Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/api2_2x/Mathutils.c')
-rw-r--r--source/blender/python/api2_2x/Mathutils.c1804
1 files changed, 0 insertions, 1804 deletions
diff --git a/source/blender/python/api2_2x/Mathutils.c b/source/blender/python/api2_2x/Mathutils.c
deleted file mode 100644
index cf79b3071f7..00000000000
--- a/source/blender/python/api2_2x/Mathutils.c
+++ /dev/null
@@ -1,1804 +0,0 @@
-/*
- * $Id: Mathutils.c 11502 2007-08-06 14:27:08Z khughes $
- *
- * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version. The Blender
- * Foundation also sells licenses for use in proprietary software under
- * the Blender License. See http://www.blender.org/BL/ for information
- * about this.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
- * All rights reserved.
- *
- * This is a new part of Blender.
- *
- * Contributor(s): Joseph Gilbert, Campbell Barton
- *
- * ***** END GPL/BL DUAL LICENSE BLOCK *****
- */
-
-#include "Mathutils.h"
-
-#include "BLI_arithb.h"
-#include "PIL_time.h"
-#include "BLI_rand.h"
-#include "BKE_utildefines.h"
-
-#include "gen_utils.h"
-
-//-------------------------DOC STRINGS ---------------------------
-static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n";
-static char M_Mathutils_Vector_doc[] = "() - create a new vector object from a list of floats";
-static char M_Mathutils_Matrix_doc[] = "() - create a new matrix object from a list of floats";
-static char M_Mathutils_Quaternion_doc[] = "() - create a quaternion from a list or an axis of rotation and an angle";
-static char M_Mathutils_Euler_doc[] = "() - create and return a new euler object";
-static char M_Mathutils_Rand_doc[] = "() - return a random number";
-static char M_Mathutils_CrossVecs_doc[] = "() - returns a vector perpedicular to the 2 vectors crossed";
-static char M_Mathutils_CopyVec_doc[] = "() - create a copy of vector";
-static char M_Mathutils_DotVecs_doc[] = "() - return the dot product of two vectors";
-static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees";
-static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors";
-static char M_Mathutils_MatMultVec_doc[] = "() - multiplies a matrix by a column vector";
-static char M_Mathutils_VecMultMat_doc[] = "() - multiplies a row vector by a matrix";
-static char M_Mathutils_ProjectVecs_doc[] = "() - returns the projection vector from the projection of vecA onto vecB";
-static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation";
-static char M_Mathutils_ScaleMatrix_doc[] = "() - construct a scaling matrix from a scaling factor";
-static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane";
-static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor";
-static char M_Mathutils_CopyMat_doc[] = "() - create a copy of a matrix";
-static char M_Mathutils_TranslationMatrix_doc[] = "(vec) - create a translation matrix from a vector";
-static char M_Mathutils_CopyQuat_doc[] = "() - copy quatB to quatA";
-static char M_Mathutils_CopyEuler_doc[] = "() - copy eulB to eultA";
-static char M_Mathutils_CrossQuats_doc[] = "() - return the mutliplication of two quaternions";
-static char M_Mathutils_DotQuats_doc[] = "() - return the dot product of two quaternions";
-static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions";
-static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats";
-static char M_Mathutils_RotateEuler_doc[] = "() - rotate euler by an axis and angle";
-static char M_Mathutils_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
-static char M_Mathutils_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
-static char M_Mathutils_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
-static char M_Mathutils_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined";
-static char M_Mathutils_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other";
-static char M_Mathutils_Point_doc[] = "Creates a 2d or 3d point object";
-//-----------------------METHOD DEFINITIONS ----------------------
-struct PyMethodDef M_Mathutils_methods[] = {
- {"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc},
- {"Vector", (PyCFunction) M_Mathutils_Vector, METH_VARARGS, M_Mathutils_Vector_doc},
- {"CrossVecs", (PyCFunction) M_Mathutils_CrossVecs, METH_VARARGS, M_Mathutils_CrossVecs_doc},
- {"DotVecs", (PyCFunction) M_Mathutils_DotVecs, METH_VARARGS, M_Mathutils_DotVecs_doc},
- {"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc},
- {"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc},
- {"VecMultMat", (PyCFunction) M_Mathutils_VecMultMat, METH_VARARGS, M_Mathutils_VecMultMat_doc},
- {"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc},
- {"CopyVec", (PyCFunction) M_Mathutils_CopyVec, METH_VARARGS, M_Mathutils_CopyVec_doc},
- {"Matrix", (PyCFunction) M_Mathutils_Matrix, METH_VARARGS, M_Mathutils_Matrix_doc},
- {"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
- {"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
- {"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
- {"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
- {"CopyMat", (PyCFunction) M_Mathutils_CopyMat, METH_VARARGS, M_Mathutils_CopyMat_doc},
- {"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
- {"MatMultVec", (PyCFunction) M_Mathutils_MatMultVec, METH_VARARGS, M_Mathutils_MatMultVec_doc},
- {"Quaternion", (PyCFunction) M_Mathutils_Quaternion, METH_VARARGS, M_Mathutils_Quaternion_doc},
- {"CopyQuat", (PyCFunction) M_Mathutils_CopyQuat, METH_VARARGS, M_Mathutils_CopyQuat_doc},
- {"CrossQuats", (PyCFunction) M_Mathutils_CrossQuats, METH_VARARGS, M_Mathutils_CrossQuats_doc},
- {"DotQuats", (PyCFunction) M_Mathutils_DotQuats, METH_VARARGS, M_Mathutils_DotQuats_doc},
- {"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc},
- {"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc},
- {"Euler", (PyCFunction) M_Mathutils_Euler, METH_VARARGS, M_Mathutils_Euler_doc},
- {"CopyEuler", (PyCFunction) M_Mathutils_CopyEuler, METH_VARARGS, M_Mathutils_CopyEuler_doc},
- {"RotateEuler", (PyCFunction) M_Mathutils_RotateEuler, METH_VARARGS, M_Mathutils_RotateEuler_doc},
- {"Intersect", ( PyCFunction ) M_Mathutils_Intersect, METH_VARARGS, M_Mathutils_Intersect_doc},
- {"TriangleArea", ( PyCFunction ) M_Mathutils_TriangleArea, METH_VARARGS, M_Mathutils_TriangleArea_doc},
- {"TriangleNormal", ( PyCFunction ) M_Mathutils_TriangleNormal, METH_VARARGS, M_Mathutils_TriangleNormal_doc},
