Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/physics/intern/ConstrainedConjugateGradient.h')
-rw-r--r--source/blender/physics/intern/ConstrainedConjugateGradient.h294
1 files changed, 294 insertions, 0 deletions
diff --git a/source/blender/physics/intern/ConstrainedConjugateGradient.h b/source/blender/physics/intern/ConstrainedConjugateGradient.h
new file mode 100644
index 00000000000..2d4389f6766
--- /dev/null
+++ b/source/blender/physics/intern/ConstrainedConjugateGradient.h
@@ -0,0 +1,294 @@
+
+#ifndef EIGEN_CONSTRAINEDCG_H
+#define EIGEN_CONSTRAINEDCG_H
+
+#include <Eigen/Core>
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal Low-level conjugate gradient algorithm
+ * \param mat The matrix A
+ * \param rhs The right hand side vector b
+ * \param x On input and initial solution, on output the computed solution.
+ * \param precond A preconditioner being able to efficiently solve for an
+ * approximation of Ax=b (regardless of b)
+ * \param iters On input the max number of iteration, on output the number of performed iterations.
+ * \param tol_error On input the tolerance error, on output an estimation of the relative error.
+ */
+template<typename MatrixType, typename Rhs, typename Dest, typename FilterMatrixType, typename Preconditioner>
+EIGEN_DONT_INLINE
+void constrained_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
+ const FilterMatrixType &filter,
+ const Preconditioner& precond, int& iters,
+ typename Dest::RealScalar& tol_error)
+{
+ using std::sqrt;
+ using std::abs;
+ typedef typename Dest::RealScalar RealScalar;
+ typedef typename Dest::Scalar Scalar;
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
+
+ RealScalar tol = tol_error;
+ int maxIters = iters;
+
+ int n = mat.cols();
+
+ VectorType residual = filter * (rhs - mat * x); //initial residual
+
+ RealScalar rhsNorm2 = (filter * rhs).squaredNorm();
+ if(rhsNorm2 == 0)
+ {
+ /* XXX TODO set constrained result here */
+ x.setZero();
+ iters = 0;
+ tol_error = 0;
+ return;
+ }
+ RealScalar threshold = tol*tol*rhsNorm2;
+ RealScalar residualNorm2 = residual.squaredNorm();
+ if (residualNorm2 < threshold)
+ {
+ iters = 0;
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
+ return;
+ }
+
+ VectorType p(n);
+ p = filter * precond.solve(residual); //initial search direction
+
+ VectorType z(n), tmp(n);
+ RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
+ int i = 0;
+ while(i < maxIters)
+ {
+ tmp.noalias() = filter * (mat * p); // the bottleneck of the algorithm
+
+ Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
+ x += alpha * p; // update solution
+ residual -= alpha * tmp; // update residue
+
+ residualNorm2 = residual.squaredNorm();
+ if(residualNorm2 < threshold)
+ break;
+
+ z = precond.solve(residual); // approximately solve for "A z = residual"
+
+ RealScalar absOld = absNew;
+ absNew = numext::real(residual.dot(z)); // update the absolute value of r
+ RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
+ p = filter * (z + beta * p); // update search direction
+ i++;
+ }
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
+ iters = i;
+}
+
+}
+
+#if 0 /* unused */
+template<typename MatrixType>
+struct MatrixFilter
+{
+ MatrixFilter() :
+ m_cmat(NULL)
+ {
+ }
+
+ MatrixFilter(const MatrixType &cmat) :
+ m_cmat(&cmat)
+ {
+ }
+
+ void setMatrix(const MatrixType &cmat) { m_cmat = &cmat; }
+
+ template <typename VectorType>
+ void apply(VectorType v) const
+ {
+ v = (*m_cmat) * v;
+ }
+
+protected:
+ const MatrixType *m_cmat;
+};
+#endif
+
+template< typename _MatrixType, int _UpLo=Lower,
+ typename _FilterMatrixType = _MatrixType,
+ typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+class ConstrainedConjugateGradient;
+
+namespace internal {
+
+template< typename _MatrixType, int _UpLo, typename _FilterMatrixType, typename _Preconditioner>
+struct traits<ConstrainedConjugateGradient<_MatrixType,_UpLo,_FilterMatrixType,_Preconditioner> >
+{
+ typedef _MatrixType MatrixType;
+ typedef _FilterMatrixType FilterMatrixType;
+ typedef _Preconditioner Preconditioner;
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+ * \brief A conjugate gradient solver for sparse self-adjoint problems with additional constraints
+ *
+ * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
+ * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+ *
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+ * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+ * and NumTraits<Scalar>::epsilon() for the tolerance.
