Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc')
-rw-r--r--source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc931
1 files changed, 931 insertions, 0 deletions
diff --git a/source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc b/source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc
new file mode 100644
index 00000000000..f6be6c1e7fb
--- /dev/null
+++ b/source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc
@@ -0,0 +1,931 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include "BLI_task.hh"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+
+#include "BKE_attribute_math.hh"
+#include "BKE_mesh.h"
+
+#include "node_geometry_util.hh"
+
+namespace blender::nodes::node_geo_dual_mesh_cc {
+
+static void node_declare(NodeDeclarationBuilder &b)
+{
+ b.add_input<decl::Geometry>("Mesh").supported_type(GEO_COMPONENT_TYPE_MESH);
+ b.add_input<decl::Bool>("Keep Boundaries")
+ .default_value(false)
+ .description(
+ "Keep non-manifold boundaries of the input mesh in place by avoiding the dual "
+ "transformation there");
+ b.add_output<decl::Geometry>("Dual Mesh");
+}
+
+enum class EdgeType : int8_t {
+ Loose = 0, /* No polygons connected to it. */
+ Boundary = 1, /* An edge connected to exactly one polygon. */
+ Normal = 2, /* A normal edge (connected to two polygons). */
+ NonManifold = 3, /* An edge connected to more than two polygons. */
+};
+
+static EdgeType get_edge_type_with_added_neighbor(EdgeType old_type)
+{
+ switch (old_type) {
+ case EdgeType::Loose:
+ return EdgeType::Boundary;
+ case EdgeType::Boundary:
+ return EdgeType::Normal;
+ case EdgeType::Normal:
+ case EdgeType::NonManifold:
+ return EdgeType::NonManifold;
+ }
+ BLI_assert_unreachable();
+ return EdgeType::Loose;
+}
+
+enum class VertexType : int8_t {
+ Loose = 0, /* Either no edges connected or only loose edges connected. */
+ Normal = 1, /* A normal vertex. */
+ Boundary = 2, /* A vertex on a boundary edge. */
+ NonManifold = 3, /* A vertex on a non-manifold edge. */
+};
+
+static VertexType get_vertex_type_with_added_neighbor(VertexType old_type)
+{
+ switch (old_type) {
+ case VertexType::Loose:
+ return VertexType::Normal;
+ case VertexType::Normal:
+ return VertexType::Boundary;
+ case VertexType::Boundary:
+ case VertexType::NonManifold:
+ return VertexType::NonManifold;
+ }
+ BLI_assert_unreachable();
+ return VertexType::Loose;
+}
+
+/* Copy only where vertex_types is 'normal'. If keep boundaries is selected, also copy from
+ * boundary vertices. */
+template<typename T>
+static void copy_data_based_on_vertex_types(Span<T> data,
+ MutableSpan<T> r_data,
+ const Span<VertexType> vertex_types,
+ const bool keep_boundaries)
+{
+ if (keep_boundaries) {
+ int out_i = 0;
+ for (const int i : data.index_range()) {
+ if (ELEM(vertex_types[i], VertexType::Normal, VertexType::Boundary)) {
+ r_data[out_i] = data[i];
+ out_i++;
+ }
+ }
+ }
+ else {
+ int out_i = 0;
+ for (const int i : data.index_range()) {
+ if (vertex_types[i] == VertexType::Normal) {
+ r_data[out_i] = data[i];
+ out_i++;
+ }
+ }
+ }
+}
+
+template<typename T>
+static void copy_data_based_on_pairs(Span<T> data,
+ MutableSpan<T> r_data,
+ const Span<std::pair<int, int>> new_to_old_map)
+{
+ for (const std::pair<int, int> &pair : new_to_old_map) {
+ r_data[pair.first] = data[pair.second];
+ }
+}
+
+/* Copy using the map. */
+template<typename T>
+static void copy_data_based_on_new_to_old_map(Span<T> data,
+ MutableSpan<T> r_data,
+ const Span<int> new_to_old_map)
+{
+ for (const int i : r_data.index_range()) {
+ const int old_i = new_to_old_map[i];
+ r_data[i] = data[old_i];
+ }
+}
+
+/**
+ * Transfers the attributes from the original mesh to the new mesh using the following logic:
+ * - If the attribute was on the face domain it is now on the point domain, and this is true
+ * for all faces, so we can just copy these.
+ * - If the attribute was on the vertex domain there are three cases:
+ * - It was a 'bad' vertex so it is not in the dual mesh, and we can just ignore it
+ * - It was a normal vertex so it has a corresponding face in the dual mesh to which we can
+ * transfer.
+ * - It was a boundary vertex so it has a corresponding face, if keep_boundaries is true.
+ * Otherwise we can just ignore it.
+ * - If the attribute was on the edge domain we lookup for the new edges which edge it originated
+ * from using `new_to_old_edges_map`. We have to do it in this reverse order, because there can
+ * be more edges in the new mesh if keep boundaries is on.
+ * - We do the same thing for face corners as we do for edges.
+ *
+ * Some of the vertices (on the boundary) in the dual mesh don't come from faces, but from edges or
+ * vertices. For these the `boundary_vertex_to_relevant_face_map` is used, which maps them to the
+ * closest face.