- {"QuadNormal", ( PyCFunction ) M_Mathutils_QuadNormal, METH_VARARGS, M_Mathutils_QuadNormal_doc},
- {"LineIntersect", ( PyCFunction ) M_Mathutils_LineIntersect, METH_VARARGS, M_Mathutils_LineIntersect_doc},
- {"Point", (PyCFunction) M_Mathutils_Point, METH_VARARGS, M_Mathutils_Point_doc},
- {NULL, NULL, 0, NULL}
-};
-//----------------------------MODULE INIT-------------------------
-PyObject *Mathutils_Init(void)
-{
- PyObject *submodule;
-
- //seed the generator for the rand function
- BLI_srand((unsigned int) (PIL_check_seconds_timer() *
- 0x7FFFFFFF));
-
- /* needed for getseters */
- if( PyType_Ready( &vector_Type ) < 0 )
- return NULL;
- if( PyType_Ready( &matrix_Type ) < 0 )
- return NULL;
- if( PyType_Ready( &euler_Type ) < 0 )
- return NULL;
- if( PyType_Ready( &quaternion_Type ) < 0 )
- return NULL;
-
- submodule = Py_InitModule3("Blender.Mathutils",
- M_Mathutils_methods, M_Mathutils_doc);
- return (submodule);
-}
-//-----------------------------METHODS----------------------------
-//----------------column_vector_multiplication (internal)---------
-//COLUMN VECTOR Multiplication (Matrix X Vector)
-// [1][2][3] [a]
-// [4][5][6] * [b]
-// [7][8][9] [c]
-//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
-PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
-{
- float vecNew[4], vecCopy[4];
- double dot = 0.0f;
- int x, y, z = 0;
-
- if(mat->rowSize != vec->size){
- if(mat->rowSize == 4 && vec->size != 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "matrix * vector: matrix row size and vector size must be the same");
- }else{
- vecCopy[3] = 1.0f;
- }
- }
-
- for(x = 0; x < vec->size; x++){
- vecCopy[x] = vec->vec[x];
- }
-
- for(x = 0; x < mat->rowSize; x++) {
- for(y = 0; y < mat->colSize; y++) {
- dot += mat->matrix[x][y] * vecCopy[y];
- }
- vecNew[z++] = (float)dot;
- dot = 0.0f;
- }
- return newVectorObject(vecNew, vec->size, Py_NEW);
-}
-//This is a helper for point/matrix translation
-
-PyObject *column_point_multiplication(MatrixObject * mat, PointObject* pt)
-{
- float ptNew[4], ptCopy[4];
- double dot = 0.0f;
- int x, y, z = 0;
-
- if(mat->rowSize != pt->size){
- if(mat->rowSize == 4 && pt->size != 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "matrix * point: matrix row size and point size must be the same\n");
- }else{
- ptCopy[3] = 0.0f;
- }
- }
-
- for(x = 0; x < pt->size; x++){
- ptCopy[x] = pt->coord[x];
- }
-
- for(x = 0; x < mat->rowSize; x++) {
- for(y = 0; y < mat->colSize; y++) {
- dot += mat->matrix[x][y] * ptCopy[y];
- }
- ptNew[z++] = (float)dot;
- dot = 0.0f;
- }
- return newPointObject(ptNew, pt->size, Py_NEW);
-}
-//-----------------row_vector_multiplication (internal)-----------
-//ROW VECTOR Multiplication - Vector X Matrix
-//[x][y][z] * [1][2][3]
-// [4][5][6]
-// [7][8][9]
-//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
-PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
-{
- float vecNew[4], vecCopy[4];
- double dot = 0.0f;
- int x, y, z = 0, vec_size = vec->size;
-
- if(mat->colSize != vec_size){
- if(mat->rowSize == 4 && vec_size != 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "vector * matrix: matrix column size and the vector size must be the same");
- }else{
- vecCopy[3] = 1.0f;
- }
- }
-
- for(x = 0; x < vec_size; x++){
- vecCopy[x] = vec->vec[x];
- }
-
- //muliplication
- for(x = 0; x < mat->colSize; x++) {
- for(y = 0; y < mat->rowSize; y++) {
- dot += mat->matrix[y][x] * vecCopy[y];
- }
- vecNew[z++] = (float)dot;
- dot = 0.0f;
- }
- return newVectorObject(vecNew, vec_size, Py_NEW);
-}
-//This is a helper for the point class
-PyObject *row_point_multiplication(PointObject* pt, MatrixObject * mat)
-{
- float ptNew[4], ptCopy[4];
- double dot = 0.0f;
- int x, y, z = 0, size;
-
- if(mat->colSize != pt->size){
- if(mat->rowSize == 4 && pt->size != 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "point * matrix: matrix column size and the point size must be the same\n");
- }else{
- ptCopy[3] = 0.0f;
- }
- }
- size = pt->size;
- for(x = 0; x < pt->size; x++){
- ptCopy[x] = pt->coord[x];
- }
-
- //muliplication
- for(x = 0; x < mat->colSize; x++) {
- for(y = 0; y < mat->rowSize; y++) {
- dot += mat->matrix[y][x] * ptCopy[y];
- }
- ptNew[z++] = (float)dot;
- dot = 0.0f;
- }
- return newPointObject(ptNew, size, Py_NEW);
-}
-//-----------------quat_rotation (internal)-----------
-//This function multiplies a vector/point * quat or vice versa
-//to rotate the point/vector by the quaternion
-//arguments should all be 3D
-PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
-{
- float rot[3];
- QuaternionObject *quat = NULL;
- VectorObject *vec = NULL;
- PointObject *pt = NULL;
-
- if(QuaternionObject_Check(arg1)){
- quat = (QuaternionObject*)arg1;
- if(VectorObject_Check(arg2)){
- vec = (VectorObject*)arg2;
- rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
- 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
- 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
- quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
- 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
- quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
- 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
- quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
- quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
- quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
- return newVectorObject(rot, 3, Py_NEW);
- }else if(PointObject_Check(arg2)){
- pt = (PointObject*)arg2;
- rot[0] = quat->quat[0]*quat->quat[0]*pt->coord[0] + 2*quat->quat[2]*quat->quat[0]*pt->coord[2] -
- 2*quat->quat[3]*quat->quat[0]*pt->coord[1] + quat->quat[1]*quat->quat[1]*pt->coord[0] +
- 2*quat->quat[2]*quat->quat[1]*pt->coord[1] + 2*quat->quat[3]*quat->quat[1]*pt->coord[2] -
- quat->quat[3]*quat->quat[3]*pt->coord[0] - quat->quat[2]*quat->quat[2]*pt->coord[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*pt->coord[0] + quat->quat[2]*quat->quat[2]*pt->coord[1] +
- 2*quat->quat[3]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[3]*pt->coord[0] -
- quat->quat[3]*quat->quat[3]*pt->coord[1] + quat->quat[0]*quat->quat[0]*pt->coord[1] -
- 2*quat->quat[1]*quat->quat[0]*pt->coord[2] - quat->quat[1]*quat->quat[1]*pt->coord[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*pt->coord[0] + 2*quat->quat[2]*quat->quat[3]*pt->coord[1] +
