; j++) {
+ float frame = cu->bezt[j].vec[1][0];
+
+ float eul[3] = {
+ eulcu[0] ? evaluate_fcurve(eulcu[0], frame) : 0.0f,
+ eulcu[1] ? evaluate_fcurve(eulcu[1], frame) : 0.0f,
+ eulcu[2] ? evaluate_fcurve(eulcu[2], frame) : 0.0f,
+ };
+
+ /* make eul relative to bone rest pose */
+ float rot[3][3], rel[3][3], quat[4];
+
+# if 0
+ eul_to_mat3(rot, eul);
+ mul_m3_m3m3(rel, irest, rot);
+ mat3_to_quat(quat, rel);
+# endif
+
+ eul_to_quat(quat, eul);
+
+ for (int k = 0; k < 4; k++) {
+ create_bezt(quatcu[k], frame, quat[k], U.ipo_new);
+ }
+ }
+ }
+
+ /* now replace old Euler curves */
+
+ for (i = 0; i < 3; i++) {
+ if (!eulcu[i]) {
+ continue;
+ }
+
+ action_groups_remove_channel(act, eulcu[i]);
+ free_fcurve(eulcu[i]);
+ }
+
+ chan->rotmode = ROT_MODE_QUAT;
+
+ for (i = 0; i < 4; i++) {
+ action_groups_add_channel(act, grp, quatcu[i]);
+ }
+ }
+
+ bPoseChannel *pchan;
+ for (pchan = (bPoseChannel *)ob->pose->chanbase.first; pchan; pchan = pchan->next) {
+ pchan->rotmode = ROT_MODE_QUAT;
+ }
+}
+#endif
+
+/* sets the rna_path and array index to curve */
+void AnimationImporter::modify_fcurve(std::vector<FCurve *> *curves,
+ const char *rna_path,
+ int array_index,
+ int scale)
+{
+ std::vector<FCurve *>::iterator it;
+ int i;
+ for (it = curves->begin(), i = 0; it != curves->end(); it++, i++) {
+ FCurve *fcu = *it;
+ fcu->rna_path = BLI_strdup(rna_path);
+
+ if (array_index == -1) {
+ fcu->array_index = i;
+ }
+ else {
+ fcu->array_index = array_index;
+ }
+
+ if (scale != 1) {
+ fcurve_scale(fcu, scale);
+ }
+
+ fcurve_is_used(fcu);
+ }
+}
+
+void AnimationImporter::unused_fcurve(std::vector<FCurve *> *curves)
+{
+ /* when an error happens and we can't actually use curve remove it from unused_curves */
+ std::vector<FCurve *>::iterator it;
+ for (it = curves->begin(); it != curves->end(); it++) {
+ FCurve *fcu = *it;
+ fcurve_is_used(fcu);
+ }
+}
+
+void AnimationImporter::find_frames(std::vector<float> *frames, std::vector<FCurve *> *curves)
+{
+ std::vector<FCurve *>::iterator iter;
+ for (iter = curves->begin(); iter != curves->end(); iter++) {
+ FCurve *fcu = *iter;
+
+ for (unsigned int k = 0; k < fcu->totvert; k++) {
+ /* get frame value from bezTriple */
+ float fra = fcu->bezt[k].vec[1][0];
+ /* if frame already not added add frame to frames */
+ if (std::find(frames->begin(), frames->end(), fra) == frames->end()) {
+ frames->push_back(fra);
+ }
+ }
+ }
+}
+
+static int get_animation_axis_index(const COLLADABU::Math::Vector3 &axis)
+{
+ int index;
+ if (COLLADABU::Math::Vector3::UNIT_X == axis) {
+ index = 0;
+ }
+ else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
+ index = 1;
+ }
+ else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
+ index = 2;
+ }
+ else {
+ index = -1;
+ }
+ return index;
+}
+
+/* creates the rna_paths and array indices of fcurves from animations using transformation and
+ * bound animation class of each animation. */
+void AnimationImporter::Assign_transform_animations(
+ COLLADAFW::Transformation *transform,
+ const COLLADAFW::AnimationList::AnimationBinding *binding,
+ std::vector<FCurve *> *curves,
+ bool is_joint,
+ char *joint_path)
+{
+ COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
+ bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
+ bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
+
+ /* to check if the no of curves are valid */
+ bool xyz = ((tm_type == COLLADAFW::Transformation::TRANSLATE ||
+ tm_type == COLLADAFW::Transformation::SCALE) &&
+ binding->animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
+
+ if (!((!xyz && curves->size() == 1) || (xyz && curves->size() == 3) || is_matrix)) {
+ fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves->size());
+ return;
+ }
+
+ char rna_path[100];
+
+ switch (tm_type) {
+ case COLLADAFW::Transformation::TRANSLATE:
+ case COLLADAFW::Transformation::SCALE: {
+ bool loc = tm_type == COLLADAFW::Transformation::TRANSLATE;
+ if (is_joint) {
+ BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale");
+ }
+ else {
+ BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path));
+ }
+
+ switch (binding->animationClass) {
+ case COLLADAFW::AnimationList::POSITION_X:
+ modify_fcurve(curves, rna_path, 0);
+ break;
+ case COLLADAFW::AnimationList::POSITION_Y:
+ modify_fcurve(curves, rna_path, 1);
+ break;
+ case COLLADAFW::AnimationList::POSITION_Z:
+ modify_fcurve(curves, rna_path, 2);
+ break;
+ case COLLADAFW::AnimationList::POSITION_XYZ:
+ modify_fcurve(curves, rna_path, -1);
+ break;
+ default:
+ unused_fcurve(curves);
+ fprintf(stderr,
+ "AnimationClass %d is not supported for %s.\n",
+ binding->animationClass,
+ loc ? "TRANSLATE" : "SCALE");
+ }
+ break;
+ }
+
+ case COLLADAFW::Transformation::ROTATE: {
+ if (is_joint) {
+ BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path);
+ }
+ else {
+ BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path));
+ }
+ std::vector<FCurve *>::iterator iter;
+ for (iter = curves->begin(); iter != curves->end(); iter++) {
+ FCurve *fcu = *iter;
+
+ /* if transform is rotation the fcurves values must be turned in to radian. */
+ if (is_rotation) {
+ fcurve_deg_to_rad(fcu);
+ }
+ }
+ COLLADAFW::Rotate *rot = (COLLADAFW::Rotate *)transform;
+ COLLADABU::Math::Vector3 &axis = rot->getRotationAxis();
+
+ switch (binding->animationClass) {
+ case COLLADAFW::AnimationList::ANGLE: {
+ int axis_index = get_animation_axis_index(axis);
+ if (axis_index >= 0) {
+ modify_fcurve(curves, rna_path, axis_index);
+ }
+ else {
+ unused_fcurve(curves);
+ }
+ } break;
+ case COLLADAFW::AnimationList::AXISANGLE:
+ /* TODO convert axis-angle to quat? or XYZ? */
+ default:
+ unused_fcurve(curves);
+ fprintf(stderr,
+ "AnimationClass %d is not supported for ROTATE transformation.\n",
+ binding->animationClass);
+ }
+ break;
+ }
+
+ case COLLADAFW::Transformation::MATRIX:
+#if 0
+ {
+ COLLADAFW::Matrix *mat = (COLLADAFW::Matrix *)transform;
+ COLLADABU::Math::Matrix4 mat4 = mat->getMatrix();
+ switch (binding->animationClass) {
+ case COLLADAFW::AnimationList::TRANSFORM:
+ }
+ }
+#endif
+ unused_fcurve(curves);
+ break;
+ case COLLADAFW::Transformation::SKEW:
+ case COLLADAFW::Transformation::LOOKAT:
+ unused_fcurve(curves);
+ fprintf(stderr, "Animation of SKEW and LOOKAT transformations is not supported yet.\n");
+ break;
+ }
+}
+