+ */
+static void transfer_attributes(
+ const Map<AttributeIDRef, AttributeKind> &attributes,
+ const Span<VertexType> vertex_types,
+ const bool keep_boundaries,
+ const Span<int> new_to_old_edges_map,
+ const Span<int> new_to_old_face_corners_map,
+ const Span<std::pair<int, int>> boundary_vertex_to_relevant_face_map,
+ const GeometryComponent &src_component,
+ GeometryComponent &dst_component)
+{
+ for (Map<AttributeIDRef, AttributeKind>::Item entry : attributes.items()) {
+ const AttributeIDRef attribute_id = entry.key;
+ ReadAttributeLookup src_attribute = src_component.attribute_try_get_for_read(attribute_id);
+ if (!src_attribute) {
+ continue;
+ }
+
+ AttributeDomain out_domain;
+ if (src_attribute.domain == ATTR_DOMAIN_FACE) {
+ out_domain = ATTR_DOMAIN_POINT;
+ }
+ else if (src_attribute.domain == ATTR_DOMAIN_POINT) {
+ out_domain = ATTR_DOMAIN_FACE;
+ }
+ else {
+ /* Edges and Face Corners. */
+ out_domain = src_attribute.domain;
+ }
+ const CustomDataType data_type = bke::cpp_type_to_custom_data_type(
+ src_attribute.varray.type());
+ OutputAttribute dst_attribute = dst_component.attribute_try_get_for_output_only(
+ attribute_id, out_domain, data_type);
+
+ if (!dst_attribute) {
+ continue;
+ }
+
+ attribute_math::convert_to_static_type(data_type, [&](auto dummy) {
+ using T = decltype(dummy);
+ VArray_Span<T> span{src_attribute.varray.typed<T>()};
+ MutableSpan<T> dst_span = dst_attribute.as_span<T>();
+ if (src_attribute.domain == ATTR_DOMAIN_FACE) {
+ dst_span.take_front(span.size()).copy_from(span);
+ if (keep_boundaries) {
+ copy_data_based_on_pairs(span, dst_span, boundary_vertex_to_relevant_face_map);
+ }
+ }
+ else if (src_attribute.domain == ATTR_DOMAIN_POINT) {
+ copy_data_based_on_vertex_types(span, dst_span, vertex_types, keep_boundaries);
+ }
+ else if (src_attribute.domain == ATTR_DOMAIN_EDGE) {
+ copy_data_based_on_new_to_old_map(span, dst_span, new_to_old_edges_map);
+ }
+ else {
+ copy_data_based_on_new_to_old_map(span, dst_span, new_to_old_face_corners_map);
+ }
+ });
+ dst_attribute.save();
+ }
+}
+
+/**
+ * Calculates the boundaries of the mesh. Boundary polygons are not computed since we don't need
+ * them later on. We use the following definitions:
+ * - An edge is on a boundary if it is connected to only one polygon.
+ * - A vertex is on a boundary if it is on an edge on a boundary.
+ */
+static void calc_boundaries(const Mesh &mesh,
+ MutableSpan<VertexType> r_vertex_types,
+ MutableSpan<EdgeType> r_edge_types)
+{
+ BLI_assert(r_vertex_types.size() == mesh.totvert);
+ BLI_assert(r_edge_types.size() == mesh.totedge);
+ r_vertex_types.fill(VertexType::Loose);
+ r_edge_types.fill(EdgeType::Loose);
+
+ /* Add up the number of polys connected to each edge. */
+ for (const int i : IndexRange(mesh.totpoly)) {
+ const MPoly &poly = mesh.mpoly[i];
+ for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ r_edge_types[loop.e] = get_edge_type_with_added_neighbor(r_edge_types[loop.e]);
+ }
+ }
+
+ /* Update vertices. */
+ for (const int i : IndexRange(mesh.totedge)) {
+ const EdgeType edge_type = r_edge_types[i];
+ if (edge_type == EdgeType::Loose) {
+ continue;
+ }
+ const MEdge &edge = mesh.medge[i];
+ if (edge_type == EdgeType::Boundary) {
+ r_vertex_types[edge.v1] = get_vertex_type_with_added_neighbor(r_vertex_types[edge.v1]);
+ r_vertex_types[edge.v2] = get_vertex_type_with_added_neighbor(r_vertex_types[edge.v2]);
+ }
+ else if (edge_type >= EdgeType::NonManifold) {
+ r_vertex_types[edge.v1] = VertexType::NonManifold;
+ r_vertex_types[edge.v2] = VertexType::NonManifold;
+ }
+ }
+
+ /* Normal verts are on a normal edge, and not on boundary edges or non-manifold edges. */
+ for (const int i : IndexRange(mesh.totedge)) {
+ const EdgeType edge_type = r_edge_types[i];
+ if (edge_type == EdgeType::Normal) {
+ const MEdge &edge = mesh.medge[i];
+ if (r_vertex_types[edge.v1] == VertexType::Loose) {
+ r_vertex_types[edge.v1] = VertexType::Normal;
+ }
+ if (r_vertex_types[edge.v2] == VertexType::Loose) {
+ r_vertex_types[edge.v2] = VertexType::Normal;
+ }
+ }
+ }
+}
+
+/**
+ * Stores the indices of the polygons connected to each vertex.
