Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/api2_2x/matrix.c')
-rw-r--r--source/blender/python/api2_2x/matrix.c975
1 files changed, 0 insertions, 975 deletions
diff --git a/source/blender/python/api2_2x/matrix.c b/source/blender/python/api2_2x/matrix.c
deleted file mode 100644
index d52318e93bf..00000000000
--- a/source/blender/python/api2_2x/matrix.c
+++ /dev/null
@@ -1,975 +0,0 @@
-/*
- * $Id: matrix.c 11958 2007-09-07 07:55:36Z campbellbarton $
- *
- * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version. The Blender
- * Foundation also sells licenses for use in proprietary software under
- * the Blender License. See http://www.blender.org/BL/ for information
- * about this.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
- * All rights reserved.
- *
- * Contributor(s): Michel Selten & Joseph Gilbert
- *
- * ***** END GPL/BL DUAL LICENSE BLOCK *****
- */
-
-#include "Mathutils.h"
-
-#include "BKE_utildefines.h"
-#include "BLI_arithb.h"
-#include "BLI_blenlib.h"
-#include "gen_utils.h"
-
-/*-------------------------DOC STRINGS ---------------------------*/
-char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
-char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix";
-char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
-char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
-char Matrix_Invert_doc[] = "() - set the matrix to it's inverse if an inverse is possible";
-char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix";
-char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix";
-char Matrix_scalePart_doc[] = "() - convert matrix to a 3D vector";
-char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
-char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation";
-char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
-char Matrix_copy_doc[] = "() - return a copy of the matrix";
-/*-----------------------METHOD DEFINITIONS ----------------------*/
-struct PyMethodDef Matrix_methods[] = {
- {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
- {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
- {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
- {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
- {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
- {"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
- {"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
- {"scalePart", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc},
- {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
- {"toEuler", (PyCFunction) Matrix_toEuler, METH_NOARGS, Matrix_toEuler_doc},
- {"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
- {"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
- {"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
- {NULL, NULL, 0, NULL}
-};
-/*-----------------------------METHODS----------------------------*/
-/*---------------------------Matrix.toQuat() ---------------------*/
-PyObject *Matrix_toQuat(MatrixObject * self)
-{
- float quat[4];
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
- }
- if(self->colSize == 3){
- Mat3ToQuat((float (*)[3])*self->matrix, quat);
- }else{
- Mat4ToQuat((float (*)[4])*self->matrix, quat);
- }
-
- return newQuaternionObject(quat, Py_NEW);
-}
-/*---------------------------Matrix.toEuler() --------------------*/
-PyObject *Matrix_toEuler(MatrixObject * self)
-{
- float eul[3];
-
- int x;
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize ==3 && self->rowSize ==3) {
- Mat3ToEul((float (*)[3])*self->matrix, eul);
- }else if (self->colSize ==4 && self->rowSize ==4) {
- float tempmat3[3][3];
- Mat3CpyMat4(tempmat3, (float (*)[4])*self->matrix);
- Mat3ToEul(tempmat3, eul);
- }else
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.toEuler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
-
- /*have to convert to degrees*/
- for(x = 0; x < 3; x++) {
- eul[x] *= (float) (180 / Py_PI);
- }
- return newEulerObject(eul, Py_NEW);
-}
-/*---------------------------Matrix.resize4x4() ------------------*/
-PyObject *Matrix_Resize4x4(MatrixObject * self)
-{
- int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
-
- if(self->data.blend_data){
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "cannot resize wrapped data - only python matrices\n");
- }
-
- self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16));
- if(self->data.py_data == NULL) {
- return EXPP_ReturnPyObjError(PyExc_MemoryError,
- "matrix.resize4x4(): problem allocating pointer space\n\n");
- }
- self->contigPtr = self->data.py_data; /*force*/
- self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4));