+/* creates the rna_paths and array indices of fcurves from animations using color and bound
+ * animation class of each animation. */
+void AnimationImporter::Assign_color_animations(const COLLADAFW::UniqueId &listid,
+ ListBase *AnimCurves,
+ const char *anim_type)
+{
+ char rna_path[100];
+ BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
+
+ const COLLADAFW::AnimationList *animlist = animlist_map[listid];
+ if (animlist == NULL) {
+ fprintf(stderr,
+ "Collada: No animlist found for ID: %s of type %s\n",
+ listid.toAscii().c_str(),
+ anim_type);
+ return;
+ }
+
+ const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
+ /* all the curves belonging to the current binding */
+ std::vector<FCurve *> animcurves;
+ for (unsigned int j = 0; j < bindings.getCount(); j++) {
+ animcurves = curve_map[bindings[j].animation];
+
+ switch (bindings[j].animationClass) {
+ case COLLADAFW::AnimationList::COLOR_R:
+ modify_fcurve(&animcurves, rna_path, 0);
+ break;
+ case COLLADAFW::AnimationList::COLOR_G:
+ modify_fcurve(&animcurves, rna_path, 1);
+ break;
+ case COLLADAFW::AnimationList::COLOR_B:
+ modify_fcurve(&animcurves, rna_path, 2);
+ break;
+ case COLLADAFW::AnimationList::COLOR_RGB:
+ case COLLADAFW::AnimationList::COLOR_RGBA: /* to do-> set intensity */
+ modify_fcurve(&animcurves, rna_path, -1);
+ break;
+
+ default:
+ unused_fcurve(&animcurves);
+ fprintf(stderr,
+ "AnimationClass %d is not supported for %s.\n",
+ bindings[j].animationClass,
+ "COLOR");
+ }
+
+ std::vector<FCurve *>::iterator iter;
+ /* Add the curves of the current animation to the object */
+ for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
+ FCurve *fcu = *iter;
+ BLI_addtail(AnimCurves, fcu);
+ fcurve_is_used(fcu);
+ }
+ }
+}
+
+void AnimationImporter::Assign_float_animations(const COLLADAFW::UniqueId &listid,
+ ListBase *AnimCurves,
+ const char *anim_type)
+{
+ char rna_path[100];
+ if (animlist_map.find(listid) == animlist_map.end()) {
+ return;
+ }
+ else {
+ /* anim_type has animations */
+ const COLLADAFW::AnimationList *animlist = animlist_map[listid];
+ const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
+ /* all the curves belonging to the current binding */
+ std::vector<FCurve *> animcurves;
+ for (unsigned int j = 0; j < bindings.getCount(); j++) {
+ animcurves = curve_map[bindings[j].animation];
+
+ BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
+ modify_fcurve(&animcurves, rna_path, 0);
+ std::vector<FCurve *>::iterator iter;
+ /* Add the curves of the current animation to the object */
+ for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
+ FCurve *fcu = *iter;
+ /* All anim_types whose values are to be converted from Degree to Radians can be ORed here
+ */
+ if (STREQ("spot_size", anim_type)) {
+ /* NOTE: Do NOT convert if imported file was made by blender <= 2.69.10
+ * Reason: old blender versions stored spot_size in radians (was a bug)
+ */
+ if (this->import_from_version == "" ||
+ BLI_strcasecmp_natural(this->import_from_version.c_str(), "2.69.10") != -1) {
+ fcurve_deg_to_rad(fcu);
+ }
+ }
+ /** XXX What About animtype "rotation" ? */
+
+ BLI_addtail(AnimCurves, fcu);
+ fcurve_is_used(fcu);
+ }
+ }
+ }
+}
+
+float AnimationImporter::convert_to_focal_length(float in_xfov,
+ int fov_type,
+ float aspect,
+ float sensorx)
+{
+ /* NOTE: Needs more testing (As we currently have no official test data for this) */
+ float xfov = (fov_type == CAMERA_YFOV) ?
+ (2.0f * atanf(aspect * tanf(DEG2RADF(in_xfov) * 0.5f))) :
+ DEG2RADF(in_xfov);
+ return fov_to_focallength(xfov, sensorx);
+}
+
+/*
+ * Lens animations must be stored in COLLADA by using FOV,
+ * while blender internally uses focal length.
+ * The imported animation curves must be converted appropriately.
+ */
+void AnimationImporter::Assign_lens_animations(const COLLADAFW::UniqueId &listid,
+ ListBase *AnimCurves,
+ const double aspect,
+ Camera *cam,
+ const char *anim_type,
+ int fov_type)
+{
+ char rna_path[100];
+ if (animlist_map.find(listid) == animlist_map.end()) {
+ return;
+ }
+ else {
+ /* anim_type has animations */
+ const COLLADAFW::AnimationList *animlist = animlist_map[listid];
+ const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
+ /* all the curves belonging to the current binding */
+ std::vector<FCurve *> animcurves;
+ for (unsigned int j = 0; j < bindings.getCount(); j++) {
+ animcurves = curve_map[bindings[j].animation];
+
+ BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
+
+ modify_fcurve(&animcurves, rna_path, 0);
+ std::vector<FCurve *>::iterator iter;
+ /* Add the curves of the current animation to the object */
+ for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
+ FCurve *fcu = *iter;
+
+ for (unsigned int i = 0; i < fcu->totvert; i++) {
+ fcu->bezt[i].vec[0][1] = convert_to_focal_length(
+ fcu->bezt[i].vec[0][1], fov_type, aspect, cam->sensor_x);
+ fcu->bezt[i].vec[1][1] = convert_to_focal_length(
+ fcu->bezt[i].vec[1][1], fov_type, aspect, cam->sensor_x);
+ fcu->bezt[i].vec[2][1] = convert_to_focal_length(
+ fcu->bezt[i].vec[2][1], fov_type, aspect, cam->sensor_x);
+ }
+
+ BLI_addtail(AnimCurves, fcu);
+ fcurve_is_used(fcu);
+ }
+ }
+ }
+}
+
+void AnimationImporter::apply_matrix_curves(Object *ob,
+ std::vector<FCurve *> &animcurves,
+ COLLADAFW::Node *root,
+ COLLADAFW::Node *node,
+ COLLADAFW::Transformation *tm)
+{
+ bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
+ const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
+ char joint_path[200];
+ if (is_joint) {
+ armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
+ }
+
+ std::vector<float> frames;
+ find_frames(&frames, &animcurves);
+
+ float irest_dae[4][4];
+ float rest[4][4], irest[4][4];
+
+ if (is_joint) {
+ get_joint_rest_mat(irest_dae, root, node);
+ invert_m4(irest_dae);
+
+ Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
+ if (!bone) {
+ fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
+ return;
+ }
+
+ unit_m4(rest);
+ copy_m4_m4(rest, bone->arm_mat);
+ invert_m4_m4(irest, rest);
+ }
+ /* new curves to assign matrix transform animation */
+ FCurve *newcu[10]; /* if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale */
+ unsigned int totcu = 10;
+ const char *tm_str = NULL;
+ char rna_path[200];
+ for (int i = 0; i < totcu; i++) {
+
+ int axis = i;
+
+ if (i < 4) {
+ tm_str = "rotation_quaternion";
+ axis = i;
+ }
+ else if (i < 7) {
