Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/generic/mathutils.c')
-rw-r--r--source/blender/python/generic/mathutils.c514
1 files changed, 11 insertions, 503 deletions
diff --git a/source/blender/python/generic/mathutils.c b/source/blender/python/generic/mathutils.c
index f0571f32f58..a643e6621b2 100644
--- a/source/blender/python/generic/mathutils.c
+++ b/source/blender/python/generic/mathutils.c
@@ -44,6 +44,14 @@
* - toEuler --> to_euler
* - toQuat --> to_quat
* - Vector.toTrackQuat --> Vector.to_track_quat
+ * - Quaternion * Quaternion --> cross product (not dot product)
+ *
+ * moved into class functions.
+ * - Mathutils.RotationMatrix -> mathutils.Matrix.Rotation
+ * - Mathutils.ScaleMatrix -> mathutils.Matrix.Scale
+ * - Mathutils.ShearMatrix -> mathutils.Matrix.Shear
+ * - Mathutils.TranslationMatrix -> mathutils.Matrix.Translation
+ * - Mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
*
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
*/
@@ -92,503 +100,8 @@ int mathutils_array_parse(float *array, int array_min, int array_max, PyObject *
return size;
}
-//-----------------------------METHODS----------------------------
-//-----------------quat_rotation (internal)-----------
-//This function multiplies a vector/point * quat or vice versa
-//to rotate the point/vector by the quaternion
-//arguments should all be 3D
-PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
-{
- float rot[3];
- QuaternionObject *quat = NULL;
- VectorObject *vec = NULL;
-
- if(QuaternionObject_Check(arg1)){
- quat = (QuaternionObject*)arg1;
- if(!BaseMath_ReadCallback(quat))
- return NULL;
-
- if(VectorObject_Check(arg2)){
- vec = (VectorObject*)arg2;
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
- 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
- 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
- quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
- 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
- quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
- 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
- quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
- quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
- quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
- return newVectorObject(rot, 3, Py_NEW, NULL);
- }
- }else if(VectorObject_Check(arg1)){
- vec = (VectorObject*)arg1;
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- if(QuaternionObject_Check(arg2)){
- quat = (QuaternionObject*)arg2;
- if(!BaseMath_ReadCallback(quat))
- return NULL;
-
- rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
- 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
- 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
- quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
- 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
- quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
- 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
- quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
- quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
- quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
- return newVectorObject(rot, 3, Py_NEW, NULL);
- }
- }
-
- PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
- return NULL;
-
-}
-
//----------------------------------MATRIX FUNCTIONS--------------------
-//----------------------------------mathutils.RotationMatrix() ----------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static char M_Mathutils_RotationMatrix_doc[] =
-".. function:: RotationMatrix(angle, size, axis)\n"
-"\n"
-" Create a matrix representing a rotation.\n"
-"\n"
-" :arg angle: The angle of rotation desired, in radians.\n"
-" :type angle: float\n"
-" :arg size: The size of the rotation matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
-" :type axis: string or :class:`Vector`\n"
-" :return: A new rotation matrix.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec= NULL;
- char *axis= NULL;
- int matSize;
- float angle = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
- PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
- return NULL;
- }
-
- if(vec && !VectorObject_Check(vec)) {
- axis= _PyUnicode_AsString((PyObject *)vec);
- if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
- PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
- return NULL;
- }
- else {
- /* use the string */
- vec= NULL;
- }
- }
- while (angle<-(Py_PI*2))
- angle+=(Py_PI*2);
- while (angle>(Py_PI*2))
- angle-=(Py_PI*2);
-
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
- if(matSize == 2 && (vec != NULL)) {
- PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
- return NULL;
- }
- if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
- PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
- return NULL;
- }
- if(vec) {
- if(vec->size != 3) {
- PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- }
-
- /* check for valid vector/axis above */
- if(vec) {
- axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
- }
- else if(matSize == 2) {
- //2D rotation matrix
- mat[0] = (float) cos (angle);
- mat[1] = (float) sin (angle);
- mat[2] = -((float) sin(angle));
- mat[3] = (float) cos(angle);
- } else if(strcmp(axis, "X") == 0) {
- //rotation around X
- mat[0] = 1.0f;
- mat[4] = (float) cos(angle);
- mat[5] = (float) sin(angle);
- mat[7] = -((float) sin(angle));
- mat[8] = (float) cos(angle);
- } else if(strcmp(axis, "Y") == 0) {
- //rotation around Y
- mat[0] = (float) cos(angle);
- mat[2] = -((float) sin(angle));
- mat[4] = 1.0f;
- mat[6] = (float) sin(angle);
- mat[8] = (float) cos(angle);
- } else if(strcmp(axis, "Z") == 0) {
- //rotation around Z
- mat[0] = (float) cos(angle);
- mat[1] = (float) sin(angle);
- mat[3] = -((float) sin(angle));
- mat[4] = (float) cos(angle);
- mat[8] = 1.0f;
- }
- else {
- /* should never get here */
- PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
- return NULL;
- }
-
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
-
-static char M_Mathutils_TranslationMatrix_doc[] =
-".. function:: TranslationMatrix(vector)\n"
-"\n"
-" Create a matrix representing a translation.\n"
-"\n"
-" :arg vector: The translation vector.\n"
-" :type vector: :class:`Vector`\n"
-" :return: An identity matrix with a translation.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
-{
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!VectorObject_Check(vec)) {
- PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
- return NULL;
- }
- if(vec->size != 3 && vec->size != 4) {
- PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- //create a identity matrix and add translation
- unit_m4((float(*)[4]) mat);
- mat[12] = vec->vec[0];
- mat[13] = vec->vec[1];
- mat[14] = vec->vec[2];
-
- return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
-}
-//----------------------------------mathutils.ScaleMatrix() -------------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static char M_Mathutils_ScaleMatrix_doc[] =