- if(self->matrix == NULL) {
- return EXPP_ReturnPyObjError(PyExc_MemoryError,
- "matrix.resize4x4(): problem allocating pointer space\n\n");
- }
- /*set row pointers*/
- for(x = 0; x < 4; x++) {
- self->matrix[x] = self->contigPtr + (x * 4);
- }
- /*move data to new spot in array + clean*/
- for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
- for(x = 0; x < 4; x++){
- index = (4 * (self->rowSize + (blank_rows - 1))) + x;
- if (index == 10 || index == 15){
- self->contigPtr[index] = 1.0f;
- }else{
- self->contigPtr[index] = 0.0f;
- }
- }
- }
- for(x = 1; x <= self->rowSize; x++){
- first_row_elem = (self->colSize * (self->rowSize - x));
- curr_pos = (first_row_elem + (self->colSize -1));
- new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
- for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
- self->contigPtr[new_pos + blank_columns] = 0.0f;
- }
- for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
- self->contigPtr[new_pos] = self->contigPtr[curr_pos];
- new_pos--;
- }
- }
- self->rowSize = 4;
- self->colSize = 4;
- return EXPP_incr_ret((PyObject*)self);
-}
-/*---------------------------Matrix.translationPart() ------------*/
-PyObject *Matrix_TranslationPart(MatrixObject * self)
-{
- float vec[4];
-
- if(self->colSize < 3 || self->rowSize < 4){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.translationPart: inappropriate matrix size\n");
- }
-
- vec[0] = self->matrix[3][0];
- vec[1] = self->matrix[3][1];
- vec[2] = self->matrix[3][2];
-
- return newVectorObject(vec, 3, Py_NEW);
-}
-/*---------------------------Matrix.rotationPart() ---------------*/
-PyObject *Matrix_RotationPart(MatrixObject * self)
-{
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(self->colSize < 3 || self->rowSize < 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.rotationPart: inappropriate matrix size\n");
- }
-
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[3] = self->matrix[1][0];
- mat[4] = self->matrix[1][1];
- mat[5] = self->matrix[1][2];
- mat[6] = self->matrix[2][0];
- mat[7] = self->matrix[2][1];
- mat[8] = self->matrix[2][2];
-
- return newMatrixObject(mat, 3, 3, Py_NEW);
-}
-/*---------------------------Matrix.scalePart() --------------------*/
-PyObject *Matrix_scalePart(MatrixObject * self)
-{
- float scale[3], rot[3];
- float mat[3][3], imat[3][3], tmat[3][3];
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize == 4 && self->rowSize == 4)
- Mat3CpyMat4(mat, (float (*)[4])*self->matrix);
- else if(self->colSize == 3 && self->rowSize == 3)
- Mat3CpyMat3(mat, (float (*)[3])*self->matrix);
- else
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.scalePart(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
-
- /* functionality copied from editobject.c apply_obmat */
- Mat3ToEul(mat, rot);
- EulToMat3(rot, tmat);
- Mat3Inv(imat, tmat);
- Mat3MulMat3(tmat, imat, mat);
-
- scale[0]= tmat[0][0];
- scale[1]= tmat[1][1];
- scale[2]= tmat[2][2];
- return newVectorObject(scale, 3, Py_NEW);
-}
-/*---------------------------Matrix.invert() ---------------------*/
-PyObject *Matrix_Invert(MatrixObject * self)
-{
-
- int x, y, z = 0;
- float det = 0.0f;
- PyObject *f = NULL;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.invert(ed): only square matrices are supported\n");
- }
-
- /*calculate the determinant*/
- f = Matrix_Determinant(self);
- det = (float)PyFloat_AS_DOUBLE(f); /*Increfs, so we need to decref*/
- Py_DECREF(f);
-
- if(det != 0) {
- /*calculate the classical adjoint*/
- if(self->rowSize == 2) {
- mat[0] = self->matrix[1][1];
- mat[1] = -self->matrix[1][0];
- mat[2] = -self->matrix[0][1];
- mat[3] = self->matrix[0][0];
- } else if(self->rowSize == 3) {
- Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
- } else if(self->rowSize == 4) {
- Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
- }
- /*divide by determinate*/
- for(x = 0; x < (self->rowSize * self->colSize); x++) {
- mat[x] /= det;
- }
- /*set values*/
- for(x = 0; x < self->rowSize; x++) {
- for(y = 0; y < self->colSize; y++) {
- self->matrix[x][y] = mat[z];
- z++;
- }
- }
- /*transpose
- Matrix_Transpose(self);*/
- } else {
- return EXPP_ReturnPyObjError(PyExc_ValueError,
- "matrix does not have an inverse");
- }
- return EXPP_incr_ret((PyObject*)self);
-}
-
-
-/*---------------------------Matrix.determinant() ----------------*/
-PyObject *Matrix_Determinant(MatrixObject * self)
-{
- float det = 0.0f;
-
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.determinant: only square matrices are supported\n");
- }
-
- if(self->rowSize == 2) {
- det = Det2x2(self->matrix[0][0], self->matrix[0][1],