+ */
+static void create_vertex_poly_map(const Mesh &mesh,
+ MutableSpan<Vector<int>> r_vertex_poly_indices)
+{
+ for (const int i : IndexRange(mesh.totpoly)) {
+ const MPoly &poly = mesh.mpoly[i];
+ for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ r_vertex_poly_indices[loop.v].append(i);
+ }
+ }
+}
+
+/**
+ * Sorts the polygons connected to the given vertex based on polygon adjacency. The ordering is
+ * so such that the normals point in the same way as the original mesh. If the vertex is a
+ * boundary vertex, the first and last polygon have a boundary edge connected to the vertex. The
+ * `r_shared_edges` array at index i is set to the index of the shared edge between the i-th and
+ * `(i+1)-th` sorted polygon. Similarly the `r_sorted_corners` array at index i is set to the
+ * corner in the i-th sorted polygon.
+ *
+ * How the faces are sorted (see diagrams below):
+ * (For this explanation we'll assume all faces are oriented clockwise)
+ * (The vertex whose connected polygons we need to sort is "v0")
+ *
+ * \code{.unparsed}
+ * Normal case: Boundary Vertex case:
+ * v1 ----- v2 ----- v3 | | |
+ * | f3 | f0 | v2 ---- v4 --------- v3---
+ * | | | | / ,-' |
+ * v8 ----- v0 ----- v4 | f0 / f1 ,-' |
+ * | f2 | f1 | | / ,-' |
+ * | | | | / ,-' |
+ * v7 ----- v6 ----- v5 | / ,-' f2 |
+ * | /,-' |
+ * v0 ------------------ v1---
+ * \endcode
+ *
+ * - First we get the two corners of each face that have an edge which contains v0. A corner is
+ * simply a vertex followed by an edge. In this case for the face "f0" for example, we'd end up
+ * with the corners (v: v4, e: v4<->v0) and (v: v0, e: v0<->v2). Note that if the face was
+ * oriented counter-clockwise we'd end up with the corners (v: v0, e: v0<->v4) and (v: v2, e:
+ * v0<->v2) instead.
+ * - Then we need to choose one polygon as our first. If "v0" is not on a boundary we can just
+ * choose any polygon. If it is on a boundary some more care needs to be taken. Here we need to
+ * pick a polygon which lies on the boundary (in the diagram either f0 or f2). To choose between
+ * the two we need the next step.
+ * - In the normal case we use this polygon to set `shared_edge_i` which indicates the index of the
+ * shared edge between this polygon and the next one. There are two possible choices: v0<->v4 and
+ * v2<->v0. To choose we look at the corners. Since the edge v0<->v2 lies on the corner which has
+ * v0, we set `shared_edge_i` to the other edge (v0<->v4), such that the next face will be "f1"
+ * which is the next face in clockwise order.
+ * - In the boundary vertex case, we do something similar, but we are also forced to choose the
+ * edge which is not on the boundary. If this doesn't line up with orientation of the polygon, we
+ * know we'll need to choose the other boundary polygon as our first polygon. If the orientations
+ * don't line up there as well, it means that the mesh normals are not consistent, and we just
+ * have to force an orientation for ourselves. (Imagine if f0 is oriented counter-clockwise and
+ * f2 is oriented clockwise for example)
+ * - Next comes a loop where we look at the other faces and find the one which has the shared
+ * edge. Then we set the next shared edge to the other edge on the polygon connected to "v0", and
+ * continue. Because of the way we've chosen the first shared edge the order of the faces will
+ * have the same orientation as that of the first polygon.
+ * (In this case we'd have f0 -> f1 -> f2 -> f3 which also goes around clockwise).
+ * - Every time we determine a shared edge, we can also add a corner to `r_sorted_corners`. This
+ * will simply be the corner which doesn't contain the shared edge.
+ * - Finally if we are in the normal case we also need to add the last "shared edge" to close the
+ * loop.
