Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/nodes/composite/nodes/node_composite_blur.cc')
-rw-r--r--source/blender/nodes/composite/nodes/node_composite_blur.cc401
1 files changed, 400 insertions, 1 deletions
diff --git a/source/blender/nodes/composite/nodes/node_composite_blur.cc b/source/blender/nodes/composite/nodes/node_composite_blur.cc
index cb1d93fe10b..630f18361e3 100644
--- a/source/blender/nodes/composite/nodes/node_composite_blur.cc
+++ b/source/blender/nodes/composite/nodes/node_composite_blur.cc
@@ -5,12 +5,27 @@
* \ingroup cmpnodes
*/
+#include <cstdint>
+
+#include "BLI_array.hh"
+#include "BLI_assert.h"
+#include "BLI_index_range.hh"
+#include "BLI_math_base.hh"
+#include "BLI_math_vec_types.hh"
+#include "BLI_math_vector.hh"
+
#include "RNA_access.h"
#include "UI_interface.h"
#include "UI_resources.h"
+#include "RE_pipeline.h"
+
+#include "GPU_state.h"
+#include "GPU_texture.h"
+
#include "COM_node_operation.hh"
+#include "COM_utilities.hh"
#include "node_composite_util.hh"
@@ -18,6 +33,8 @@
namespace blender::nodes::node_composite_blur_cc {
+NODE_STORAGE_FUNCS(NodeBlurData)
+
static void cmp_node_blur_declare(NodeDeclarationBuilder &b)
{
b.add_input<decl::Color>(N_("Image")).default_value({1.0f, 1.0f, 1.0f, 1.0f});
@@ -75,13 +92,395 @@ static void node_composit_buts_blur(uiLayout *layout, bContext *UNUSED(C), Point
using namespace blender::realtime_compositor;
+/* A helper class that computes and caches a 1D GPU texture containing the weights of the separable
+ * filter of the given type and radius. The filter is assumed to be symmetric, because the filter
+ * functions are all even functions. Consequently, only the positive half of the filter is computed
+ * and the shader takes that into consideration. */
+class SymmetricSeparableBlurWeights {
+ private:
+ float radius_ = 1.0f;
+ int type_ = R_FILTER_GAUSS;
+ GPUTexture *texture_ = nullptr;
+
+ public:
+ ~SymmetricSeparableBlurWeights()
+ {
+ if (texture_) {
+ GPU_texture_free(texture_);
+ }
+ }
+
+ /* Check if a texture containing the weights was already computed for the given filter type and
+ * radius. If such texture exists, do nothing, otherwise, free the already computed texture and
+ * recompute it with the given filter type and radius. */
+ void update(float radius, int type)
+ {
+ if (texture_ && type == type_ && radius == radius_) {
+ return;
+ }
+
+ if (texture_) {
+ GPU_texture_free(texture_);
+ }
+
+ /* The size of filter is double the radius plus 1, but since the filter is symmetric, we only
+ * compute half of it and no doubling happens. We add 1 to make sure the filter size is always
+ * odd and there is a center weight. */
+ const int size = math::ceil(radius) + 1;
+ Array<float> weights(size);
+
+ float sum = 0.0f;
+
+ /* First, compute the center weight. */
+ const float center_weight = RE_filter_value(type, 0.0f);
+ weights[0] = center_weight;
+ sum += center_weight;
+
+ /* Second, compute the other weights in the positive direction, making sure to add double the
+ * weight to the sum of weights because the filter is symmetric and we only loop over half of
+ * it. Skip the center weight already computed by dropping the front index. */
+ const float scale = radius > 0.0f ? 1.0f / radius : 0.0f;
+ for (const int i : weights.index_range().drop_front(1)) {
+ const float weight = RE_filter_value(type, i * scale);
+ weights[i] = weight;
+ sum += weight * 2.0f;
+ }
+
+ /* Finally, normalize the weights. */
+ for (const int i : weights.index_range()) {
+ weights[i] /= sum;
+ }
+
+ texture_ = GPU_texture_create_1d("Weights", size, 1, GPU_R16F, weights.data());
+
+ type_ = type;
+ radius_ = radius;
+ }
+
+ void bind_as_texture(GPUShader *shader, const char *texture_name)
+ {
+ const int texture_image_unit = GPU_shader_get_texture_binding(shader, texture_name);