-".. function:: ScaleMatrix(factor, size, axis)\n"
-"\n"
-" Create a matrix representing a scaling.\n"
-"\n"
-" :arg factor: The factor of scaling to apply.\n"
-" :type factor: float\n"
-" :arg size: The size of the scale matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :arg axis: Direction to influence scale. (optional).\n"
-" :type axis: :class:`Vector`\n"
-" :return: A new scale matrix.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec = NULL;
- float norm = 0.0f, factor;
- int matSize, x;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
- PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
- return NULL;
- }
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
- if(vec) {
- if(vec->size > 2 && matSize == 2) {
- PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- }
- if(vec == NULL) { //scaling along axis
- if(matSize == 2) {
- mat[0] = factor;
- mat[3] = factor;
- } else {
- mat[0] = factor;
- mat[4] = factor;
- mat[8] = factor;
- }
- } else { //scaling in arbitrary direction
- //normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
- norm += vec->vec[x] * vec->vec[x];
- }
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
- vec->vec[x] /= norm;
- }
- if(matSize == 2) {
- mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
- } else {
- mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
- mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
- }
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
-//----------------------------------mathutils.OrthoProjectionMatrix() ---
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static char M_Mathutils_OrthoProjectionMatrix_doc[] =
-".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
-"\n"
-" Create a matrix to represent an orthographic projection.\n"
-"\n"
-" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
-" :type plane: string\n"
-" :arg size: The size of the projection matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
-" :type axis: :class:`Vector`\n"
-" :return: A new projection matrix.\n"
-" :rtype: :class:`Matrix`\n";
-static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec = NULL;
- char *plane;
- int matSize, x;
- float norm = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
- PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
- return NULL;
- }
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
- if(vec) {
- if(vec->size > 2 && matSize == 2) {
- PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- }
- if(vec == NULL) { //ortho projection onto cardinal plane
- if((strcmp(plane, "X") == 0) && matSize == 2) {
- mat[0] = 1.0f;
- } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
- mat[3] = 1.0f;
- } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[4] = 1.0f;
- } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[8] = 1.0f;
- } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
- mat[4] = 1.0f;
- mat[8] = 1.0f;
- } else {
- PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
- return NULL;
- }
- } else { //arbitrary plane
- //normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
- norm += vec->vec[x] * vec->vec[x];
- }
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
- vec->vec[x] /= norm;
- }
- if((strcmp(plane, "R") == 0) && matSize == 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[1]);
- mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
- } else if((strcmp(plane, "R") == 0) && matSize > 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[2]);
- mat[3] = -(vec->vec[0] * vec->vec[1]);
- mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
- mat[5] = -(vec->vec[1] * vec->vec[2]);
- mat[6] = -(vec->vec[0] * vec->vec[2]);
- mat[7] = -(vec->vec[1] * vec->vec[2]);
- mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
- } else {
- PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
- return NULL;
- }
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
-
-static char M_Mathutils_ShearMatrix_doc[] =
-".. function:: ShearMatrix(plane, factor, size)\n"
-"\n"
-" Create a matrix to represent an shear transformation.\n"
-"\n"
-" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
-" :type plane: string\n"
-" :arg factor: The factor of shear to apply.\n"
-" :type factor: float\n"
-" :arg size: The size of the shear matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :return: A new shear matrix.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
-{
- int matSize;
- char *plane;
- float factor;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
- PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
- return NULL;
- }
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
-
- if((strcmp(plane, "X") == 0)
- && matSize == 2) {
- mat[0] = 1.0f;
- mat[2] = factor;
- mat[3] = 1.0f;
- } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
- mat[0] = 1.0f;
- mat[1] = factor;
- mat[3] = 1.0f;
- } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[4] = 1.0f;
- mat[6] = factor;
- mat[7] = factor;
- } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[3] = factor;
- mat[4] = 1.0f;
- mat[5] = factor;
- mat[8] = 1.0f;
- } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[1] = factor;
- mat[2] = factor;
- mat[4] = 1.0f;
- mat[8] = 1.0f;
- } else {
- PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
- return NULL;
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
/* Utility functions */
@@ -634,7 +147,7 @@ int Mathutils_RegisterCallback(Mathutils_Callback *cb)
/* find the first free slot */
for(i= 0; mathutils_callbacks[i]; i++) {
- if(mathutils_callbacks[i]==cb) /* alredy registered? */
+ if(mathutils_callbacks[i]==cb) /* already registered? */
return i;
}
@@ -696,7 +209,7 @@ PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
return ret;
}
-char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly). **type** boolean";
+char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly).\n\n:type: boolean";
PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
{
return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
@@ -714,11 +227,6 @@ void BaseMathObject_dealloc(BaseMathObject * self)
/*----------------------------MODULE INIT-------------------------*/
struct PyMethodDef M_Mathutils_methods[] = {
- {"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
- {"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
- {"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
- {"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
- {"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
{NULL, NULL, 0, NULL}
};
@@ -750,7 +258,7 @@ PyObject *Mathutils_Init(void)
return NULL;
submodule = PyModule_Create(&M_Mathutils_module_def);
- PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
+ PyDict_SetItemString(PyImport_GetModuleDict(), M_Mathutils_module_def.m_name, submodule);
/* each type has its own new() function */
PyModule_AddObject( submodule, "Vector", (PyObject *)&vector_Type );