Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/physics/intern/implicit_eigen.cpp')
-rw-r--r--source/blender/physics/intern/implicit_eigen.cpp1659
1 files changed, 1659 insertions, 0 deletions
diff --git a/source/blender/physics/intern/implicit_eigen.cpp b/source/blender/physics/intern/implicit_eigen.cpp
new file mode 100644
index 00000000000..230ca6f4f6a
--- /dev/null
+++ b/source/blender/physics/intern/implicit_eigen.cpp
@@ -0,0 +1,1659 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) Blender Foundation
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Lukas Toenne
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/implicit_eigen.cpp
+ * \ingroup bph
+ */
+
+#include "implicit.h"
+
+#ifdef IMPLICIT_SOLVER_EIGEN
+
+//#define USE_EIGEN_CORE
+#define USE_EIGEN_CONSTRAINED_CG
+
+#ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
+#ifdef NDEBUG
+#define IMPLICIT_NDEBUG
+#endif
+#define NDEBUG
+#endif
+
+#include <Eigen/Sparse>
+#include <Eigen/src/Core/util/DisableStupidWarnings.h>
+
+#ifdef USE_EIGEN_CONSTRAINED_CG
+#include <intern/ConstrainedConjugateGradient.h>
+#endif
+
+#ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
+#ifndef IMPLICIT_NDEBUG
+#undef NDEBUG
+#else
+#undef IMPLICIT_NDEBUG
+#endif
+#endif
+
+#include "MEM_guardedalloc.h"
+
+extern "C" {
+#include "DNA_scene_types.h"
+#include "DNA_object_types.h"
+#include "DNA_object_force.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_texture_types.h"
+
+#include "BLI_math.h"
+#include "BLI_linklist.h"
+#include "BLI_utildefines.h"
+
+#include "BKE_cloth.h"
+#include "BKE_collision.h"
+#include "BKE_effect.h"
+#include "BKE_global.h"
+
+#include "BPH_mass_spring.h"
+}
+
+/* ==== hash functions for debugging ==== */
+static unsigned int hash_int_2d(unsigned int kx, unsigned int ky)
+{
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+ unsigned int a, b, c;
+
+ a = b = c = 0xdeadbeef + (2 << 2) + 13;
+ a += kx;
+ b += ky;
+
+ c ^= b; c -= rot(b,14);
+ a ^= c; a -= rot(c,11);
+ b ^= a; b -= rot(a,25);
+ c ^= b; c -= rot(b,16);
+ a ^= c; a -= rot(c,4);
+ b ^= a; b -= rot(a,14);
+ c ^= b; c -= rot(b,24);
+
+ return c;
+
+#undef rot
+}
+
+static int hash_vertex(int type, int vertex)
+{
+ return hash_int_2d((unsigned int)type, (unsigned int)vertex);
+}
+
+static int hash_collpair(int type, CollPair *collpair)
+{
+ return hash_int_2d((unsigned int)type, hash_int_2d((unsigned int)collpair->face1, (unsigned int)collpair->face2));
+}
+/* ================ */
+
+
+typedef float Scalar;
+
+typedef Eigen::SparseMatrix<Scalar> lMatrix;
+
+typedef Eigen::VectorXf lVector;
+
+typedef Eigen::Triplet<Scalar> Triplet;
+typedef std::vector<Triplet> TripletList;
+
+#ifdef USE_EIGEN_CORE
+typedef Eigen::ConjugateGradient<lMatrix, Eigen::Lower, Eigen::DiagonalPreconditioner<Scalar> > ConjugateGradient;
+#endif
+#ifdef USE_EIGEN_CONSTRAINED_CG
+typedef Eigen::ConstrainedConjugateGradient<lMatrix, Eigen::Lower, lMatrix,
+ Eigen::DiagonalPreconditioner<Scalar> >
+ ConstraintConjGrad;
+#endif
+using Eigen::ComputationInfo;
+
+static void print_lvector(const lVector &v)
+{
+ for (int i = 0; i < v.rows(); ++i) {
+ if (i > 0 && i % 3 == 0)
+ printf("\n");
+
+ printf("%f,\n", v[i]);
+ }
+}
+
+static void print_lmatrix(const lMatrix &m)
+{
+ for (int j = 0; j < m.rows(); ++j) {
+ if (j > 0 && j % 3 == 0)
+ printf("\n");
+
+ for (int i = 0; i < m.cols(); ++i) {
+ if (i > 0 && i % 3 == 0)
+ printf(" ");
+
+ implicit_print_matrix_elem(m.coeff(j, i));
+ }
+ printf("\n");
+ }
+}
+
+static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
+static float ZERO[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
+
+BLI_INLINE void lMatrix_reserve_elems(lMatrix &m, int num)
+{
+ m.reserve(Eigen::VectorXi::Constant(m.cols(), num));
+}
+
+BLI_INLINE float *lVector_v3(lVector &v, int vertex)
+{
+ return v.data() + 3 * vertex;
+}
+
+BLI_INLINE const float *lVector_v3(const lVector &v, int vertex)
+{
+ return v.data() + 3 * vertex;
+}
+
+BLI_INLINE void triplets_m3(TripletList &tlist, float m[3][3], int i, int j)
+{
+ i *= 3;
+ j *= 3;
+ for (int l = 0; l < 3; ++l) {
+ for (int k = 0; k < 3; ++k) {
+ tlist.push_back(Triplet(i + k, j + l, m[k][l]));
+ }
+ }
+}
+
+BLI_INLINE void triplets_m3fl(TripletList &tlist, float m[3][3], int i, int j, float factor)
+{
+ i *= 3;
+ j *= 3;
+ for (int l = 0; l < 3; ++l) {
+ for (int k = 0; k < 3; ++k) {
+ tlist.push_back(Triplet(i + k, j + l, m[k][l] * factor));
+ }
+ }
+}
+
+BLI_INLINE void lMatrix_add_triplets(lMatrix &r, const TripletList &tlist)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r += t;
+}
+
+BLI_INLINE void lMatrix_madd_triplets(lMatrix &r, const TripletList &tlist, float f)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r += f * t;
+}
+
+BLI_INLINE void lMatrix_sub_triplets(lMatrix &r, const TripletList &tlist)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r -= t;
+}
+
+#if 0
+BLI_INLINE void lMatrix_copy_m3(lMatrix &r, float m[3][3], int i, int j)
+{
+ i *= 3;
+ j *= 3;
+ for (int l = 0; l < 3; ++l) {
+ for (int k = 0; k < 3; ++k) {
+ r.coeffRef(i + k, j + l) = m[k][l];
+ }
+ }
+}
+
+BLI_INLINE void lMatrix_add_m3(lMatrix &r, float m[3][3], int i, int j)
+{
+ lMatrix tmp(r.cols(), r.cols());
+ lMatrix_copy_m3(tmp, m, i, j);
+ r += tmp;
+}
+
+BLI_INLINE void lMatrix_sub_m3(lMatrix &r, float m[3][3], int i, int j)
+{
+ lMatrix tmp(r.cols(), r.cols());
+ lMatrix_copy_m3(tmp, m, i, j);
+ r -= tmp;
+}
+
+BLI_INLINE void lMatrix_madd_m3(lMatrix &r, float m[3][3], float s, int i, int j)
+{
+ lMatrix tmp(r.cols(), r.cols());
+ lMatrix_copy_m3(tmp, m, i, j);
+ r += s * tmp;
+}
+#endif
+
+BLI_INLINE void outerproduct(float r[3][3], const float a[3], const float b[3])
+{
+ mul_v3_v3fl(r[0], a, b[0]);
+ mul_v3_v3fl(r[1], a, b[1]);
+ mul_v3_v3fl(r[2], a, b[2]);
+}
+
+struct RootTransform {
+ float loc[3];
+ float rot[3][3];
+
+ float vel[3];
+ float omega[3];
+
+ float acc[3];
+ float domega_dt[3];
+};
+
+struct Implicit_Data {
+ typedef std::vector<RootTransform> RootTransforms;
+
+ Implicit_Data(int numverts)