+ tm_str = "location";
+ axis = i - 4;
+ }
+ else {
+ tm_str = "scale";
+ axis = i - 7;
+ }
+
+ if (is_joint) {
+ BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
+ }
+ else {
+ BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
+ }
+ newcu[i] = create_fcurve(axis, rna_path);
+ newcu[i]->totvert = frames.size();
+ }
+
+ if (frames.size() == 0) {
+ return;
+ }
+
+ std::sort(frames.begin(), frames.end());
+
+ std::vector<float>::iterator it;
+
+#if 0
+ float qref[4];
+ unit_qt(qref);
+#endif
+
+ /* sample values at each frame */
+ for (it = frames.begin(); it != frames.end(); it++) {
+ float fra = *it;
+
+ float mat[4][4];
+ float matfra[4][4];
+
+ unit_m4(matfra);
+
+ /* calc object-space mat */
+ evaluate_transform_at_frame(matfra, node, fra);
+
+ /* for joints, we need a special matrix */
+ if (is_joint) {
+ /* special matrix: iR * M * iR_dae * R
+ * where R, iR are bone rest and inverse rest mats in world space (Blender bones),
+ * iR_dae is joint inverse rest matrix (DAE)
+ * and M is an evaluated joint world-space matrix (DAE) */
+ float temp[4][4], par[4][4];
+
+ /* calc M */
+ calc_joint_parent_mat_rest(par, NULL, root, node);
+ mul_m4_m4m4(temp, par, matfra);
+
+#if 0
+ evaluate_joint_world_transform_at_frame(temp, NULL, node, fra);
+#endif
+
+ /* calc special matrix */
+ mul_m4_series(mat, irest, temp, irest_dae, rest);
+ }
+ else {
+ copy_m4_m4(mat, matfra);
+ }
+
+ float rot[4], loc[3], scale[3];
+ mat4_decompose(loc, rot, scale, mat);
+
+ /* add keys */
+ for (int i = 0; i < totcu; i++) {
+ if (i < 4) {
+ add_bezt(newcu[i], fra, rot[i]);
+ }
+ else if (i < 7) {
+ add_bezt(newcu[i], fra, loc[i - 4]);
+ }
+ else {
+ add_bezt(newcu[i], fra, scale[i - 7]);
+ }
+ }
+ }
+ Main *bmain = CTX_data_main(mContext);
+ ED_id_action_ensure(bmain, (ID *)&ob->id);
+
+ ListBase *curves = &ob->adt->action->curves;
+
+ /* add curves */
+ for (int i = 0; i < totcu; i++) {
+ if (is_joint) {
+ add_bone_fcurve(ob, node, newcu[i]);
+ }
+ else {
+ BLI_addtail(curves, newcu[i]);
+ }
+#if 0
+ fcurve_is_used(newcu[i]); /* never added to unused */
+#endif
+ }
+
+ if (is_joint) {
+ bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
+ chan->rotmode = ROT_MODE_QUAT;
+ }
+ else {
+ ob->rotmode = ROT_MODE_QUAT;
+ }
+
+ return;
+}
+
+/*
+ * This function returns the aspect ration from the Collada camera.
+ *
+ * Note:COLLADA allows to specify either XFov, or YFov alone.
+ * In that case the aspect ratio can be determined from
+ * the viewport aspect ratio (which is 1:1 ?)
+ * XXX: check this: its probably wrong!
+ * If both values are specified, then the aspect ration is simply xfov/yfov
+ * and if aspect ratio is efined, then .. well then its that one.
+ */
+static const double get_aspect_ratio(const COLLADAFW::Camera *camera)
+{
+ double aspect = camera->getAspectRatio().getValue();
+
+ if (aspect == 0) {
+ const double yfov = camera->getYFov().getValue();
+
+ if (yfov == 0) {
+ aspect = 1; /* assume yfov and xfov are equal */
+ }
+ else {
+ const double xfov = camera->getXFov().getValue();
+ if (xfov == 0) {
+ aspect = 1;
+ }
+ else {
+ aspect = xfov / yfov;
+ }
+ }
+ }
+ return aspect;
+}
+
+static ListBase &get_animation_curves(Main *bmain, Material *ma)
+{
+ bAction *act;
+ if (!ma->adt || !ma->adt->action) {
+ act = ED_id_action_ensure(bmain, (ID *)&ma->id);
+ }
+ else {
+ act = ma->adt->action;
+ }
+
+ return act->curves;
+}
+
+void AnimationImporter::translate_Animations(
+ COLLADAFW::Node *node,
+ std::map<COLLADAFW::UniqueId, COLLADAFW::Node *> &root_map,
+ std::multimap<COLLADAFW::UniqueId, Object *> &object_map,
+ std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map,
+ std::map<COLLADAFW::UniqueId, Material *> uid_material_map)
+{
+ bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
+ COLLADAFW::UniqueId uid = node->getUniqueId();
+ COLLADAFW::Node *root = root_map.find(uid) == root_map.end() ? node : root_map[uid];
+
+ Object *ob;
+ if (is_joint) {
+ ob = armature_importer->get_armature_for_joint(root);
+ }
+ else {
+ ob = object_map.find(uid) == object_map.end() ? NULL : object_map.find(uid)->second;
+ }
+
+ if (!ob) {
+ fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
+ return;
+ }
+
+ AnimationImporter::AnimMix *animType = get_animation_type(node, FW_object_map);
+ bAction *act;
+ Main *bmain = CTX_data_main(mContext);
+
+ if ((animType->transform) != 0) {
+ /* const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL; */ /* UNUSED */
+ char joint_path[200];
+
+ if (is_joint) {
+ armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
+ }
+
+ if (!ob->adt || !ob->adt->action) {
+ act = ED_id_action_ensure(bmain, (ID *)&ob->id);
+ }
+ else {
+ act = ob->adt->action;
+ }
+
+ /* Get the list of animation curves of the object */
+ ListBase *AnimCurves = &(act->curves);
+
+ const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
+
+ /* for each transformation in node */
+ for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
+ COLLADAFW::Transformation *transform = nodeTransforms[i];
+ COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
+
+ bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
+ bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
+
+ const COLLADAFW::UniqueId &listid = transform->getAnimationList();
+
+ /* check if transformation has animations */
+ if (animlist_map.find(listid) == animlist_map.end()) {
+ continue;
+ }
+ else {
+ /* transformation has animations */
+ const COLLADAFW::AnimationList *animlist = animlist_map[listid];
+ const COLLADAFW::AnimationList::AnimationBindings &bindings =
+ animlist->getAnimationBindings();
+ /* all the curves belonging to the current binding */
+ std::vector<FCurve *> animcurves;
+ for (unsigned int j = 0; j < bindings.getCount(); j++) {
+ animcurves = curve_map[bindings[j].animation];
+ if (is_matrix) {
+ apply_matrix_curves(ob, animcurves, root, node, transform);
+ }
+ else {
+ /* calculate rnapaths and array index of fcurves according to transformation and
+ * animation class */
+ Assign_transform_animations(
+ transform, &bindings[j], &animcurves, is_joint, joint_path);
+
+ std::vector<FCurve *>::iterator iter;
+ /* Add the curves of the current animation to the object */
+ for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
+ FCurve *fcu = *iter;
+
+ BLI_addtail(AnimCurves, fcu);
+ fcurve_is_used(fcu);
+ }
+ }
+ }