- quat->quat[3]*quat->quat[3]*pt->coord[2] - 2*quat->quat[0]*quat->quat[2]*pt->coord[0] -
- quat->quat[2]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[1]*pt->coord[1] -
- quat->quat[1]*quat->quat[1]*pt->coord[2] + quat->quat[0]*quat->quat[0]*pt->coord[2];
- return newPointObject(rot, 3, Py_NEW);
- }
- }else if(VectorObject_Check(arg1)){
- vec = (VectorObject*)arg1;
- if(QuaternionObject_Check(arg2)){
- quat = (QuaternionObject*)arg2;
- rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
- 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
- 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
- quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
- 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
- quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
- 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
- quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
- quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
- quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
- return newVectorObject(rot, 3, Py_NEW);
- }
- }else if(PointObject_Check(arg1)){
- pt = (PointObject*)arg1;
- if(QuaternionObject_Check(arg2)){
- quat = (QuaternionObject*)arg2;
- rot[0] = quat->quat[0]*quat->quat[0]*pt->coord[0] + 2*quat->quat[2]*quat->quat[0]*pt->coord[2] -
- 2*quat->quat[3]*quat->quat[0]*pt->coord[1] + quat->quat[1]*quat->quat[1]*pt->coord[0] +
- 2*quat->quat[2]*quat->quat[1]*pt->coord[1] + 2*quat->quat[3]*quat->quat[1]*pt->coord[2] -
- quat->quat[3]*quat->quat[3]*pt->coord[0] - quat->quat[2]*quat->quat[2]*pt->coord[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*pt->coord[0] + quat->quat[2]*quat->quat[2]*pt->coord[1] +
- 2*quat->quat[3]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[3]*pt->coord[0] -
- quat->quat[3]*quat->quat[3]*pt->coord[1] + quat->quat[0]*quat->quat[0]*pt->coord[1] -
- 2*quat->quat[1]*quat->quat[0]*pt->coord[2] - quat->quat[1]*quat->quat[1]*pt->coord[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*pt->coord[0] + 2*quat->quat[2]*quat->quat[3]*pt->coord[1] +
- quat->quat[3]*quat->quat[3]*pt->coord[2] - 2*quat->quat[0]*quat->quat[2]*pt->coord[0] -
- quat->quat[2]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[1]*pt->coord[1] -
- quat->quat[1]*quat->quat[1]*pt->coord[2] + quat->quat[0]*quat->quat[0]*pt->coord[2];
- return newPointObject(rot, 3, Py_NEW);
- }
- }
-
- return (EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "quat_rotation(internal): internal problem rotating vector/point\n"));
-}
-
-//----------------------------------Mathutils.Rand() --------------------
-//returns a random number between a high and low value
-PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)
-{
- float high, low, range;
- double rand;
- //initializers
- high = 1.0;
- low = 0.0;
-
- if(!PyArg_ParseTuple(args, "|ff", &low, &high))
- return (EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Rand(): expected nothing or optional (float, float)\n"));
-
- if((high < low) || (high < 0 && low > 0))
- return (EXPP_ReturnPyObjError(PyExc_ValueError,
- "Mathutils.Rand(): high value should be larger than low value\n"));
-
- //get the random number 0 - 1
- rand = BLI_drand();
-
- //set it to range
- range = high - low;
- rand = rand * range;
- rand = rand + low;
-
- return PyFloat_FromDouble(rand);
-}
-//----------------------------------VECTOR FUNCTIONS---------------------
-//----------------------------------Mathutils.Vector() ------------------
-// Supports 2D, 3D, and 4D vector objects both int and float values
-// accepted. Mixed float and int values accepted. Ints are parsed to float
-PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args)
-{
- PyObject *listObject = NULL;
- int size, i;
- float vec[4];
- PyObject *v, *f;
-
- size = PySequence_Length(args);
- if (size == 1) {
- listObject = PySequence_GetItem(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- } else { // Single argument was not a sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
- }
- } else if (size == 0) {
- //returns a new empty 3d vector
- return newVectorObject(NULL, 3, Py_NEW);
- } else {
- listObject = EXPP_incr_ret(args);
- }
-
- if (size<2 || size>4) { // Invalid vector size
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
- }
-
- for (i=0; i<size; i++) {
- v=PySequence_GetItem(listObject, i);
- if (v==NULL) { // Failed to read sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
- }
-
- f=PyNumber_Float(v);
- if(f==NULL) { // parsed item not a number
- Py_DECREF(v);
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
- }
-
- vec[i]=(float)PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,v);
- }
- Py_DECREF(listObject);
- return newVectorObject(vec, size, Py_NEW);
-}
-//----------------------------------Mathutils.CrossVecs() ---------------
-//finds perpendicular vector - only 3D is supported
-PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args)
-{
- PyObject *vecCross = NULL;
- VectorObject *vec1 = NULL, *vec2 = NULL;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
- if(vec1->size != 3 || vec2->size != 3)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
-
- vecCross = newVectorObject(NULL, 3, Py_NEW);
- Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec);
- return vecCross;
-}
-//----------------------------------Mathutils.DotVec() -------------------
-//calculates the dot product of two vectors
-PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args)
-{
- VectorObject *vec1 = NULL, *vec2 = NULL;
- double dot = 0.0f;
- int x;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.DotVecs(): expects (2) vector objects of the same size\n");
- if(vec1->size != vec2->size)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.DotVecs(): expects (2) vector objects of the same size\n");
-
- for(x = 0; x < vec1->size; x++) {
- dot += vec1->vec[x] * vec2->vec[x];
- }
- return PyFloat_FromDouble(dot);
-}
-//----------------------------------Mathutils.AngleBetweenVecs() ---------
-//calculates the angle between 2 vectors
-PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
-{
- VectorObject *vec1 = NULL, *vec2 = NULL;
- double dot = 0.0f, angleRads, test_v1 = 0.0f, test_v2 = 0.0f;
- int x, size;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- goto AttributeError1; //not vectors
- if(vec1->size != vec2->size)
- goto AttributeError1; //bad sizes
-
- //since size is the same....