- self->matrix[1][0], self->matrix[1][1]);
- } else if(self->rowSize == 3) {
- det = Det3x3(self->matrix[0][0], self->matrix[0][1],
- self->matrix[0][2], self->matrix[1][0],
- self->matrix[1][1], self->matrix[1][2],
- self->matrix[2][0], self->matrix[2][1],
- self->matrix[2][2]);
- } else {
- det = Det4x4((float (*)[4]) *self->matrix);
- }
-
- return PyFloat_FromDouble( (double) det );
-}
-/*---------------------------Matrix.transpose() ------------------*/
-PyObject *Matrix_Transpose(MatrixObject * self)
-{
- float t = 0.0f;
-
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.transpose(d): only square matrices are supported\n");
- }
-
- if(self->rowSize == 2) {
- t = self->matrix[1][0];
- self->matrix[1][0] = self->matrix[0][1];
- self->matrix[0][1] = t;
- } else if(self->rowSize == 3) {
- Mat3Transp((float (*)[3])*self->matrix);
- } else {
- Mat4Transp((float (*)[4])*self->matrix);
- }
-
- return EXPP_incr_ret((PyObject*)self);
-}
-
-
-/*---------------------------Matrix.zero() -----------------------*/
-PyObject *Matrix_Zero(MatrixObject * self)
-{
- int row, col;
-
- for(row = 0; row < self->rowSize; row++) {
- for(col = 0; col < self->colSize; col++) {
- self->matrix[row][col] = 0.0f;
- }
- }
- return EXPP_incr_ret((PyObject*)self);
-}
-/*---------------------------Matrix.identity(() ------------------*/
-PyObject *Matrix_Identity(MatrixObject * self)
-{
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.identity: only square matrices are supported\n");
- }
-
- if(self->rowSize == 2) {
- self->matrix[0][0] = 1.0f;
- self->matrix[0][1] = 0.0f;
- self->matrix[1][0] = 0.0f;
- self->matrix[1][1] = 1.0f;
- } else if(self->rowSize == 3) {
- Mat3One((float (*)[3]) *self->matrix);
- } else {
- Mat4One((float (*)[4]) *self->matrix);
- }
-
- return EXPP_incr_ret((PyObject*)self);
-}
-
-/*---------------------------Matrix.inverted() ------------------*/
-PyObject *Matrix_copy(MatrixObject * self)
-{
- return (PyObject*)(MatrixObject*)newMatrixObject((float (*))*self->matrix, self->rowSize, self->colSize, Py_NEW);
-}
-
-/*----------------------------dealloc()(internal) ----------------*/
-/*free the py_object*/
-static void Matrix_dealloc(MatrixObject * self)
-{
- Py_XDECREF(self->coerced_object);
- PyMem_Free(self->matrix);
- /*only free py_data*/
- if(self->data.py_data){
- PyMem_Free(self->data.py_data);
- }
- PyObject_DEL(self);
-}
-/*----------------------------getattr()(internal) ----------------*/
-/*object.attribute access (get)*/
-static PyObject *Matrix_getattr(MatrixObject * self, char *name)
-{
- if(STREQ(name, "rowSize")) {
- return PyInt_FromLong((long) self->rowSize);
- } else if(STREQ(name, "colSize")) {
- return PyInt_FromLong((long) self->colSize);
- }
- if(STREQ(name, "wrapped")){
- if(self->wrapped == Py_WRAP)
- return EXPP_incr_ret((PyObject *)Py_True);
- else
- return EXPP_incr_ret((PyObject *)Py_False);
- }
- return Py_FindMethod(Matrix_methods, (PyObject *) self, name);
-}
-/*----------------------------setattr()(internal) ----------------*/
-/*object.attribute access (set)*/
-static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v)
-{
- /* This is not supported. */
- return (-1);
-}
-/*----------------------------print object (internal)-------------*/
-/*print the object to screen*/
-static PyObject *Matrix_repr(MatrixObject * self)
-{
- int x, y;
- char buffer[48], str[1024];
-
- BLI_strncpy(str,"",1024);
- for(x = 0; x < self->rowSize; x++){
- sprintf(buffer, "[");
- strcat(str,buffer);
- for(y = 0; y < (self->colSize - 1); y++) {
- sprintf(buffer, "%.6f, ", self->matrix[x][y]);
- strcat(str,buffer);
- }
- if(x < (self->rowSize-1)){
- sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x);
- strcat(str,buffer);
- }
- }
-
- return PyString_FromString(str);
-}
-/*------------------------tp_richcmpr*/
-/*returns -1 execption, 0 false, 1 true*/
-static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
-{
- MatrixObject *matA = NULL, *matB = NULL;
- int result = 0;
-
- if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
- if (comparison_type == Py_NE){
- return EXPP_incr_ret(Py_True);
- }else{
- return EXPP_incr_ret(Py_False);
- }
- }
- matA = (MatrixObject*)objectA;
- matB = (MatrixObject*)objectB;
-
- if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
- if (comparison_type == Py_NE){
- return EXPP_incr_ret(Py_True);
- }else{
- return EXPP_incr_ret(Py_False);
- }
- }
-
- switch (comparison_type){
- case Py_EQ:
- /*contigPtr is basically a really long vector*/
- result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
- (matA->rowSize * matA->colSize), 1);