+ {
+ resize(numverts);
+ }
+
+ void resize(int numverts)
+ {
+ this->numverts = numverts;
+ int tot = 3 * numverts;
+
+ M.resize(tot, tot);
+ dFdV.resize(tot, tot);
+ dFdX.resize(tot, tot);
+
+ root.resize(numverts);
+
+ X.resize(tot);
+ Xnew.resize(tot);
+ V.resize(tot);
+ Vnew.resize(tot);
+ F.resize(tot);
+
+ B.resize(tot);
+ A.resize(tot, tot);
+
+ dV.resize(tot);
+ z.resize(tot);
+ S.resize(tot, tot);
+ }
+
+ int numverts;
+
+ /* inputs */
+ lMatrix M; /* masses */
+ lVector F; /* forces */
+ lMatrix dFdV, dFdX; /* force jacobians */
+
+ RootTransforms root; /* root transforms */
+
+ /* motion state data */
+ lVector X, Xnew; /* positions */
+ lVector V, Vnew; /* velocities */
+
+ /* internal solver data */
+ lVector B; /* B for A*dV = B */
+ lMatrix A; /* A for A*dV = B */
+
+ lVector dV; /* velocity change (solution of A*dV = B) */
+ lVector z; /* target velocity in constrained directions */
+ lMatrix S; /* filtering matrix for constraints */
+};
+
+/* ==== Transformation of Moving Reference Frame ====
+ * x_world, v_world, f_world, a_world, dfdx_world, dfdv_world : state variables in world space
+ * x_root, v_root, f_root, a_root, dfdx_root, dfdv_root : state variables in root space
+ *
+ * x0 : translation of the root frame (hair root location)
+ * v0 : linear velocity of the root frame
+ * a0 : acceleration of the root frame
+ * R : rotation matrix of the root frame
+ * w : angular velocity of the root frame
+ * dwdt : angular acceleration of the root frame
+ */
+
+/* x_root = R^T * x_world */
+BLI_INLINE void loc_world_to_root(float r[3], const float v[3], const RootTransform &root)
+{
+ sub_v3_v3v3(r, v, root.loc);
+ mul_transposed_m3_v3((float (*)[3])root.rot, r);
+}
+
+/* x_world = R * x_root */
+BLI_INLINE void loc_root_to_world(float r[3], const float v[3], const RootTransform &root)
+{
+ copy_v3_v3(r, v);
+ mul_m3_v3((float (*)[3])root.rot, r);
+ add_v3_v3(r, root.loc);
+}
+
+/* v_root = cross(w, x_root) + R^T*(v_world - v0) */
+BLI_INLINE void vel_world_to_root(float r[3], const float x_root[3], const float v[3], const RootTransform &root)
+{
+ float angvel[3];
+ cross_v3_v3v3(angvel, root.omega, x_root);
+
+ sub_v3_v3v3(r, v, root.vel);
+ mul_transposed_m3_v3((float (*)[3])root.rot, r);
+ add_v3_v3(r, angvel);
+}
+
+/* v_world = R*(v_root - cross(w, x_root)) + v0 */
+BLI_INLINE void vel_root_to_world(float r[3], const float x_root[3], const float v[3], const RootTransform &root)
+{
+ float angvel[3];
+ cross_v3_v3v3(angvel, root.omega, x_root);
+
+ sub_v3_v3v3(r, v, angvel);
+ mul_m3_v3((float (*)[3])root.rot, r);
+ add_v3_v3(r, root.vel);
+}
+
+/* a_root = -cross(dwdt, x_root) - 2*cross(w, v_root) - cross(w, cross(w, x_root)) + R^T*(a_world - a0) */
+BLI_INLINE void force_world_to_root(float r[3], const float x_root[3], const float v_root[3], const float force[3], float mass, const RootTransform &root)
+{
+ float euler[3], coriolis[3], centrifugal[3], rotvel[3];
+
+ cross_v3_v3v3(euler, root.domega_dt, x_root);
+ cross_v3_v3v3(coriolis, root.omega, v_root);
+ mul_v3_fl(coriolis, 2.0f);
+ cross_v3_v3v3(rotvel, root.omega, x_root);
+ cross_v3_v3v3(centrifugal, root.omega, rotvel);
+
+ madd_v3_v3v3fl(r, force, root.acc, mass);
+ mul_transposed_m3_v3((float (*)[3])root.rot, r);
+ madd_v3_v3fl(r, euler, mass);
+ madd_v3_v3fl(r, coriolis, mass);
+ madd_v3_v3fl(r, centrifugal, mass);
+}
+
+/* a_world = R*[ a_root + cross(dwdt, x_root) + 2*cross(w, v_root) + cross(w, cross(w, x_root)) ] + a0 */
+BLI_INLINE void force_root_to_world(float r[3], const float x_root[3], const float v_root[3], const float force[3], float mass, const RootTransform &root)
+{
+ float euler[3], coriolis[3], centrifugal[3], rotvel[3];
+
+ cross_v3_v3v3(euler, root.domega_dt, x_root);
+ cross_v3_v3v3(coriolis, root.omega, v_root);
+ mul_v3_fl(coriolis, 2.0f);
+ cross_v3_v3v3(rotvel, root.omega, x_root);
+ cross_v3_v3v3(centrifugal, root.omega, rotvel);
+
+ madd_v3_v3v3fl(r, force, euler, mass);
+ madd_v3_v3fl(r, coriolis, mass);
+ madd_v3_v3fl(r, centrifugal, mass);
+ mul_m3_v3((float (*)[3])root.rot, r);
+ madd_v3_v3fl(r, root.acc, mass);
+}
+
+BLI_INLINE void acc_world_to_root(float r[3], const float x_root[3], const float v_root[3], const float acc[3], const RootTransform &root)
+{
+ force_world_to_root(r, x_root, v_root, acc, 1.0f, root);
+}
+
+BLI_INLINE void acc_root_to_world(float r[3], const float x_root[3], const float v_root[3], const float acc[3], const RootTransform &root)
+{
+ force_root_to_world(r, x_root, v_root, acc, 1.0f, root);
+}
+
+BLI_INLINE void cross_m3_v3m3(float r[3][3], const float v[3], float m[3][3])
+{
+ cross_v3_v3v3(r[0], v, m[0]);
+ cross_v3_v3v3(r[1], v, m[1]);
+ cross_v3_v3v3(r[2], v, m[2]);
+}
+
+BLI_INLINE void cross_v3_identity(float r[3][3], const float v[3])
+{
+ r[0][0] = 0.0f; r[1][0] = v[2]; r[2][0] = -v[1];
+ r[0][1] = -v[2]; r[1][1] = 0.0f; r[2][1] = v[0];
+ r[0][2] = v[1]; r[1][2] = -v[0]; r[2][2] = 0.0f;
+}
+
+/* dfdx_root = m*[ -cross(dwdt, I) - cross(w, cross(w, I)) ] + R^T*(dfdx_world) */
+BLI_INLINE void dfdx_world_to_root(float m[3][3], float dfdx[3][3], float mass, const RootTransform &root)
+{
+ float t[3][3], u[3][3];
+
+ copy_m3_m3(t, (float (*)[3])root.rot);
+ transpose_m3(t);
+ mul_m3_m3m3(m, t, dfdx);
+
+ cross_v3_identity(t, root.domega_dt);
+ mul_m3_fl(t, mass);
+ sub_m3_m3m3(m, m, t);
+
+ cross_v3_identity(u, root.omega);
+ cross_m3_v3m3(t, root.omega, u);
+ mul_m3_fl(t, mass);
+ sub_m3_m3m3(m, m, t);
+}
+
+/* dfdx_world = R*(dfdx_root + m*[ cross(dwdt, I) + cross(w, cross(w, I)) ]) */
+BLI_INLINE void dfdx_root_to_world(float m[3][3], float dfdx[3][3], float mass, const RootTransform &root)
+{
+ float t[3][3];
+
+ cross_v3_identity(t, root.domega_dt);
+ mul_m3_fl(t, mass);
+ add_m3_m3m3(m, dfdx, t);
+
+ cross_v3_identity(u, root.omega);
+ cross_m3_v3m3(t, root.omega, u);
+ mul_m3_fl(t, mass);
+ add_m3_m3m3(m, m, t);
+
+ mul_m3_m3m3(m, (float (*)[3])root.rot, m);
+}
+
+/* dfdv_root = -2*m*cross(w, I) + R^T*(dfdv_world) */