- size = vec1->size;
-
- for(x = 0; x < size; x++) {
- test_v1 += vec1->vec[x] * vec1->vec[x];
- test_v2 += vec2->vec[x] * vec2->vec[x];
- }
- if (!test_v1 || !test_v2){
- goto AttributeError2; //zero-length vector
- }
-
- //dot product
- for(x = 0; x < size; x++) {
- dot += vec1->vec[x] * vec2->vec[x];
- }
- dot /= (sqrt(test_v1) * sqrt(test_v2));
-
- if (dot < -1.0f || dot > 1.0f) {
- CLAMP(dot,-1.0f,1.0f);
- }
- angleRads = (double)acos(dot);
-
- return PyFloat_FromDouble(angleRads * (180/ Py_PI));
-
-AttributeError1:
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.AngleBetweenVecs(): expects (2) VECTOR objects of the same size\n");
-
-AttributeError2:
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.AngleBetweenVecs(): zero length vectors are not acceptable arguments\n");
-}
-//----------------------------------Mathutils.MidpointVecs() -------------
-//calculates the midpoint between 2 vectors
-PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
-{
- VectorObject *vec1 = NULL, *vec2 = NULL;
- float vec[4];
- int x;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
- if(vec1->size != vec2->size)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
-
- for(x = 0; x < vec1->size; x++) {
- vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
- }
- return newVectorObject(vec, vec1->size, Py_NEW);
-}
-//----------------------------------Mathutils.ProjectVecs() -------------
-//projects vector 1 onto vector 2
-PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
-{
- VectorObject *vec1 = NULL, *vec2 = NULL;
- float vec[4];
- double dot = 0.0f, dot2 = 0.0f;
- int x, size;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
- if(vec1->size != vec2->size)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
-
- //since they are the same size...
- size = vec1->size;
-
- //get dot products
- for(x = 0; x < size; x++) {
- dot += vec1->vec[x] * vec2->vec[x];
- dot2 += vec2->vec[x] * vec2->vec[x];
- }
- //projection
- dot /= dot2;
- for(x = 0; x < size; x++) {
- vec[x] = (float)(dot * vec2->vec[x]);
- }
- return newVectorObject(vec, size, Py_NEW);
-}
-//----------------------------------MATRIX FUNCTIONS--------------------
-//----------------------------------Mathutils.Matrix() -----------------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//create a new matrix type
-PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args)
-{
- PyObject *listObject = NULL;
- PyObject *argObject, *m, *s, *f;
- MatrixObject *mat;
- int argSize, seqSize = 0, i, j;
- float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- argSize = PySequence_Length(args);
- if(argSize > 4){ //bad arg nums
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- } else if (argSize == 0) { //return empty 4D matrix
- return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW);
- }else if (argSize == 1){
- //copy constructor for matrix objects
- argObject = PySequence_GetItem(args, 0);
- if(MatrixObject_Check(argObject)){
- mat = (MatrixObject*)argObject;
-
- argSize = mat->rowSize; //rows
- seqSize = mat->colSize; //col
- for(i = 0; i < (seqSize * argSize); i++){
- matrix[i] = mat->contigPtr[i];
- }
- }
- Py_DECREF(argObject);
- }else{ //2-4 arguments (all seqs? all same size?)
- for(i =0; i < argSize; i++){
- argObject = PySequence_GetItem(args, i);
- if (PySequence_Check(argObject)) { //seq?
- if(seqSize){ //0 at first
- if(PySequence_Length(argObject) != seqSize){ //seq size not same
- Py_DECREF(argObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- }
- }
- seqSize = PySequence_Length(argObject);
- }else{ //arg not a sequence
- Py_XDECREF(argObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- }
- Py_DECREF(argObject);
- }
- //all is well... let's continue parsing
- listObject = args;
- for (i = 0; i < argSize; i++){
- m = PySequence_GetItem(listObject, i);
- if (m == NULL) { // Failed to read sequence
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Matrix(): failed to parse arguments...\n");
- }
-
- for (j = 0; j < seqSize; j++) {
- s = PySequence_GetItem(m, j);
- if (s == NULL) { // Failed to read sequence
- Py_DECREF(m);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Matrix(): failed to parse arguments...\n");
- }
-
- f = PyNumber_Float(s);
- if(f == NULL) { // parsed item is not a number
- EXPP_decr2(m,s);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- }
-
- matrix[(seqSize*i)+j]=(float)PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,s);
- }
- Py_DECREF(m);
- }
- }
- return newMatrixObject(matrix, argSize, seqSize, Py_NEW);
-}
-//----------------------------------Mathutils.RotationMatrix() ----------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//creates a rotation matrix
-PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec = NULL;
- char *axis = NULL;
- int matSize;
- float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple
- (args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) {
- return EXPP_ReturnPyObjError (PyExc_TypeError,
- "Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
- }
-
- /* Clamp to -360:360 */
- while (angle<-360.0f)
- angle+=360.0;
- while (angle>360.0f)
- angle-=360.0;
-
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if(matSize == 2 && (axis != NULL || vec != NULL))
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
- if((matSize == 3 || matSize == 4) && axis == NULL)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
- if(axis) {
- if(((strcmp(axis, "r") == 0) ||
- (strcmp(axis, "R") == 0)) && vec == NULL)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n");
- }
- if(vec) {
- if(vec->size != 3)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
- }
- //convert to radians
- angle = angle * (float) (Py_PI / 180);
- if(axis == NULL && matSize == 2) {
- //2D rotation matrix
- mat[0] = (float) cos (angle);
- mat[1] = (float) sin (angle);
- mat[2] = -((float) sin(angle));
- mat[3] = (float) cos(angle);
- } else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) {
- //rotation around X
- mat[0] = 1.0f;
- mat[4] = (float) cos(angle);
- mat[5] = (float) sin(angle);
- mat[7] = -((float) sin(angle));
- mat[8] = (float) cos(angle);
- } else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) {
- //rotation around Y
- mat[0] = (float) cos(angle);
- mat[2] = -((float) sin(angle));
- mat[4] = 1.0f;
- mat[6] = (float) sin(angle);
- mat[8] = (float) cos(angle);
- } else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) {
- //rotation around Z
- mat[0] = (float) cos(angle);
- mat[1] = (float) sin(angle);
- mat[3] = -((float) sin(angle));
- mat[4] = (float) cos(angle);
- mat[8] = 1.0f;
- } else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) {
- //arbitrary rotation
- //normalize arbitrary axis
- norm = (float) sqrt(vec->vec[0] * vec->vec[0] +