- break;
- case Py_NE:
- result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
- (matA->rowSize * matA->colSize), 1);
- if (result == 0){
- result = 1;
- }else{
- result = 0;
- }
- break;
- default:
- printf("The result of the comparison could not be evaluated");
- break;
- }
- if (result == 1){
- return EXPP_incr_ret(Py_True);
- }else{
- return EXPP_incr_ret(Py_False);
- }
-}
-/*------------------------tp_doc*/
-static char MatrixObject_doc[] = "This is a wrapper for matrix objects.";
-/*---------------------SEQUENCE PROTOCOLS------------------------
- ----------------------------len(object)------------------------
- sequence length*/
-static int Matrix_len(MatrixObject * self)
-{
- return (self->colSize * self->rowSize);
-}
-/*----------------------------object[]---------------------------
- sequence accessor (get)
- the wrapped vector gives direct access to the matrix data*/
-static PyObject *Matrix_item(MatrixObject * self, int i)
-{
- if(i < 0 || i >= self->rowSize)
- return EXPP_ReturnPyObjError(PyExc_IndexError,
- "matrix[attribute]: array index out of range\n");
-
- return newVectorObject(self->matrix[i], self->colSize, Py_WRAP);
-}
-/*----------------------------object[]-------------------------
- sequence accessor (set)*/
-static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
-{
- int y, x, size = 0;
- float vec[4];
- PyObject *m, *f;
-
- if(i >= self->rowSize || i < 0){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: bad row\n");
- }
-
- if(PySequence_Check(ob)){
- size = PySequence_Length(ob);
- if(size != self->colSize){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: bad sequence size\n");
- }
- for (x = 0; x < size; x++) {
- m = PySequence_GetItem(ob, x);
- if (m == NULL) { /*Failed to read sequence*/
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "matrix[attribute] = x: unable to read sequence\n");
- }
-
- f = PyNumber_Float(m);
- if(f == NULL) { /*parsed item not a number*/
- Py_DECREF(m);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: sequence argument not a number\n");
- }
-
- vec[x] = (float)PyFloat_AS_DOUBLE(f);
- EXPP_decr2(m, f);
- }
- /*parsed well - now set in matrix*/
- for(y = 0; y < size; y++){
- self->matrix[i][y] = vec[y];
- }
- return 0;
- }else{
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: expects a sequence of column size\n");
- }
-}
-/*----------------------------object[z:y]------------------------
- sequence slice (get)*/
-static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
-{
-
- PyObject *list = NULL;
- int count;
-
- CLAMP(begin, 0, self->rowSize);
- CLAMP(end, 0, self->rowSize);
- begin = MIN2(begin,end);
-
- list = PyList_New(end - begin);
- for(count = begin; count < end; count++) {
- PyList_SetItem(list, count - begin,
- newVectorObject(self->matrix[count], self->colSize, Py_WRAP));
- }
-
- return list;
-}
-/*----------------------------object[z:y]------------------------
- sequence slice (set)*/
-static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
- PyObject * seq)
-{
- int i, x, y, size, sub_size = 0;
- float mat[16];
- PyObject *subseq;
- PyObject *m, *f;
-
- CLAMP(begin, 0, self->rowSize);
- CLAMP(end, 0, self->rowSize);
- begin = MIN2(begin,end);
-
- if(PySequence_Check(seq)){
- size = PySequence_Length(seq);
- if(size != (end - begin)){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: size mismatch in slice assignment\n");
- }
- /*parse sub items*/
- for (i = 0; i < size; i++) {
- /*parse each sub sequence*/
- subseq = PySequence_GetItem(seq, i);
- if (subseq == NULL) { /*Failed to read sequence*/
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "matrix[begin:end] = []: unable to read sequence\n");
- }
-
- if(PySequence_Check(subseq)){
- /*subsequence is also a sequence*/
- sub_size = PySequence_Length(subseq);
- if(sub_size != self->colSize){
- Py_DECREF(subseq);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: size mismatch in slice assignment\n");
- }
- for (y = 0; y < sub_size; y++) {
- m = PySequence_GetItem(subseq, y);
- if (m == NULL) { /*Failed to read sequence*/
- Py_DECREF(subseq);
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "matrix[begin:end] = []: unable to read sequence\n");
- }
-
- f = PyNumber_Float(m);
- if(f == NULL) { /*parsed item not a number*/
- EXPP_decr2(m, subseq);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: sequence argument not a number\n");
- }
-
- mat[(i * self->colSize) + y] = (float)PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f, m);
- }
- }else{
- Py_DECREF(subseq);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: illegal argument type for built-in operation\n");