+BLI_INLINE void dfdv_world_to_root(float m[3][3], float dfdv[3][3], float mass, const RootTransform &root)
+{
+ float t[3][3];
+
+ copy_m3_m3(t, (float (*)[3])root.rot);
+ transpose_m3(t);
+ mul_m3_m3m3(m, t, dfdv);
+
+ cross_v3_identity(t, root.omega);
+ mul_m3_fl(t, 2.0f*mass);
+ sub_m3_m3m3(m, m, t);
+}
+
+/* dfdv_world = R*(dfdv_root + 2*m*cross(w, I)) */
+BLI_INLINE void dfdv_root_to_world(float m[3][3], float dfdv[3][3], float mass, const RootTransform &root)
+{
+ float t[3][3];
+
+ cross_v3_identity(t, root.omega);
+ mul_m3_fl(t, 2.0f*mass);
+ add_m3_m3m3(m, dfdv, t);
+
+ mul_m3_m3m3(m, (float (*)[3])root.rot, m);
+}
+
+/* ================================ */
+
+static bool simulate_implicit_euler(Implicit_Data *id, float dt)
+{
+#ifdef USE_EIGEN_CORE
+ ConjugateGradient cg;
+ cg.setMaxIterations(100);
+ cg.setTolerance(0.01f);
+
+ id->A = id->M - dt * id->dFdV - dt*dt * id->dFdX;
+ cg.compute(id->A);
+
+ id->B = dt * id->F + dt*dt * id->dFdX * id->V;
+ id->dV = cg.solve(id->B);
+
+ id->Vnew = id->V + id->dV;
+
+ return cg.info() != Eigen::Success;
+#endif
+
+#ifdef USE_EIGEN_CONSTRAINED_CG
+ ConstraintConjGrad cg;
+ cg.setMaxIterations(100);
+ cg.setTolerance(0.01f);
+
+ id->A = id->M - dt * id->dFdV - dt*dt * id->dFdX;
+ cg.compute(id->A);
+ cg.filter() = id->S;
+
+ id->B = dt * id->F + dt*dt * id->dFdX * id->V;
+#ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
+ printf("==== A ====\n");
+ print_lmatrix(id->A);
+ printf("==== z ====\n");
+ print_lvector(id->z);
+ printf("==== B ====\n");
+ print_lvector(id->B);
+ printf("==== S ====\n");
+ print_lmatrix(id->S);
+#endif
+ id->dV = cg.solveWithGuess(id->B, id->z);
+#ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
+ printf("==== dV ====\n");
+ print_lvector(id->dV);
+ printf("========\n");
+#endif
+
+ id->Vnew = id->V + id->dV;
+
+ return cg.info() != Eigen::Success;
+#endif
+}
+
+BLI_INLINE void dfdx_spring(float to[3][3], const float dir[3], float length, float L, float k)
+{
+ // dir is unit length direction, rest is spring's restlength, k is spring constant.
+ //return ( (I-outerprod(dir, dir))*Min(1.0f, rest/length) - I) * -k;
+ outerproduct(to, dir, dir);
+ sub_m3_m3m3(to, I, to);
+
+ mul_m3_fl(to, (L/length));
+ sub_m3_m3m3(to, to, I);
+ mul_m3_fl(to, k);
+}
+
+/* unused */
+#if 0
+BLI_INLINE void dfdx_damp(float to[3][3], const float dir[3], float length, const float vel[3], float rest, float damping)
+{
+ // inner spring damping vel is the relative velocity of the endpoints.
+ // return (I-outerprod(dir, dir)) * (-damping * -(dot(dir, vel)/Max(length, rest)));
+ mul_fvectorT_fvector(to, dir, dir);
+ sub_fmatrix_fmatrix(to, I, to);
+ mul_fmatrix_S(to, (-damping * -(dot_v3v3(dir, vel)/MAX2(length, rest))));
+}
+#endif
+
+BLI_INLINE void dfdv_damp(float to[3][3], const float dir[3], float damping)
+{
+ // derivative of force wrt velocity
+ outerproduct(to, dir, dir);
+ mul_m3_fl(to, -damping);
+}
+
+BLI_INLINE float fb(float length, float L)
+{
+ float x = length / L;
+ return (-11.541f * powf(x, 4) + 34.193f * powf(x, 3) - 39.083f * powf(x, 2) + 23.116f * x - 9.713f);
+}
+
+BLI_INLINE float fbderiv(float length, float L)
+{
+ float x = length/L;
+
+ return (-46.164f * powf(x, 3) + 102.579f * powf(x, 2) - 78.166f * x + 23.116f);
+}
+
+BLI_INLINE float fbstar(float length, float L, float kb, float cb)
+{
+ float tempfb_fl = kb * fb(length, L);
+ float fbstar_fl = cb * (length - L);
+
+ if (tempfb_fl < fbstar_fl)
+ return fbstar_fl;
+ else
+ return tempfb_fl;
+}
+
+// function to calculae bending spring force (taken from Choi & Co)
+BLI_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
+{
+ float tempfb_fl = kb * fb(length, L);
+ float fbstar_fl = cb * (length - L);
+
+ if (tempfb_fl < fbstar_fl) {
+ return cb;
+ }
+ else {
+ return kb * fbderiv(length, L);
+ }
+}
+
+static void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s, const lVector &X, const lVector &V, float time)
+{
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts;
+ ClothVertex *v1 = &verts[s->ij]/*, *v2 = &verts[s->kl]*/;
+ float extent[3];
+ float length = 0, dot = 0;
+ float dir[3] = {0, 0, 0};
+ float vel[3];
+ float k = 0.0f;
+ float L = s->restlen;
+ float cb; /* = clmd->sim_parms->structural; */ /*UNUSED*/
+
+ float scaling = 0.0;
+
+ int no_compress = clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS;
+
+ zero_v3(s->f);
+ zero_m3(s->dfdx);
+ zero_m3(s->dfdv);
+
+ s->flags &= ~CLOTH_SPRING_FLAG_NEEDED;
+
+ // calculate elonglation
+ sub_v3_v3v3(extent, lVector_v3(X, s->kl), lVector_v3(X, s->ij));
+ sub_v3_v3v3(vel, lVector_v3(V, s->kl), lVector_v3(V, s->ij));
+ dot = dot_v3v3(extent, extent);
+ length = sqrt(dot);
+
+ if (length > ALMOST_ZERO) {
+ /*
+ if (length>L) {
+ if ((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) &&
+ ( ((length-L)*100.0f/L) > clmd->sim_parms->maxspringlen )) {
+ // cut spring!
+ s->flags |= CSPRING_FLAG_DEACTIVATE;
+ return;
+ }
+ }
+ */
+ mul_v3_v3fl(dir, extent, 1.0f/length);
+ }
+ else {
+ zero_v3(dir);
+ }
+
+ // calculate force of structural + shear springs
+ if (ELEM(s->type, CLOTH_SPRING_TYPE_STRUCTURAL, CLOTH_SPRING_TYPE_SHEAR, CLOTH_SPRING_TYPE_SEWING)) {
+#ifdef CLOTH_FORCE_SPRING_STRUCTURAL
+ if (length > L || no_compress) {
+ float stretch_force[3] = {0, 0, 0};
+
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ k = clmd->sim_parms->structural;
+ scaling = k + s->stiffness * fabsf(clmd->sim_parms->max_struct - k);
+
+ k = scaling / (clmd->sim_parms->avg_spring_len + FLT_EPSILON);
+ // TODO: verify, half verified (couldn't see error)
+ if (s->type & CLOTH_SPRING_TYPE_SEWING) {
+ // sewing springs usually have a large distance at first so clamp the force so we don't get tunnelling through colission objects
+ float force = k*(length-L);
+ if (force > clmd->sim_parms->max_sewing) {
+ force = clmd->sim_parms->max_sewing;
+ }
+ mul_v3_v3fl(stretch_force, dir, force);
+ }
+ else {
+ mul_v3_v3fl(stretch_force, dir, k * (length - L));
+ }
+
+ add_v3_v3(s->f, stretch_force);
+
+ // Ascher & Boxman, p.21: Damping only during elonglation
+ // something wrong with it...