- vec->vec[1] * vec->vec[1] +
- vec->vec[2] * vec->vec[2]);
- vec->vec[0] /= norm;
- vec->vec[1] /= norm;
- vec->vec[2] /= norm;
-
- //create matrix
- cosAngle = (float) cos(angle);
- sinAngle = (float) sin(angle);
- mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
- cosAngle;
- mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
- (vec->vec[2] * sinAngle);
- mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
- (vec->vec[1] * sinAngle);
- mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
- (vec->vec[2] * sinAngle);
- mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
- cosAngle;
- mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
- (vec->vec[0] * sinAngle);
- mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
- (vec->vec[1] * sinAngle);
- mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
- (vec->vec[0] * sinAngle);
- mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
- cosAngle;
- } else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n");
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
-}
-//----------------------------------Mathutils.TranslationMatrix() -------
-//creates a translation matrix
-PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
-{
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!VectorObject_Check(vec)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.TranslationMatrix(): expected vector\n");
- }
- if(vec->size != 3 && vec->size != 4) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
- }
- //create a identity matrix and add translation
- Mat4One((float(*)[4]) mat);
- mat[12] = vec->vec[0];
- mat[13] = vec->vec[1];
- mat[14] = vec->vec[2];
-
- return newMatrixObject(mat, 4, 4, Py_NEW);
-}
-//----------------------------------Mathutils.ScaleMatrix() -------------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//creates a scaling matrix
-PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec = NULL;
- float norm = 0.0f, factor;
- int matSize, x;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple
- (args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
- }
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if(vec) {
- if(vec->size > 2 && matSize == 2)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
- }
- if(vec == NULL) { //scaling along axis
- if(matSize == 2) {
- mat[0] = factor;
- mat[3] = factor;
- } else {
- mat[0] = factor;
- mat[4] = factor;
- mat[8] = factor;
- }
- } else { //scaling in arbitrary direction
- //normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
- norm += vec->vec[x] * vec->vec[x];
- }
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
- vec->vec[x] /= norm;
- }
- if(matSize == 2) {
- mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
- } else {
- mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
- mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
- }
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
-}
-//----------------------------------Mathutils.OrthoProjectionMatrix() ---
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//creates an ortho projection matrix
-PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec = NULL;
- char *plane;
- int matSize, x;
- float norm = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple
- (args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
- }
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if(vec) {
- if(vec->size > 2 && matSize == 2)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
- }
- if(vec == NULL) { //ortho projection onto cardinal plane
- if(((strcmp(plane, "x") == 0)
- || (strcmp(plane, "X") == 0)) && matSize == 2) {
- mat[0] = 1.0f;
- } else if(((strcmp(plane, "y") == 0)
- || (strcmp(plane, "Y") == 0))
- && matSize == 2) {
- mat[3] = 1.0f;
- } else if(((strcmp(plane, "xy") == 0)
- || (strcmp(plane, "XY") == 0))
- && matSize > 2) {
- mat[0] = 1.0f;
- mat[4] = 1.0f;
- } else if(((strcmp(plane, "xz") == 0)
- || (strcmp(plane, "XZ") == 0))
- && matSize > 2) {
- mat[0] = 1.0f;
- mat[8] = 1.0f;
- } else if(((strcmp(plane, "yz") == 0)
- || (strcmp(plane, "YZ") == 0))
- && matSize > 2) {
- mat[4] = 1.0f;
- mat[8] = 1.0f;
- } else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n");
- }
- } else { //arbitrary plane
- //normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
- norm += vec->vec[x] * vec->vec[x];
- }
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
- vec->vec[x] /= norm;
- }
- if(((strcmp(plane, "r") == 0)
- || (strcmp(plane, "R") == 0)) && matSize == 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[1]);
- mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
- } else if(((strcmp(plane, "r") == 0)
- || (strcmp(plane, "R") == 0))
- && matSize > 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[2]);
- mat[3] = -(vec->vec[0] * vec->vec[1]);
- mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
- mat[5] = -(vec->vec[1] * vec->vec[2]);
- mat[6] = -(vec->vec[0] * vec->vec[2]);
- mat[7] = -(vec->vec[1] * vec->vec[2]);
- mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
- } else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
- }
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
-}
-//----------------------------------Mathutils.ShearMatrix() -------------
-//creates a shear matrix
-PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
-{
- int matSize;
- char *plane;
- float factor;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.ShearMatrix(): expected string float and int\n");
- }
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
-
- if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0))
- && matSize == 2) {
- mat[0] = 1.0f;
- mat[2] = factor;
- mat[3] = 1.0f;
- } else if(((strcmp(plane, "y") == 0)
- || (strcmp(plane, "Y") == 0)) && matSize == 2) {
- mat[0] = 1.0f;
- mat[1] = factor;
- mat[3] = 1.0f;
- } else if(((strcmp(plane, "xy") == 0)
- || (strcmp(plane, "XY") == 0)) && matSize > 2) {
- mat[0] = 1.0f;
- mat[4] = 1.0f;
- mat[6] = factor;
- mat[7] = factor;
- } else if(((strcmp(plane, "xz") == 0)
- || (strcmp(plane, "XZ") == 0)) && matSize > 2) {
- mat[0] = 1.0f;
- mat[3] = factor;
- mat[4] = 1.0f;
- mat[5] = factor;
- mat[8] = 1.0f;
- } else if(((strcmp(plane, "yz") == 0)
- || (strcmp(plane, "YZ") == 0)) && matSize > 2) {
- mat[0] = 1.0f;
- mat[1] = factor;
- mat[2] = factor;
- mat[4] = 1.0f;
- mat[8] = 1.0f;
- } else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
-}
-//----------------------------------QUATERNION FUNCTIONS-----------------
-//----------------------------------Mathutils.Quaternion() --------------
-PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args)
-{
- PyObject *listObject = NULL, *n, *q, *f;
- int size, i;
- float quat[4];
- double norm = 0.0f, angle = 0.0f;
-
- size = PySequence_Length(args);
- if (size == 1 || size == 2) { //seq?