+ }
+ if (is_rotation && !(is_joint || is_matrix)) {
+ ob->rotmode = ROT_MODE_EUL;
+ }
+ }
+ }
+
+ if ((animType->light) != 0) {
+ Light *lamp = (Light *)ob->data;
+ if (!lamp->adt || !lamp->adt->action) {
+ act = ED_id_action_ensure(bmain, (ID *)&lamp->id);
+ }
+ else {
+ act = lamp->adt->action;
+ }
+
+ ListBase *AnimCurves = &(act->curves);
+ const COLLADAFW::InstanceLightPointerArray &nodeLights = node->getInstanceLights();
+
+ for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
+ const COLLADAFW::Light *light = (COLLADAFW::Light *)
+ FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
+
+ if ((animType->light & LIGHT_COLOR) != 0) {
+ const COLLADAFW::Color *col = &(light->getColor());
+ const COLLADAFW::UniqueId &listid = col->getAnimationList();
+
+ Assign_color_animations(listid, AnimCurves, "color");
+ }
+ if ((animType->light & LIGHT_FOA) != 0) {
+ const COLLADAFW::AnimatableFloat *foa = &(light->getFallOffAngle());
+ const COLLADAFW::UniqueId &listid = foa->getAnimationList();
+
+ Assign_float_animations(listid, AnimCurves, "spot_size");
+ }
+ if ((animType->light & LIGHT_FOE) != 0) {
+ const COLLADAFW::AnimatableFloat *foe = &(light->getFallOffExponent());
+ const COLLADAFW::UniqueId &listid = foe->getAnimationList();
+
+ Assign_float_animations(listid, AnimCurves, "spot_blend");
+ }
+ }
+ }
+
+ if (animType->camera != 0) {
+
+ Camera *cam = (Camera *)ob->data;
+ if (!cam->adt || !cam->adt->action) {
+ act = ED_id_action_ensure(bmain, (ID *)&cam->id);
+ }
+ else {
+ act = cam->adt->action;
+ }
+
+ ListBase *AnimCurves = &(act->curves);
+ const COLLADAFW::InstanceCameraPointerArray &nodeCameras = node->getInstanceCameras();
+
+ for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
+ const COLLADAFW::Camera *camera = (COLLADAFW::Camera *)
+ FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
+
+ if ((animType->camera & CAMERA_XFOV) != 0) {
+ const COLLADAFW::AnimatableFloat *xfov = &(camera->getXFov());
+ const COLLADAFW::UniqueId &listid = xfov->getAnimationList();
+ double aspect = get_aspect_ratio(camera);
+ Assign_lens_animations(listid, AnimCurves, aspect, cam, "lens", CAMERA_XFOV);
+ }
+
+ else if ((animType->camera & CAMERA_YFOV) != 0) {
+ const COLLADAFW::AnimatableFloat *yfov = &(camera->getYFov());
+ const COLLADAFW::UniqueId &listid = yfov->getAnimationList();
+ double aspect = get_aspect_ratio(camera);
+ Assign_lens_animations(listid, AnimCurves, aspect, cam, "lens", CAMERA_YFOV);
+ }
+
+ else if ((animType->camera & CAMERA_XMAG) != 0) {
+ const COLLADAFW::AnimatableFloat *xmag = &(camera->getXMag());
+ const COLLADAFW::UniqueId &listid = xmag->getAnimationList();
+ Assign_float_animations(listid, AnimCurves, "ortho_scale");
+ }
+
+ else if ((animType->camera & CAMERA_YMAG) != 0) {
+ const COLLADAFW::AnimatableFloat *ymag = &(camera->getYMag());
+ const COLLADAFW::UniqueId &listid = ymag->getAnimationList();
+ Assign_float_animations(listid, AnimCurves, "ortho_scale");
+ }
+
+ if ((animType->camera & CAMERA_ZFAR) != 0) {
+ const COLLADAFW::AnimatableFloat *zfar = &(camera->getFarClippingPlane());
+ const COLLADAFW::UniqueId &listid = zfar->getAnimationList();
+ Assign_float_animations(listid, AnimCurves, "clip_end");
+ }
+
+ if ((animType->camera & CAMERA_ZNEAR) != 0) {
+ const COLLADAFW::AnimatableFloat *znear = &(camera->getNearClippingPlane());
+ const COLLADAFW::UniqueId &listid = znear->getAnimationList();
+ Assign_float_animations(listid, AnimCurves, "clip_start");
+ }
+ }
+ }
+ if (animType->material != 0) {
+
+ Material *ma = BKE_object_material_get(ob, 1);
+ if (!ma->adt || !ma->adt->action) {
+ act = ED_id_action_ensure(bmain, (ID *)&ma->id);
+ }
+ else {
+ act = ma->adt->action;
+ }
+
+ const COLLADAFW::InstanceGeometryPointerArray &nodeGeoms = node->getInstanceGeometries();
+ for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
+ const COLLADAFW::MaterialBindingArray &matBinds = nodeGeoms[i]->getMaterialBindings();
+ for (unsigned int j = 0; j < matBinds.getCount(); j++) {
+ const COLLADAFW::UniqueId &matuid = matBinds[j].getReferencedMaterial();
+ const COLLADAFW::Effect *ef = (COLLADAFW::Effect *)(FW_object_map[matuid]);
+ if (ef != NULL) { /* can be NULL [#28909] */
+ Material *ma = uid_material_map[matuid];
+ if (!ma) {
+ fprintf(stderr,
+ "Collada: Node %s refers to undefined material\n",
+ node->getName().c_str());
+ continue;
+ }
+ ListBase &AnimCurves = get_animation_curves(bmain, ma);
+ const COLLADAFW::CommonEffectPointerArray &commonEffects = ef->getCommonEffects();
+ COLLADAFW::EffectCommon *efc = commonEffects[0];
+ if ((animType->material & MATERIAL_SHININESS) != 0) {
+ const COLLADAFW::FloatOrParam *shin = &(efc->getShininess());
+ const COLLADAFW::UniqueId &listid = shin->getAnimationList();
+ Assign_float_animations(listid, &AnimCurves, "specular_hardness");
+ }
+
+ if ((animType->material & MATERIAL_IOR) != 0) {
+ const COLLADAFW::FloatOrParam *ior = &(efc->getIndexOfRefraction());
+ const COLLADAFW::UniqueId &listid = ior->getAnimationList();
+ Assign_float_animations(listid, &AnimCurves, "raytrace_transparency.ior");
+ }
+
+ if ((animType->material & MATERIAL_SPEC_COLOR) != 0) {
+ const COLLADAFW::ColorOrTexture *cot = &(efc->getSpecular());
+ const COLLADAFW::UniqueId &listid = cot->getColor().getAnimationList();
+ Assign_color_animations(listid, &AnimCurves, "specular_color");
+ }
+
+ if ((animType->material & MATERIAL_DIFF_COLOR) != 0) {
+ const COLLADAFW::ColorOrTexture *cot = &(efc->getDiffuse());
+ const COLLADAFW::UniqueId &listid = cot->getColor().getAnimationList();
+ Assign_color_animations(listid, &AnimCurves, "diffuse_color");
+ }
+ }
+ }
+ }
+ }
+
+ delete animType;
+}
+
+void AnimationImporter::add_bone_animation_sampled(Object *ob,
+ std::vector<FCurve *> &animcurves,
+ COLLADAFW::Node *root,
+ COLLADAFW::Node *node,
+ COLLADAFW::Transformation *tm)
+{
+ const char *bone_name = bc_get_joint_name(node);
+ char joint_path[200];
+ armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
+
+ std::vector<float> frames;
+ find_frames(&frames, &animcurves);
+
+ /* convert degrees to radians */
+ if (tm->getTransformationType() == COLLADAFW::Transformation::ROTATE) {
+
+ std::vector<FCurve *>::iterator iter;
+ for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
+ FCurve *fcu = *iter;
+
+ fcurve_deg_to_rad(fcu);
+ }
+ }
+