- }
- Py_DECREF(subseq);
- }
- /*parsed well - now set in matrix*/
- for(x = 0; x < (size * sub_size); x++){
- self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
- }
- return 0;
- }else{
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: illegal argument type for built-in operation\n");
- }
-}
-/*------------------------NUMERIC PROTOCOLS----------------------
- ------------------------obj + obj------------------------------*/
-static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
-{
- int x, y;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- MatrixObject *mat1 = NULL, *mat2 = NULL;
-
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
-
- if(mat1->coerced_object || mat2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: arguments not valid for this operation....\n");
- }
- if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: matrices must have the same dimensions for this operation\n");
- }
-
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
- }
- }
-
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
-}
-/*------------------------obj - obj------------------------------
- subtraction*/
-static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
-{
- int x, y;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- MatrixObject *mat1 = NULL, *mat2 = NULL;
-
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
-
- if(mat1->coerced_object || mat2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: arguments not valid for this operation....\n");
- }
- if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: matrices must have the same dimensions for this operation\n");
- }
-
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
- }
- }
-
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
-}
-/*------------------------obj * obj------------------------------
- mulplication*/
-static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
-{
- int x, y, z;
- float scalar;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- double dot = 0.0f;
- MatrixObject *mat1 = NULL, *mat2 = NULL;
- PyObject *f = NULL;
- PointObject *pt = NULL;
-
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
-
- if(mat1->coerced_object){
- if (PyFloat_Check(mat1->coerced_object) ||
- PyInt_Check(mat1->coerced_object)){ /*FLOAT/INT * MATRIX*/
- f = PyNumber_Float(mat1->coerced_object);
- if(f == NULL) { /*parsed item not a number*/
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Matrix multiplication: arguments not acceptable for this operation\n");
- }
-
- scalar = (float)PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
- for(x = 0; x < mat2->rowSize; x++) {
- for(y = 0; y < mat2->colSize; y++) {
- mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
- }
- }
- return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW);
- }
- }else{
- if(mat2->coerced_object){
- /* MATRIX * VECTOR operation is now being done by vector */
- /*if(VectorObject_Check(mat2->coerced_object)){
- vec = (VectorObject*)mat2->coerced_object;
- return column_vector_multiplication(mat1, vec);
- }else */
- if(PointObject_Check(mat2->coerced_object)){ /*MATRIX * POINT*/
- pt = (PointObject*)mat2->coerced_object;
- return column_point_multiplication(mat1, pt);
- }else if (PyFloat_Check(mat2->coerced_object) ||
- PyInt_Check(mat2->coerced_object)){ /*MATRIX * FLOAT/INT*/
- f = PyNumber_Float(mat2->coerced_object);
- if(f == NULL) { /*parsed item not a number*/
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Matrix multiplication: arguments not acceptable for this operation\n");
- }
-
- scalar = (float)PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
- }
- }
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
- }
- }else{ /*MATRIX * MATRIX*/
- if(mat1->colSize != mat2->rowSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix multiplication: matrix A rowsize must equal matrix B colsize\n");
- }
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat2->colSize; y++) {
- for(z = 0; z < mat1->colSize; z++) {
- dot += (mat1->matrix[x][z] * mat2->matrix[z][y]);
- }
- mat[((x * mat1->rowSize) + y)] = (float)dot;
- dot = 0.0f;
- }
- }
- return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW);
- }
- }
-
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Matrix multiplication: arguments not acceptable for this operation\n");
-}
-PyObject* Matrix_inv(MatrixObject *self)
-{
- return Matrix_Invert(self);
-}
-/*------------------------coerce(obj, obj)-----------------------
- coercion of unknown types to type MatrixObject for numeric protocols.