+ */
+static void sort_vertex_polys(const Mesh &mesh,
+ const int vertex_index,
+ const bool boundary_vertex,
+ const Span<EdgeType> edge_types,
+ MutableSpan<int> connected_polygons,
+ MutableSpan<int> r_shared_edges,
+ MutableSpan<int> r_sorted_corners)
+{
+ if (connected_polygons.size() <= 2 && (!boundary_vertex || connected_polygons.size() == 0)) {
+ return;
+ }
+
+ /* For each polygon store the two corners whose edge contains the vertex. */
+ Array<std::pair<int, int>> poly_vertex_corners(connected_polygons.size());
+ for (const int i : connected_polygons.index_range()) {
+ const MPoly &poly = mesh.mpoly[connected_polygons[i]];
+ bool first_edge_done = false;
+ for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
+ const MLoop &loop = mesh.mloop[loop_index];
+ if (mesh.medge[loop.e].v1 == vertex_index || mesh.medge[loop.e].v2 == vertex_index) {
+ if (!first_edge_done) {
+ poly_vertex_corners[i].first = loop_index;
+ first_edge_done = true;
+ }
+ else {
+ poly_vertex_corners[i].second = loop_index;
+ break;
+ }
+ }
+ }
+ }
+
+ int shared_edge_i = -1;
+ /* Determine first polygon and orientation. For now the orientation of the whole loop depends
+ * on the one polygon we chose as first. It's probably not worth it to check every polygon in
+ * the loop to determine the 'average' orientation. */
+ if (boundary_vertex) {
+ /* Our first polygon needs to be one which has a boundary edge. */
+ for (const int i : connected_polygons.index_range()) {
+ const MLoop &first_loop = mesh.mloop[poly_vertex_corners[i].first];
+ const MLoop &second_loop = mesh.mloop[poly_vertex_corners[i].second];
+ if (edge_types[first_loop.e] == EdgeType::Boundary && first_loop.v == vertex_index) {
+ shared_edge_i = second_loop.e;
+ r_sorted_corners[0] = poly_vertex_corners[i].first;
+ std::swap(connected_polygons[i], connected_polygons[0]);
+ std::swap(poly_vertex_corners[i], poly_vertex_corners[0]);
+ break;
+ }
+ if (edge_types[second_loop.e] == EdgeType::Boundary && second_loop.v == vertex_index) {
+ shared_edge_i = first_loop.e;
+ r_sorted_corners[0] = poly_vertex_corners[i].second;
+ std::swap(connected_polygons[i], connected_polygons[0]);
+ std::swap(poly_vertex_corners[i], poly_vertex_corners[0]);
+ break;
+ }
+ }
+ if (shared_edge_i == -1) {
+ /* The rotation is inconsistent between the two polygons on the boundary. Just choose one
+ * of the polygon's orientation. */
+ for (const int i : connected_polygons.index_range()) {
+ const MLoop &first_loop = mesh.mloop[poly_vertex_corners[i].first];
+ const MLoop &second_loop = mesh.mloop[poly_vertex_corners[i].second];
+ if (edge_types[first_loop.e] == EdgeType::Boundary) {
+ shared_edge_i = second_loop.e;
+ r_sorted_corners[0] = poly_vertex_corners[i].first;
+ std::swap(connected_polygons[i], connected_polygons[0]);
+ std::swap(poly_vertex_corners[i], poly_vertex_corners[0]);
+ break;
+ }
+ if (edge_types[second_loop.e] == EdgeType::Boundary) {
+ shared_edge_i = first_loop.e;
+ r_sorted_corners[0] = poly_vertex_corners[i].second;
+ std::swap(connected_polygons[i], connected_polygons[0]);
+ std::swap(poly_vertex_corners[i], poly_vertex_corners[0]);
+ break;
+ }
+ }
+ }
+ }
+ else {
+ /* Any polygon can be the first. Just need to check the orientation. */
+ const MLoop &first_loop = mesh.mloop[poly_vertex_corners[0].first];
+ const MLoop &second_loop = mesh.mloop[poly_vertex_corners[0].second];
+ if (first_loop.v == vertex_index) {
+ shared_edge_i = second_loop.e;
+ r_sorted_corners[0] = poly_vertex_corners[0].first;
+ }
+ else {
+ r_sorted_corners[0] = poly_vertex_corners[0].second;
+ shared_edge_i = first_loop.e;
+ }
+ }
+ BLI_assert(shared_edge_i != -1);
+
+ for (const int i : IndexRange(connected_polygons.size() - 1)) {
+ r_shared_edges[i] = shared_edge_i;
+
+ /* Look at the other polys to see if it has this shared edge. */
+ int j = i + 1;
+ for (; j < connected_polygons.size(); ++j) {
+ const MLoop &first_loop = mesh.mloop[poly_vertex_corners[j].first];
+ const MLoop &second_loop = mesh.mloop[poly_vertex_corners[j].second];
+ if (first_loop.e == shared_edge_i) {
+ r_sorted_corners[i + 1] = poly_vertex_corners[j].first;
+ shared_edge_i = second_loop.e;
+ break;
+ }
+ if (second_loop.e == shared_edge_i) {
+ r_sorted_corners[i + 1] = poly_vertex_corners[j].second;
+ shared_edge_i = first_loop.e;
+ break;
+ }
+ }
+
+ BLI_assert(j != connected_polygons.size());
+
+ std::swap(connected_polygons[i + 1], connected_polygons[j]);
+ std::swap(poly_vertex_corners[i + 1], poly_vertex_corners[j]);
+ }
+
+ if (!boundary_vertex) {
+ /* Shared edge between first and last polygon. */
+ r_shared_edges.last() = shared_edge_i;
+ }
+}
+
+/**
+ * Get the edge on the poly that contains the given vertex and is a boundary edge.