+ float irest_dae[4][4];
+ float rest[4][4], irest[4][4];
+
+ get_joint_rest_mat(irest_dae, root, node);
+ invert_m4(irest_dae);
+
+ Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
+ if (!bone) {
+ fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
+ return;
+ }
+
+ unit_m4(rest);
+ copy_m4_m4(rest, bone->arm_mat);
+ invert_m4_m4(irest, rest);
+
+ /* new curves to assign matrix transform animation */
+ FCurve *newcu[10]; /* if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale. */
+ unsigned int totcu = 10;
+ const char *tm_str = NULL;
+ char rna_path[200];
+ for (int i = 0; i < totcu; i++) {
+
+ int axis = i;
+
+ if (i < 4) {
+ tm_str = "rotation_quaternion";
+ axis = i;
+ }
+ else if (i < 7) {
+ tm_str = "location";
+ axis = i - 4;
+ }
+ else {
+ tm_str = "scale";
+ axis = i - 7;
+ }
+
+ BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
+
+ newcu[i] = create_fcurve(axis, rna_path);
+ newcu[i]->totvert = frames.size();
+ }
+
+ if (frames.size() == 0) {
+ return;
+ }
+
+ std::sort(frames.begin(), frames.end());
+
+ BCQuat qref;
+
+ std::vector<float>::iterator it;
+
+ /* sample values at each frame */
+ for (it = frames.begin(); it != frames.end(); it++) {
+ float fra = *it;
+
+ Matrix mat;
+ Matrix matfra;
+
+ unit_m4(matfra);
+
+ /* calc object-space mat */
+ evaluate_transform_at_frame(matfra, node, fra);
+
+ /* for joints, we need a special matrix
+ * special matrix: iR * M * iR_dae * R
+ * where R, iR are bone rest and inverse rest mats in world space (Blender bones),
+ * iR_dae is joint inverse rest matrix (DAE)
+ * and M is an evaluated joint world-space matrix (DAE). */
+ Matrix temp, par;
+
+ /* calc M */
+ calc_joint_parent_mat_rest(par, NULL, root, node);
+ mul_m4_m4m4(temp, par, matfra);
+
+ /* evaluate_joint_world_transform_at_frame(temp, NULL, node, fra); */
+
+ /* calc special matrix */
+ mul_m4_series(mat, irest, temp, irest_dae, rest);
+
+ Vector loc, scale;
+
+ qref.rotate_to(mat);
+
+ copy_v3_v3(loc, mat[3]);
+ mat4_to_size(scale, mat);
+
+ /* add keys */
+ for (int i = 0; i < totcu; i++) {
+ if (i < 4) {
+ add_bezt(newcu[i], fra, qref.quat()[i]);
+ }
+ else if (i < 7) {
+ add_bezt(newcu[i], fra, loc[i - 4]);
+ }
+ else {
+ add_bezt(newcu[i], fra, scale[i - 7]);
+ }
+ }
+ }
+ Main *bmain = CTX_data_main(mContext);
+ ED_id_action_ensure(bmain, (ID *)&ob->id);
+
+ /* add curves */
+ for (int i = 0; i < totcu; i++) {
+ add_bone_fcurve(ob, node, newcu[i]);
+#if 0
+ fcurve_is_used(newcu[i]); /* never added to unused */
+#endif
+ }
+
+ bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
+ chan->rotmode = ROT_MODE_QUAT;
+}
+
+/* Check if object is animated by checking if animlist_map
+ * holds the animlist_id of node transforms */
+AnimationImporter::AnimMix *AnimationImporter::get_animation_type(
+ const COLLADAFW::Node *node,
+ std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map)
+{
+ AnimMix *types = new AnimMix();
+
+ const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
+
+ /* for each transformation in node */
+ for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
+ COLLADAFW::Transformation *transform = nodeTransforms[i];
+ const COLLADAFW::UniqueId &listid = transform->getAnimationList();
+
+ /* check if transformation has animations */
+ if (animlist_map.find(listid) == animlist_map.end()) {
+ continue;
+ }
+ else {
+ types->transform = types->transform | BC_NODE_TRANSFORM;
+ break;
+ }
+ }
+ const COLLADAFW::InstanceLightPointerArray &nodeLights = node->getInstanceLights();
+
+ for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
+ const COLLADAFW::Light *light = (COLLADAFW::Light *)
+ FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
+ types->light = setAnimType(&(light->getColor()), (types->light), LIGHT_COLOR);
+ types->light = setAnimType(&(light->getFallOffAngle()), (types->light), LIGHT_FOA);
+ types->light = setAnimType(&(light->getFallOffExponent()), (types->light), LIGHT_FOE);
+
+ if (types->light != 0) {
+ break;
+ }
+ }
+
+ const COLLADAFW::InstanceCameraPointerArray &nodeCameras = node->getInstanceCameras();
+ for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
+ const COLLADAFW::Camera *camera = (COLLADAFW::Camera *)
+ FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
+ if (camera == NULL) {
+ /* Can happen if the node refers to an unknown camera. */
+ continue;
+ }
+
+ const bool is_perspective_type = camera->getCameraType() == COLLADAFW::Camera::PERSPECTIVE;
+
+ int addition;
+ const COLLADAFW::Animatable *mag;
+ const COLLADAFW::UniqueId listid = camera->getYMag().getAnimationList();
+ if (animlist_map.find(listid) != animlist_map.end()) {
+ mag = &(camera->getYMag());
+ addition = (is_perspective_type) ? CAMERA_YFOV : CAMERA_YMAG;
+ }
+ else {
+ mag = &(camera->getXMag());
+ addition = (is_perspective_type) ? CAMERA_XFOV : CAMERA_XMAG;
+ }
+ types->camera = setAnimType(mag, (types->camera), addition);
+
+ types->camera = setAnimType(&(camera->getFarClippingPlane()), (types->camera), CAMERA_ZFAR);
+ types->camera = setAnimType(&(camera->getNearClippingPlane()), (types->camera), CAMERA_ZNEAR);
+
+ if (types->camera != 0) {
+ break;
+ }
+ }
+
+ const COLLADAFW::InstanceGeometryPointerArray &nodeGeoms = node->getInstanceGeometries();
+ for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
+ const COLLADAFW::MaterialBindingArray &matBinds = nodeGeoms[i]->getMaterialBindings();
+ for (unsigned int j = 0; j < matBinds.getCount(); j++) {
+ const COLLADAFW::UniqueId &matuid = matBinds[j].getReferencedMaterial();
+ const COLLADAFW::Effect *ef = (COLLADAFW::Effect *)(FW_object_map[matuid]);
+ if (ef != NULL) { /* can be NULL [#28909] */
+ const COLLADAFW::CommonEffectPointerArray &commonEffects = ef->getCommonEffects();
+ if (!commonEffects.empty()) {
+ COLLADAFW::EffectCommon *efc = commonEffects[0];
+ types->material = setAnimType(
+ &(efc->getShininess()), (types->material), MATERIAL_SHININESS);
+ types->material = setAnimType(
+ &(efc->getSpecular().getColor()), (types->material), MATERIAL_SPEC_COLOR);
+ types->material = setAnimType(
+ &(efc->getDiffuse().getColor()), (types->material), MATERIAL_DIFF_COLOR);
+#if 0
+ types->material = setAnimType(&(efc->get()), (types->material), MATERIAL_TRANSPARENCY);
+#endif
+ types->material = setAnimType(
+ &(efc->getIndexOfRefraction()), (types->material), MATERIAL_IOR);
+ }
+ }
+ }
+ }