-
- Coercion() is called whenever a math operation has 2 operands that
- it doesn't understand how to evaluate. 2+Matrix for example. We want to
- evaluate some of these operations like: (vector * 2), however, for math
- to proceed, the unknown operand must be cast to a type that python math will
- understand. (e.g. in the case above case, 2 must be cast to a vector and
- then call vector.multiply(vector, scalar_cast_as_vector)*/
-static int Matrix_coerce(PyObject ** m1, PyObject ** m2)
-{
- if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2) ||
- PointObject_Check(*m2)) {
- PyObject *coerced = EXPP_incr_ret(*m2);
- *m2 = newMatrixObject(NULL,3,3,Py_NEW);
- ((MatrixObject*)*m2)->coerced_object = coerced;
- Py_INCREF (*m1);
- return 0;
- }
-
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix.coerce(): unknown operand - can't coerce for numeric protocols");
-}
-/*-----------------PROTOCOL DECLARATIONS--------------------------*/
-static PySequenceMethods Matrix_SeqMethods = {
- (inquiry) Matrix_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (intargfunc) 0, /* sq_repeat */
- (intargfunc) Matrix_item, /* sq_item */
- (intintargfunc) Matrix_slice, /* sq_slice */
- (intobjargproc) Matrix_ass_item, /* sq_ass_item */
- (intintobjargproc) Matrix_ass_slice, /* sq_ass_slice */
-};
-static PyNumberMethods Matrix_NumMethods = {
- (binaryfunc) Matrix_add, /* __add__ */
- (binaryfunc) Matrix_sub, /* __sub__ */
- (binaryfunc) Matrix_mul, /* __mul__ */
- (binaryfunc) 0, /* __div__ */
- (binaryfunc) 0, /* __mod__ */
- (binaryfunc) 0, /* __divmod__ */
- (ternaryfunc) 0, /* __pow__ */
- (unaryfunc) 0, /* __neg__ */
- (unaryfunc) 0, /* __pos__ */
- (unaryfunc) 0, /* __abs__ */
- (inquiry) 0, /* __nonzero__ */
- (unaryfunc) Matrix_inv, /* __invert__ */
- (binaryfunc) 0, /* __lshift__ */
- (binaryfunc) 0, /* __rshift__ */
- (binaryfunc) 0, /* __and__ */
- (binaryfunc) 0, /* __xor__ */
- (binaryfunc) 0, /* __or__ */
- (coercion) Matrix_coerce, /* __coerce__ */
- (unaryfunc) 0, /* __int__ */
- (unaryfunc) 0, /* __long__ */
- (unaryfunc) 0, /* __float__ */
- (unaryfunc) 0, /* __oct__ */
- (unaryfunc) 0, /* __hex__ */
-};
-/*------------------PY_OBECT DEFINITION--------------------------*/
-PyTypeObject matrix_Type = {
- PyObject_HEAD_INIT(NULL) /*tp_head*/
- 0, /*tp_internal*/
- "matrix", /*tp_name*/
- sizeof(MatrixObject), /*tp_basicsize*/
- 0, /*tp_itemsize*/
- (destructor)Matrix_dealloc, /*tp_dealloc*/
- 0, /*tp_print*/
- (getattrfunc)Matrix_getattr, /*tp_getattr*/
- (setattrfunc) Matrix_setattr, /*tp_setattr*/
- 0, /*tp_compare*/
- (reprfunc) Matrix_repr, /*tp_repr*/
- &Matrix_NumMethods, /*tp_as_number*/
- &Matrix_SeqMethods, /*tp_as_sequence*/
- 0, /*tp_as_mapping*/
- 0, /*tp_hash*/
- 0, /*tp_call*/
- 0, /*tp_str*/
- 0, /*tp_getattro*/
- 0, /*tp_setattro*/
- 0, /*tp_as_buffer*/
- Py_TPFLAGS_DEFAULT, /*tp_flags*/
- MatrixObject_doc, /*tp_doc*/
- 0, /*tp_traverse*/
- 0, /*tp_clear*/
- (richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