+ madd_v3_v3fl(s->f, dir, clmd->sim_parms->Cdis * dot_v3v3(vel, dir));
+
+ /* VERIFIED */
+ dfdx_spring(s->dfdx, dir, length, L, k);
+
+ /* VERIFIED */
+ dfdv_damp(s->dfdv, dir, clmd->sim_parms->Cdis);
+ }
+#endif
+ }
+ else if (s->type & CLOTH_SPRING_TYPE_GOAL) {
+#ifdef CLOTH_FORCE_SPRING_GOAL
+ float target[3];
+
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ // current_position = xold + t * (xnew - xold)
+ interp_v3_v3v3(target, v1->xold, v1->xconst, time);
+ sub_v3_v3v3(extent, lVector_v3(X, s->ij), target);
+ BKE_sim_debug_data_add_line(clmd->debug_data, v1->xconst, v1->xold, 1,0,0, "springs", hash_vertex(7825, s->ij));
+
+ // SEE MSG BELOW (these are UNUSED)
+ // dot = dot_v3v3(extent, extent);
+ // length = sqrt(dot);
+
+ k = clmd->sim_parms->goalspring;
+ scaling = k + s->stiffness * fabsf(clmd->sim_parms->max_struct - k);
+
+ k = v1->goal * scaling / (clmd->sim_parms->avg_spring_len + FLT_EPSILON);
+ madd_v3_v3fl(s->f, extent, -k);
+
+ /* XXX this has no effect: dir is always null at this point! - lukas_t
+ madd_v3_v3fl(s->f, dir, clmd->sim_parms->goalfrict * 0.01f * dot_v3v3(vel, dir));
+ */
+
+ // HERE IS THE PROBLEM!!!!
+ // dfdx_spring(s->dfdx, dir, length, 0.0, k);
+ // dfdv_damp(s->dfdv, dir, MIN2(1.0, (clmd->sim_parms->goalfrict/100.0)));
+#endif
+ }
+ else { /* calculate force of bending springs */
+#ifdef CLOTH_FORCE_SPRING_BEND
+ if (length < L) {
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ k = clmd->sim_parms->bending;
+
+ scaling = k + s->stiffness * fabsf(clmd->sim_parms->max_bend - k);
+ cb = k = scaling / (20.0f * (clmd->sim_parms->avg_spring_len + FLT_EPSILON));
+
+ madd_v3_v3fl(s->f, dir, fbstar(length, L, k, cb));
+
+ outerproduct(s->dfdx, dir, dir);
+ mul_m3_fl(s->dfdx, fbstar_jacobi(length, L, k, cb));
+ }
+#endif
+ }
+}
+
+static void cloth_apply_spring_force(ClothModifierData *clmd, ClothSpring *s, lVector &F, TripletList &tlist_dFdX, TripletList &tlist_dFdV)
+{
+ /* XXX reserve elements in tmp? */
+
+ /* ignore disabled springs */
+ if (!(s->flags & CLOTH_SPRING_FLAG_NEEDED))
+ return;
+
+ if (!(s->type & CLOTH_SPRING_TYPE_BENDING)) {
+ triplets_m3fl(tlist_dFdV, s->dfdv, s->ij, s->ij, 1.0f);
+ triplets_m3fl(tlist_dFdV, s->dfdv, s->kl, s->kl, 1.0f);
+ triplets_m3fl(tlist_dFdV, s->dfdv, s->ij, s->kl, -1.0f);
+ triplets_m3fl(tlist_dFdV, s->dfdv, s->kl, s->ij, -1.0f);
+ }
+
+ add_v3_v3(lVector_v3(F, s->ij), s->f);
+ if (!(s->type & CLOTH_SPRING_TYPE_GOAL)) {
+ sub_v3_v3(lVector_v3(F, s->kl), s->f);
+ }
+
+ triplets_m3fl(tlist_dFdX, s->dfdx, s->ij, s->ij, 1.0f);
+ triplets_m3fl(tlist_dFdX, s->dfdx, s->kl, s->kl, 1.0f);
+ triplets_m3fl(tlist_dFdX, s->dfdx, s->ij, s->kl, -1.0f);
+ triplets_m3fl(tlist_dFdX, s->dfdx, s->kl, s->ij, -1.0f);
+}
+
+static float calc_nor_area_tri(float nor[3], const float v1[3], const float v2[3], const float v3[3])
+{
+ float n1[3], n2[3];
+
+ sub_v3_v3v3(n1, v1, v2);
+ sub_v3_v3v3(n2, v2, v3);
+
+ cross_v3_v3v3(nor, n1, n2);
+ return normalize_v3(nor);
+}
+
+static float calc_nor_area_quad(float nor[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
+{
+ float n1[3], n2[3];
+
+ sub_v3_v3v3(n1, v1, v3);
+ sub_v3_v3v3(n2, v2, v4);
+
+ cross_v3_v3v3(nor, n1, n2);
+ return normalize_v3(nor);
+}
+
+static void cloth_calc_force(ClothModifierData *clmd, lVector &F, lMatrix &dFdX, lMatrix &dFdV, const lVector &X, const lVector &V, const lMatrix &M, ListBase *effectors, float time)
+{
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *id = cloth->implicit;
+ unsigned int numverts = cloth->numverts;
+ ClothVertex *verts = cloth->verts;
+ float drag = clmd->sim_parms->Cvi * 0.01f; /* viscosity of air scaled in percent */
+ float gravity[3] = {0,0,0};
+ float f[3], dfdx[3][3], dfdv[3][3];
+
+ F.setZero();
+ dFdX.setZero();
+ dFdV.setZero();
+
+ TripletList tlist_dFdV, tlist_dFdX;
+
+#ifdef CLOTH_FORCE_GRAVITY
+ /* global acceleration (gravitation) */
+ if (clmd->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) {
+ /* scale gravity force
+ * XXX 0.001 factor looks totally arbitrary ... what is this? lukas_t
+ */
+ mul_v3_v3fl(gravity, clmd->scene->physics_settings.gravity, 0.001f * clmd->sim_parms->effector_weights->global_gravity);
+ }
+ for (int i = 0; i < numverts; ++i) {
+ float acc[3];
+ /* gravitational mass same as inertial mass */
+ acc_world_to_root(acc, lVector_v3(X, i), lVector_v3(V, i), gravity, id->root[i]);
+ madd_v3_v3fl(lVector_v3(F, i), acc, verts[i].mass);
+ }
+#endif
+
+#ifdef CLOTH_FORCE_DRAG
+ /* air drag */
+ for (int i = 0; i < numverts; ++i) {
+#if 1
+ /* NB: uses root space velocity, no need to transform */
+ mul_v3_v3fl(f, lVector_v3(V, i), -drag);
+ add_v3_v3(lVector_v3(F, i), f);
+
+ triplets_m3fl(tlist_dFdV, I, i, i, -drag);
+#else
+ float drag_dfdv[3][3], t[3];
+
+ mul_v3_v3fl(f, lVector_v3(V, i), -drag);
+ force_world_to_root(t, lVector_v3(X, i), lVector_v3(V, i), f, verts[i].mass, id->root[i]);
+ add_v3_v3(lVector_v3(F, i), t);
+
+ copy_m3_m3(drag_dfdv, I);
+ mul_m3_fl(drag_dfdv, -drag);
+ dfdv_world_to_root(dfdv, drag_dfdv, verts[i].mass, id->root[i]);
+ triplets_m3(tlist_dFdV, dfdv, i, i);
+#endif
+ }
+#endif
+
+// hair_volume_forces(clmd, lF, lX, lV, numverts);
+
+#ifdef CLOTH_FORCE_EFFECTORS
+ /* handle external forces like wind */
+ if (effectors) {
+ const float effector_scale = 0.02f;
+ MFace *mfaces = cloth->mfaces;
+ EffectedPoint epoint;
+ lVector winvec(F.rows());
+ winvec.setZero();
+
+ // precalculate wind forces
+ for (int i = 0; i < cloth->numverts; i++) {
+ pd_point_from_loc(clmd->scene, (float*)lVector_v3(X, i), (float*)lVector_v3(V, i), i, &epoint);
+ pdDoEffectors(effectors, NULL, clmd->sim_parms->effector_weights, &epoint, lVector_v3(winvec, i), NULL);
+ }
+
+ for (int i = 0; i < cloth->numfaces; i++) {
+ float nor[3], area;
+ float factor;
+ MFace *mf = &mfaces[i];