+ return types;
+}
+
+int AnimationImporter::setAnimType(const COLLADAFW::Animatable *prop, int types, int addition)
+{
+ int anim_type;
+ const COLLADAFW::UniqueId &listid = prop->getAnimationList();
+ if (animlist_map.find(listid) != animlist_map.end()) {
+ anim_type = types | addition;
+ }
+ else {
+ anim_type = types;
+ }
+
+ return anim_type;
+}
+
+/* Is not used anymore. */
+void AnimationImporter::find_frames_old(std::vector<float> *frames,
+ COLLADAFW::Node *node,
+ COLLADAFW::Transformation::TransformationType tm_type)
+{
+ bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
+ bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
+ /* for each <rotate>, <translate>, etc. there is a separate Transformation */
+ const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
+
+ unsigned int i;
+ /* find frames at which to sample plus convert all rotation keys to radians */
+ for (i = 0; i < nodeTransforms.getCount(); i++) {
+ COLLADAFW::Transformation *transform = nodeTransforms[i];
+ COLLADAFW::Transformation::TransformationType nodeTmType = transform->getTransformationType();
+
+ if (nodeTmType == tm_type) {
+ /* get animation bindings for the current transformation */
+ const COLLADAFW::UniqueId &listid = transform->getAnimationList();
+ /* if transform is animated its animlist must exist. */
+ if (animlist_map.find(listid) != animlist_map.end()) {
+
+ const COLLADAFW::AnimationList *animlist = animlist_map[listid];
+ const COLLADAFW::AnimationList::AnimationBindings &bindings =
+ animlist->getAnimationBindings();
+
+ if (bindings.getCount()) {
+ /* for each AnimationBinding get the fcurves which animate the transform */
+ for (unsigned int j = 0; j < bindings.getCount(); j++) {
+ std::vector<FCurve *> &curves = curve_map[bindings[j].animation];
+ bool xyz = ((nodeTmType == COLLADAFW::Transformation::TRANSLATE ||
+ nodeTmType == COLLADAFW::Transformation::SCALE) &&
+ bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
+
+ if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3) || is_matrix) {
+ std::vector<FCurve *>::iterator iter;
+
+ for (iter = curves.begin(); iter != curves.end(); iter++) {
+ FCurve *fcu = *iter;
+
+ /* if transform is rotation the fcurves values must be turned in to radian. */
+ if (is_rotation) {
+ fcurve_deg_to_rad(fcu);
+ }
+
+ for (unsigned int k = 0; k < fcu->totvert; k++) {
+ /* get frame value from bezTriple */
+ float fra = fcu->bezt[k].vec[1][0];
+ /* if frame already not added add frame to frames */
+ if (std::find(frames->begin(), frames->end(), fra) == frames->end()) {
+ frames->push_back(fra);
+ }
+ }
+ }
+ }
+ else {
+ fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves.size());
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+/* prerequisites:
+ * animlist_map - map animlist id -> animlist
+ * curve_map - map anim id -> curve(s) */
+Object *AnimationImporter::translate_animation_OLD(
+ COLLADAFW::Node *node,
+ std::map<COLLADAFW::UniqueId, Object *> &object_map,
+ std::map<COLLADAFW::UniqueId, COLLADAFW::Node *> &root_map,
+ COLLADAFW::Transformation::TransformationType tm_type,
+ Object *par_job)
+{
+
+ bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
+ bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
+ bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
+
+ COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ?
+ node :
+ root_map[node->getUniqueId()];
+ Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) :
+ object_map[node->getUniqueId()];
+ const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
+ if (!ob) {
+ fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
+ return NULL;
+ }
+
+ /* frames at which to sample */
+ std::vector<float> frames;
+
+ find_frames_old(&frames, node, tm_type);
+
+ unsigned int i;
+
+ float irest_dae[4][4];
+ float rest[4][4], irest[4][4];
+
+ if (is_joint) {
+ get_joint_rest_mat(irest_dae, root, node);
+ invert_m4(irest_dae);
+
+ Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
+ if (!bone) {
+ fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
+ return NULL;
+ }
+
+ unit_m4(rest);
+ copy_m4_m4(rest, bone->arm_mat);
+ invert_m4_m4(irest, rest);
+ }
+
+ Object *job = NULL;
+
+#ifdef ARMATURE_TEST
+ FCurve *job_curves[10];
+ job = get_joint_object(root, node, par_job);
+#endif
+
+ if (frames.size() == 0) {
+ return job;
+ }
+
+ std::sort(frames.begin(), frames.end());
+
+ const char *tm_str = NULL;
+ switch (tm_type) {
+ case COLLADAFW::Transformation::ROTATE:
+ tm_str = "rotation_quaternion";
+ break;
+ case COLLADAFW::Transformation::SCALE:
+ tm_str = "scale";
+ break;
+ case COLLADAFW::Transformation::TRANSLATE:
+ tm_str = "location";
+ break;
+ case COLLADAFW::Transformation::MATRIX:
+ break;
+ default:
+ return job;
+ }
+
+ char rna_path[200];
+ char joint_path[200];
+
+ if (is_joint) {
+ armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
+ }
+
+ /* new curves */
+ FCurve *newcu[10]; /* if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale */
+ unsigned int totcu = is_matrix ? 10 : (is_rotation ? 4 : 3);
+
+ for (i = 0; i < totcu; i++) {
+
+ int axis = i;
+
+ if (is_matrix) {
+ if (i < 4) {
+ tm_str = "rotation_quaternion";
+ axis = i;
+ }
+ else if (i < 7) {
+ tm_str = "location";
+ axis = i - 4;
+ }
+ else {
+ tm_str = "scale";
+ axis = i - 7;
+ }
+ }
+
+ if (is_joint) {
+ BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
+ }
+ else {
+ BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
+ }
+ newcu[i] = create_fcurve(axis, rna_path);
+
+#ifdef ARMATURE_TEST
+ if (is_joint) {
+ job_curves[i] = create_fcurve(axis, tm_str);
+ }
+#endif
+ }
+
+ std::vector<float>::iterator it;
+
+ /* sample values at each frame */
+ for (it = frames.begin(); it != frames.end(); it++) {
+ float fra = *it;
+
+ float mat[4][4];
+ float matfra[4][4];
+
+ unit_m4(matfra);
+
+ /* calc object-space mat */
+ evaluate_transform_at_frame(matfra, node, fra);
+
+ /* for joints, we need a special matrix */
+ if (is_joint) {
+ /* special matrix: iR * M * iR_dae * R
+ * where R, iR are bone rest and inverse rest mats in world space (Blender bones),
+ * iR_dae is joint inverse rest matrix (DAE)
+ * and M is an evaluated joint world-space matrix (DAE). */
+ float temp[4][4], par[4][4];
+
+ /* calc M */
+ calc_joint_parent_mat_rest(par, NULL, root, node);
+ mul_m4_m4m4(temp, par, matfra);
+