- listObject = PySequence_GetItem(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- if ((size == 4 && PySequence_Length(args) !=1) ||
- (size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
- // invalid args/size
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- if(size == 3){ //get angle in axis/angle
- n = PyNumber_Float(PySequence_GetItem(args, 1));
- if(n == NULL) { // parsed item not a number or getItem fail
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- angle = PyFloat_AS_DOUBLE(n);
- Py_DECREF(n);
- }
- }else{
- listObject = PySequence_GetItem(args, 1);
- if (size>1 && PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- if (size != 3) {
- // invalid args/size
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- n = PyNumber_Float(PySequence_GetItem(args, 0));
- if(n == NULL) { // parsed item not a number or getItem fail
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- angle = PyFloat_AS_DOUBLE(n);
- Py_DECREF(n);
- } else { // argument was not a sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- }
- } else if (size == 0) { //returns a new empty quat
- return newQuaternionObject(NULL, Py_NEW);
- } else {
- listObject = EXPP_incr_ret(args);
- }
-
- if (size == 3) { // invalid quat size
- if(PySequence_Length(args) != 2){
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- }else{
- if(size != 4){
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- }
-
- for (i=0; i<size; i++) { //parse
- q = PySequence_GetItem(listObject, i);
- if (q == NULL) { // Failed to read sequence
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
-
- f = PyNumber_Float(q);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2(q, listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
-
- quat[i] = (float)PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f, q);
- }
- if(size == 3){ //calculate the quat based on axis/angle
- norm = sqrt(quat[0] * quat[0] + quat[1] * quat[1] + quat[2] * quat[2]);
- quat[0] /= (float)norm;
- quat[1] /= (float)norm;
- quat[2] /= (float)norm;
-
- angle = angle * (Py_PI / 180);
- quat[3] =(float) (sin(angle/ 2.0f)) * quat[2];
- quat[2] =(float) (sin(angle/ 2.0f)) * quat[1];
- quat[1] =(float) (sin(angle/ 2.0f)) * quat[0];
- quat[0] =(float) (cos(angle/ 2.0f));
- }
-
- Py_DECREF(listObject);
- return newQuaternionObject(quat, Py_NEW);
-}
-//----------------------------------Mathutils.CrossQuats() ----------------
-//quaternion multiplication - associate not commutative
-PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args)
-{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- float quat[4];
-
- if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
- &quaternion_Type, &quatV))
- return EXPP_ReturnPyObjError(PyExc_TypeError,"Mathutils.CrossQuats(): expected Quaternion types");
- QuatMul(quat, quatU->quat, quatV->quat);
-
- return newQuaternionObject(quat, Py_NEW);
-}
-//----------------------------------Mathutils.DotQuats() ----------------
-//returns the dot product of 2 quaternions
-PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args)
-{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- double dot = 0.0f;
- int x;
-
- if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
- &quaternion_Type, &quatV))
- return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DotQuats(): expected Quaternion types");
-
- for(x = 0; x < 4; x++) {
- dot += quatU->quat[x] * quatV->quat[x];
- }
- return PyFloat_FromDouble(dot);
-}
-//----------------------------------Mathutils.DifferenceQuats() ---------
-//returns the difference between 2 quaternions
-PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
-{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- float quat[4], tempQuat[4];
- double dot = 0.0f;
- int x;
-
- if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type,
- &quatU, &quaternion_Type, &quatV))
- return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");
-
- tempQuat[0] = quatU->quat[0];
- tempQuat[1] = -quatU->quat[1];
- tempQuat[2] = -quatU->quat[2];
- tempQuat[3] = -quatU->quat[3];
-
- dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] * tempQuat[1] +
- tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
-
- for(x = 0; x < 4; x++) {
- tempQuat[x] /= (float)(dot * dot);
- }
- QuatMul(quat, tempQuat, quatV->quat);
- return newQuaternionObject(quat, Py_NEW);
-}
-//----------------------------------Mathutils.Slerp() ------------------
-//attemps to interpolate 2 quaternions and return the result
-PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
-{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- float quat[4], quat_u[4], quat_v[4], param;
- double x, y, dot, sinT, angle, IsinT;
- int z;
-
- if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type,
- &quatU, &quaternion_Type, &quatV, &param))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Slerp(): expected Quaternion types and float");
-
- if(param > 1.0f || param < 0.0f)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
-
- //copy quats
- for(z = 0; z < 4; z++){
- quat_u[z] = quatU->quat[z];
- quat_v[z] = quatV->quat[z];
- }
-
- //dot product
- dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] +
- quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3];
-
- //if negative negate a quat (shortest arc)
- if(dot < 0.0f) {
- quat_v[0] = -quat_v[0];
- quat_v[1] = -quat_v[1];
- quat_v[2] = -quat_v[2];
- quat_v[3] = -quat_v[3];
- dot = -dot;
- }
- if(dot > .99999f) { //very close
- x = 1.0f - param;
- y = param;
- } else {
- //calculate sin of angle
- sinT = sqrt(1.0f - (dot * dot));
- //calculate angle
- angle = atan2(sinT, dot);
- //caluculate inverse of sin(theta)
- IsinT = 1.0f / sinT;
- x = sin((1.0f - param) * angle) * IsinT;
- y = sin(param * angle) * IsinT;
- }
- //interpolate
- quat[0] = (float)(quat_u[0] * x + quat_v[0] * y);
- quat[1] = (float)(quat_u[1] * x + quat_v[1] * y);
- quat[2] = (float)(quat_u[2] * x + quat_v[2] * y);
- quat[3] = (float)(quat_u[3] * x + quat_v[3] * y);
-
- return newQuaternionObject(quat, Py_NEW);
-}
-//----------------------------------EULER FUNCTIONS----------------------
-//----------------------------------Mathutils.Euler() -------------------
-//makes a new euler for you to play with
-PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args)
-{
-
- PyObject *listObject = NULL;
- int size, i;
- float eul[3];
- PyObject *e, *f;
-
- size = PySequence_Length(args);
- if (size == 1) {
- listObject = PySequence_GetItem(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- } else { // Single argument was not a sequence
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
- } else if (size == 0) {
- //returns a new empty 3d euler
- return newEulerObject(NULL, Py_NEW);
- } else {
- listObject = EXPP_incr_ret(args);
- }
-
- if (size != 3) { // Invalid euler size
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
-
- for (i=0; i<size; i++) {
- e = PySequence_GetItem(listObject, i);