+ */
+static void boundary_edge_on_poly(const MPoly &poly,
+ const Mesh &mesh,
+ const int vertex_index,
+ const Span<EdgeType> edge_types,
+ int &r_edge)
+{
+ for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ if (edge_types[loop.e] == EdgeType::Boundary) {
+ const MEdge &edge = mesh.medge[loop.e];
+ if (edge.v1 == vertex_index || edge.v2 == vertex_index) {
+ r_edge = loop.e;
+ return;
+ }
+ }
+ }
+}
+
+/**
+ * Get the two edges on the poly that contain the given vertex and are boundary edges. The
+ * orientation of the poly is taken into account.
+ */
+static void boundary_edges_on_poly(const MPoly &poly,
+ const Mesh &mesh,
+ const int vertex_index,
+ const Span<EdgeType> edge_types,
+ int &r_edge1,
+ int &r_edge2)
+{
+ bool edge1_done = false;
+ /* This is set to true if the order in which we encounter the two edges is inconsistent with the
+ * orientation of the polygon. */
+ bool needs_swap = false;
+ for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ if (edge_types[loop.e] == EdgeType::Boundary) {
+ const MEdge &edge = mesh.medge[loop.e];
+ if (edge.v1 == vertex_index || edge.v2 == vertex_index) {
+ if (edge1_done) {
+ if (needs_swap) {
+ r_edge2 = r_edge1;
+ r_edge1 = loop.e;
+ }
+ else {
+ r_edge2 = loop.e;
+ }
+ return;
+ }
+ r_edge1 = loop.e;
+ edge1_done = true;
+ if (loop.v == vertex_index) {
+ needs_swap = true;
+ }
+ }
+ }
+ }
+}
+
+static void add_edge(const Mesh &mesh,
+ const int old_edge_i,
+ const int v1,
+ const int v2,
+ Vector<int> &new_to_old_edges_map,
+ Vector<MEdge> &new_edges,
+ Vector<int> &loop_edges)
+{
+ MEdge new_edge = MEdge(mesh.medge[old_edge_i]);
+ new_edge.v1 = v1;
+ new_edge.v2 = v2;
+ const int new_edge_i = new_edges.size();
+ new_to_old_edges_map.append(old_edge_i);
+ new_edges.append(new_edge);
+ loop_edges.append(new_edge_i);
+}
+
+/* Returns true if the vertex is connected only to the two polygons and is not on the boundary. */
+static bool vertex_needs_dissolving(const int vertex,
+ const int first_poly_index,
+ const int second_poly_index,
+ const Span<VertexType> vertex_types,
+ const Span<Vector<int>> vertex_poly_indices)
+{
+ /* Order is guaranteed to be the same because 2poly verts that are not on the boundary are
+ * ignored in `sort_vertex_polys`. */
+ return (vertex_types[vertex] != VertexType::Boundary &&
+ vertex_poly_indices[vertex].size() == 2 &&
+ vertex_poly_indices[vertex][0] == first_poly_index &&
+ vertex_poly_indices[vertex][1] == second_poly_index);
+}
+
+/**
+ * Finds 'normal' vertices which are connected to only two polygons and marks them to not be
+ * used in the data-structures derived from the mesh. For each pair of polygons which has such a
+ * vertex, an edge is created for the dual mesh between the centers of those two polygons. All
+ * edges in the input mesh which contain such a vertex are marked as 'done' to prevent duplicate
+ * edges being created. (See T94144)
+ */
+static void dissolve_redundant_verts(const Mesh &mesh,
+ const Span<Vector<int>> vertex_poly_indices,
+ MutableSpan<VertexType> vertex_types,
+ MutableSpan<int> old_to_new_edges_map,
+ Vector<MEdge> &new_edges,
+ Vector<int> &new_to_old_edges_map)
+{
+ for (const int vert_i : IndexRange(mesh.totvert)) {
+ if (vertex_poly_indices[vert_i].size() != 2 || vertex_types[vert_i] != VertexType::Normal) {
+ continue;
+ }
+ const int first_poly_index = vertex_poly_indices[vert_i][0];
+ const int second_poly_index = vertex_poly_indices[vert_i][1];
+ const int new_edge_index = new_edges.size();
+ bool edge_created = false;
+ const MPoly &poly = mesh.mpoly[first_poly_index];
+ for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ const MEdge &edge = mesh.medge[loop.e];
+ const int v1 = edge.v1;
+ const int v2 = edge.v2;
+ bool mark_edge = false;
+ if (vertex_needs_dissolving(
+ v1, first_poly_index, second_poly_index, vertex_types, vertex_poly_indices)) {
+ /* This vertex is now 'removed' and should be ignored elsewhere. */
+ vertex_types[v1] = VertexType::Loose;
+ mark_edge = true;
+ }
+ if (vertex_needs_dissolving(
+ v2, first_poly_index, second_poly_index, vertex_types, vertex_poly_indices)) {
+ /* This vertex is now 'removed' and should be ignored elsewhere. */
+ vertex_types[v2] = VertexType::Loose;
+ mark_edge = true;
+ }
+ if (mark_edge) {
+ if (!edge_created) {
+ MEdge new_edge = MEdge(edge);
+ /* The vertex indices in the dual mesh are the polygon indices of the input mesh. */
+ new_edge.v1 = first_poly_index;
+ new_edge.v2 = second_poly_index;
+ new_to_old_edges_map.append(loop.e);
+ new_edges.append(new_edge);
+ edge_created = true;
+ }
+ old_to_new_edges_map[loop.e] = new_edge_index;
+ }
+ }
+ }
+}
+
+/**
+ * Calculate the barycentric dual of a mesh. The dual is only "dual" in terms of connectivity,
+ * i.e. applying the function twice will give the same vertices, edges, and faces, but not the
+ * same positions. When the option "Keep Boundaries" is selected the connectivity is no
+ * longer dual.