+ /* evaluate_joint_world_transform_at_frame(temp, NULL, node, fra); */
+
+ /* calc special matrix */
+ mul_m4_series(mat, irest, temp, irest_dae, rest);
+ }
+ else {
+ copy_m4_m4(mat, matfra);
+ }
+
+ float val[4] = {};
+ float rot[4], loc[3], scale[3];
+
+ switch (tm_type) {
+ case COLLADAFW::Transformation::ROTATE:
+ mat4_to_quat(val, mat);
+ break;
+ case COLLADAFW::Transformation::SCALE:
+ mat4_to_size(val, mat);
+ break;
+ case COLLADAFW::Transformation::TRANSLATE:
+ copy_v3_v3(val, mat[3]);
+ break;
+ case COLLADAFW::Transformation::MATRIX:
+ mat4_to_quat(rot, mat);
+ copy_v3_v3(loc, mat[3]);
+ mat4_to_size(scale, mat);
+ break;
+ default:
+ break;
+ }
+
+ /* add keys */
+ for (i = 0; i < totcu; i++) {
+ if (is_matrix) {
+ if (i < 4) {
+ add_bezt(newcu[i], fra, rot[i]);
+ }
+ else if (i < 7) {
+ add_bezt(newcu[i], fra, loc[i - 4]);
+ }
+ else {
+ add_bezt(newcu[i], fra, scale[i - 7]);
+ }
+ }
+ else {
+ add_bezt(newcu[i], fra, val[i]);
+ }
+ }
+
+#ifdef ARMATURE_TEST
+ if (is_joint) {
+ switch (tm_type) {
+ case COLLADAFW::Transformation::ROTATE:
+ mat4_to_quat(val, matfra);
+ break;
+ case COLLADAFW::Transformation::SCALE:
+ mat4_to_size(val, matfra);
+ break;
+ case COLLADAFW::Transformation::TRANSLATE:
+ copy_v3_v3(val, matfra[3]);
+ break;
+ case MATRIX:
+ mat4_to_quat(rot, matfra);
+ copy_v3_v3(loc, matfra[3]);
+ mat4_to_size(scale, matfra);
+ break;
+ default:
+ break;
+ }
+
+ for (i = 0; i < totcu; i++) {
+ if (is_matrix) {
+ if (i < 4) {
+ add_bezt(job_curves[i], fra, rot[i]);
+ }
+ else if (i < 7) {
+ add_bezt(job_curves[i], fra, loc[i - 4]);
+ }
+ else {
+ add_bezt(job_curves[i], fra, scale[i - 7]);
+ }
+ }
+ else {
+ add_bezt(job_curves[i], fra, val[i]);
+ }
+ }
+ }
+#endif
+ }
+ Main *bmain = CTX_data_main(mContext);
+ ED_id_action_ensure(bmain, (ID *)&ob->id);
+
+ ListBase *curves = &ob->adt->action->curves;
+
+ /* add curves */
+ for (i = 0; i < totcu; i++) {
+ if (is_joint) {
+ add_bone_fcurve(ob, node, newcu[i]);
+ }
+ else {
+ BLI_addtail(curves, newcu[i]);
+ }
+
+#ifdef ARMATURE_TEST
+ if (is_joint) {
+ BLI_addtail(&job->adt->action->curves, job_curves[i]);
+ }
+#endif
+ }
+
+ if (is_rotation || is_matrix) {
+ if (is_joint) {
+ bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
+ chan->rotmode = (is_matrix) ? ROT_MODE_QUAT : ROT_MODE_EUL;
+ }
+ else {
+ ob->rotmode = (is_matrix) ? ROT_MODE_QUAT : ROT_MODE_EUL;
+ }
+ }
+
+ return job;
+}
+
+/* internal, better make it private
+ * warning: evaluates only rotation and only assigns matrix transforms now
+ * prerequisites: animlist_map, curve_map */
+void AnimationImporter::evaluate_transform_at_frame(float mat[4][4],
+ COLLADAFW::Node *node,
+ float fra)
+{
+ const COLLADAFW::TransformationPointerArray &tms = node->getTransformations();
+
+ unit_m4(mat);
+
+ for (unsigned int i = 0; i < tms.getCount(); i++) {
+ COLLADAFW::Transformation *tm = tms[i];
+ COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
+ float m[4][4];
+
+ unit_m4(m);
+
+ std::string nodename = node->getName().size() ? node->getName() : node->getOriginalId();
+ if (!evaluate_animation(tm, m, fra, nodename.c_str())) {
+ switch (type) {
+ case COLLADAFW::Transformation::ROTATE:
+ dae_rotate_to_mat4(tm, m);
+ break;
+ case COLLADAFW::Transformation::TRANSLATE:
+ dae_translate_to_mat4(tm, m);
+ break;
+ case COLLADAFW::Transformation::SCALE:
+ dae_scale_to_mat4(tm, m);
+ break;
+ case COLLADAFW::Transformation::MATRIX:
+ dae_matrix_to_mat4(tm, m);
+ break;
+ default:
+ fprintf(stderr, "unsupported transformation type %d\n", type);
+ }
+ }
+
+ float temp[4][4];
+ copy_m4_m4(temp, mat);
+
+ mul_m4_m4m4(mat, temp, m);
+ }
+}
+
+static void report_class_type_unsupported(const char *path,
+ const COLLADAFW::AnimationList::AnimationClass animclass,
+ const COLLADAFW::Transformation::TransformationType type)
+{
+ if (animclass == COLLADAFW::AnimationList::UNKNOWN_CLASS) {
+ fprintf(stderr, "%s: UNKNOWN animation class\n", path);
+ }
+ else {
+ fprintf(stderr,
+ "%s: animation class %d is not supported yet for transformation type %d\n",
+ path,
+ animclass,
+ type);
+ }
+}
+
+/* return true to indicate that mat contains a sane value */
+bool AnimationImporter::evaluate_animation(COLLADAFW::Transformation *tm,
+ float mat[4][4],
+ float fra,
+ const char *node_id)
+{
+ const COLLADAFW::UniqueId &listid = tm->getAnimationList();
+ COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
+
+ if (type != COLLADAFW::Transformation::ROTATE && type != COLLADAFW::Transformation::SCALE &&
+ type != COLLADAFW::Transformation::TRANSLATE && type != COLLADAFW::Transformation::MATRIX) {
+ fprintf(stderr, "animation of transformation %d is not supported yet\n", type);
+ return false;
+ }
+
+ if (animlist_map.find(listid) == animlist_map.end()) {
+ return false;
+ }
+
+ const COLLADAFW::AnimationList *animlist = animlist_map[listid];
+ const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
+
+ if (bindings.getCount()) {
+ float vec[3];
+
+ bool is_scale = (type == COLLADAFW::Transformation::SCALE);
+ bool is_translate = (type == COLLADAFW::Transformation::TRANSLATE);
+
+ if (is_scale) {
+ dae_scale_to_v3(tm, vec);
+ }
+ else if (is_translate) {
+ dae_translate_to_v3(tm, vec);
+ }
+
+ for (unsigned int index = 0; index < bindings.getCount(); index++) {
+ const COLLADAFW::AnimationList::AnimationBinding &binding = bindings[index];
+ std::vector<FCurve *> &curves = curve_map[binding.animation];
+ COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass;
+ char path[100];
+
+ switch (type) {
+ case COLLADAFW::Transformation::ROTATE:
+ BLI_snprintf(path, sizeof(path), "%s.rotate (binding %u)", node_id, index);
+ break;
+ case COLLADAFW::Transformation::SCALE:
+ BLI_snprintf(path, sizeof(path), "%s.scale (binding %u)", node_id, index);
+ break;
+ case COLLADAFW::Transformation::TRANSLATE:
+ BLI_snprintf(path, sizeof(path), "%s.translate (binding %u)", node_id, index);
+ break;
+ case COLLADAFW::Transformation::MATRIX:
+ BLI_snprintf(path, sizeof(path), "%s.matrix (binding %u)", node_id, index);
+ break;
+ default:
+ break;
+ }
+
+ if (type == COLLADAFW::Transformation::ROTATE) {
+ if (curves.size() != 1) {
+ fprintf(stderr, "expected 1 curve, got %d\n", (int)curves.size());
+ return false;
+ }
+
+ /* TODO support other animclasses */
+ if (animclass != COLLADAFW::AnimationList::ANGLE) {