- if (e == NULL) { // Failed to read sequence
- Py_DECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
-
- f = PyNumber_Float(e);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2(e, listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
-
- eul[i]=(float)PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,e);
- }
- Py_DECREF(listObject);
- return newEulerObject(eul, Py_NEW);
-}
-//----------------------------------POINT FUNCTIONS---------------------
-//----------------------------------Mathutils.Point() ------------------
-PyObject *M_Mathutils_Point(PyObject * self, PyObject * args)
-{
- PyObject *listObject = NULL;
- int size, i;
- float point[3];
- PyObject *v, *f;
-
- size = PySequence_Length(args);
- if (size == 1) {
- listObject = PySequence_GetItem(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- } else { // Single argument was not a sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
- }
- } else if (size == 0) {
- //returns a new empty 3d point
- return newPointObject(NULL, 3, Py_NEW);
- } else {
- listObject = EXPP_incr_ret(args);
- }
-
- if (size<2 || size>3) { // Invalid vector size
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
- }
-
- for (i=0; i<size; i++) {
- v=PySequence_GetItem(listObject, i);
- if (v==NULL) { // Failed to read sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
- }
-
- f=PyNumber_Float(v);
- if(f==NULL) { // parsed item not a number
- Py_DECREF(v);
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
- }
-
- point[i]=(float)PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,v);
- }
- Py_DECREF(listObject);
- return newPointObject(point, size, Py_NEW);
-}
-//---------------------------------INTERSECTION FUNCTIONS--------------------
-//----------------------------------Mathutils.Intersect() -------------------
-PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args )
-{
- VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
- float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
- float det, inv_det, u, v, t;
- int clip = 1;
-
- if( !PyArg_ParseTuple
- ( args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2
- , &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected 5 vector types\n" ) );
- if( vec1->size != 3 || vec2->size != 3 || vec3->size != 3 ||
- ray->size != 3 || ray_off->size != 3)
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "only 3D vectors for all parameters\n" ) );
-
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
-
- VECCOPY(dir, ray->vec);
- Normalize(dir);
-
- VECCOPY(orig, ray_off->vec);
-
- /* find vectors for two edges sharing v1 */
- VecSubf(e1, v2, v1);
- VecSubf(e2, v3, v1);
-
- /* begin calculating determinant - also used to calculated U parameter */
- Crossf(pvec, dir, e2);
-
- /* if determinant is near zero, ray lies in plane of triangle */
- det = Inpf(e1, pvec);
-
- if (det > -0.000001 && det < 0.000001) {
- return EXPP_incr_ret( Py_None );
- }
-
- inv_det = 1.0f / det;
-
- /* calculate distance from v1 to ray origin */
- VecSubf(tvec, orig, v1);
-
- /* calculate U parameter and test bounds */
- u = Inpf(tvec, pvec) * inv_det;
- if (clip && (u < 0.0f || u > 1.0f)) {
- return EXPP_incr_ret( Py_None );
- }
-
- /* prepare to test the V parameter */
- Crossf(qvec, tvec, e1);
-
- /* calculate V parameter and test bounds */
- v = Inpf(dir, qvec) * inv_det;
-
- if (clip && (v < 0.0f || u + v > 1.0f)) {
- return EXPP_incr_ret( Py_None );
- }
-
- /* calculate t, ray intersects triangle */
- t = Inpf(e2, qvec) * inv_det;
-
- VecMulf(dir, t);
- VecAddf(pvec, orig, dir);
-
- return newVectorObject(pvec, 3, Py_NEW);
-}
-//----------------------------------Mathutils.LineIntersect() -------------------
-/* Line-Line intersection using algorithm from mathworld.wolfram.com */
-PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args )
-{
- PyObject * tuple;
- VectorObject *vec1, *vec2, *vec3, *vec4;
- float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
-
- if( !PyArg_ParseTuple
- ( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
- , &vector_Type, &vec3, &vector_Type, &vec4 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected 4 vector types\n" ) );
- if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec2->size)
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
-
- if( vec1->size == 3 || vec1->size == 2) {
- float a[3], b[3], c[3], ab[3], cb[3], dir1[3], dir2[3];
- float d;
- if (vec1->size == 3) {
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
- VECCOPY(v4, vec4->vec);
- }
- else {
- v1[0] = vec1->vec[0];
- v1[1] = vec1->vec[1];
- v1[2] = 0.0f;
-
- v2[0] = vec2->vec[0];
- v2[1] = vec2->vec[1];
- v2[2] = 0.0f;
-
- v3[0] = vec3->vec[0];
- v3[1] = vec3->vec[1];
- v3[2] = 0.0f;
-
- v4[0] = vec4->vec[0];
- v4[1] = vec4->vec[1];
- v4[2] = 0.0f;
- }
-
- VecSubf(c, v3, v1);
- VecSubf(a, v2, v1);
- VecSubf(b, v4, v3);
-
- VECCOPY(dir1, a);
- Normalize(dir1);
- VECCOPY(dir2, b);
- Normalize(dir2);
- d = Inpf(dir1, dir2);
- if (d == 1.0f || d == -1.0f) {
- /* colinear */
- return EXPP_incr_ret( Py_None );
- }
-
- Crossf(ab, a, b);
- d = Inpf(c, ab);
-
- /* test if the two lines are coplanar */
- if (d > -0.000001f && d < 0.000001f) {
- Crossf(cb, c, b);
-
- VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
- VecAddf(i1, v1, a);
- VECCOPY(i2, i1);
- }
- /* if not */
- else {
- float n[3], t[3];
- VecSubf(t, v1, v3);
-
- /* offset between both plane where the lines lies */
- Crossf(n, a, b);
- Projf(t, t, n);
-
- /* for the first line, offset the second line until it is coplanar */
- VecAddf(v3, v3, t);
- VecAddf(v4, v4, t);
-
- VecSubf(c, v3, v1);
- VecSubf(a, v2, v1);
- VecSubf(b, v4, v3);
-
- Crossf(ab, a, b);
- Crossf(cb, c, b);
-
- VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
- VecAddf(i1, v1, a);
-
- /* for the second line, just substract the offset from the first intersection point */
- VecSubf(i2, i1, t);
- }
-
- tuple = PyTuple_New( 2 );
- PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW) );
- PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW) );
- return tuple;
- }
- else {
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "2D/3D vectors only\n" ) );
- }
-}
-
-
-
-//---------------------------------NORMALS FUNCTIONS--------------------
-//----------------------------------Mathutils.QuadNormal() -------------------
-PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args )
-{
- VectorObject *vec1;
- VectorObject *vec2;
- VectorObject *vec3;
- VectorObject *vec4;
- float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
-
- if( !PyArg_ParseTuple
- ( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
- , &vector_Type, &vec3, &vector_Type, &vec4 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected 4 vector types\n" ) );
- if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size)
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