+ GPU_texture_bind(texture_, texture_image_unit);
+ }
+
+ void unbind_as_texture()
+ {
+ GPU_texture_unbind(texture_);
+ }
+};
+
+/* A helper class that computes and caches a 2D GPU texture containing the weights of the filter of
+ * the given type and radius. The filter is assumed to be symmetric, because the filter functions
+ * are evaluated on the normalized distance to the center. Consequently, only the upper right
+ * quadrant are computed and the shader takes that into consideration. */
+class SymmetricBlurWeights {
+ private:
+ int type_ = R_FILTER_GAUSS;
+ float2 radius_ = float2(1.0f);
+ GPUTexture *texture_ = nullptr;
+
+ public:
+ ~SymmetricBlurWeights()
+ {
+ if (texture_) {
+ GPU_texture_free(texture_);
+ }
+ }
+
+ /* Check if a texture containing the weights was already computed for the given filter type and
+ * radius. If such texture exists, do nothing, otherwise, free the already computed texture and
+ * recompute it with the given filter type and radius. */
+ void update(float2 radius, int type)
+ {
+ if (texture_ && type == type_ && radius == radius_) {
+ return;
+ }
+
+ if (texture_) {
+ GPU_texture_free(texture_);
+ }
+
+ /* The full size of filter is double the radius plus 1, but since the filter is symmetric, we
+ * only compute a single quadrant of it and so no doubling happens. We add 1 to make sure the
+ * filter size is always odd and there is a center weight. */
+ const float2 scale = math::safe_divide(float2(1.0f), radius);
+ const int2 size = int2(math::ceil(radius)) + int2(1);
+ Array<float> weights(size.x * size.y);
+
+ float sum = 0.0f;
+
+ /* First, compute the center weight. */
+ const float center_weight = RE_filter_value(type, 0.0f);
+ weights[0] = center_weight;
+ sum += center_weight;
+
+ /* Then, compute the weights along the positive x axis, making sure to add double the weight to
+ * the sum of weights because the filter is symmetric and we only loop over the positive half
+ * of the x axis. Skip the center weight already computed by dropping the front index. */
+ for (const int x : IndexRange(size.x).drop_front(1)) {
+ const float weight = RE_filter_value(type, x * scale.x);
+ weights[x] = weight;
+ sum += weight * 2.0f;
+ }
+
+ /* Then, compute the weights along the positive y axis, making sure to add double the weight to
+ * the sum of weights because the filter is symmetric and we only loop over the positive half
+ * of the y axis. Skip the center weight already computed by dropping the front index. */
+ for (const int y : IndexRange(size.y).drop_front(1)) {
+ const float weight = RE_filter_value(type, y * scale.y);
+ weights[size.x * y] = weight;
+ sum += weight * 2.0f;
+ }
+
+ /* Then, compute the other weights in the upper right quadrant, making sure to add quadruple
+ * the weight to the sum of weights because the filter is symmetric and we only loop over one
+ * quadrant of it. Skip the weights along the y and x axis already computed by dropping the
+ * front index. */
+ for (const int y : IndexRange(size.y).drop_front(1)) {
+ for (const int x : IndexRange(size.x).drop_front(1)) {
+ const float weight = RE_filter_value(type, math::length(float2(x, y) * scale));
+ weights[size.x * y + x] = weight;
+ sum += weight * 4.0f;
+ }
+ }
+
+ /* Finally, normalize the weights. */
+ for (const int y : IndexRange(size.y)) {
+ for (const int x : IndexRange(size.x)) {
+ weights[size.x * y + x] /= sum;
+ }
+ }
+
+ texture_ = GPU_texture_create_2d("Weights", size.x, size.y, 1, GPU_R16F, weights.data());
+
+ type_ = type;
+ radius_ = radius;
+ }
+
+ void bind_as_texture(GPUShader *shader, const char *texture_name)
+ {
+ const int texture_image_unit = GPU_shader_get_texture_binding(shader, texture_name);
+ GPU_texture_bind(texture_, texture_image_unit);
+ }
+
+ void unbind_as_texture()
+ {
+ GPU_texture_unbind(texture_);
+ }
+};
+
class BlurOperation : public NodeOperation {