+
+ // calculate face normal and area
+ if (mf->v4) {
+ area = calc_nor_area_quad(nor, lVector_v3(X, mf->v1), lVector_v3(X, mf->v2), lVector_v3(X, mf->v3), lVector_v3(X, mf->v4));
+ factor = effector_scale * area * 0.25f;
+ }
+ else {
+ area = calc_nor_area_tri(nor, lVector_v3(X, mf->v1), lVector_v3(X, mf->v2), lVector_v3(X, mf->v3));
+ factor = effector_scale * area / 3.0f;
+ }
+
+ madd_v3_v3fl(lVector_v3(F, mf->v1), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v1), nor));
+ madd_v3_v3fl(lVector_v3(F, mf->v2), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v2), nor));
+ madd_v3_v3fl(lVector_v3(F, mf->v3), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v3), nor));
+ if (mf->v4)
+ madd_v3_v3fl(lVector_v3(F, mf->v4), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v4), nor));
+ }
+
+ /* Hair has only edges */
+ if (cloth->numfaces == 0) {
+ ClothSpring *spring;
+ float dir[3], length;
+ float factor = 0.01;
+
+ for (LinkNode *link = cloth->springs; link; link = link->next) {
+ spring = (ClothSpring *)link->link;
+
+ /* structural springs represent hair strands,
+ * their length signifies surface area and mass
+ */
+ if (spring->type != CLOTH_SPRING_TYPE_STRUCTURAL)
+ continue;
+
+ float *win_ij = lVector_v3(winvec, spring->ij);
+ float *win_kl = lVector_v3(winvec, spring->kl);
+ float win_ortho[3];
+
+ sub_v3_v3v3(dir, (float*)lVector_v3(X, spring->ij), (float*)lVector_v3(X, spring->kl));
+ length = normalize_v3(dir);
+
+ madd_v3_v3v3fl(win_ortho, win_ij, dir, -dot_v3v3(win_ij, dir));
+ madd_v3_v3fl(lVector_v3(F, spring->ij), win_ortho, factor * length);
+
+ madd_v3_v3v3fl(win_ortho, win_kl, dir, -dot_v3v3(win_kl, dir));
+ madd_v3_v3fl(lVector_v3(F, spring->kl), win_ortho, factor * length);
+ }
+ }
+ }
+#endif
+
+ // calculate spring forces
+ for (LinkNode *link = cloth->springs; link; link = link->next) {
+ // only handle active springs
+ ClothSpring *spring = (ClothSpring *)link->link;
+ if (!(spring->flags & CLOTH_SPRING_FLAG_DEACTIVATE))
+ cloth_calc_spring_force(clmd, spring, X, V, time);
+ }
+
+ // apply spring forces
+ for (LinkNode *link = cloth->springs; link; link = link->next) {
+ // only handle active springs
+ ClothSpring *spring = (ClothSpring *)link->link;
+ if (!(spring->flags & CLOTH_SPRING_FLAG_DEACTIVATE))
+ cloth_apply_spring_force(clmd, spring, F, tlist_dFdX, tlist_dFdV);
+ }
+
+ lMatrix_add_triplets(dFdV, tlist_dFdV);
+ lMatrix_add_triplets(dFdX, tlist_dFdX);
+}
+
+/* Init constraint matrix
+ * This is part of the modified CG method suggested by Baraff/Witkin in
+ * "Large Steps in Cloth Simulation" (Siggraph 1998)
+ */
+static void setup_constraint_matrix(ClothModifierData *clmd, ColliderContacts *contacts, int totcolliders, const lVector &V, lMatrix &S, lVector &z, float dt)
+{
+ ClothVertex *verts = clmd->clothObject->verts;
+ int numverts = clmd->clothObject->numverts;
+ TripletList tlist_sub;
+ int i, j, v;
+
+ S.setIdentity();
+ z.setZero();
+
+ for (v = 0; v < numverts; v++) {
+ if (verts[v].flags & CLOTH_VERT_FLAG_PINNED) {
+ /* pinned vertex constraints */
+ zero_v3(lVector_v3(z, v)); /* velocity is defined externally */
+ triplets_m3(tlist_sub, I, v, v);
+ }
+ }
+
+#if 0 // TODO
+ for (i = 0; i < totcolliders; ++i) {
+ ColliderContacts *ct = &contacts[i];
+ for (j = 0; j < ct->totcollisions; ++j) {
+ CollPair *collpair = &ct->collisions[j];
+ int v = collpair->face1;
+ float cmat[3][3];
+ float impulse[3];
+
+ /* pinned verts handled separately */
+ if (verts[v].flags & CLOTH_VERT_FLAG_PINNED)
+ continue;
+
+ /* calculate collision response */
+ if (!cloth_points_collpair_response(clmd, ct->collmd, ct->ob->pd, collpair, dt, impulse))
+ continue;
+
+ add_v3_v3(z[v], impulse);
+
+ /* modify S to enforce velocity constraint in normal direction */
+ mul_fvectorT_fvector(cmat, collpair->normal, collpair->normal);
+ sub_m3_m3m3(S[v].m, I, cmat);
+
+ BKE_sim_debug_data_add_dot(clmd->debug_data, collpair->pa, 0, 1, 0, "collision", hash_collpair(936, collpair));
+ BKE_sim_debug_data_add_dot(clmd->debug_data, collpair->pb, 1, 0, 0, "collision", hash_collpair(937, collpair));
+ BKE_sim_debug_data_add_line(clmd->debug_data, collpair->pa, collpair->pb, 0.7, 0.7, 0.7, "collision", hash_collpair(938, collpair));
+
+ { /* DEBUG */
+// float nor[3];
+// mul_v3_v3fl(nor, collpair->normal, collpair->distance);
+// BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, nor, 1, 1, 0, "collision", hash_collpair(939, collpair));
+ BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, impulse, 1, 1, 0, "collision", hash_collpair(940, collpair));
+// BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, collpair->normal, 1, 1, 0, "collision", hash_collpair(941, collpair));
+ }
+ }
+ }
+#endif
+
+ lMatrix_sub_triplets(S, tlist_sub);
+}
+
+int implicit_solver(Object *ob, float frame, ClothModifierData *clmd, ListBase *effectors)
+{
+ float step=0.0f, tf=clmd->sim_parms->timescale;
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts/*, *cv*/;
+ unsigned int numverts = cloth->numverts;
+ float dt = clmd->sim_parms->timescale / clmd->sim_parms->stepsPerFrame;
+ float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
+ Implicit_Data *id = cloth->implicit;
+ ColliderContacts *contacts = NULL;
+ int totcolliders = 0;
+
+ BKE_sim_debug_data_clear_category(clmd->debug_data, "collision");
+
+ if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) { /* do goal stuff */
+ for (int i = 0; i < numverts; i++) {
+ // update velocities with constrained velocities from pinned verts
+ if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
+ float v[3];
+ sub_v3_v3v3(v, verts[i].xconst, verts[i].xold);
+ // mul_v3_fl(id->V[i], clmd->sim_parms->stepsPerFrame);
+ /* note: should be zero for root vertices, but other verts could be pinned as well */