+ *
+ * For the dual mesh of a manifold input mesh:
+ * - The vertices are at the centers of the faces of the input mesh.
+ * - The edges connect the two vertices created from the two faces next to the edge in the input
+ * mesh.
+ * - The faces are at the vertices of the input mesh.
+ *
+ * Some special cases are needed for boundaries and non-manifold geometry.
+ */
+static void calc_dual_mesh(GeometrySet &geometry_set,
+ const MeshComponent &in_component,
+ const bool keep_boundaries)
+{
+ const Mesh &mesh_in = *in_component.get_for_read();
+
+ Map<AttributeIDRef, AttributeKind> attributes;
+ geometry_set.gather_attributes_for_propagation(
+ {GEO_COMPONENT_TYPE_MESH}, GEO_COMPONENT_TYPE_MESH, false, attributes);
+
+ Array<VertexType> vertex_types(mesh_in.totvert);
+ Array<EdgeType> edge_types(mesh_in.totedge);
+ calc_boundaries(mesh_in, vertex_types, edge_types);
+ /* Stores the indices of the polygons connected to the vertex. Because the polygons are looped
+ * over in order of their indices, the polygon's indices will be sorted in ascending order.
+ (This can change once they are sorted using `sort_vertex_polys`). */
+ Array<Vector<int>> vertex_poly_indices(mesh_in.totvert);
+ Array<Array<int>> vertex_shared_edges(mesh_in.totvert);
+ Array<Array<int>> vertex_corners(mesh_in.totvert);
+ create_vertex_poly_map(mesh_in, vertex_poly_indices);
+ threading::parallel_for(vertex_poly_indices.index_range(), 512, [&](IndexRange range) {
+ for (const int i : range) {
+ if (vertex_types[i] == VertexType::Loose || vertex_types[i] >= VertexType::NonManifold ||
+ (!keep_boundaries && vertex_types[i] == VertexType::Boundary)) {
+ /* Bad vertex that we can't work with. */
+ continue;
+ }
+ MutableSpan<int> loop_indices = vertex_poly_indices[i];
+ Array<int> sorted_corners(loop_indices.size());
+ if (vertex_types[i] == VertexType::Normal) {
+ Array<int> shared_edges(loop_indices.size());
+ sort_vertex_polys(
+ mesh_in, i, false, edge_types, loop_indices, shared_edges, sorted_corners);
+ vertex_shared_edges[i] = shared_edges;
+ }
+ else {
+ Array<int> shared_edges(loop_indices.size() - 1);
+ sort_vertex_polys(
+ mesh_in, i, true, edge_types, loop_indices, shared_edges, sorted_corners);
+ vertex_shared_edges[i] = shared_edges;
+ }
+ vertex_corners[i] = sorted_corners;
+ }
+ });
+
+ Vector<float3> vertex_positions(mesh_in.totpoly);
+ for (const int i : IndexRange(mesh_in.totpoly)) {
+ const MPoly poly = mesh_in.mpoly[i];
+ BKE_mesh_calc_poly_center(
+ &poly, &mesh_in.mloop[poly.loopstart], mesh_in.mvert, vertex_positions[i]);
+ }
+
+ Array<int> boundary_edge_midpoint_index;
+ if (keep_boundaries) {
+ /* Only initialize when we actually need it. */
+ boundary_edge_midpoint_index.reinitialize(mesh_in.totedge);
+ /* We need to add vertices at the centers of boundary edges. */
+ for (const int i : IndexRange(mesh_in.totedge)) {
+ if (edge_types[i] == EdgeType::Boundary) {
+ float3 mid;
+ const MEdge &edge = mesh_in.medge[i];
+ mid_v3_v3v3(mid, mesh_in.mvert[edge.v1].co, mesh_in.mvert[edge.v2].co);
+ boundary_edge_midpoint_index[i] = vertex_positions.size();
+ vertex_positions.append(mid);
+ }
+ }
+ }
+
+ Vector<int> loop_lengths;
+ Vector<int> loops;
+ Vector<int> loop_edges;
+ Vector<MEdge> new_edges;
+ /* These are used to transfer attributes. */
+ Vector<int> new_to_old_face_corners_map;
+ Vector<int> new_to_old_edges_map;
+ /* Stores the index of the vertex in the dual and the face it should get the attribute from. */
+ Vector<std::pair<int, int>> boundary_vertex_to_relevant_face_map;
+ /* Since each edge in the dual (except the ones created with keep boundaries) comes from
+ * exactly one edge in the original, we can use this array to keep track of whether it still
+ * needs to be created or not. If it's not -1 it gives the index in `new_edges` of the dual
+ * edge. The edges coming from preserving the boundaries only get added once anyway, so we