+ *
+ * This class can be used as the direct solver classes. Here is a typical usage example:
+ * \code
+ * int n = 10000;
+ * VectorXd x(n), b(n);
+ * SparseMatrix<double> A(n,n);
+ * // fill A and b
+ * ConjugateGradient<SparseMatrix<double> > cg;
+ * cg.compute(A);
+ * x = cg.solve(b);
+ * std::cout << "#iterations: " << cg.iterations() << std::endl;
+ * std::cout << "estimated error: " << cg.error() << std::endl;
+ * // update b, and solve again
+ * x = cg.solve(b);
+ * \endcode
+ *
+ * By default the iterations start with x=0 as an initial guess of the solution.
+ * One can control the start using the solveWithGuess() method. Here is a step by
+ * step execution example starting with a random guess and printing the evolution
+ * of the estimated error:
+ * * \code
+ * x = VectorXd::Random(n);
+ * cg.setMaxIterations(1);
+ * int i = 0;
+ * do {
+ * x = cg.solveWithGuess(b,x);
+ * std::cout << i << " : " << cg.error() << std::endl;
+ * ++i;
+ * } while (cg.info()!=Success && i<100);
+ * \endcode
+ * Note that such a step by step excution is slightly slower.
+ *
+ * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+ */
+template< typename _MatrixType, int _UpLo, typename _FilterMatrixType, typename _Preconditioner>
+class ConstrainedConjugateGradient : public IterativeSolverBase<ConstrainedConjugateGradient<_MatrixType,_UpLo,_FilterMatrixType,_Preconditioner> >
+{
+ typedef IterativeSolverBase<ConstrainedConjugateGradient> Base;
+ using Base::mp_matrix;
+ using Base::m_error;
+ using Base::m_iterations;
+ using Base::m_info;
+ using Base::m_isInitialized;
+public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef _FilterMatrixType FilterMatrixType;
+ typedef _Preconditioner Preconditioner;
+
+ enum {
+ UpLo = _UpLo
+ };
+
+public:
+
+ /** Default constructor. */
+ ConstrainedConjugateGradient() : Base() {}
+
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+ *
+ * This constructor is a shortcut for the default constructor followed
+ * by a call to compute().
+ *
+ * \warning this class stores a reference to the matrix A as well as some
+ * precomputed values that depend on it. Therefore, if \a A is changed
+ * this class becomes invalid. Call compute() to update it with the new
+ * matrix A, or modify a copy of A.
+ */
+ ConstrainedConjugateGradient(const MatrixType& A) : Base(A) {}
+
+ ~ConstrainedConjugateGradient() {}
+
+ FilterMatrixType &filter() { return m_filter; }
+ const FilterMatrixType &filter() const { return m_filter; }
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+ * \a x0 as an initial solution.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs,typename Guess>
+ inline const internal::solve_retval_with_guess<ConstrainedConjugateGradient, Rhs, Guess>
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+ {
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+ eigen_assert(Base::rows()==b.rows()
+ && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval_with_guess
+ <ConstrainedConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solveWithGuess(const Rhs& b, Dest& x) const
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ for(int j=0; j<b.cols(); ++j)
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ typename Dest::ColXpr xj(x,j);
+ internal::constrained_conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj, m_filter,
+ Base::m_preconditioner, m_iterations, m_error);
+ }
+
+ m_isInitialized = true;
+ m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ x.setOnes();
+ _solveWithGuess(b,x);
+ }
+
+protected:
+ FilterMatrixType m_filter;
+};
+
+
+namespace internal {
+
+template<typename _MatrixType, int _UpLo, typename _Filter, typename _Preconditioner, typename Rhs>
+struct solve_retval<ConstrainedConjugateGradient<_MatrixType,_UpLo,_Filter,_Preconditioner>, Rhs>
+ : solve_retval_base<ConstrainedConjugateGradient<_MatrixType,_UpLo,_Filter,_Preconditioner>, Rhs>
+{
+ typedef ConstrainedConjugateGradient<_MatrixType,_UpLo,_Filter,_Preconditioner> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_CONSTRAINEDCG_H