+ vel_world_to_root(lVector_v3(id->V, i), lVector_v3(id->X, i), v, id->root[i]);
+ }
+ }
+ }
+
+ if (clmd->debug_data) {
+ for (int i = 0; i < numverts; i++) {
+ BKE_sim_debug_data_add_dot(clmd->debug_data, verts[i].x, 1.0f, 0.1f, 1.0f, "points", hash_vertex(583, i));
+ }
+ }
+
+ while (step < tf) {
+
+ /* copy velocities for collision */
+ for (int i = 0; i < numverts; i++) {
+ vel_root_to_world(verts[i].tv, lVector_v3(id->X, i), lVector_v3(id->V, i), id->root[i]);
+ copy_v3_v3(verts[i].v, verts[i].tv);
+ }
+
+ /* determine contact points */
+ if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED) {
+ if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_POINTS) {
+ cloth_find_point_contacts(ob, clmd, 0.0f, tf, &contacts, &totcolliders);
+ }
+ }
+
+ /* setup vertex constraints for pinned vertices and contacts */
+ setup_constraint_matrix(clmd, contacts, totcolliders, id->V, id->S, id->z, dt);
+
+ // damping velocity for artistic reasons
+// mul_lfvectorS(id->V, id->V, clmd->sim_parms->vel_damping, numverts);
+
+ // calculate forces
+ cloth_calc_force(clmd, id->F, id->dFdX, id->dFdV, id->X, id->V, id->M, effectors, step);
+
+ // calculate new velocity
+ simulate_implicit_euler(id, dt);
+
+ // advance positions
+ id->Xnew = id->X + id->Vnew * dt;
+
+ for (int i = 0; i < numverts; i++) {
+ /* move pinned verts to correct position */
+ if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) {
+ if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
+ float x[3];
+ interp_v3_v3v3(x, verts[i].xold, verts[i].xconst, step + dt);
+ loc_world_to_root(lVector_v3(id->Xnew, i), x, id->root[i]);
+ }
+ }
+
+ loc_root_to_world(verts[i].txold, lVector_v3(id->X, i), id->root[i]);
+
+ if (!(verts[i].flags & CLOTH_VERT_FLAG_PINNED) && i > 0) {
+ BKE_sim_debug_data_add_line(clmd->debug_data, lVector_v3(id->X, i), lVector_v3(id->X, i-1), 0.6, 0.3, 0.3, "hair", hash_vertex(4892, i));
+ BKE_sim_debug_data_add_line(clmd->debug_data, lVector_v3(id->Xnew, i), lVector_v3(id->Xnew, i-1), 1, 0.5, 0.5, "hair", hash_vertex(4893, i));
+ BKE_sim_debug_data_add_line(clmd->debug_data, verts[i].xconst, verts[i-1].xconst, 0.25, 0.4, 0.25, "hair", hash_vertex(4873, i));
+ }
+// BKE_sim_debug_data_add_vector(clmd->debug_data, id->X[i], id->V[i], 0, 0, 1, "velocity", hash_vertex(3158, i));
+ }
+
+ /* free contact points */
+ if (contacts) {
+ cloth_free_contacts(contacts, totcolliders);
+ }
+
+ id->X = id->Xnew;
+ id->V = id->Vnew;
+
+ step += dt;
+ }
+
+ for (int i = 0; i < numverts; i++) {
+ if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) && (verts [i].flags & CLOTH_VERT_FLAG_PINNED)) {
+ copy_v3_v3(verts[i].x, verts[i].xconst);
+ copy_v3_v3(verts[i].txold, verts[i].x);
+
+ vel_root_to_world(verts[i].v, lVector_v3(id->X, i), lVector_v3(id->V, i), id->root[i]);
+ }
+ else {
+ loc_root_to_world(verts[i].x, lVector_v3(id->X, i), id->root[i]);
+ copy_v3_v3(verts[i].txold, verts[i].x);
+
+ vel_root_to_world(verts[i].v, lVector_v3(id->X, i), lVector_v3(id->V, i), id->root[i]);
+ }
+ }
+
+ return 1;
+}
+
+void implicit_set_positions(ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts;
+ ClothHairRoot *cloth_roots = clmd->roots;
+ unsigned int numverts = cloth->numverts, i;
+
+ Implicit_Data::RootTransforms &root = cloth->implicit->root;
+ lVector &X = cloth->implicit->X;
+ lVector &V = cloth->implicit->V;
+
+ for (i = 0; i < numverts; i++) {
+ copy_v3_v3(root[i].loc, cloth_roots[i].loc);
+ copy_m3_m3(root[i].rot, cloth_roots[i].rot);
+
+ loc_world_to_root(lVector_v3(X, i), verts[i].x, root[i]);
+ vel_world_to_root(lVector_v3(V, i), lVector_v3(X, i), verts[i].v, root[i]);
+ }
+}
+
+static void implicit_set_mass(ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts;
+ unsigned int numverts = cloth->numverts;
+
+ lMatrix &M = cloth->implicit->M;
+
+ lMatrix_reserve_elems(M, 1);
+ for (int i = 0; i < numverts; ++i) {
+ M.insert(3*i+0, 3*i+0) = verts[i].mass;
+ M.insert(3*i+1, 3*i+1) = verts[i].mass;
+ M.insert(3*i+2, 3*i+2) = verts[i].mass;
+ }
+}
+
+int implicit_init(Object *UNUSED(ob), ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+
+ cloth->implicit = new Implicit_Data(cloth->numverts);
+
+ implicit_set_mass(clmd);
+ implicit_set_positions(clmd);
+
+#if 0
+ // init springs
+ search = cloth->springs;
+ for (i = 0; i < cloth->numsprings; i++) {
+ spring = search->link;
+
+ // dFdV_start[i].r = big_I[i].r = big_zero[i].r =
+ id->A[i+cloth->numverts].r = id->dFdV[i+cloth->numverts].r = id->dFdX[i+cloth->numverts].r =
+ id->P[i+cloth->numverts].r = id->Pinv[i+cloth->numverts].r = id->bigI[i+cloth->numverts].r = id->M[i+cloth->numverts].r = spring->ij;
+
+ // dFdV_start[i].c = big_I[i].c = big_zero[i].c =
+ id->A[i+cloth->numverts].c = id->dFdV[i+cloth->numverts].c = id->dFdX[i+cloth->numverts].c =
+ id->P[i+cloth->numverts].c = id->Pinv[i+cloth->numverts].c = id->bigI[i+cloth->numverts].c = id->M[i+cloth->numverts].c = spring->kl;
+
+ spring->matrix_index = i + cloth->numverts;
+
+ search = search->next;
+ }
+#endif
+
+ return 1;
+}
+
+int implicit_free(ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+
+ if (cloth && cloth->implicit) {
+ delete cloth->implicit;
+ }
+
+ return 1;
+}
+
+/* ================ Volumetric Hair Interaction ================
+ * adapted from
+ * Volumetric Methods for Simulation and Rendering of Hair
+ * by Lena Petrovic, Mark Henne and John Anderson
+ * Pixar Technical Memo #06-08, Pixar Animation Studios
+ */
+
+/* Note about array indexing:
+ * Generally the arrays here are one-dimensional.
+ * The relation between 3D indices and the array offset is
+ * offset = x + res_x * y + res_y * z
+ */
+
+/* TODO: This is an initial implementation and should be made much better in due time.
+ * What should at least be implemented is a grid size parameter and a smoothing kernel
+ * for bigger grids.