- if( vec1->size != 3 )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "only 3D vectors\n" ) );
-
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
- VECCOPY(v4, vec4->vec);
-
- /* find vectors for two edges sharing v2 */
- VecSubf(e1, v1, v2);
- VecSubf(e2, v3, v2);
-
- Crossf(n1, e2, e1);
- Normalize(n1);
-
- /* find vectors for two edges sharing v4 */
- VecSubf(e1, v3, v4);
- VecSubf(e2, v1, v4);
-
- Crossf(n2, e2, e1);
- Normalize(n2);
-
- /* adding and averaging the normals of both triangles */
- VecAddf(n1, n2, n1);
- Normalize(n1);
-
- return newVectorObject(n1, 3, Py_NEW);
-}
-
-//----------------------------Mathutils.TriangleNormal() -------------------
-PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args )
-{
- VectorObject *vec1, *vec2, *vec3;
- float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
-
- if( !PyArg_ParseTuple
- ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
- , &vector_Type, &vec3 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected 3 vector types\n" ) );
- if( vec1->size != vec2->size || vec1->size != vec3->size )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
- if( vec1->size != 3 )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "only 3D vectors\n" ) );
-
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
-
- /* find vectors for two edges sharing v2 */
- VecSubf(e1, v1, v2);
- VecSubf(e2, v3, v2);
-
- Crossf(n, e2, e1);
- Normalize(n);
-
- return newVectorObject(n, 3, Py_NEW);
-}
-
-//--------------------------------- AREA FUNCTIONS--------------------
-//----------------------------------Mathutils.TriangleArea() -------------------
-PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args )
-{
- VectorObject *vec1, *vec2, *vec3;
- float v1[3], v2[3], v3[3];
-
- if( !PyArg_ParseTuple
- ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
- , &vector_Type, &vec3 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected 3 vector types\n" ) );
- if( vec1->size != vec2->size || vec1->size != vec3->size )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
-
- if (vec1->size == 3) {
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
-
- return PyFloat_FromDouble( AreaT3Dfl(v1, v2, v3) );
- }
- else if (vec1->size == 2) {
- v1[0] = vec1->vec[0];
- v1[1] = vec1->vec[1];
-
- v2[0] = vec2->vec[0];
- v2[1] = vec2->vec[1];
-
- v3[0] = vec3->vec[0];
- v3[1] = vec3->vec[1];
-
- return PyFloat_FromDouble( AreaF2Dfl(v1, v2, v3) );
- }
- else {
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "only 2D,3D vectors are supported\n" ) );
- }
-}
-//#############################DEPRECATED################################
-//#######################################################################
-//----------------------------------Mathutils.CopyMat() -----------------
-//copies a matrix into a new matrix
-PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args)
-{
- PyObject *matrix = NULL;
- static char warning = 1;
-
- if( warning ) {
- printf("Mathutils.CopyMat(): deprecated :use Mathutils.Matrix() to copy matrices\n");
- --warning;
- }
-
- matrix = M_Mathutils_Matrix(self, args);
- if(matrix == NULL)
- return NULL; //error string already set if we get here
- else
- return matrix;
-}
-//----------------------------------Mathutils.CopyVec() -----------------
-//makes a new vector that is a copy of the input
-PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args)
-{
- PyObject *vec = NULL;
- static char warning = 1;
-
- if( warning ) {
- printf("Mathutils.CopyVec(): Deprecated: use Mathutils.Vector() to copy vectors\n");
- --warning;
- }
-
- vec = M_Mathutils_Vector(self, args);
- if(vec == NULL)
- return NULL; //error string already set if we get here
- else
- return vec;
-}
-//----------------------------------Mathutils.CopyQuat() --------------
-//Copies a quaternion to a new quat
-PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args)
-{
- PyObject *quat = NULL;
- static char warning = 1;
-
- if( warning ) {
- printf("Mathutils.CopyQuat(): Deprecated: use Mathutils.Quaternion() to copy vectors\n");
- --warning;
- }
-
- quat = M_Mathutils_Quaternion(self, args);
- if(quat == NULL)
- return NULL; //error string already set if we get here
- else
- return quat;
-}
-//----------------------------------Mathutils.CopyEuler() ---------------
-//copies a euler to a new euler
-PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args)
-{
- PyObject *eul = NULL;
- static char warning = 1;
-
- if( warning ) {
- printf("Mathutils.CopyEuler(): deprecated:use Mathutils.Euler() to copy vectors\n");
- --warning;
- }
-
- eul = M_Mathutils_Euler(self, args);
- if(eul == NULL)
- return NULL; //error string already set if we get here
- else
- return eul;
-}
-//----------------------------------Mathutils.RotateEuler() ------------
-//rotates a euler a certain amount and returns the result
-//should return a unique euler rotation (i.e. no 720 degree pitches :)
-PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args)
-{
- EulerObject *Eul = NULL;
- float angle;
- char *axis;
- static char warning = 1;
-
- if( warning ) {
- printf("Mathutils.RotateEuler(): Deprecated:use Euler.rotate() to rotate a euler\n");
- --warning;
- }
-
- if(!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.RotateEuler(): expected euler type & float & string");
-
- Euler_Rotate(Eul, Py_BuildValue("fs", angle, axis));
- Py_RETURN_NONE;
-}
-//----------------------------------Mathutils.MatMultVec() --------------
-//COLUMN VECTOR Multiplication (Matrix X Vector)
-PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args)
-{
- MatrixObject *mat = NULL;
- VectorObject *vec = NULL;
- static char warning = 1;
-
- if( warning ) {
- printf("Mathutils.MatMultVec(): Deprecated: use matrix * vec to perform column vector multiplication\n");
- --warning;
- }
-
- //get pyObjects
- if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &mat, &vector_Type, &vec))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.MatMultVec(): MatMultVec() expects a matrix and a vector object - in that order\n");
-
- return column_vector_multiplication(mat, vec);
-}
-//----------------------------------Mathutils.VecMultMat() ---------------
-//ROW VECTOR Multiplication - Vector X Matrix
-PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args)
-{
- MatrixObject *mat = NULL;
- VectorObject *vec = NULL;
- static char warning = 1;
-
- if( warning ) {
- printf("Mathutils.VecMultMat(): Deprecated: use vec * matrix to perform row vector multiplication\n");
- --warning;
- }
-
- //get pyObjects
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec, &matrix_Type, &mat))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.VecMultMat(): VecMultMat() expects a vector and matrix object - in that order\n");
-
- return row_vector_multiplication(vec, mat);
-}
-//#######################################################################
-//#############################DEPRECATED################################