+ private:
+ /* Cached symmetric blur weights. */
+ SymmetricBlurWeights blur_weights_;
+ /* Cached symmetric blur weights for the separable horizontal pass. */
+ SymmetricSeparableBlurWeights blur_horizontal_weights_;
+ /* Cached symmetric blur weights for the separable vertical pass. */
+ SymmetricSeparableBlurWeights blur_vertical_weights_;
+
public:
using NodeOperation::NodeOperation;
void execute() override
{
- get_input("Image").pass_through(get_result("Image"));
+ if (is_identity()) {
+ get_input("Image").pass_through(get_result("Image"));
+ return;
+ }
+
+ if (use_separable_filter()) {
+ GPUTexture *horizontal_pass_result = execute_separable_blur_horizontal_pass();
+ execute_separable_blur_vertical_pass(horizontal_pass_result);
+ }
+ else {
+ execute_blur();
+ }
+ }
+
+ void execute_blur()
+ {
+ GPUShader *shader = shader_manager().get("compositor_symmetric_blur");
+ GPU_shader_bind(shader);
+
+ GPU_shader_uniform_1b(shader, "extend_bounds", get_extend_bounds());
+ GPU_shader_uniform_1b(shader, "gamma_correct", node_storage(bnode()).gamma);
+
+ const Result &input_image = get_input("Image");
+ input_image.bind_as_texture(shader, "input_tx");
+
+ blur_weights_.update(compute_blur_radius(), node_storage(bnode()).filtertype);
+ blur_weights_.bind_as_texture(shader, "weights_tx");
+
+ Domain domain = compute_domain();
+ if (get_extend_bounds()) {
+ /* Add a radius amount of pixels in both sides of the image, hence the multiply by 2. */
+ domain.size += int2(math::ceil(compute_blur_radius())) * 2;
+ }
+
+ Result &output_image = get_result("Image");
+ output_image.allocate_texture(domain);
+ output_image.bind_as_image(shader, "output_img");
+
+ compute_dispatch_threads_at_least(shader, domain.size);
+
+ GPU_shader_unbind();
+ output_image.unbind_as_image();
+ input_image.unbind_as_texture();
+ blur_weights_.unbind_as_texture();
+ }
+
+ GPUTexture *execute_separable_blur_horizontal_pass()
+ {
+ GPUShader *shader = shader_manager().get("compositor_symmetric_separable_blur");
+ GPU_shader_bind(shader);
+
+ GPU_shader_uniform_1b(shader, "extend_bounds", get_extend_bounds());
+ GPU_shader_uniform_1b(shader, "gamma_correct_input", node_storage(bnode()).gamma);
+ GPU_shader_uniform_1b(shader, "gamma_uncorrect_output", false);
+
+ const Result &input_image = get_input("Image");
+ input_image.bind_as_texture(shader, "input_tx");
+
+ blur_horizontal_weights_.update(compute_blur_radius().x, node_storage(bnode()).filtertype);
+ blur_horizontal_weights_.bind_as_texture(shader, "weights_tx");
+
+ Domain domain = compute_domain();
+ if (get_extend_bounds()) {
+ domain.size.x += static_cast<int>(math::ceil(compute_blur_radius().x)) * 2;
+ }
+
+ /* We allocate an output image of a transposed size, that is, with a height equivalent to the
+ * width of the input and vice versa. This is done as a performance optimization. The shader
+ * will blur the image horizontally and write it to the intermediate output transposed. Then
+ * the vertical pass will execute the same horizontal blur shader, but since its input is
+ * transposed, it will effectively do a vertical blur and write to the output transposed,
+ * effectively undoing the transposition in the horizontal pass. This is done to improve
+ * spatial cache locality in the shader and to avoid having two separate shaders for each blur
+ * pass. */
+ const int2 transposed_domain = int2(domain.size.y, domain.size.x);
+
+ GPUTexture *horizontal_pass_result = texture_pool().acquire_color(transposed_domain);
+ const int image_unit = GPU_shader_get_texture_binding(shader, "output_img");
+ GPU_texture_image_bind(horizontal_pass_result, image_unit);
+
+ compute_dispatch_threads_at_least(shader, domain.size);
+
+ GPU_shader_unbind();
+ input_image.unbind_as_texture();
+ blur_horizontal_weights_.unbind_as_texture();