+ */
+
+#if 0
+/* 10x10x10 grid gives nice initial results */
+static const int hair_grid_res = 10;
+
+static int hair_grid_size(int res)
+{
+ return res * res * res;
+}
+
+BLI_INLINE void hair_grid_get_scale(int res, const float gmin[3], const float gmax[3], float scale[3])
+{
+ sub_v3_v3v3(scale, gmax, gmin);
+ mul_v3_fl(scale, 1.0f / (res-1));
+}
+
+typedef struct HairGridVert {
+ float velocity[3];
+ float density;
+} HairGridVert;
+
+#define HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, axis) ( min_ii( max_ii( (int)((vec[axis] - gmin[axis]) / scale[axis]), 0), res-2 ) )
+
+BLI_INLINE int hair_grid_offset(const float vec[3], int res, const float gmin[3], const float scale[3])
+{
+ int i, j, k;
+ i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
+ j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
+ k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
+ return i + (j + k*res)*res;
+}
+
+BLI_INLINE int hair_grid_interp_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float uvw[3])
+{
+ int i, j, k, offset;
+
+ i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
+ j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
+ k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
+ offset = i + (j + k*res)*res;
+
+ uvw[0] = (vec[0] - gmin[0]) / scale[0] - (float)i;
+ uvw[1] = (vec[1] - gmin[1]) / scale[1] - (float)j;
+ uvw[2] = (vec[2] - gmin[2]) / scale[2] - (float)k;
+
+ return offset;
+}
+
+BLI_INLINE void hair_grid_interpolate(const HairGridVert *grid, int res, const float gmin[3], const float scale[3], const float vec[3],
+ float *density, float velocity[3], float density_gradient[3])
+{
+ HairGridVert data[8];
+ float uvw[3], muvw[3];
+ int res2 = res * res;
+ int offset;
+
+ offset = hair_grid_interp_weights(res, gmin, scale, vec, uvw);
+ muvw[0] = 1.0f - uvw[0];
+ muvw[1] = 1.0f - uvw[1];
+ muvw[2] = 1.0f - uvw[2];
+
+ data[0] = grid[offset ];
+ data[1] = grid[offset +1];
+ data[2] = grid[offset +res ];
+ data[3] = grid[offset +res+1];
+ data[4] = grid[offset+res2 ];
+ data[5] = grid[offset+res2 +1];
+ data[6] = grid[offset+res2+res ];
+ data[7] = grid[offset+res2+res+1];
+
+ if (density) {
+ *density = muvw[2]*( muvw[1]*( muvw[0]*data[0].density + uvw[0]*data[1].density ) +
+ uvw[1]*( muvw[0]*data[2].density + uvw[0]*data[3].density ) ) +
+ uvw[2]*( muvw[1]*( muvw[0]*data[4].density + uvw[0]*data[5].density ) +
+ uvw[1]*( muvw[0]*data[6].density + uvw[0]*data[7].density ) );
+ }
+ if (velocity) {
+ int k;
+ for (k = 0; k < 3; ++k) {
+ velocity[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity[k] + uvw[0]*data[1].velocity[k] ) +
+ uvw[1]*( muvw[0]*data[2].velocity[k] + uvw[0]*data[3].velocity[k] ) ) +
+ uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity[k] + uvw[0]*data[5].velocity[k] ) +
+ uvw[1]*( muvw[0]*data[6].velocity[k] + uvw[0]*data[7].velocity[k] ) );
+ }
+ }
+ if (density_gradient) {
+ density_gradient[0] = muvw[1] * muvw[2] * ( data[0].density - data[1].density ) +
+ uvw[1] * muvw[2] * ( data[2].density - data[3].density ) +
+ muvw[1] * uvw[2] * ( data[4].density - data[5].density ) +
+ uvw[1] * uvw[2] * ( data[6].density - data[7].density );
+
+ density_gradient[1] = muvw[2] * muvw[0] * ( data[0].density - data[2].density ) +
+ uvw[2] * muvw[0] * ( data[4].density - data[6].density ) +
+ muvw[2] * uvw[0] * ( data[1].density - data[3].density ) +
+ uvw[2] * uvw[0] * ( data[5].density - data[7].density );
+
+ density_gradient[2] = muvw[2] * muvw[0] * ( data[0].density - data[4].density ) +
+ uvw[2] * muvw[0] * ( data[1].density - data[5].density ) +
+ muvw[2] * uvw[0] * ( data[2].density - data[6].density ) +
+ uvw[2] * uvw[0] * ( data[3].density - data[7].density );
+ }
+}
+
+static void hair_velocity_smoothing(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float smoothfac,
+ lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
+{
+ int v;
+ /* calculate forces */
+ for (v = 0; v < numverts; v++) {
+ float density, velocity[3];
+
+ hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, velocity, NULL);
+
+ sub_v3_v3(velocity, lV[v]);
+ madd_v3_v3fl(lF[v], velocity, smoothfac);
+ }
+}
+
+static void hair_velocity_collision(const HairGridVert *collgrid, const float gmin[3], const float scale[3], float collfac,
+ lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
+{
+ int v;
+ /* calculate forces */
+ for (v = 0; v < numverts; v++) {
+ int offset = hair_grid_offset(lX[v], hair_grid_res, gmin, scale);
+
+ if (collgrid[offset].density > 0.0f) {
+ lF[v][0] += collfac * (collgrid[offset].velocity[0] - lV[v][0]);
+ lF[v][1] += collfac * (collgrid[offset].velocity[1] - lV[v][1]);
+ lF[v][2] += collfac * (collgrid[offset].velocity[2] - lV[v][2]);
+ }
+ }
+}
+
+static void hair_pressure_force(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float pressurefac, float minpressure,
+ lfVector *lF, lfVector *lX, unsigned int numverts)
+{
+ int v;
+
+ /* calculate forces */
+ for (v = 0; v < numverts; v++) {
+ float density, gradient[3], gradlen;
+
+ hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, NULL, gradient);
+
+ gradlen = normalize_v3(gradient) - minpressure;
+ if (gradlen < 0.0f)
+ continue;
+ mul_v3_fl(gradient, gradlen);
+
+ madd_v3_v3fl(lF[v], gradient, pressurefac);
+ }
+}
+
+static void hair_volume_get_boundbox(lfVector *lX, unsigned int numverts, float gmin[3], float gmax[3])
+{
+ int i;
+
+ INIT_MINMAX(gmin, gmax);
+ for (i = 0; i < numverts; i++)
+ DO_MINMAX(lX[i], gmin, gmax);
+}
+
+BLI_INLINE bool hair_grid_point_valid(const float vec[3], float gmin[3], float gmax[3])
+{
+ return !(vec[0] < gmin[0] || vec[1] < gmin[1] || vec[2] < gmin[2] ||
+ vec[0] > gmax[0] || vec[1] > gmax[1] || vec[2] > gmax[2]);
+}
+
+BLI_INLINE float dist_tent_v3f3(const float a[3], float x, float y, float z)
+{
+ float w = (1.0f - fabsf(a[0] - x)) * (1.0f - fabsf(a[1] - y)) * (1.0f - fabsf(a[2] - z));
+ return w;
+}
+
+/* returns the grid array offset as well to avoid redundant calculation */
+static int hair_grid_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float weights[8])
+{
+ int i, j, k, offset;
+ float uvw[3];
+
+ i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
+ j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
+ k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
+ offset = i + (j + k*res)*res;
+
+ uvw[0] = (vec[0] - gmin[0]) / scale[0];
+ uvw[1] = (vec[1] - gmin[1]) / scale[1];
+ uvw[2] = (vec[2] - gmin[2]) / scale[2];
+
+ weights[0] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)k );
+ weights[1] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)k );
+ weights[2] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)k );