+ * don't need a hash-map for that. */
+ Array<int> old_to_new_edges_map(mesh_in.totedge);
+ old_to_new_edges_map.fill(-1);
+
+ /* This is necessary to prevent duplicate edges from being created, but will likely not do
+ * anything for most meshes. */
+ dissolve_redundant_verts(mesh_in,
+ vertex_poly_indices,
+ vertex_types,
+ old_to_new_edges_map,
+ new_edges,
+ new_to_old_edges_map);
+
+ for (const int i : IndexRange(mesh_in.totvert)) {
+ if (vertex_types[i] == VertexType::Loose || vertex_types[i] >= VertexType::NonManifold ||
+ (!keep_boundaries && vertex_types[i] == VertexType::Boundary)) {
+ /* Bad vertex that we can't work with. */
+ continue;
+ }
+
+ Vector<int> loop_indices = vertex_poly_indices[i];
+ Span<int> shared_edges = vertex_shared_edges[i];
+ Span<int> sorted_corners = vertex_corners[i];
+ if (vertex_types[i] == VertexType::Normal) {
+ if (loop_indices.size() <= 2) {
+ /* We can't make a polygon from 2 vertices. */
+ continue;
+ }
+
+ /* Add edges in the loop. */
+ for (const int i : shared_edges.index_range()) {
+ const int old_edge_i = shared_edges[i];
+ if (old_to_new_edges_map[old_edge_i] == -1) {
+ /* This edge has not been created yet. */
+ MEdge new_edge = MEdge(mesh_in.medge[old_edge_i]);
+ new_edge.v1 = loop_indices[i];
+ new_edge.v2 = loop_indices[(i + 1) % loop_indices.size()];
+ new_to_old_edges_map.append(old_edge_i);
+ old_to_new_edges_map[old_edge_i] = new_edges.size();
+ new_edges.append(new_edge);
+ }
+ loop_edges.append(old_to_new_edges_map[old_edge_i]);
+ }
+
+ new_to_old_face_corners_map.extend(sorted_corners);
+ }
+ else {
+ /**
+ * The code handles boundary vertices like the vertex marked "V" in the diagram below.
+ * The first thing that happens is ordering the faces f1,f2 and f3 (stored in
+ * loop_indices), together with their shared edges e3 and e4 (which get stored in
+ * shared_edges). The ordering could end up being clockwise or counterclockwise, for this
+ * we'll assume that the ordering f1->f2->f3 is chosen. After that we add the edges in
+ * between the polygons, in this case the edges f1--f2, and f2--f3. Now we need to merge
+ * these with the boundary edges e1 and e2. To do this we create an edge from f3 to the
+ * midpoint of e2 (computed in a previous step), from this midpoint to V, from V to the
+ * midpoint of e1 and from the midpoint of e1 to f1.
+ *
+ * \code{.unparsed}
+ * | | | | | |
+ * v2 ---- v3 --------- v4--- v2 ---- v3 -------- v4---
+ * | f3 / ,-' | | / ,-'|
+ * | / f2 ,-' | | / ,-' |
+ * e2 | /e3 ,-' e4 | ====> M1-f3-/--f2-.,-' |
+ * | / ,-' | ====> | / ,-'\ |
+ * | / ,-' f1 | | / ,-' f1 |
+ * | /,-' | | /,-' | |
+ * V-------------------- v5--- V------------M2----- v5---
+ * \endcode
+ */
+
+ /* Add the edges in between the polys. */
+ for (const int i : shared_edges.index_range()) {
+ const int old_edge_i = shared_edges[i];
+ if (old_to_new_edges_map[old_edge_i] == -1) {
+ /* This edge has not been created yet. */
+ MEdge new_edge = MEdge(mesh_in.medge[old_edge_i]);
+ new_edge.v1 = loop_indices[i];
+ new_edge.v2 = loop_indices[i + 1];
+ new_to_old_edges_map.append(old_edge_i);
+ old_to_new_edges_map[old_edge_i] = new_edges.size();
+ new_edges.append(new_edge);
+ }
+ loop_edges.append(old_to_new_edges_map[old_edge_i]);
+ }
+
+ new_to_old_face_corners_map.extend(sorted_corners);
+
+ /* Add the vertex and the midpoints of the two boundary edges to the loop. */
+
+ /* Get the boundary edges. */
+ int edge1;
+ int edge2;
+ if (loop_indices.size() >= 2) {
+ /* The first boundary edge is at the end of the chain of polygons. */
+ boundary_edge_on_poly(mesh_in.mpoly[loop_indices.last()], mesh_in, i, edge_types, edge1);
+ boundary_edge_on_poly(mesh_in.mpoly[loop_indices.first()], mesh_in, i, edge_types, edge2);
+ }
+ else {
+ /* If there is only one polygon both edges are in that polygon. */
+ boundary_edges_on_poly(
+ mesh_in.mpoly[loop_indices[0]], mesh_in, i, edge_types, edge1, edge2);
+ }