+ GPU_texture_image_unbind(horizontal_pass_result);
+
+ return horizontal_pass_result;
+ }
+
+ void execute_separable_blur_vertical_pass(GPUTexture *horizontal_pass_result)
+ {
+ GPUShader *shader = shader_manager().get("compositor_symmetric_separable_blur");
+ GPU_shader_bind(shader);
+
+ GPU_shader_uniform_1b(shader, "extend_bounds", get_extend_bounds());
+ GPU_shader_uniform_1b(shader, "gamma_correct_input", false);
+ GPU_shader_uniform_1b(shader, "gamma_uncorrect_output", node_storage(bnode()).gamma);
+
+ GPU_memory_barrier(GPU_BARRIER_TEXTURE_FETCH);
+ const int texture_image_unit = GPU_shader_get_texture_binding(shader, "input_tx");
+ GPU_texture_bind(horizontal_pass_result, texture_image_unit);
+
+ blur_vertical_weights_.update(compute_blur_radius().y, node_storage(bnode()).filtertype);
+ blur_vertical_weights_.bind_as_texture(shader, "weights_tx");
+
+ Domain domain = compute_domain();
+ if (get_extend_bounds()) {
+ /* Add a radius amount of pixels in both sides of the image, hence the multiply by 2. */
+ domain.size += int2(math::ceil(compute_blur_radius())) * 2;
+ }
+
+ Result &output_image = get_result("Image");
+ output_image.allocate_texture(domain);
+ output_image.bind_as_image(shader, "output_img");
+
+ /* Notice that the domain is transposed, see the note on the horizontal pass method for more
+ * information on the reasoning behind this. */
+ compute_dispatch_threads_at_least(shader, int2(domain.size.y, domain.size.x));
+
+ GPU_shader_unbind();
+ output_image.unbind_as_image();
+ blur_vertical_weights_.unbind_as_texture();
+ GPU_texture_unbind(horizontal_pass_result);
+ }
+
+ float2 compute_blur_radius()
+ {
+ const float size = math::clamp(get_input("Size").get_float_value_default(1.0f), 0.0f, 1.0f);
+
+ if (!node_storage(bnode()).relative) {
+ return float2(node_storage(bnode()).sizex, node_storage(bnode()).sizey) * size;
+ }
+
+ int2 image_size = get_input("Image").domain().size;
+ switch (node_storage(bnode()).aspect) {
+ case CMP_NODE_BLUR_ASPECT_Y:
+ image_size.y = image_size.x;
+ break;
+ case CMP_NODE_BLUR_ASPECT_X:
+ image_size.x = image_size.y;
+ break;
+ default:
+ BLI_assert(node_storage(bnode()).aspect == CMP_NODE_BLUR_ASPECT_NONE);
+ break;
+ }
+
+ return float2(image_size) * get_size_factor() * size;
+ }
+
+ /* Returns true if the operation does nothing and the input can be passed through. */
+ bool is_identity()
+ {
+ const Result &input = get_input("Image");
+ /* Single value inputs can't be blurred and are returned as is. */
+ if (input.is_single_value()) {
+ return true;
+ }
+
+ /* Zero blur radius. The operation does nothing and the input can be passed through. */
+ if (compute_blur_radius() == float2(0.0)) {
+ return true;
+ }
+
+ return false;
+ }
+
+ /* The blur node can operate with different filter types, evaluated on the normalized distance to
+ * the center of the filter. Some of those filters are separable and can be computed as such. If
+ * the bokeh member is disabled in the node, then the filter is always computed as separable even
+ * if it is not in fact separable, in which case, the used filter is a cheaper approximation to
+ * the actual filter. If the bokeh member is enabled, then the filter is computed as separable if
+ * it is in fact separable and as a normal 2D filter otherwise. */
+ bool use_separable_filter()
+ {
+ if (!node_storage(bnode()).bokeh) {
+ return true;
+ }
+
+ /* Both Box and Gaussian filters are separable. The rest is not. */
+ switch (node_storage(bnode()).filtertype) {
+ case R_FILTER_BOX:
+ case R_FILTER_GAUSS:
+ case R_FILTER_FAST_GAUSS:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ float2 get_size_factor()
+ {
+ return float2(node_storage(bnode()).percentx, node_storage(bnode()).percenty) / 100.0f;
+ }
+
+ bool get_extend_bounds()
+ {
+ return bnode().custom1 & CMP_NODEFLAG_BLUR_EXTEND_BOUNDS;
}
};