+ weights[3] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)k );
+ weights[4] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)(k+1));
+ weights[5] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)(k+1));
+ weights[6] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)(k+1));
+ weights[7] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)(k+1));
+
+ return offset;
+}
+
+static HairGridVert *hair_volume_create_hair_grid(ClothModifierData *clmd, lfVector *lX, lfVector *lV, unsigned int numverts)
+{
+ int res = hair_grid_res;
+ int size = hair_grid_size(res);
+ HairGridVert *hairgrid;
+ float gmin[3], gmax[3], scale[3];
+ /* 2.0f is an experimental value that seems to give good results */
+ float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
+ unsigned int v = 0;
+ int i = 0;
+
+ hair_volume_get_boundbox(lX, numverts, gmin, gmax);
+ hair_grid_get_scale(res, gmin, gmax, scale);
+
+ hairgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair voxel data");
+
+ /* initialize grid */
+ for (i = 0; i < size; ++i) {
+ zero_v3(hairgrid[i].velocity);
+ hairgrid[i].density = 0.0f;
+ }
+
+ /* gather velocities & density */
+ if (smoothfac > 0.0f) {
+ for (v = 0; v < numverts; v++) {
+ float *V = lV[v];
+ float weights[8];
+ int di, dj, dk;
+ int offset;
+
+ if (!hair_grid_point_valid(lX[v], gmin, gmax))
+ continue;
+
+ offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
+
+ for (di = 0; di < 2; ++di) {
+ for (dj = 0; dj < 2; ++dj) {
+ for (dk = 0; dk < 2; ++dk) {
+ int voffset = offset + di + (dj + dk*res)*res;
+ int iw = di + dj*2 + dk*4;
+
+ hairgrid[voffset].density += weights[iw];
+ madd_v3_v3fl(hairgrid[voffset].velocity, V, weights[iw]);
+ }
+ }
+ }
+ }
+ }
+
+ /* divide velocity with density */
+ for (i = 0; i < size; i++) {
+ float density = hairgrid[i].density;
+ if (density > 0.0f)
+ mul_v3_fl(hairgrid[i].velocity, 1.0f/density);
+ }
+
+ return hairgrid;
+}
+
+
+static HairGridVert *hair_volume_create_collision_grid(ClothModifierData *clmd, lfVector *lX, unsigned int numverts)
+{
+ int res = hair_grid_res;
+ int size = hair_grid_size(res);
+ HairGridVert *collgrid;
+ ListBase *colliders;
+ ColliderCache *col = NULL;
+ float gmin[3], gmax[3], scale[3];
+ /* 2.0f is an experimental value that seems to give good results */
+ float collfac = 2.0f * clmd->sim_parms->collider_friction;
+ unsigned int v = 0;
+ int i = 0;
+
+ hair_volume_get_boundbox(lX, numverts, gmin, gmax);
+ hair_grid_get_scale(res, gmin, gmax, scale);
+
+ collgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair collider voxel data");
+
+ /* initialize grid */
+ for (i = 0; i < size; ++i) {
+ zero_v3(collgrid[i].velocity);
+ collgrid[i].density = 0.0f;
+ }
+
+ /* gather colliders */
+ colliders = get_collider_cache(clmd->scene, NULL, NULL);
+ if (colliders && collfac > 0.0f) {
+ for (col = colliders->first; col; col = col->next) {
+ MVert *loc0 = col->collmd->x;
+ MVert *loc1 = col->collmd->xnew;
+ float vel[3];
+ float weights[8];
+ int di, dj, dk;
+
+ for (v=0; v < col->collmd->numverts; v++, loc0++, loc1++) {
+ int offset;
+
+ if (!hair_grid_point_valid(loc1->co, gmin, gmax))
+ continue;
+
+ offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
+
+ sub_v3_v3v3(vel, loc1->co, loc0->co);
+
+ for (di = 0; di < 2; ++di) {
+ for (dj = 0; dj < 2; ++dj) {
+ for (dk = 0; dk < 2; ++dk) {
+ int voffset = offset + di + (dj + dk*res)*res;
+ int iw = di + dj*2 + dk*4;
+
+ collgrid[voffset].density += weights[iw];
+ madd_v3_v3fl(collgrid[voffset].velocity, vel, weights[iw]);
+ }
+ }
+ }
+ }
+ }
+ }
+ free_collider_cache(&colliders);
+
+ /* divide velocity with density */
+ for (i = 0; i < size; i++) {
+ float density = collgrid[i].density;
+ if (density > 0.0f)
+ mul_v3_fl(collgrid[i].velocity, 1.0f/density);
+ }
+
+ return collgrid;
+}
+
+static void hair_volume_forces(ClothModifierData *clmd, lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
+{
+ HairGridVert *hairgrid, *collgrid;
+ float gmin[3], gmax[3], scale[3];
+ /* 2.0f is an experimental value that seems to give good results */
+ float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
+ float collfac = 2.0f * clmd->sim_parms->collider_friction;
+ float pressfac = clmd->sim_parms->pressure;
+ float minpress = clmd->sim_parms->pressure_threshold;
+
+ if (smoothfac <= 0.0f && collfac <= 0.0f && pressfac <= 0.0f)
+ return;
+
+ hair_volume_get_boundbox(lX, numverts, gmin, gmax);
+ hair_grid_get_scale(hair_grid_res, gmin, gmax, scale);
+
+ hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
+ collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
+
+ hair_velocity_smoothing(hairgrid, gmin, scale, smoothfac, lF, lX, lV, numverts);
+ hair_velocity_collision(collgrid, gmin, scale, collfac, lF, lX, lV, numverts);
+ hair_pressure_force(hairgrid, gmin, scale, pressfac, minpress, lF, lX, numverts);
+
+ MEM_freeN(hairgrid);
+ MEM_freeN(collgrid);
+}
+#endif
+
+bool implicit_hair_volume_get_texture_data(Object *UNUSED(ob), ClothModifierData *clmd, ListBase *UNUSED(effectors), VoxelData *vd)
+{
+#if 0
+ lfVector *lX, *lV;
+ HairGridVert *hairgrid/*, *collgrid*/;
+ int numverts;
+ int totres, i;
+ int depth;
+
+ if (!clmd->clothObject || !clmd->clothObject->implicit)
+ return false;
+
+ lX = clmd->clothObject->implicit->X;
+ lV = clmd->clothObject->implicit->V;
+ numverts = clmd->clothObject->numverts;
+
+ hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
+// collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
+
+ vd->resol[0] = hair_grid_res;
+ vd->resol[1] = hair_grid_res;
+ vd->resol[2] = hair_grid_res;
+
+ totres = hair_grid_size(hair_grid_res);
+
+ if (vd->hair_type == TEX_VD_HAIRVELOCITY) {
+ depth = 4;
+ vd->data_type = TEX_VD_RGBA_PREMUL;
+ }
+ else {
+ depth = 1;
+ vd->data_type = TEX_VD_INTENSITY;
+ }
+
+ if (totres > 0) {
+ vd->dataset = (float *)MEM_mapallocN(sizeof(float) * depth * (totres), "hair volume texture data");
+
+ for (i = 0; i < totres; ++i) {
+ switch (vd->hair_type) {
+ case TEX_VD_HAIRDENSITY:
+ vd->dataset[i] = hairgrid[i].density;
+ break;
+
+ case TEX_VD_HAIRRESTDENSITY:
+ vd->dataset[i] = 0.0f; // TODO
+ break;
+
+ case TEX_VD_HAIRVELOCITY:
+ vd->dataset[i + 0*totres] = hairgrid[i].velocity[0];
+ vd->dataset[i + 1*totres] = hairgrid[i].velocity[1];
+ vd->dataset[i + 2*totres] = hairgrid[i].velocity[2];
+ vd->dataset[i + 3*totres] = len_v3(hairgrid[i].velocity);
+ break;
+
+ case TEX_VD_HAIRENERGY:
+ vd->dataset[i] = 0.0f; // TODO
+ break;
+ }
+ }
+ }
+ else {
+ vd->dataset = NULL;
+ }
+
+ MEM_freeN(hairgrid);
+// MEM_freeN(collgrid);
+
+ return true;
+#else
+ return false; // XXX TODO
+#endif
+}
+
+/* ================================ */
+
+#endif /* IMPLICIT_SOLVER_EIGEN */