+
+ const int last_face_center = loop_indices.last();
+ loop_indices.append(boundary_edge_midpoint_index[edge1]);
+ new_to_old_face_corners_map.append(sorted_corners.last());
+ const int first_midpoint = loop_indices.last();
+ if (old_to_new_edges_map[edge1] == -1) {
+ add_edge(mesh_in,
+ edge1,
+ last_face_center,
+ first_midpoint,
+ new_to_old_edges_map,
+ new_edges,
+ loop_edges);
+ old_to_new_edges_map[edge1] = new_edges.size() - 1;
+ boundary_vertex_to_relevant_face_map.append(std::pair(first_midpoint, last_face_center));
+ }
+ else {
+ loop_edges.append(old_to_new_edges_map[edge1]);
+ }
+ loop_indices.append(vertex_positions.size());
+ /* This is sort of arbitrary, but interpolating would be a lot harder to do. */
+ new_to_old_face_corners_map.append(sorted_corners.first());
+ boundary_vertex_to_relevant_face_map.append(
+ std::pair(loop_indices.last(), last_face_center));
+ vertex_positions.append(mesh_in.mvert[i].co);
+ const int boundary_vertex = loop_indices.last();
+ add_edge(mesh_in,
+ edge1,
+ first_midpoint,
+ boundary_vertex,
+ new_to_old_edges_map,
+ new_edges,
+ loop_edges);
+
+ loop_indices.append(boundary_edge_midpoint_index[edge2]);
+ new_to_old_face_corners_map.append(sorted_corners.first());
+ const int second_midpoint = loop_indices.last();
+ add_edge(mesh_in,
+ edge2,
+ boundary_vertex,
+ second_midpoint,
+ new_to_old_edges_map,
+ new_edges,
+ loop_edges);
+
+ if (old_to_new_edges_map[edge2] == -1) {
+ const int first_face_center = loop_indices.first();
+ add_edge(mesh_in,
+ edge2,
+ second_midpoint,
+ first_face_center,
+ new_to_old_edges_map,
+ new_edges,
+ loop_edges);
+ old_to_new_edges_map[edge2] = new_edges.size() - 1;
+ boundary_vertex_to_relevant_face_map.append(std::pair(second_midpoint, first_face_center));
+ }
+ else {
+ loop_edges.append(old_to_new_edges_map[edge2]);
+ }
+ }
+
+ loop_lengths.append(loop_indices.size());
+ for (const int j : loop_indices) {
+ loops.append(j);
+ }
+ }
+ Mesh *mesh_out = BKE_mesh_new_nomain(
+ vertex_positions.size(), new_edges.size(), 0, loops.size(), loop_lengths.size());
+ MeshComponent out_component;
+ out_component.replace(mesh_out, GeometryOwnershipType::Editable);
+ transfer_attributes(attributes,
+ vertex_types,
+ keep_boundaries,
+ new_to_old_edges_map,
+ new_to_old_face_corners_map,
+ boundary_vertex_to_relevant_face_map,
+ in_component,
+ out_component);
+
+ int loop_start = 0;
+ for (const int i : IndexRange(mesh_out->totpoly)) {
+ mesh_out->mpoly[i].loopstart = loop_start;
+ mesh_out->mpoly[i].totloop = loop_lengths[i];
+ loop_start += loop_lengths[i];
+ }
+ for (const int i : IndexRange(mesh_out->totloop)) {
+ mesh_out->mloop[i].v = loops[i];
+ mesh_out->mloop[i].e = loop_edges[i];
+ }
+ for (const int i : IndexRange(mesh_out->totvert)) {
+ copy_v3_v3(mesh_out->mvert[i].co, vertex_positions[i]);
+ }
+ memcpy(mesh_out->medge, new_edges.data(), sizeof(MEdge) * new_edges.size());
+ BKE_mesh_normals_tag_dirty(mesh_out);
+ geometry_set.replace_mesh(mesh_out);
+}
+
+static void node_geo_exec(GeoNodeExecParams params)
+{
+ GeometrySet geometry_set = params.extract_input<GeometrySet>("Mesh");
+ const bool keep_boundaries = params.extract_input<bool>("Keep Boundaries");
+ geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
+ if (geometry_set.has_mesh()) {
+ const MeshComponent &component = *geometry_set.get_component_for_read<MeshComponent>();
+ calc_dual_mesh(geometry_set, component, keep_boundaries);
+ }
+ });
+ params.set_output("Dual Mesh", std::move(geometry_set));
+}
+
+} // namespace blender::nodes::node_geo_dual_mesh_cc
+
+void register_node_type_geo_dual_mesh()
+{
+ namespace file_ns = blender::nodes::node_geo_dual_mesh_cc;
+
+ static bNodeType ntype;
+ geo_node_type_base(&ntype, GEO_NODE_DUAL_MESH, "Dual Mesh", NODE_CLASS_GEOMETRY);
+ ntype.declare = file_ns::node_declare;
+ ntype.geometry_node_execute = file_ns::node_geo_exec;
+ nodeRegisterType(&ntype);
+}