- 0, /*tp_weaklistoffset*/
- 0, /*tp_iter*/
- 0, /*tp_iternext*/
- 0, /*tp_methods*/
- 0, /*tp_members*/
- 0, /*tp_getset*/
- 0, /*tp_base*/
- 0, /*tp_dict*/
- 0, /*tp_descr_get*/
- 0, /*tp_descr_set*/
- 0, /*tp_dictoffset*/
- 0, /*tp_init*/
- 0, /*tp_alloc*/
- 0, /*tp_new*/
- 0, /*tp_free*/
- 0, /*tp_is_gc*/
- 0, /*tp_bases*/
- 0, /*tp_mro*/
- 0, /*tp_cache*/
- 0, /*tp_subclasses*/
- 0, /*tp_weaklist*/
- 0 /*tp_del*/
-};
-
-/*------------------------newMatrixObject (internal)-------------
-creates a new matrix object
-self->matrix self->contiguous_ptr (reference to data.xxx)
- [0]------------->[0]
- [1]
- [2]
- [1]------------->[3]
- [4]
- [5]
- ....
-self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]*/
-
-/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
- (i.e. it was allocated elsewhere by MEM_mallocN())
- pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
- (i.e. it must be created here with PyMEM_malloc())*/
-PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
-{
- MatrixObject *self;
- int x, row, col;
-
- /*matrix objects can be any 2-4row x 2-4col matrix*/
- if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "matrix(): row and column sizes must be between 2 and 4\n");
- }
-
- self = PyObject_NEW(MatrixObject, &matrix_Type);
- self->data.blend_data = NULL;
- self->data.py_data = NULL;
- self->rowSize = rowSize;
- self->colSize = colSize;
- self->coerced_object = NULL;
-
- if(type == Py_WRAP){
- self->data.blend_data = mat;
- self->contigPtr = self->data.blend_data;
- /*create pointer array*/
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { /*allocation failure*/
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "matrix(): problem allocating pointer space\n");
- }
- /*pointer array points to contigous memory*/
- for(x = 0; x < rowSize; x++) {
- self->matrix[x] = self->contigPtr + (x * colSize);
- }
- self->wrapped = Py_WRAP;
- }else if (type == Py_NEW){
- self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
- if(self->data.py_data == NULL) { /*allocation failure*/
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "matrix(): problem allocating pointer space\n");
- }
- self->contigPtr = self->data.py_data;
- /*create pointer array*/
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { /*allocation failure*/
- PyMem_Free(self->data.py_data);
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "matrix(): problem allocating pointer space\n");
- }
- /*pointer array points to contigous memory*/
- for(x = 0; x < rowSize; x++) {
- self->matrix[x] = self->contigPtr + (x * colSize);
- }
- /*parse*/
- if(mat) { /*if a float array passed*/
- for(row = 0; row < rowSize; row++) {
- for(col = 0; col < colSize; col++) {
- self->matrix[row][col] = mat[(row * colSize) + col];
- }
- }
- } else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
- Matrix_Identity(self);
- Py_DECREF(self);
- }
- self->wrapped = Py_NEW;
- }else{ /*bad type*/
- return NULL;
- }
- return (PyObject *) self;
-}