+ report_class_type_unsupported(path, animclass, type);
+ return false;
+ }
+
+ COLLADABU::Math::Vector3 &axis = ((COLLADAFW::Rotate *)tm)->getRotationAxis();
+
+ float ax[3] = {(float)axis[0], (float)axis[1], (float)axis[2]};
+ float angle = evaluate_fcurve(curves[0], fra);
+ axis_angle_to_mat4(mat, ax, angle);
+
+ return true;
+ }
+ else if (is_scale || is_translate) {
+ bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ;
+
+ if ((!is_xyz && curves.size() != 1) || (is_xyz && curves.size() != 3)) {
+ if (is_xyz) {
+ fprintf(stderr, "%s: expected 3 curves, got %d\n", path, (int)curves.size());
+ }
+ else {
+ fprintf(stderr, "%s: expected 1 curve, got %d\n", path, (int)curves.size());
+ }
+ return false;
+ }
+
+ switch (animclass) {
+ case COLLADAFW::AnimationList::POSITION_X:
+ vec[0] = evaluate_fcurve(curves[0], fra);
+ break;
+ case COLLADAFW::AnimationList::POSITION_Y:
+ vec[1] = evaluate_fcurve(curves[0], fra);
+ break;
+ case COLLADAFW::AnimationList::POSITION_Z:
+ vec[2] = evaluate_fcurve(curves[0], fra);
+ break;
+ case COLLADAFW::AnimationList::POSITION_XYZ:
+ vec[0] = evaluate_fcurve(curves[0], fra);
+ vec[1] = evaluate_fcurve(curves[1], fra);
+ vec[2] = evaluate_fcurve(curves[2], fra);
+ break;
+ default:
+ report_class_type_unsupported(path, animclass, type);
+ break;
+ }
+ }
+ else if (type == COLLADAFW::Transformation::MATRIX) {
+ /* for now, of matrix animation,
+ * support only the case when all values are packed into one animation */
+ if (curves.size() != 16) {
+ fprintf(stderr, "%s: expected 16 curves, got %d\n", path, (int)curves.size());
+ return false;
+ }
+
+ COLLADABU::Math::Matrix4 matrix;
+ int mi = 0, mj = 0;
+
+ for (std::vector<FCurve *>::iterator it = curves.begin(); it != curves.end(); it++) {
+ matrix.setElement(mi, mj, evaluate_fcurve(*it, fra));
+ mj++;
+ if (mj == 4) {
+ mi++;
+ mj = 0;
+ }
+ }
+ unit_converter->dae_matrix_to_mat4_(mat, matrix);
+ return true;
+ }
+ }
+
+ if (is_scale) {
+ size_to_mat4(mat, vec);
+ }
+ else {
+ copy_v3_v3(mat[3], vec);
+ }
+
+ return is_scale || is_translate;
+ }
+
+ return false;
+}
+
+/* gives a world-space mat of joint at rest position */
+void AnimationImporter::get_joint_rest_mat(float mat[4][4],
+ COLLADAFW::Node *root,
+ COLLADAFW::Node *node)
+{
+ /* if bind mat is not available,
+ * use "current" node transform, i.e. all those tms listed inside <node> */
+ if (!armature_importer->get_joint_bind_mat(mat, node)) {
+ float par[4][4], m[4][4];
+
+ calc_joint_parent_mat_rest(par, NULL, root, node);
+ get_node_mat(m, node, NULL, NULL);
+ mul_m4_m4m4(mat, par, m);
+ }
+}
+
+/* gives a world-space mat, end's mat not included */
+bool AnimationImporter::calc_joint_parent_mat_rest(float mat[4][4],
+ float par[4][4],
+ COLLADAFW::Node *node,
+ COLLADAFW::Node *end)
+{
+ float m[4][4];
+
+ if (node == end) {
+ par ? copy_m4_m4(mat, par) : unit_m4(mat);
+ return true;
+ }
+
+ /* use bind matrix if available or calc "current" world mat */
+ if (!armature_importer->get_joint_bind_mat(m, node)) {
+ if (par) {
+ float temp[4][4];
+ get_node_mat(temp, node, NULL, NULL);
+ mul_m4_m4m4(m, par, temp);
+ }
+ else {
+ get_node_mat(m, node, NULL, NULL);
+ }
+ }
+
+ COLLADAFW::NodePointerArray &children = node->getChildNodes();
+ for (unsigned int i = 0; i < children.getCount(); i++) {
+ if (calc_joint_parent_mat_rest(mat, m, children[i], end)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+#ifdef ARMATURE_TEST
+Object *AnimationImporter::get_joint_object(COLLADAFW::Node *root,
+ COLLADAFW::Node *node,
+ Object *par_job)
+{
+ if (joint_objects.find(node->getUniqueId()) == joint_objects.end()) {
+ Object *job = bc_add_object(scene, OB_EMPTY, (char *)get_joint_name(node));
+
+ job->lay = BKE_scene_base_find(scene, job)->lay = 2;
+
+ mul_v3_fl(job->scale, 0.5f);
+ DEG_id_tag_update(&job->id, ID_RECALC_TRANSFORM);
+
+ ED_id_action_ensure((ID *)&job->id);
+
+ job->rotmode = ROT_MODE_QUAT;
+
+ float mat[4][4];
+ get_joint_rest_mat(mat, root, node);
+
+ if (par_job) {
+ float temp[4][4], ipar[4][4];
+ invert_m4_m4(ipar, par_job->obmat);
+ copy_m4_m4(temp, mat);
+ mul_m4_m4m4(mat, ipar, temp);
+ }
+
+ bc_decompose(mat, job->loc, NULL, job->quat, job->scale);
+
+ if (par_job) {
+ job->parent = par_job;
+
+ DEG_id_tag_update(&par_job->id, ID_RECALC_TRANSFORM);
+ job->parsubstr[0] = 0;
+ }
+
+ BKE_object_where_is_calc(scene, job);
+
+ /* after parenting and layer change */
+ DEG_relations_tag_update(CTX_data_main(C));
+
+ joint_objects[node->getUniqueId()] = job;
+ }
+
+ return joint_objects[node->getUniqueId()];
+}
+#endif
+
+#if 0
+/* recursively evaluates joint tree until end is found,
+ * mat then is world-space matrix of end mat must be identity on enter, node must be root. */
+bool AnimationImporter::evaluate_joint_world_transform_at_frame(
+ float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end, float fra)
+{
+ float m[4][4];
+ if (par) {
+ float temp[4][4];
+ evaluate_transform_at_frame(temp, node, node == end ? fra : 0.0f);
+ mul_m4_m4m4(m, par, temp);
+ }
+ else {
+ evaluate_transform_at_frame(m, node, node == end ? fra : 0.0f);
+ }
+
+ if (node == end) {
+ copy_m4_m4(mat, m);
+ return true;
+ }
+ else {
+ COLLADAFW::NodePointerArray &children = node->getChildNodes();
+ for (int i = 0; i < children.getCount(); i++) {
+ if (evaluate_joint_world_transform_at_frame(mat, m, children[i], end, fra)) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+#endif
+
+void AnimationImporter::add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu)
+{
+ const char *bone_name = bc_get_joint_name(node);
+ bAction *act = ob->adt->action;
+
+ /* try to find group */
+ bActionGroup *grp = BKE_action_group_find_name(act, bone_name);
+
+ /* no matching groups, so add one */
+ if (grp == NULL) {
+ /* Add a new group, and make it active */
+ grp = (bActionGroup *)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
+
+ grp->flag = AGRP_SELECTED;
+ BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
+
+ BLI_addtail(&act->groups, grp);
+ BLI_uniquename(&act->groups,
+ grp,
+ CTX_DATA_(BLT_I18NCONTEXT_ID_ACTION, "Group"),
+ '.',
+ offsetof(bActionGroup, name),
+ 64);
+ }
+
+ /* add F-Curve to group */
+ action_groups_add_channel(act, grp, fcu);
+}
+
+void AnimationImporter::set_import_from_version(std::string import_from_version)
+{
+ this->import_from_version = import_from_version;
+}